
Efficient Random Beacons with Adaptive Security
for Ungrindable Blockchains

Aggelos Kiayias1,2, Cristopher Moore3, Saad Quader4, and Alexander Russell4,2

1Univeristy of Edinburgh
2IOHK

3Santa Fe Institute
4University of Connecticut

June 2020

Abstract

We describe and analyze a simple protocol for 𝑛 parties that implements a randomness beacon: a sequence
of high entropy values, continuously emitted at regular intervals, with sub-linear communication per value.
The algorithm can tolerate a (1 − 𝜖)∕2 fraction of the 𝑛 players to be controlled by an adaptive adversary that
may deviate arbitrarily from the protocol. The randomness mechanism relies on verifiable random functions
(VRF), modeled as random functions, and effectively stretches an initial 𝜆-bit seed to an arbitrarily long public
sequence so that (i) with overwhelming probability in 𝑘—the security parameter—each beacon value has high
min-entropy conditioned on the full history of the algorithm, and (ii) the total work and communication required
per value is 𝑂(𝑘) cryptographic operations.

The protocol can be directly applied to provide a qualitative improvement in the security of several proof-of-
stake blockchain algorithms, rendering them safe from “grinding” attacks.

1 Introduction
We revisit the well-studied topic of randomness generation in a distributed setting of 𝑛 players with an adversary
who controls a minority of the players. Our particular goal is motivated by a flurry of recent work on generating
random beacons for proof-of-stake blockchains; these are distributed protocols that critically rely on the ability
of a committee of participants to generate history-independent clean randomness. More broadly, we consider
the question of generating randomness for a long-lived distributed protocol that proceeds in epochs: Each epoch
of the protocol requires clean randomness, is responsible for carrying out a distributed computation of interest,
and must furthermore generate the randomness to carry out the next epoch. We study the particular demands
of randomness generation in this setting, develop and analyze an efficient protocol for the problem, and indicate
how the protocol can be used to provide a striking qualitative improvement in the security provided by proof-of-
stake blockchains such as SnowWhite [5], Ouroboros Praos [10], and Tezos [15].

The simplest formulation that arises in our setting is described by𝑛 players𝑃1,… , 𝑃𝑛, each ofwhich is assigned
an independent and uniformly random string 𝑟𝑖 . A random subset of players is selected, and honest players
simply shout out their strings for all to hear, while adversarial players—after examining the values of the honest
players—may selectively choose whether or not to broadcast their string. A function 𝐹 is then applied to the
concatenation; what can be said about the randomness content of the result? This question immediately calls
to mind the classical perfect information model of Ben-Or and Linial [3]: the adversarial coalition may delay its
action until the honest players have submitted their strings, and the resulting randomness is determined by an
application of a fixed function.

1

Our objective of high entropy and sublinear communicationmake such classical techniques unsuitable. First,
given the sublinear complexity requirement, the number of adversarial parties exceeds the number of parties who
may contribute to the generation of a particular beacon value; one then has to guard against the possibility that
the adversary can induce a protocol execution for which a certain beacon value is completely determined by
adversarial parties, violating its unpredictability. To go a step further, in light of adaptive corruptions it must be
difficult to even predict if a party will materially contribute to the protocol. To circumvent this problem, we will
allow a common random string to be used as a protocol setup. Even in such a case, however, a significant obstacle
remains; if any party is active in more than a single stage of the protocol, the adaptive adversary can corrupt that
party. For this reason single-round protocols will play a special role in the construction and analysis: in such
protocols, given that each player speaks only once, the power of adaptive corruption can be mitigated.

Themodel and the figure ofmerit. To be more precise about the problem, we begin with 𝑛 players 𝑃1,… , 𝑃𝑛
in a public-key setting where we have the luxury of pre-established public/private key pairs for the players. The
protocol is provided a common random seed 𝑠 ∈ {0, 1}𝜆, where 𝜆 will act as a security parameter of the system,
and must generate a common result 𝑠′ ∈ {0, 1}𝜆. The goal is to ensure that 𝑠′ is sufficiently random, conditioned
on the seed 𝑠, even in the face an adaptive adversary whomay adaptively corrupt a coalition of [(1− 𝜖)∕2]𝑛 of the
players for constant 𝜖 ∈ (0, 1). While the players are provided a synchronous broadcast network, the adversary is
rushing: it may observe the broadcast values of the honest players prior to determining the behavior of adversarial
parties in the same broadcast round.

Our goal is a resulting random value 𝑠′ that is sufficiently close to uniform to support a generic distributed
process𝚷() that runs at regular intervals. Specifically, consider a process𝚷(𝑟) that requires a random value 𝑟 ∈
{0, 1}𝜆 for operation and has failure probability 𝜀𝑝; wewish to iterate the process𝑇 times. Of course, ideal iteration
would carry out the sequence 𝚷(𝑟1),… ,𝚷(𝑟𝑇), where each 𝑟𝑖 is an independently uniform string provided by a
perfect external randomness “beacon”; this would yield error probability ≈ 𝜀𝑝𝑇 (by the union bound). Suppose
now that we have a randomness generation mechanism 𝐵 ∶ {0, 1}𝜆 ⇝ {0, 1}𝜆 with the property that for uniformly
chosen 𝑠 ∈ {0, 1}𝜆 and a parameter 𝑘 > 0, the output 𝑠′ = 𝐵(𝑠) satisfies

Pr
𝑠
[𝐻∞(𝑠′ ∣ 𝑠) ≤ 𝜆 − 𝑘] ≤ 2−𝐶𝑘 (1)

for a constant𝐶 > 1, even if a fraction (1−𝜖)∕2 of the players deviate arbitrarily and adaptively. Consider then the
sequence of seeds 𝑠1,… , 𝑠𝑇 , where 𝑠1 is uniform and each subsequent 𝑠𝑖 = 𝐵(𝑠𝑖−1). Recalling that the probability
of an event 𝐸 ⊂ {0, 1}𝜆 can only be inflated by a factor 2𝑘 when evaluated with respect to a random variable
with min-entropy 𝜆 − 𝑘 (vis-a-vis its probability with respect to the uniform distribution) it follows immediately
that, except with probability 𝑇2𝑘2−𝐶𝑘 = 𝑇2−(𝐶−1)𝑘, each one of these seeds has min-entropy 𝜆 − 𝑘 (even when
conditioned on the prior history). Furthermore, by the same reasoning, the error probability arising from using
this sequence of 𝑇 random seeds to iterate the process𝚷(⋅) 𝑇 times is no more than

(
2−(𝐶−1)𝑘 + 2𝑘𝜀𝑝

)
𝑇 .

Observe the critical role played by the constant 𝐶: If 𝐶 ≤ 1 the quality bound of (1) is insufficient to guarantee
strong iteration. If𝐶 > 1, by appropriately tuning 𝑘 one achieves resulting error≈ 𝑇𝜀1−1∕𝐶𝑝 . If𝐶 = 2, for example,
one can achieve error 𝑂(𝑇√𝜀𝑝). This somewhat informal picture is made precise in Section 3.

The beacon protocol,𝐁. Our principal contribution is a simple protocol𝐁 that achieves𝐶 > 1. The protocol is
one-round, calling for eachplayer to generate and broadcast a “nonce”𝑤𝑖 ∈ {0, 1}𝜆; as above, honest players broad-
cast their nonceswhile the adversarial players, acting in concert,maynoweach broadcast a nonce that depends on
the honest observed values or choose not to broadcast a nonce at all. Finally, a function 𝐹(𝑠;𝑤1,… , 𝑤𝑛) ∈ {0, 1}𝜆
is applied to the broadcast nonces with the convention that 𝑤𝑖 = ⊥ if 𝑃𝑖 did not broadcast. We wish to control
𝐻∞(𝐹(𝑠;𝑤1,… , 𝑤𝑛) ∣ 𝑠), the min-entropy conditioned on the seed.

The protocol 𝐁 depends on two cryptographic objects: a cryptographic hash function 𝖧(⋅) and a family of
verifiable random functions (Definition 1). Specifically, each player 𝑃𝑖 is associated with a public/private key

2

pair for a verifiable random function 𝐹𝑖 ∶ {0, 1}𝜆 → {0, 1}𝜆. Such a function appears random to all parties, can
only be evaluated by the private key holder (𝑃𝑖), but admits a publicly verifiable proof of evaluation: that is, after
evaluating the function to find that 𝐹𝑖 ∶ 𝑥 ↦→ 𝑦, 𝑃𝑖 can generate a publicly verifiable proof of this fact. As
indicated above, the protocol is determined by a parameter 𝑘, and proceeds as follows:

1. With the seed 𝑠, each player evaluates 𝐹𝑖(𝑠) = 𝑤𝑖 . These values, 𝑤𝑖 , along with proofs that 𝐹𝑖(𝑠) = 𝑤𝑖 are
broadcast to all players.

2. All values 𝑤𝑖 received (with correct proofs) are sorted lexicographically. The first 𝑘 values are hashed to-
gether to produce the new seed 𝑠′.

As indicated above, we assume a broadcast channel but permit the adversary to select the contributions of his
players after observing the 𝑤𝑖 of the honest players.
Reducing broadcasts. The algorithm admits a simple optimization that yields a significant improvement in mes-
sage efficiency; we call this the optimized version of 𝐁. As written, the protocol 𝐁 calls for 𝑛 broadcast messages,
one per party. However, as only those 𝑤𝑖 appearing among the first 𝑘 positions in the lexicographically sorted
list of 𝑤𝑖 will contribute to the final value, player 𝑃𝑖 can safely remain silent if 𝑤𝑖 ≥ 𝓁2𝜆∕𝑛, for an appropriately
chosen threshold 𝓁 > 𝑘. More precisely, the probability that the first 𝑘 elements of the sorted sequence are not
all less than 𝓁2𝜆∕𝑛 is exp(−Ω(𝓁) + 𝑂(𝑘)). As we will take 𝑘 to scale with the security parameter, this yields a
protocol with message complexity that scales with the security parameter rather than 𝑛.

One effect of this application of verifiable random functions is to significantly limit the behavior of the adver-
sarial players: essentially, each adversarial player may only choose whether or not to submit his 𝑤𝑖 . It follows
immediately that the adversary has no more than 2(1−𝜖)𝑛∕2 choices for the resulting seed 𝑠′ and thus 𝐻∞(𝑠) ≥
𝜆 − (1 − 𝜖)𝑛. Of course, this bound is far too weak for our purposes; for one thing, it scales with 𝑛.

Remarks on the analysis. The analysis of the protocol establishes an inequality of the form (1) where 𝑘 is precisely
the number of “lowest” nonces used by the algorithm. The analysis provides this guarantee even in the face of
an adaptive adversary controlling [(1 − 𝜖)∕2] ⋅ 𝑛 of the parties.

Note that while the algorithm itself critically uses cryptographic objects, we treat these as idealized black
boxes in the analysis; in particular, both the hash function and the verifiable random functions are modeled as
random functions. Thus the analysis is essentially a probabilistic affair, analyzing the moments of a particular
discrete process and the order statistics of the related Erlangian distribution.

The blockchain application; forestalling grinding attacks. Proof-of-stake blockchains have precisely the
structure described above, and it is in this context that such beacon generation algorithms have beenmost closely
studied. Blockchains such as Ouroboros Praos, Snow White, and Tezos all use randomness beacons on which
grinding attacks can be launched. This means that the resulting beacon value 𝑅 is subject to a resampling attack
by the adversary: specifically, while 𝑅 is drawn from a high entropy distribution, the beacon generation protocol
permits the adversary to redraw 𝑅 as many times as he pleases before settling on one he likes. Thus the security
guarantees of these protocols have a “grinding” term that bounds above the number such adversarial resamplings:
the most convenient way to do this is to define 𝑅 = 𝖧(𝑆), for a cryptographically strong hash function 𝖧 queried
at an input 𝑆 that the adversary partially controls, and bound from above the number of adversarial evaluations
of the hash function. This has a rather unpleasant effect: while these are proof-of-stake blockchains, one still
requires a bound on the adversarial hashing power to establish security. The analysis in [22] overcomes this
difficulty by giving an exact analysis of the grinding term in the “hash the blockchain” beacons used in Ouroboros
Praos [10] and SnowWhite [5] in the synchronous setting; this eliminates the need to rely on the hashing power
of the adversary. However, this analysis requires quite strong bounds on adversarial stake ratio—rough 9.5%—to
give acceptable guarantees.

Our simple beacon protocol can be directly incorporated into these blockchain protocols by the standard de-
vice: the broadcast channel is implemented using blockchain consensus mechanism itself. (See, e.g., the general
notion of “input endorsers” in Ouroboros [18].) This straightforward transformation, while preserving the other
properties of the blockchains, removes the grinding term from their security analysis. Indeed, in the parlance
above, one can select 𝑘 as a function of the security parameter and achieve an explicit polynomial effect on the

3

insecurity of the protocol. For deployed protocols (e.g., Tezos [15] and Ouroboros Praos [10]), this is especially
favorable because the fundamental parameters of the protocol (i.e., epoch length, settlement time, etc.) can be
determined merely as a function of the stake of the adversary. Note that our beacon allows these protocols to
tolerate an adversary who holds less than 50% stake. In contrast, the existing “hash the blockchain” beacons in
Praos and SnowWhite become insecure if the adversary holds more than 9.5% stake [22].

Prior to a detailed treatment of the related work, it is worth emphasizing that a major distinction between our
effort and previous work is our insistence that the protocol is efficient and secure against an adaptive adversary.
Indeed, protocols based on publicly-verifiable secret sharing schemes (e.g., Ouroboros [18]) can achieve perfect
randomness with two rounds. The emphasis on one-round solutions arises because of adaptive security and the
fact that the length of the randomness generation algorithm is an important design parameter for these proof-
of-stake blockchains. (It determines the recency of the distribution of stake that is used to define the leader
election distribution and, as a result, the bound on the rate at which stake can move in the system.) It is worth
mentioning that these systems implement a broadcast channel with a particular application of their low-level
consensus mechanism, and this means that a single round of broadcast may take significant time to settle—days
in some cases. Thus the distinction between a one-round protocol and even a two-round protocol has additional
practical significance. We remark, additionally, that our one-round protocols are extremely simple.

Our contribution. Recall that our objective is an 𝑛-player beacon protocol with the following properties: (i) it
is an iterated single-round coin-flipping protocol; (ii) it is secure against an adaptive adversary who may control
less than half the players (or, equivalently, in the proof-of-stake setting, control less than a 50% stake); (iii) it is
allowed to use a broadcast channel and cryptography; (iv) the setup and communication complexity is sublinear
in 𝑛; (v) for some parameter 𝑘 (which is independent of 𝑛), the loss in the output min-entropy is𝑂(𝑘) except with
probability 𝑒−Ω(𝑘).

The optimized version of our beacon protocol 𝐁 has all these properties. To our best knowledge, no other
beacon does the same:

1. Algorand [9]—one of the main inspirations for this paper—provides single-round coin-flipping but guar-
antees high min-entropy with only a constant probability. Our approach can be viewed as a kind of paral-
lelization of the Algorand technique; see below.

2. The coin-flipping in Ouroboros and RandHound [25] are multi-round and insecure against an adaptive
adversary who controls aminority stake or aminority coalition, respectively. DFINITY [16] uses one-round
coin-flipping but, like Ouroboros, it is secure only against a static adversary.

We present a more comprehensive literature survey in Section 1.1.

1.1 Related work
Below, we survey the coin-flipping and beacon literature in more detail.

Collective coin-flipping as a Boolean function. The (single round) collective coin-flipping in the full infor-
mation model is a classic problem introduced in the seminal work of Ben-Or and Linial [3]. In this problem,
𝑛-players communicate over a single broadcast channel. First, each honest player submits a uniformly random
bit, and then each adversarial player (strategically) submits an arbitrary bit. The output of the protocol is a single
bit, computed as a Boolean function 𝐹 applied to the submitted bits. If 𝐹 is the majority function, an adversarial
coalition of size𝑂(

√
𝑛) can arbitrarily influence the output of the protocol [3]. Later, Kahn, Kalai, and Linial [17]

showed that for every Boolean function 𝐹 in this setting, there is an adversarial coalition of size 𝑂(𝑛∕(log𝑛)) that
can bias the output. It was conjectured by Friedgut [12] that Boolean functions on the continuous cube [0, 1]𝑛
(or equivalently, the discrete cube [𝑛]𝑛) can be biased by a coalition of size 𝑜(𝑛). See [11] and [26] for advances
on this line of research. As for multi-round coin-flipping protocols, Russell, Saks, and Zuckerman [23] showed
that any 𝑜(log∗ 𝑛)-round coin-flipping protocol can be biased by a coalition of size 𝑜(𝑛).

Cryptography is a powerful tool for collective coin-flipping. While the most directly relevant related work is
AlgoRand—which uses a mechanism similar to ours—we survey some other work first to set the stage.

4

PVSS-based beacons. Publicly verifiable secret sharing (PVSS) techniques have been successfully used to de-
sign unbiasable, multi-round coin-flipping protocols, such as Ouroboros [18], RandHound [25], Scrape [8], and
HydRand [24]. The coin-flipping in these protocols have two (logical) rounds: first, a round where the players
broadcast commitments to their inputs, followed by a round where these commitments are revealed. An advan-
tage of these protocols is that they can provide extremely strong guarantees on the quality of the randomness—
when the protocols are secure, they produce output values that are indistinguishable from uniform. A difficulty
is that they demand 𝑂(𝑛2) messages to be broadcast, which is intractable in practice. A standard technique to
mitigate this is to first elect a small committee of players which then carry out the full PVSS. Of course, such a
procedure is immediately subject to attacks by an adaptive adversary who can corrupt the committee once it is
determined.

VDF-based beacons. Verifiable Delay Functions (VDF) [7, 27, 21] may be used to construct unpredictable,
multi-round coin-flipping protocols (for a sketch of such a possible construction see [1]). Using VDFs in this
context is orthogonal to our techniques: a VDF can delay the revelation of the beacon outcome to temper the
opportunities the adversary has to grind the beacon output. In general, tuning the hardness parameter of the
VDF to a high level aids this security objective but naturally interferes with the availability (or liveness) of the
beacon. For this reason, a fine-grained analysis of the randomness properties of the beacon is a precondition to
the effective use of a VDF in a practical beacon algorithm. Moreover, employing a VDF will require a less cryp-
tographic assumption (moderate hardness). We leave the combination of VDF techniques with our randomness
generation algorithm as an interesting future research direction.

Threshold signatures. DFINITY [16] uses a one-round coin-flipping protocol based on non-interactive (𝑡, 𝑛)-
Threshold BLS signatures [6]. In the setup phase, a random subset of 𝑛 players—a “group”—is selected from a
universe of𝑁 players and key-pairs for the groupmembers are established. After the setup, each player broadcasts
his share and any player can recover the (unique) beacon output from any 𝑡 shares. The main disadvantage with
respect to our techniques is of course the complexity of the group setup which requiresΩ(𝑛2) communication for
a single distributed key generation process between 𝑛 players.

Algorand. Algorand [9] uses a Byzantine Agreement-basedmulti-round coin-flipping protocol where the play-
ers are equippedwith verifiable random functions (VRF).While themulti-round beacon output is uniform except
with a negligible probability, the beacon output of a single-round is uniformwith only constant probability—thus
conditional min entropy is small. As mentioned above, our protocol can be viewed as a parallelization of the Al-
goRand technique; indeed, a single-round of AlgoRand coin-flipping is equivalent to setting 𝑘 = 1 in our protocol.
In contrast, our one-round protocol guarantees a “small” loss in min-entropy except with a negligible probability.

VRF-based eventual consensus Proof-of-Stake blockchains. Many proof-of-stake blockchain protocols,
such as Ouroboros Praos [10], Genesis [2], and SnowWhite [5], use VRFs in their coin-flipping protocols. (VRFs
are formally defined in Definition 1.) This is a multi-round protocol where each “block” contains a nonce. The
coin-flipping output is a cryptographic hash of the XOR of the nonces recorded in the “common prefix” of all
blockchains held by the honest players at the end of the epoch. (Thus, these protocols do not use a broadcast
channel.) We can call these beacon protocols “hash the blockchain” beacons. It was shown in the Ph.D. the-
sis [22] that the min-entropy loss for this beacon in a single epoch (in the synchronous communication setting)
grows linearly in the security parameter if the adversarial stake is 9.5% or higher.

Nakamoto-style PoW beacons. Bentov et al. [4] establish a lower bound for a class of Nakamoto-style proof-
of-work based beacons and discuss approaches for a game-theoretic analysis of beacon protocols.

5

1.2 Paper outline
We present our model and the beacon protocol in Section 2 and present the analysis in Section 3. The impact of
our results in the eventual consensus domain is discussed in Section 4.

2 Model and definitions; the protocol
As described in the introduction, we adopt a distributed model of computation with 𝑛 players 𝑃 = {𝑃1,… , 𝑃𝑛}.
Communication is synchronous, providing reliable broadcast. The model further provides cryptographic setup
assumptions, assuming public/private key pairs for any cryptographic primitives of interest and an initial random
string. Despite these modeling simplifications, the protocol we develop has direct applications to the blockchain
protocols discussed in the introduction as they can provide reliable broadcast as a side effect of eventual consen-
sus; see Section 4.

We adopt an adaptive rushing adversary, capable of corrupting a coalition of [(1 − 𝜖)∕2] ⋅ 𝑛 players where
𝜖 ∈ (0, 1). Broadcast is tipped in the adversary’s favor: During any broadcast round, adversarial parties may
wait to hear from all honest parties before deciding on the values they contribute to the (otherwise synchronous)
broadcast round. We do not permit the adversary to suppress messages sent by honest parties, something in line
with the modeling of information propagation in blockchain protocols, see e.g., [14, 13].

While wemake use of two cryptographic primitives, we treat them both as idealized random oracles; in partic-
ular, the analysis and discussion are in an information-theoretic style. We use 𝜆 to denote the security parameter
of the protocol: our goal throughout is insecurity of the form exp(−Θ(𝜆)).

• The protocol relies on a cryptographically secure hash function 𝖧 ∶ {0, 1}∗ → {0, 1}𝜆; this we simply model
as a uniformly random function.

• The protocol relies on a family of verifiable random functions, defined below.

Definition 1 (Verifiable Random Function). A family ℱ of functions 𝐹 ∶ {0, 1}𝓁 → {0, }𝑘 is a family of VRFs if
there exist algorithms (𝗀𝖾𝗇, 𝗉𝗋𝗈𝗏𝖾, 𝗏𝖾𝗋𝗂𝖿𝗒) so that the followingholds: 𝗀𝖾𝗇(1𝑘) outputs a pair of keys (𝗉𝗄, 𝗌𝗄); 𝗉𝗋𝗈𝗏𝖾𝗌𝗄(𝑥)
outputs a pair (𝐹𝗌𝗄(𝑥), 𝜋𝗌𝗄(𝑥)) where 𝐹𝗌𝗄 ∈ ℱ, 𝐹𝗌𝗄(𝑥) is the function value, and 𝜋𝗌𝗄(𝑥) is the proof of correctness;
and 𝗏𝖾𝗋𝗂𝖿𝗒𝗉𝗄(𝑥, 𝑦, 𝜋𝗌𝗄(𝑥)) efficiently verifies that 𝑦 = 𝐹𝗌𝗄(𝑥) using the proof 𝜋𝗌𝗄(𝑥), outputting 1 if 𝑦 is valid and 0
otherwise. Additionally, we require the following properties:

1. Uniqueness: No values (𝗉𝗄, 𝑥, 𝑦, 𝑦′, 𝜋, 𝜋′) can satisfy both 𝗏𝖾𝗋𝗂𝖿𝗒𝗉𝗄(𝑥, 𝑦, 𝜋) = 1 and 𝗏𝖾𝗋𝗂𝖿𝗒𝗉𝗄(𝑥, 𝑦
′, 𝜋′) = 1

unless 𝑦 = 𝑦′.

2. Provability: If (𝑦, 𝜋) = 𝗉𝗋𝗈𝗏𝖾𝗌𝗄(𝑥) then 𝗏𝖾𝗋𝗂𝖿𝗒𝗉𝗄(𝑥, 𝑦, 𝜋) = 1.

3. Pseudorandomness: To all probabilistic polynomial-time (PPT) algorithm which runs 𝗉𝗈𝗅𝗒(𝑘) steps when its
first input is 1𝑘 and does not query the 𝗉𝗋𝗈𝗏𝖾 oracle on 𝑥, the distribution of 𝐹𝗌𝗄(𝑥) appears uniform in {0, 1}𝑘 ,
except with a probability negligible in 𝑘.

For the purposes of our exposition, an ideal functionality of the form below is sufficient: with each player is
associated a uniformly random function 𝐹𝑖 ∶ {0, 1}𝜆 → {0, 1}𝜆. While the function is uniquely determined (by the
player’s public key), it can only be evaluated by the player 𝑃𝑖 (with her private key). 𝑃𝑖 can further produce, after
evaluating the function to discover that 𝐹𝑖 ∶ 𝑥 ↦→ 𝑦, a proof 𝜋𝑖(𝑥) of this fact, which can be reliably checked by
the other players.

The protocol. Let 𝜖 ∈ (0, 1). As our basic protocol is a one-round affair we can simplify our presentation as
follows.

The Randomness Generation Protocol 𝐁𝑘(𝑠)

1. All parties are presented a uniformly random string 𝑠 ∈ {0, 1}𝜆.

6

2. Based on 𝑠, the adversary may corrupt a subset 𝐴 ⊂ 𝑃 of the players of size [(1 − 𝜖)∕2] ⋅ 𝑛.

3. Honest players announce their nonce values 𝐹𝑖(𝑠) (along with a proof of evaluation).

4. Adversarial players may choose whether to announce their nonce values 𝐹𝑖(𝑠) (along with a proof of eval-
uation).

5. The result of the protocol can be privately determined as 𝖧(𝜂(1)‖⋯ ‖𝜂(𝑘)) where 𝜂(1),… , 𝜂(𝑘) are the first 𝑘
nonce values in lexicographic order.

As remarked in the introduction, for efficiency considerations, we also consider the optimized version of the
protocol, where 𝑃𝑖 only broadcasts its nonce 𝜂𝑖 if 𝜂𝑖 ≤ 𝓁2𝜆∕𝑛 for a parameter 𝓁 > 2𝑘. By a Chernoff bound,
except with probability exp(−Ω(𝓁)) this has the effect of reducing the number of broadcast messages to 𝑂(𝓁)
without affecting the result (as the lowest 𝑘 nonces will appear below this threshold). In our regime of interest,
one can take 𝓁 = 𝑐𝑘 for a constant 𝑐 > 2.

Observe that as a one-round protocol, the adversary’s single opportunity to corrupt players appears after 𝑠 is
announced, at which point they are indistinguishable (as we assume ideal VRFs, public keys leak no information
about the 𝐹𝑖). In an iterative setting, the situation is rather more complicated because an adversary—with the
view of a collection of corrupt parties—has additional information thatmay be useful for the selection of the input
string 𝑠. We discuss this in detail in the next section. In any case, as it will follow that the 𝑠𝑖 selected for each
instance of the protocol in the iterative setting are distinct with overwhelming probability, the values 𝐹𝑖(𝑠) = 𝜂𝑖
of the honest parties may be treated as independent uniform values in any instance.

3 The analysis
Notation. The min entropy of a random variable 𝑋, denoted 𝐻∞(𝑋), is − logmax𝑣 Pr[𝑋 = 𝑣]; throughout we let
log denote the base two logarithm. When 𝑋 is conditioned on an event (such as the random variable 𝑌 taking
the value 𝑦), we write𝐻∞(𝑋 ∣ 𝑌 = 𝑦) or, simply,𝐻∞(𝑋 ∣ 𝑦) when 𝑌 can be inferred.

To approach the analysis, consider the 𝑛 players 𝑃 partitioned into two sets: 𝐻, the honest players, and𝐴, the
adversarial players. We assume that after adversarial corruption |𝐴| < (1 − 𝜖)𝑛∕2 for a constant 𝜖 ∈ (0, 1) we
shall fix throughout the analysis.

Our goal is to show that with high probability in 𝑠 ∈ {0, 1}𝜆, the min-entropy of the resulting hash value
is close to 𝜆, as in (1). We will actually show something slightly stronger: with high probability the resulting
distribution is the result of adversarial choice among some 𝑔 different uniform values—such a distribution has
min-entropy 𝜆 − log 𝑔. We precisely define this notion:
Definition 2 (𝑔-optativity). Let 𝑋 be a random variable taking values in {0, 1}𝜆. We say that 𝐶 ∶ ({0, 1}𝜆)𝑔 →
{0, 1}𝜆 is a choice function if 𝐶(𝑢1,… , 𝑢𝑔) ∈ {𝑢1,… , 𝑢𝑔} for any tuple (𝑢1,… , 𝑢𝑔). We say that𝑋 is 𝑔-optative if there
is a choice function 𝐶 ∶ ({0, 1}𝜆)𝑔 → {1,… , 𝑔} so that

𝑋 = 𝐶(𝑈1,… , 𝑈𝑔) ,

where the𝑈𝑖 are uniform, independent random variables in {0, 1}𝜆. Thus a random variable is 𝑔-optative if it can be
expressed as the result of an “adversary” selecting from a population of 𝑔 independent and uniformly random values.

Observe that if 𝑋 = 𝐶(𝑈1,… , 𝑈𝑔) then for any 𝑥 ∈ {0, 1}𝜆,

Pr[𝑋 = 𝑥] ≤ Pr[𝑥 ∈ {𝑈1,… , 𝑈𝑔}] ≤ 𝑔∕2𝜆

by the union bound. Thus𝐻∞(𝑋) ≥ 𝜆 − log(𝑔). To conclude:
Fact 3. Let 𝑋 be a 𝑔-optative random variable taking values in {0, 1}𝜆. Then𝐻∞(𝑋) ≥ 𝜆 − log(𝑔).

Our goal is the following theorem, which describes the behavior of a single instance of the beacon algorithm.

7

Theorem 4. For any 𝜖 > 0, there are constants 𝑎 > 1 and 𝑐 > 1 so that, for sufficiently large 𝑘 and 𝑛, if 𝑠 is an
𝑎𝑘-optative random variable in {0, 1}𝜆 and 𝑠′ = 𝐁(𝑠) denotes the result of the beacon generation algorithm with seed
𝑠 and an adaptive adversary capable of corrupting (1 − 𝜖)𝑛∕2 of the players, then 𝑠′ is also 𝑎𝑘-optative, except with
probability 𝑐−𝑘 .

A survey of the proof. Let 𝜂 ∶ 𝑃 → {0, 1}𝜆 be the function 𝜂(𝑃𝑖) = 𝜂𝑖 that collects together the nonces; let
𝜂𝐴 ∶ 𝐴 → {0, 1}𝜆 be the restriction to the adversarial parties and let 𝜂𝐻 the restriction to the honest parties. We
will use the notation 𝜂(1), 𝜂(2),… to denote the nonces of 𝜂 in sorted order and use the same convention for 𝜂𝐴
and 𝜂𝐻 .

Consider the view of the adversary after Step 2 of the protocol, so that he observes 𝑠 and 𝜂𝐴. We are interested
in the quantity 𝑠′ = 𝐁𝑘(𝑠) and study this by identifying two cases of interest. If it should happen that the 𝑘 smallest
nonces among (the range of) 𝜂𝐴 are in fact the 𝑘 smallest nonces among all the 𝜂𝑖 , we say that a catastrophe has
occurred—conditioned on this event (and the values taken by 𝑠 and 𝜂𝐴), the random variable 𝑠′ has zero min-
entropy (as we will only assume that 𝖧 is fresh on values that contain an honestly generated nonce). Otherwise,
the adversary is faced with the full sorted list of all 𝜂𝑖 , andmust choose which of his minions will contribute their
own nonces. Here an interesting combinatorial quantity arises: the number of distinct subsets of nonces which
the adversary can induce by silencing an arbitrary subset of his players and forming the subset of the smallest 𝑘
remaining nonces. Considering that a random function is applied to the resulting concatenation of nonces, each
such subset corresponds to a uniformly random element of {0, 1}𝜆. The adversarymay choose freely among these,
which results in a 𝑔-optative random variable (where 𝑔 is the number of such subsets). The proof concludes with
a (second moment) tail bound on 𝑔 which is strong enough to achieve the desired properties discussed in the
introduction.

In the next two sections we carry out these analyses and then conclude with the main security statement for
the beacon mechanism 𝐁.

3.1 The catastrophe

Continuing with the notation above, we let 𝜂(𝑘)𝐴 denote the 𝑘th smallest adversarial nonce andmin(𝜂𝐻) the small-
est honest nonce. Then the catastrophe is that 𝜂(𝑘)𝐴 < min(𝜂𝐻).
Theorem 5. Suppose that a fraction 𝑝 = (1 − 𝜖)∕2 < 1∕2 of the players are adversarial. Then

Pr
𝜂
[𝜂(𝑘)𝐴 ≤ min(𝜂𝐻)] = 2(e−1∕e + 𝑜(1))𝑘 .

Moreover, for any constant 𝑎 > 1, there are constants 𝜌𝑎 > 0 and 𝑐 > 1 so that

Pr
𝜂
[𝜂(𝑘)𝐴 ≤ 𝜌𝑎𝑘2𝜆∕𝑛] = (𝑎 + 𝑜(1))−𝑘 and Pr

𝜂
[min(𝜂𝐻) > 𝜌𝑎𝑘2𝜆∕𝑛] = (𝑐 + 𝑜(1))−𝑘 .

Proof. Let 𝑛 be the total number of players, with 𝑝𝑛 adversarial players and (1−𝑝)𝑛 honest ones. It’s convenient
to treat the nonces as real-valued, and scale them so that they are uniformly random in the interval [0, 𝑝𝑛]. The
adversary’s 𝑘 smallest nonces are asymptotically the arrivals of a Poisson process with rate 1: that is, their 𝑘th
smallest nonce 𝑟 = 𝜂(𝑘)𝐴 is an Erlang randomvariable, i.e., the sumof 𝑘 independent exponential randomvariables
𝑥1,… , 𝑥𝑘 each with mean 1. We can derive this by starting with the exact beta probability distribution for 𝑟,

𝑃(𝑟) =
(𝑝𝑛 − 1)!

(𝑝𝑛 − 𝑘)! (𝑘 − 1)!
(𝑥
𝑝𝑛)

𝑘−1
(1 − 𝑥

𝑝𝑛)
𝑝𝑛−𝑘

. (2)

Using
(𝑛
𝑘

)
= (1 − 𝑂(𝑘2∕𝑛))𝑛𝑘∕𝑘! and 1 − 𝑥 = (1 − 𝑂(𝑥2))e−𝑥, if 𝑥 ≤ 𝑘 this becomes

𝑃(𝑟) = (1 ± 𝑂(𝑘
2

𝑝𝑛))
e−𝑥𝑥𝑘−1

(𝑘 − 1)!
, (3)

8

where the right-hand side (without the error term) is the Erlang distribution. (We note in passing that 𝑃(𝑟) is
exactly Erlang if the number of adversarial players is Poisson with mean 𝑝𝑛 rather than being fixed.)

For now let us neglect the error term in (3), and derive a lower tail bound on 𝑟 assuming it is Erlang. Namely,
for any 0 < 𝜌 < 1, the probability that 𝑟 is less than 𝜌 times its expectation 𝑘 is bounded by

Pr[𝑟 < 𝜌𝑘] ≤
(
𝜌e1−𝜌

)𝑘 . (4)

The proof is standard, but we include it here for completeness. Since the 𝑥𝑖 are independent, the moment gener-
ating function of 𝑟 is simply the 𝑘th power of the m.g.f. of the exponential distribution,

𝔼[e𝜆𝑟] =
𝑘∏

𝑖=1
𝔼[e−𝜆𝑥𝑖] = (∫

∞

0
d𝑥 e−𝑥e−𝜆𝑥)

𝑘

= (1
1 + 𝜆)

𝑘
.

For any 𝜆 > 0, Markov’s inequality gives

Pr[𝑟 < 𝜌𝑘] = Pr[e−𝜆𝑟 > e−𝜆𝜌𝑘] ≤ 𝔼[e−𝜆𝑟]
e−𝜆𝜌𝑘

= (e𝜆𝜌
1 + 𝜆)

𝑘

.

The right-hand side is minimized when 𝜆 = −1 + 1∕𝜌, and simplifying gives (4). We note that (4) can also be
derived using the fact that the number 𝑡 of adversarial nonces less than 𝜌𝑘 is Poisson with mean 𝜌𝑘, and 𝑟 < 𝜌𝑘
if and only if 𝑡 ≥ 𝑘.

Since there are (1 − 𝑝)𝑛 ≥ 𝑝𝑛 honest nonces and they are also uniform in [0, 𝑝𝑛], the probability that none
of them fall below 𝜌𝑘 is

(1 −
𝜌𝑘
𝑝𝑛)

(1−𝑝)𝑛
≤ (1 −

𝜌𝑘
𝑝𝑛)

𝑝𝑛
≤ e−𝜌𝑘 .

We conclude that for 0 < 𝜌 < 1,

Pr[𝜂(𝑘)𝐴 ≤ min(𝜂𝐻)] ≤ min
𝜌

Pr[𝜂(𝑘)𝐴 < 𝜌𝑘 or 𝜌𝑘 ≤ min(𝜂𝐻)]

≤ (1 ± 𝑂(𝑘
2

𝑝𝑛)) (min𝜌 (𝜌e1−𝜌)𝑘 + e−𝜌𝑘 ,

by the union bound and where we have restored the error term from (3). Taking 𝜌 = 1∕e balances these terms,
giving the bound 2e−𝑘∕e. Moreover, for any fixed constant 𝑎 > 1, by choosing 𝜌 suitably small one can ensure
that 𝜌𝑒1−𝜌 < 1∕𝑎; this yields the second statement of the theorem.

3.2 The grinding term
We return now to the “non-catastrophic” case. The adversary is faced with the sorted list of all the nonces
𝜂(1), 𝜂(2),… and may choose which of his parties will actually contribute their nonces to the protocol. Depending
on this selection, the smallest 𝑘 contributed nonces are hashed together to give the final result of the protocol.
In this non-catastrophic case, regardless of the adversary’s selection, at least one of the included nonces will be
honest and the resulting hash value will be a fresh, uniform value. (Here we neglect the probability of a colli-
sion among the random values submitted to the hash function over the lifetime of the protocol.) Thus the major
question of interest is the number of possible subsets the adversary can produce by this process.

To study this question, with the sorted sequence of nonces 𝜂(1), 𝜂(2),… we may associated a bit sequence
𝑠1, 𝑠2,… with the convention that 𝑠𝑖 = 0 if 𝜂(𝑖) is honest, and 1 otherwise. Note that the 𝑠𝑖 are i.i.d. random
variables with Pr[𝑠𝑖 = 1] = 𝑝 = (1 − 𝜖)∕2. Viewing the subsets that can emerge by the adversary’s choice as
subsets of these indices yields the following definition.
Definition 6. Given an infinite sequence 𝑠 ∈ {0, 1}ℕ, a subsequence 𝑢 = (𝑠11 , 𝑠𝑖2 ,… , 𝑠𝑖𝑘) with 0 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘
is legal if 𝑗 ∈ {𝑖1,… , 𝑖𝑘} for all 𝑗 ≤ 𝑖𝑘 with 𝑠𝑗 = 0. That is, it must include all the 0s to the left of its rightmost element.

9

Theorem 7. Let 𝑠 ∈ {0, 1}ℕ be an infinite Bernoulli sequence with density 𝑝 < 1∕2. That is, for all 𝑖 ∈ ℕ the 𝑠𝑖 are
independent, 𝑠𝑖 = 1with probability 𝑝 and 𝑠𝑖 = 0with probability 1−𝑝. Let𝑁𝑘 be the number of legal subsequences
of length 𝑘. Then there are constants 𝑎, 𝑏 such that 𝑎 < 𝑏 and a constant 𝑘0 such that

Pr
[
𝑁𝑘 > 𝑎𝑘

]
< 𝑏−𝑘 (5)

for all 𝑘 > 𝑘0. Moreover, if 𝑝 < 0.319 this holds with 𝑎 < 1∕𝑝.

Proof. We will use Chebyshev’s inequality, i.e., Markov’s inequality applied to the second moment,

Pr
[
𝑁𝑘 > 𝑎𝑘

]
<
𝔼[𝑁2

𝑘]
𝑎2𝑘

. (6)

It seems tricky to compute the second moment 𝔼[𝑁2
𝑘] directly. Instead, let 𝑁

(2)
𝓁 denote the number of ordered

pairs (𝑢, 𝑣) of legal subsequences whose lengths sum to 𝓁. Clearly

𝑁2
𝑘 ≤ 𝑁(2)

2𝑘 , (7)

so the modified second moment 𝔼[𝑁(2)
2𝑘] is an upper bound on 𝔼[𝑁

2
𝑘].

Now consider the generating function

𝑔(𝑥, 𝑦) = 𝔼
𝑠

∞∑

𝓁
𝑁(2)
𝓁 𝑧𝓁 =

∞∑

𝓁
𝔼[𝑁(2)

𝓁]𝑧𝓁 .

We can calculate 𝑔(𝑧) from a fixed point equation. Clearly the distribution of 𝑠 is unchanged if we shift it to the
right, setting 𝑠𝑖+1 to 𝑠𝑖 , and choose 𝑠0 from the Bernoulli distribution. If 𝑠0 = 0, we can extend an existing pair
(𝑢, 𝑣) of legal subsequences by prepending 𝑠0 to both of them, giving a factor of 𝑧2 to the generating function; if
𝑠0 = 1, we can append 𝑠0 to either one independently, giving a factor of (1 + 𝑧)2; and in either case we can create
a new pair (𝑢, 𝑣) where both strings are empty, adding 1. This gives the linear recurrence

𝑔(𝑧) ∶= 1 + 𝑔(𝑥, 𝑦)𝔼
𝑠0
{
𝑧2 𝑠0 = 0
(1 + 𝑧)2 𝑠0 = 1

= 1 +
(
(1 − 𝑝)𝑧2 + 𝑝(1 + 𝑧)2

)
𝑔(𝑧) ,

where we used the fact that 𝑠0 is Bernoulli with expectation 𝑝. The fixed point of this recurrence is

𝑔(𝑧) = 1
1 − 𝑧2 − 𝑝(1 + 2𝑧)

.

which we can also derive as a geometric series.
Now, 𝑔(𝑧) is rational. Its unique positive pole, which is simple, is

𝑧0 =
√
𝑝2 − 𝑝 + 1 − 𝑝 .

It follows from standard techniques in generating functions [28] that the coefficient 𝔼[𝑁(2)
𝓁] of 𝑧𝓁 is bounded by

𝔼[𝑁(2)
𝓁] ≤ 𝐶𝑧−𝓁0 (8)

for some constant 𝐶.
Combining (8) with (6) and (7), for any 𝑎 > 0 the probability that 𝑁𝑘 > 𝑎𝑘 is bounded by

Pr
[
𝑁𝑘 > 𝑎𝑘

]
≤ 𝐶(𝑎𝑧0)−2𝑘 .

10

For sufficiently large 𝑘, the right-hand side is less than 𝑏−𝑘 if 𝑏 < (𝑎𝑧0)2, so we can set 𝑎 < 𝑏 whenever 𝑎 > 1∕𝑧20.
Finally, we can have 𝑎 < 1∕𝑝 if

𝑝 < 𝑧20 . (9)

This holds whenever 𝑝 is less than the unique real root of the cubic equation 𝑝3 − 𝑝2 + 𝑝 − 1∕4 = 0, which
according to Cardano’s formula is

1
6

⎛
⎜
⎜
⎝

2 − 8
3
√
3
√
57 − 1

+
3
√
3
√
57 − 1

⎞
⎟
⎟
⎠

= 0.319448…

This completes the proof.

3.3 The beacon security bound
Finally, we return to the security of beacon protocol itself. We wish to show the following:
Theorem 8 (Theorem 4, restated). For any 𝜖 > 0, there are constants 𝑎 > 1 and 𝑐 > 1 so that, for sufficiently large
𝑘 and 𝑛, if 𝑠 is an 𝑎𝑘-optative random variable in {0, 1}𝜆 and 𝑠′ = 𝐁(𝑠) denotes the result of the beacon generation
algorithm with seed 𝑠 and an adaptive adversary capable of corrupting (1 − 𝜖)𝑛∕2 of the players, then 𝑠′ is also
𝑎𝑘-optative, except with probability 𝑐−𝑘 .

Proof. The proof involves three random variables 𝜂𝐴, 𝜂𝐻 , and 𝖧. For convenience, we simply assume that 𝖧
takes independent, uniform values on all strings of the form 𝜂𝑖1‖𝜂𝑖2‖…, so long as at least one of these 𝜂𝑖 was
generated by an honest player. (To be completely precise here, one would have to maintain a term of the form
(number of queries)2∕2𝜆 to account for the possibility of a collision during the execution of the protocol, which
we ignore.)

In general, in light of Theorem7, there are constants 1 < 𝑎 < 𝑏 forwhich the probability that the adversary can
choose between more than 𝑎𝑘 different resulting subsets of nonces is no more than 𝑏−𝑘 if 𝑠 is chosen uniformly.
As 𝑠 is in fact is 𝑎𝑘-optative, the probability that there aremore than 𝑎𝑘 possible subsets is nomore than 𝑎𝑘 ⋅𝑏−𝑘 =
(𝑎∕𝑏)𝑘. Let 𝑐1 = 𝑏∕𝑎.

Thus, unless a catastrophe occurs—and there is a subset of entirely adversarial nonces—the resulting dis-
tribution is 𝑎𝑘-optative as 𝖧 is uniform on each of these nonce concatenations. It remains to ensure that the
catastrophe does not occur. Note that by Theorem 5, except with probability (𝑏 + 𝑜(1))−𝑘 in the selection of 𝜂𝐴
(with uniform 𝑠), a catastrophe cannot occur (in selection of the 𝜂𝐻) except with probability (𝑐2 + 𝑜(1))−𝑘. We
say that such 𝜂𝐴 is safe—that is, the conditional probability of a catastrophe in selection of 𝜂𝐻 is small. Again
using the fact that 𝑠 is 𝑎𝑘 optative, we find that with probability 𝑎𝑘∕(𝑏 + 𝑜(1))𝑘, 𝜂𝐴 is safe in this sense. For such
safe 𝜂𝐴, the probability of a catastrophe (in the selection of 𝜂𝐴) is no more than (𝑐2 + 𝑜(1))−𝑘 for appropriate 𝑐2.
Taking 𝑐 = min(𝑐1, 𝑐2) completes the theorem.

Secure iteration. Finally, consider the behavior of the protocol in the iterated setting. As discussed in the
introduction, 𝐁𝑘 is used to generate a sequence of beacons 𝑠0, 𝑠1,… , 𝑠𝑇 . We assume that 𝑠0 is uniform and thus
𝑎𝑘-optative. By induction, let us assume that 𝑠𝑡 is 𝑎𝑘-optative and consider the challenge of an adversary attacking
the 𝑡+1st instance of 𝐁𝑘. When this adversary selects 𝑠𝑡 (from among the 𝑎𝑘 different random possibilities), it is
aware of the VRF functions 𝐹𝑖 for as many as [(1 − 𝜖)∕2]𝑛 of the parties and may use this information to cleverly
select the next beacon. As in the proof of the theorem above, with each of these potential input beacons we may
ask if (i) the number of finally induced subsets (that is 𝑁𝑘) will be too large (that is, more than 𝑎𝑘) and (ii) if the
values 𝜂𝐴 (which the adversary may evaluate!) are not safe in the parlance of the proof. Note that these events
only occur with probability ≈ 𝑏−𝑘 and hence that even with the opportunity to select the input beacon from 𝑎𝑘
possibilities with probability 𝑐−𝑘 the circumstances are under control—𝜂𝐴 is safe and there are few candidate
sets. As 𝜂𝐴 is safe, the probability of a catastrophe in 𝜂𝐻 is 𝑐−𝑘 and unless this occurs the resulting distribution
of 𝑠𝑡+1 will again be 𝑎𝑡-optative, as desired.

We conclude that except with probability 𝑇𝑐−𝑘, each beacon value has min entropy 𝜆 − 𝑘 log 𝑎, as desired.

11

4 Applications to eventual consensus
The eventual consensus paradigm notably includes the Proof-of-Work (PoW) setting, such as Bitcoin [19, 13],
and the Proof-of-Stake setting, such as Ouroboros [18], Praos [10], and SnowWhite [5]. (There are several other
variants which we do not mention.) A broadcast channel can be implemented via the input endorsementmecha-
nism; see Ouroboros [18], FruitChains [20], and Garay et al. [13]. Roughly speaking, for an integer parameter 𝑑,
these mechanisms ensure that except with probability exp(−Ω(𝑑)), if an honest participant broadcasts a message
in this channel, it will be observed by all honest observers that are at least 2𝑑 rounds ahead in the future.

In the proof-of-stake setting, the execution of these blockchain protocols proceeds in epochs, each epoch com-
prised of a fixed number of rounds (say 𝑅). The coin-flipping protocol inside an epoch is seeded by the output
of the same protocol in the previous epoch. Specifically, recall the coin-flipping protocol 𝐁𝑘 = 𝐁𝑘(𝑠, 𝑛, 𝜖, 𝜆) from
Section 2. Now consider the following beacon protocol which outputs the strings 𝜂1, 𝜂2,…, as follows:

1. As a one-time initialization, all parties are presented with the uniformly random string 𝜂0 and an integer
𝑡 ∈ [𝑅].

2. At the 𝑡th round in every epoch 𝑒 = 1, 2,…, the players collectively compute 𝜂𝑒 = 𝐁𝑘(𝜂𝑒−1, 𝑛, 𝜖, 𝜆).

Improving existing PoS beacons. Although Praos is secure against an adaptive adversary, their analysis has a
“grinding term” 𝑞 as described in Section 1. Specifically, they assume that an adversarial player canmake at most
𝑞 queries to the random oracle per round. This is reminiscent of the adversarial hashing power in proof-of-work
and hence, undesirable in the proof-of-stake setting. We remark that SnowWhite has a similar grinding term as
well.

If these PoS blockchains use the beacon protocol mentioned above, no such assumptions have to made: In-
deed, Theorem 7 would immediately guarantee that the beacon’s min-entropy is high as long as the adversary
controls a minority coalition.

References
[1] Minimal vdf randomness beacon. https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566.

Accessed: January 28, 2019.

[2] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros gen-
esis: Composable proof-of-stake blockchains with dynamic availability. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18, page 913–930, 2018.

[3] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima of banzhaf
values. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages 408–416. IEEE,
1985.

[4] Iddo Bentov, Ariel Gabizon, and David Zuckerman. Bitcoin beacon. arXiv preprint arXiv:1605.04559, 2016.

[5] Iddo Bentov, Rafael Pass, and Elaine Shi. Snowwhite: Provably secure proofs of stake. page 919, 2016. URL
http://eprint.iacr.org/2016/919.

[6] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International con-
ference on the theory and application of cryptology and information security, pages 514–532. Springer, 2001.

[7] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Annual inter-
national cryptology conference, pages 757–788. Springer, 2018.

[8] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested by public entities. In Interna-
tional Conference on Applied Cryptography and Network Security, pages 537–556. Springer, 2017.

12

[9] Jing Chen and Silvio Micali. Algorand, 2016.

[10] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Advances in Cryptology – EUROCRYPT 2018, pages
66–98, 2018.

[11] Y Filmus, L Hambardzumyan, H Hatami, P Hatami, and D Zuckerman. Biasing boolean functions and
collective coin-flipping protocols over arbitrary product distributions. In 46th International Colloquium on
Automata, Languages and Programming (ICALP), 2019.

[12] Ehud Friedgut. Influences in product spaces: KKL and BKKKL revisited. Combinatorics, Probability and
Computing, 13(1):17–29, 2004.

[13] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. In Annual International Cryptology Conference, pages 291–323. Springer, 2017.

[14] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analy-
sis and applications. In Advances in Cryptology - EUROCRYPT 2015, pages 281–310, 2015. URL
https://doi.org/10.1007/978-3-662-46803-6_10.

[15] LM Goodman. Tezos—a self-amending crypto-ledger white paper. URL: https://www. tezos.
com/static/papers/white paper. pdf, 2014.

[16] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series, consensus
system, 2018.

[17] J Kahn, G Kalai, and N Linial. The influence of variables on boolean functions. In [Proceedings 1988] 29th
Annual Symposium on Foundations of Computer Science, pages 68–80, 1988.

[18] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure
proof-of-stake blockchain protocol. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, volume 10401 of Lecture Notes in Computer Science, pages 357–388, 2017.

[19] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

[20] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM Sympo-
sium on Principles of Distributed Computing, PODC ’17, page 315–324, New York, NY, USA, 2017. As-
sociation for Computing Machinery. ISBN 9781450349925. doi: 10.1145/3087801.3087809. URL
https://doi.org/10.1145/3087801.3087809.

[21] Krzysztof Pietrzak. Simple verifiable delay functions. In 10th innovations in theoretical computer science
conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[22] Saad Quader. Security of Proof-of-Stake Blockchains. PhD thesis, University of Connecticut, U.S., 2021.

[23] Alexander Russell, Michael Saks, and David Zuckerman. Lower bounds for leader election and collective
coin-flipping in the perfect information model. SIAM Journal on Computing, 31(6):1645–1662, 2002.

[24] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. Hydrand: Efficient continuous
distributed randomness. In 2020 IEEE Symposium on Security and Privacy (SP), pages 32–48.

[25] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 444–460. Ieee, 2017.

[26] Yael Tauman Kalai, Ilan Komargodski, and Ran Raz. A lower bound for adaptively-secure collective
coin-flipping protocols. In 32nd International Symposium on Distributed Computing (DISC 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

13

[27] BenjaminWesolowski. Efficient verifiable delay functions. InAnnual InternationalConference on theTheory
and Applications of Cryptographic Techniques, pages 379–407. Springer, 2019.

[28] Herbert S Wilf. generatingfunctionology. AK Peters/CRC Press, 3 edition, 2005.

14

