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Abstract

Group signature with verifier-local revocation (VLR-GS) is a special type of revocable group sig-
nature which enables a user to sign messages without referring to information regarding revoked users.
Although there have been several proposals of VLR-GS schemes since the first scheme proposed by
Boneh and Shacham [CCS 2004], all of these schemes only achieve a security notion called selfless
anonymity, which is strictly weaker than the de facto standard security notion, full anonymity. Thus,
for more than a decade, it has been an open problem whether a fully anonymous VLR-GS scheme
can be achieved. In this paper, we give an affirmative answer to this problem. Concretely, we show
the construction of a fully anonymous VLR-GS scheme from a digital signature scheme, a key-private
public key encryption scheme, and a non-interactive zero-knowledge proof system. Also, we show that
backward unlinkability, which ensures that even after a user is revoked, signatures produced by the user
before the revocation remain anonymous, can be realized without additional building blocks. Although
the size of group public key and signing key depend on the number of time periods, finally, we show
that the size of these keys can be reduced by employing an identity-based encryption scheme.
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1 Introduction

1.1 Background

Group Signature and Revocation. The notion of group signature was introduced by Chaum and van
Heyst [13]. In a group signature scheme, a group manager called an issuer generates user signing keys by
using the issuing key, and users can anonymously sign messages on behalf of the group with their own
signing keys. However, in the case of disputes, a group manager called an opener can identify the signer
from a signature.

Membership revocation is one of the most important research topics in group signatures, and has
been widely investigated so far. Currently, there are two main approaches for realizing a group signature
scheme with revocation functionality. The first approach is to periodically publish information related to
the revoked users, and require both users and verifiers to use this when generating or verifying signatures [7,
3, 10, 20, 37, 15, 34, 32, 28, 29, 19, 39].1 A scheme obtained by such an approach is sometimes inconvenient
since users need to download the up-to-date information whenever signing. The second approach, group
signature with verifier-local revocation (VLR-GS) [9] on which we focus in this paper, is free from this
concern.

Group Signature with Verifier-local Revocation. The notion of VLR-GS was proposed by Boneh
and Shacham [9]. After that, Nakanishi and Funabiki [35] extended the security notion for this type of
scheme by considering backward unlinkability. The first scheme secure in the standard model was proposed
by Libert and Vergnaud [31], and a lattice-based scheme was introduced by Langlois, Ling, Nguyen, and
Wang [26] and Zhang, Liu, Hu, Zhang, and Jia [51].

In a VLR-GS scheme, verifiers need to download the up-to-date information of the revoked users to
verify signatures but signers are not required to do so. That is, signers can generate signatures without
any additional information of the revoked users. More precisely, a VLR-GS scheme operates as follows: a
token (called a revocation token) is defined for each user, and the authority reveals this in a public list
(called a revocation list) if the corresponding user is revoked. Namely, the revocation list contains the
revocation tokens of the revoked users. A revocation token can be used to detect the signature generated
by the corresponding user. Thus, a verifier can check whether the signer is revoked by using the revocation
list. However, a signer can generate signatures using only his/her signing key, that is, he/she does not
need to refer to the revocation list. Such a functionality is very attractive when it is difficult for users to
periodically obtaining up-to-date information.

However, there is one drawback: all existing VLR-GS schemes have only been proved to satisfy a weak
security notion called selfless anonymity, whereas several standard revocable group signature schemes
(e.g., the schemes proposed by Libert, Peters, and Yung [28, 29]) satisfy a strong security notion called full
anonymity. Specifically, there are trivial attacks against the full anonymity of almost all existing VLR-GS
schemes. We provide more details of these two security notions in the next paragraph.

Full Anonymity vs. Selfless Anonymity. Full anonymity ensures that the signer’s information cannot
be extracted from a signature by an adversary with all user signing keys.2 Selfless anonymity is a weaker
security notion than full anonymity, and ensures the anonymity of a signature only against an adversary
who does not possess the user signing key which was used in the generation of the corresponding signature.

From a practical point of view, a selfless-anonymous group signature scheme has two drawbacks: it
is not resistant to the leakage of user signing keys and it might allow the issuer to identify the signer.
More precisely, selfless anonymity does not ensure that the signer’s information cannot be extracted from
a signature by an adversary who has the signing key used to generate the signature. Therefore, once a
signing key is exposed, the anonymity of the signatures generated by this signing key can no longer be
guaranteed. Also, anonymity against the issuer cannot be ensured since he/she knows all user signing
keys. Thus, selfless anonymity does not provide a security level strong enough for practical use, and
full anonymity is recognized as one of the de facto standard security requirements of group signature

1In fully dynamic group signature schemes [3, 10, 32], the information is related to the current group members in addition
to the revoked users.

2For simplicity, in this paper, we adopt the notion of full anonymity in the CPA-setting [7]. We remark that it is considered
to be easy to upgrade to full anonymity in the CCA-setting by using standard techniques for acquiring CCA-security in a
public key encryption scheme (for details, see Remark 1 in Section 3.2).
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Building Blocks Backward Anonymity Size of gpk Size of gsk
Scheme 1 (§3) Digital Signature, PKE, NIZK No O(1) O(1)
Scheme 2 (§4) Digital Signature, PKE, NIZK Yes O(T ) O(T )
Scheme 3 (§5) IBS, IBE, NIZK Yes O(1) O(1)

* T : the number of time periods

Table 1: Our Fully Anonymous VLR-GS Schemes

(e.g., [7, 6, 20, 21, 25, 30, 38, 27, 16]). We remark that in VLR-GS the issuer has all revocation tokens
and thus it can execute the implicit opening algorithm (which is defined later). Thus, we do not have to
consider anonymity against the issuer unlike to other group signature schemes above. Nevertheless, full
anonymity is important even in the VLR setting for considering signing key exposure above.

Although it is more desirable that group signatures satisfy full anonymity than selfless anonymity, it
is more challenging to construct a fully anonymous group signature scheme since there is a big theoretical
gap between selfless-anonymous group signature and fully anonymous group signature. In particular,
Camenisch and Groth [11] showed that a selfless-anonymous group signature scheme can be constructed
from a one-way function and a non-interactive zero-knowledge (NIZK) proof system. In contrast, several
results [2, 40, 18] suggest that a public key encryption (PKE) scheme is an essential building block for
constructing a fully anonymous group signature scheme. Therefore, it seems that the gap between selfless-
anonymous group signature and fully anonymous group signature is the same as that between one-way
function and PKE. Thus, it is an open problem whether a fully anonymous VLR-GS scheme can be achieved
whereas selfless-anonymous VLR-GS schemes have already been proposed so far.

1.2 Our Contribution

In this paper, we give an affirmative answer to the above problem and give the first fully anonymous
VLR-GS scheme. Concretely, we show three schemes summarized in Table 1. First, we construct a
fully anonymous VLR-GS scheme from a digital signature scheme, a PKE scheme, and an NIZK proof
system. Although the building blocks are essentially the same as those of a standard group signature
scheme given by Bellare-Micciancio-Warinschi (BMW) [5], we additionally require the underlying PKE
scheme to satisfy key privacy [4], which is essential to ensure that the VLR-GS scheme is fully anonymous.
The first scheme shows a minimum requirement so far for achieving full anonymity. Second, we construct
a fully anonymous VLR-GS scheme with backward unlinkability [35], which ensures that even after a user
is revoked, signatures produced by the user before the revocation remain anonymous. The building blocks
are the same as those of the first scheme. The second scheme shows that backward unlinkability can be
realized without additional building blocks. Third, we construct a fully anonymous VLR-GS scheme with
backward unlinkability with constant size group public key and signing key. We additionally employ a key-
private identity-based encryption (IBE) scheme 3 as an additional building block. Since IBE is a stronger
cryptographic primitive than PKE [8], the third scheme shows that we can reduce the size of these keys
by employing such a strong tool. Although we also employ an identity-based signature (IBS) scheme, we
remark that, from the feasibility point of view, IBS can be generically constructed from ordinary digital
signature.

Differences from the Conference Version. An extended abstract appeared at SCN 2018 [23]. This is
the full version. In this version, first we fixed a bug of Scheme 1 in [23] where it does not consider a strong
unforgeability. That is, in the definition of traceability, m∗, which is a message of the forged signature,
can be queried to the signing oracle. We consider the case by introducing a one-time signature (OTS)
scheme. Second, we give a VLR-GS scheme which satisfies backward unlinkability (Scheme 2). Althugh
we have insisted that such a scheme can be constructed from the same building blocks of Scheme 1 (at
the expense of the public key size) in [23], we formally give the scheme in this version. Third, we give
a new construction (Scheme 3). Although an IBE-based scheme has been given in [23], the size of gpk
depends on T while that of Scheme 3 is constant. Finally, we give the detail of our cryptanalysis of the
Perera-Koshiba scheme [41] while we gave a sketch of the attack in the conference version.

3Such a scheme is usually called anonymous IBE. However, we used the terminology key privacy (as in PKE) because we
would like to use the word anonymity for indicating a security notion of group signatures.
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1.3 Related Work

Perera and Koshiba [41, 48, 43, 45, 49, 47] proposed VLR-GS schemes which were claimed to be fully
anonymous. However, in fact, these schemes do not satisfy full anonymity. In [43], all revocation tokens
are signed by a secret signing key of the group manager, and the verification algorithm checks whether or not
the signature of a revocation token is valid under the group manager verification key before verifying a group
signature. They claimed that an adversary who knows all signing keys does not know the group manager
signing key, and thus the adversary cannot produce a valid group signature even the adversary can generate
revocation tokens from signing keys, and thus the scheme is fully anonymous. However, this attempt is
wrong because one can ignore the verification process of revocation tokens and then check whether a
signer has been revoked or not by checking the validity of group signature. In [33, 48, 49, 47, 45, 53],
they separately generate signing keys and revocation tokens, and insisted that revocation tokens cannot be
generated even all signing keys are exposed. The problem is that the signing algorithm takes a revocation
token in addition to a signing key in their syntax (though in usual syntax of VLR-GS, the signing algorithm
does not take a revocation token as input), and requiring a revocation token for signing means that a
revocation token is regarded as a part of signing key. Thus, it is unnatural that an adversary can obtain all
signing keys but cannot obtain revocation tokens. We remark that they have introduced the notion almost-
full anonymity [44, 42, 46] that captures the above situation. So, the schemes in [33, 48, 49, 47, 45, 53] are
also almost-fully anonymous.4 For the scheme [41], we give a concrete attack in Section 6. In summary,
their all schemes do not provide full anonymity, and no fully anonymous VLR-GS scheme has been proposed
from the best of our knowledge.

1.4 Technical Overview

We will now give a technical overview of our constructions. Since we can obtain our scheme with back-
ward unlinkability by extending our scheme without backward unlinkability, here, we only explain the
construction of a VLR-GS scheme without backward unlinkability (Scheme 1). For details of the scheme
with backward unlinkability, see Section 4.

Previous Approach. As mentioned above, all existing VLR-GS schemes satisfy only selfless anonymity.
Specifically, there are trivial attacks against the full anonymity for most of the schemes [9, 35, 36, 50, 54,
12, 26] owing to their structure allowing the revocation token to be constructed from the corresponding
user’s signing key.5 The Libert-Vergnaud scheme [31] is only exception, but these scheme has still only
been proved to be selfless-anonymous. Recall that the revocation token can be used to detect signatures
generated by the corresponding user. Thus, if the revocation token can be constructed from the corre-
sponding signing key, an adversary holding all user signing keys can identify the signer from any signature
by computing all users’ revocation tokens. That is, a VLR-GS scheme with such a structure can never
satisfy full anonymity. Therefore, if we attempt to achieve a fully anonymous VLR-GS scheme, we have
to construct it from scratch.

Our Approach. Our construction mainly follows the construction of a group signature scheme proposed
by Bellare, Micciancio, and Warinschi [5]. Then, we add revocation functionality by employing additional
key pairs of a key-private PKE scheme [17, 14] for each user. Intuitively, a decryption key of the PKE
scheme is used as a revocation token, and a signer computes a certain ciphertext using his encryption key

4Zhang et al. [52] showed that two Perera et al. schemes [48, 49] are not fully anonymous by giving concrete attacks.
Moreover, they give an improved Stern-type protocol and claim that their group signature scheme is fully anonymous.
However, since they follow the Perera et al.’s syntax, the signing algorithm takes a revocation token in addition to a signing
key. Thus, their scheme is also almost fully anonymous.

5In the Wei-Liu scheme [50], additional revocation queries are required. Let G1 and G2 be groups with prime order

p, and g1 ∈ G1 and g2 ∈ G2 be generators. For γ, r1, . . . , rT ∈ Zp, ω = gγ2 and hj = g
rj
1 for j ∈ [1, T ] are contained

in gpk. For a user i, (Ai, xi) ∈ G1 × Zp is a signing key, grt[i][j] = ((ωg
xi
2 )rj , h

−xi
j ) is a revocation token at j. We

describe the attack as follows. Let j∗ be the target time period. Revoke two users i0 and i1 at j∗ where they are not the

challenge users. Obtain (ωg
xi0
2 )rj∗ and (ωg

xi1
2 )rj∗ . Now xi0 and xi1 are obtained via the corruption oracle. Thus, compute

{(ωg
xi0
2 )rj∗ /(ωg

xi1
2 )rj∗ }1/(xi0

−xi1
) = {(g

xi0
−xi1

2 )rj∗ }1/(xi0
−xi1

) = g
rj∗
2 . Then, compute (ωg

xi0
2 )rj∗ /(g

rj∗
2 )xi0 = ωrj∗ .

In the full anonymity setting, for the challenge user i∗0, xi∗0
can be revealed. Thus, the revocation token grt[i∗0][j

∗] can

be computed by ωrj∗ (g
rj∗
2 )

xi∗0 = (ωg
xi∗0
2 )rj∗ and h

−xi∗0
j∗ . This token can be used for distinguising whether the challenge

signature is generated by the signing key of i∗0 or i∗1.
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of the PKE scheme as a part of a signature. A verifier can check whether a signature is generated by a
revoked user by decrypting the ciphertext in the signature using all revocation tokens in the revocation
list.

A more detailed explanation of our scheme is given in the following. In the BMW construction [5], each
user possesses a certified key pair (vki, ski) of a digital signature scheme. When signing a message m, the
user i generates a signature σ on the message m using his/her signing key ski, and encrypts σ using the
group manager’s encryption key ekPKE of a PKE scheme to achieve anonymity. Let ct be this ciphertext.
Moreover, the user produces an NIZK proof which proves that the series of procedures is honestly done
and the signing key is certified. Thus, the signature in the BMW construction consists of a ciphertext ct
and a proof.

In addition to the BMW construction, we employ additional key pairs of a PKE scheme to achieve
verifier-local revocation functionality. More precisely, the group manager generates a key pair (eki, dki)
for each user i and certifies it, and sends only the encryption key eki as a part of the signing key to the
user. Moreover, the manager sets the decryption key dki as the revocation token of the user i. Even if eki
is revealed, dki is not revealed (if it is, the underlying PKE scheme is immediately broken). When signing
a message m, the user i also computes a ciphertext c̃t of the signature σ under the encryption key eki
in addition to a ciphertext ct under ekPKE. Then, the user produces an NIZK proof π which proves that
the series of procedures is honestly done, and the signing key and the encryption key are certified. We
remark that the user generates an OTS key pair (vkots, skots) and generates σ on the message vkots while it
is a signature on m in the BMW construction. Finally, the user computes an OTS σall on (vkots, ct, c̃t, π).
Adding the OTS part allows us to provide strong unforgeability which is captured by traceability. The
signature in our scheme is a tuple of two ciphertexts, ct and c̃t, a proof π, the OTS verification key
vkots, and a OTS σall. A verifier can check whether the signer is revoked by decrypting the underlying
ciphertext c̃t using all revocation tokens in the revocation list and checking that it can be decrypted by
some revocation token.

Intuitively, our scheme satisfies full anonymity since the revocation token (i.e., the decryption key dki)
cannot be computed from the corresponding signing key (i.e., the key which contains the encryption key
eki) due to the security of the underlying PKE scheme. To implement this idea, the PKE scheme is also
required to be key-private since the encryption key eki contained in the ciphertext c̃t is associated with
the signer i and may leak the identity of the signer.

2 Preliminaries

In this section, we define some notations and cryptographic primitives which we use in this paper.

Notations. x
$←− X denotes choosing an element from a finite set X uniformly at random. If A is a

probabilistic algorithm, y ← A(x; r) denotes the operation of running A on an input x and a randomness
r, and letting y be the output. When it is not necessary to specify the randomness, we omit it and simply
write y ← A(x). If we describe the statement that the output of A(x) is y, then we denote A(x) = y. If O
is a function or an algorithm, AO denotes that A has oracle access to O. λ denotes a security parameter.
PPT stands for probabilistic polynomial time. A function f(λ) is called negligible and denoted as negl(λ)
if for any c > 0, there exists an integer Λ such that f(λ) < 1

λc for all λ > Λ.

2.1 Cryptographic Primitives

Digital Signature. A signature scheme SIG consists of three algorithms (SIG.Gen,SIG.Sign,SIG.Verify).
The SIG.Gen algorithm takes 1λ as input and outputs a verification/signing key pair (vk, sk). The SIG.Sign
algorithm takes sk and a message m as input, and outputs a signature σ. The SIG.Verify algorithm takes vk,
m, and σ as input, and outputs either 1 or 0. We say that a signature scheme is correct if for all (vk, sk)←
SIG.Gen(1λ) and all messages m, it holds that Pr[SIG.Verify(vk, (m,σ)) = 1 | σ ← SIG.Sign(sk,m)] = 1.
In our construction, we use a signature scheme which satisfies existential unforgeability against chosen
message attacks (EUF-CMA security). Let ExpunforgeSIG,A (λ) be the experiment given in Figure 1. We say

that SIG is EUF-CMA secure if the advantage AdvunforgeSIG,A (λ) = Pr[ExpunforgeSIG,A (λ) = 1] is negligible for any
PPT adversary A.
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Expunforge
SIG,A(λ) : ML← ∅; (vk, sk)← SIG.Gen(1λ); (m∗, σ∗)← ASign(·)(vk)

Expunforge
SIG,A(λ) : Return 1 if SIG.Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ ML

Expunforge
SIG,A(λ) : else return 0

Figure 1: This is the experiment used to define EUF-CMA security for a signature scheme SIG. Here, the
oracle Sign takes a message m, computes σ ← SIG.Sign(sk,m), adds m to the list ML, and returns σ.

One-time signature (OTS) is simply defined that the number of signing query is restricted by one. For
the sake of clarity, we denote an OTS scheme OT S = (OTS.Gen,OTS.Sign,OTS.Verify). Moreover, the
list ML preserves (m,σ) and the adversary wins if (m∗, σ∗) ̸∈ ML. We say that OT S is strong EUF-CMA
secure if the advantage is negligible for any PPT adversary A.

Identity-Based Signature. An identity-based signature (IBS) scheme IBS consists of four algorithms
(IBS.Gen, IBS.Ext, IBS.Sign, IBS.Verify). The IBS.Gen algorithm takes 1λ as input and outputs a public
parameter paramsIBS and a master secret key mskIBS. The IBS.Ext algorithm takes paramsIBS, mskIBS,
and an arbitrary string ID ∈ {0, 1}∗ as input, and outputs a signing key skID. The IBS.Sign algo-
rithm takes paramsIBS, skID, ID, and a message m as input, and outputs a signature σ. The IBS.Verify
algorithm takes paramsIBS, an identity ID, m, and σ as input, and outputs either 1 or 0. We say
that an identity-based signature scheme is correct if for all identities ID and messages m, it holds that
Pr[IBS.Verify(paramsIBS, ID, (m,σ)) = 1 | (paramsIBS,mskIBS) ← IBS.Gen(1λ); skID ← IBS.Ext(paramsIBS,
mskIBS, ID);σ ← IBS.Sign(paramsIBS, skID,m)] = 1. In our construction, we use an IBS scheme which satis-

fies existential unforgeability against chosen message attacks (EUF-CMA security). Let ExpunforgeIBS,A (λ) be

the experiment given in Figure 2. We say that IBS is EUF-CMA secure if the advantage AdvunforgeIBS,A (λ) =

Pr[ExpunforgeIBS,A (λ) = 1] is negligible for any PPT adversary A.

Expunforge
IBS,A(λ) : IDSet,ML← ∅; (paramsIBS,mskIBS)← IBS.Gen(1λ); (ID∗,m∗, σ∗)← AIBS.Ext(·),IBS.Sign(·,·)(paramsIBS)

Expunforge
IBS,A(λ) : Return 1 if IBS.Verify(paramsIBS, ID

∗,m∗, σ∗) = 1 ∧ ID∗ ̸∈ IDSet ∧ (ID∗,m∗) /∈ ML

Expunforge
IBS,A(λ) : else return 0

Figure 2: This is the experiment used to define EUF-CMA security for an identity-based signature scheme
IBS. Here, the oracle IBS.Ext takes an identity ID, computes skID ← IBS.Ext(paramsIBS,mskIBS, ID) if
skID is undefined, adds ID to the list IDSet, and returns skID. The oracle IBS.Sign takes an identity ID
and a message m, computes skID ← IBS.Ext(paramsIBS,mskIBS, ID) if skID is undefined, computes σ ←
IBS.Sign(paramsIBS, skID, ID,m), adds (ID,m) to the list ML, and returns σ.

Public Key Encryption. A public key encryption (PKE) scheme PKE consists of three algorithms
(PKE.Gen,PKE.Enc,PKE.Dec). The PKE.Gen algorithm takes 1λ as input and outputs an encryption/decryption
key pair (ek, dk). The PKE.Enc algorithm takes ek and a plaintext m as input, and outputs a ciphertext ct.
In this paper, if necessary, we explicitly mention a randomness r ∈ RPKE used in the encryption and write
ct ← PKE.Enc(ek,m; r) where RPKE is the randomness space of PKE . The PKE.Dec algorithm takes dk
and ct as input, and outputs m. We say that a PKE scheme is correct if for all plaintexts m and all ran-
domness r, it holds that Pr[m = m̃ | (ek, dk)← PKE.Gen(1λ); m̃← PKE.Dec(dk,PKE.Enc(ek,m; r))] = 1.

Let Expind-cpaPKE,A(λ) and Expkey-privPKE,A (λ) be the experiments given in Figure 3. We say that PKE is in-

distinguishable against chosen plaintext attacks (IND-CPA secure) if the advantage Advind-cpaPKE,A(λ) =∣∣Pr[Expind-cpaPKE,A(λ) = 1] − 1/2
∣∣ is negligible for any PPT adversary A, and is key-private if the advan-

tage Advkey-privPKE,A (λ) =
∣∣Pr[Expkey-privPKE,A (λ) = 1]− 1/2

∣∣ is negligible for any PPT adversary A.

Identity-Based Encryption. An identity-based encryption (IBE) scheme IBE consists of four algo-
rithms (IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec). The IBE.Gen algorithm takes 1λ as input and outputs system
parameters params and a master secret key msk. The IBE.Ext algorithm takes params, msk, and an
arbitrary string ID ∈ {0, 1}∗ as input, and outputs a decryption key dk that is the corresponding de-
cryption key with the public key ID. The IBE.Enc algorithm takes params, ID, and a plaintext m as
input, and outputs a ciphertext ct. As the case of PKE schemes, if necessary, we explicitly mention
a randomness r ∈ RIBE used in the encryption and write ct ← IBE.Enc(params, ID,m; r) where RIBE
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Expind-cpa
PKE,A(λ) : (ek, dk)← PKE.Gen(1λ); (st,m0,m1)← A1(ek)

Expind-cpa
PKE,A(λ) : b

$←− {0, 1}; ct∗ ← PKE.Enc(ek,mb); b̃← A2(st, ct
∗)

Expind-cpa
PKE,A(λ) : Return 1 if b = b̃, otherwise return 0

Expkey-priv
PKE,A(λ) : (ek0, dk0)← PKE.Gen(1λ); (ek1, dk1)← PKE.Gen(1λ)

Expkey-priv
PKE,A(λ) : (st,m∗)← A1(ek0, ek1)

Expkey-priv
PKE,A(λ) : b

$←− {0, 1}; ct∗ ← PKE.Enc(ekb,m
∗); b̃← A2(st, ct

∗)

Expkey-priv
PKE,A(λ) : Return 1 if b = b̃, otherwise return 0

Figure 3: These are the experiments used to define IND-CPA security and key privacy for a PKE
scheme PKE . The adversary A is restricted to output m0 and m1 satisfying |m0| = |m1|.

is the randomness space of IBE . The IBE.Dec algorithm takes params, dk, and ct as input, and out-
puts m. We say that an IBE scheme is correct if for all strings ID, all plaintexts m, and all random-
ness r, it holds that Pr[m = m̃ | (params,msk) ← IBE.Gen(1λ); dk ← IBE.Ext(params,msk, ID); m̃ ←
IBE.Dec(dk, IBE.Enc(params, ID,m; r))] = 1. Let Expind-id-cpaIBE,A (λ) and Expkey-privIBE,A (λ) be the experiments
given in Figure 4. We say that IBE is indistinguishable against chosen plaintext attacks (IND-ID-CPA

secure) if the advantage Advind-id-cpaIBE,A (λ) =
∣∣Pr[Expind-id-cpaIBE,A (λ) = 1] − 1/2

∣∣ is negligible for any PPT ad-

versary A, and is key-private if the advantage Advkey-privIBE,A (λ) =
∣∣Pr[Expkey-privIBE,A (λ) = 1]− 1/2

∣∣ is negligible
for any PPT adversary A.

Expind-id-cpa
IBE,A (λ) : IDSet← ∅; (params,msk)← IBE.Gen(1λ)

Expind-cpa
IBE,A(λ) : (st, ID∗,m0,m1)← AExtract(·)

1 (params)

Expind-cpa
IBE,A(λ) : If ID∗ ∈ IDSet, return 0

Expind-cpa
IBE,A(λ) : b

$←− {0, 1}; ct∗ ← IBE.Enc(params, ID∗,mb); b̃← AExtract(·)
2 (st, ct∗)

Expind-cpa
IBE,A(λ) : Return 1 if b = b̃, otherwise return 0

Expkey-priv
IBE,A (λ) : IDSet← ∅; (params,msk)← IBE.Gen(1λ)

Expkey-priv
IBE,A (λ) : (st, ID0, ID1,m

∗)← AExtract(·)
1 (params)

Expkey-priv
IBE,A (λ) : If {ID0, ID1} ∩ IDSet ̸= ∅, return 0

Expkey-priv
IBE,A (λ) : b

$←− {0, 1}; ct∗ ← IBE.Enc(params, IDb,m
∗); b̃← AExtract(·)

2 (st, ct∗)

Expkey-priv
IBE,A (λ) : Return 1 if b = b̃, otherwise return 0

Figure 4: These are the experiments used to define IND-ID-CPA security and key privacy for an IBE
scheme IBE . Here, the oracle Extract takes ID, computes dk ← IBE.Ext(params,msk, ID), adds ID to the
list IDSet, and returns dk. We note that it is not allowed to query the identity ID∗, and the identities
ID0 and ID1 to the Extract oracle in the experiment Expind-id-cpaIBE,A (λ) and Expkey-privIBE,A (λ), respectively. The
adversary A is restricted to output m0 and m1 satisfying |m0| = |m1|.

Non-interactive Zero-knowledge (NIZK) Proof. Let RL be an efficiently computable binary rela-
tion. For a pair (x,w) ∈ RL, we call x a statement and w a witness. Let L be the language consisting
of statements in RL. An NIZK proof system PL for a language L consists of three algorithms (ZK.Gen,
ZK.Prove,ZK.Verify). The ZK.Gen algorithm takes 1λ as input and returns a common reference string crs.
The ZK.Prove algorithm takes crs, a statement x, and a witness w as input, and outputs a proof π. The
ZK.Verify algorithm takes crs, x, and π as input, and outputs either 1 or 0. An NIZK proof system is
required the following two conditions:

Completeness: For all (x,w) ∈ RL and all crs ← ZK.Gen(1λ), Pr[ZK.Verify(crs, x, π) = 1 | π ←
ZK.Prove(crs, x, w)] = 1 holds.

Soundness: For any PPT adversaryA, the advantage AdvsoundPL,A (λ) = Pr[x∗ ̸∈ L∧ZK.Verify(crs, x∗, π∗) =

1 | crs← ZK.Gen(1λ); (x∗, π∗)← A(crs)] is negligible.

Moreover, we say that PL is zero-knowledge if for any PPT adversary A there exists a simulator
S = (Sim1, Sim2) such that the advantage AdvzkPL,A(λ) =

∣∣Pr[ExpproofPL,A(λ) = 1 ]−Pr[ Expsim-proof
PL,A (λ) = 1]

∣∣
is negligible where the experiments ExpproofPL,A(λ) and Expsim-proof

PL,A (λ) are defined in Figure 5.
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Expproof
PL,A(λ) : crs← ZK.Gen(1λ) Expsim-proof

PL,A (λ) : (crs, td)← Sim1(1
λ)

Expproof
PL,A(λ) : b← AProve(·,·)(crs) Expsim-proof

PL,A (λ) : b← ASimProve(·,·)(crs)

Expproof
PL,A(λ) : Return b Expsim-proof

PL,A (λ) : Return b

Figure 5: These are the experiments used to define zero-knowledgeness for an NIZK proof system PL.
Here, the oracle Prove takes (x,w), computes π ← ZK.Prove(crs, x, w), and returns π. The oracle SimProve
takes (x,w), computes π ← Sim2(crs, td, x), and returns π. If (x,w) ̸∈ RL, then SimProve returns ⊥.

2.2 Group Signature with Verifier-local Revocation

In this section, we review the syntax and the security requirements of group signature with verifier-
local revocation (VLR-GS). We give the model of VLR-GS with backward unlinkability [35], which is
extended from that of VLR-GS without backward unlinkability [9]. A VLR-GS scheme without backward
unlinkability is a special case of that with backward unlinkability where the number of time periods is only
one. A VLR-GS scheme GS consists of the following three algorithms (GS.Gen,GS.Sign,GS.Verify).

GS.Gen: The group key generation algorithm takes a security parameter 1λ (λ ∈ N), the number of users n,
and the number of time periods T as input, and outputs a group public key gpk, a set of user signing
keys gsk = {gsk[i]}i, and a set of revocation tokens grt = {grt[i][j]}ij . Here, gsk[i] and grt[i][j]
denote the signing key of the user i ∈ [1, n] and revocation token at the time period j ∈ [1, T ],
respectively.

GS.Sign: The signing algorithm takes gpk, time period j, gsk[i], and a message m as input, and outputs a
signature Σ.

GS.Verify: The verification algorithm takes gpk, j, a revocation list RLj , m, and Σ as input, and outputs
either 1 or 0. The list RLj is defined as the set of the revocation tokens RLj = {grt[i][j] | i ∈ RUj}
where RUj is the set of the revoked users’ identities at the time period j.

We assume that RUj ⊆ RUj+1 for j ∈ [1, T − 1], i.e., once a user is revoked at j, the user will be kept
revoked from this time onward. In a VLR-GS scheme, the opening procedure can be done by using a set of
revocation tokens grt. More precisely, the implicit opening algorithm GS.Open can be defined as follows.

GS.Open: The opening algorithm takes gpk, j, a set of revocation tokens grt, m, and Σ as input, and
executes the following procedures:

[Step 1] Set the revocation list RLj = ∅, and output ⊥ if GS.Verify(gpk, j,RLj ,m,Σ) = 0.

[Step 2] For 1 ≤ i ≤ n, set the revocation list RLj = {grt[i][j]}, and run GS.Verify(gpk, j,RLj ,m,Σ).

[Step 3] Let i be the index that the GS.Verify algorithm outputs 0 for the first time in Step 2. Then,
output i. If there does not exist such an index, output ⊥.

In the following, we define the security requirements, correctness, full anonymity, and traceability. Full
anonymity is an extended notion of selfless anonymity [35].

Definition 2.1 (Correctness). Let A be an adversary for the correctness. We define the experiment
ExpcorrGS,A(λ, n, T ) as follows.

ExpcorrGS,A(λ, n, T ) : (gpk,gsk,grt)← GS.Gen(1λ, n, T )

(i∗, j∗,m∗,RU∗)← A(gpk)
If i ∈ RU∗, return 0

RLj∗ := {grt[i][j∗] | i ∈ RU∗}; Σ∗ ← GS.Sign(gpk, j∗, gsk[i∗],m∗)

Return 1 if GS.Verify(gpk, j∗,RLj∗ ,m
∗,Σ∗) = 0, else return 0

We say that GS is correct if the advantage AdvcorrGS,A(λ, n, T ) = Pr[ExpcorrGS,A(λ, n, T ) = 1] is negligible for
any PPT adversary A.
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Definition 2.2 (Full Anonymity). Let A = (A1,A2) be an adversary for full anonymity. We define the
experiment ExpanonGS,A(λ, n, T ) as follows.

ExpanonGS,A(λ, n, T ) : RUj ← ∅; (gpk,gsk,grt)← GS.Gen(1λ, n)

(st, i0, i1, j
∗,m∗)← ARevoke(·,·)

1 (gpk,gsk)

If i0 ∈ RUj∗ ∨ i1 ∈ RUj∗ , return 0

b
$←− {0, 1}; Σ∗ ← GS.Sign(gpk, j∗, gsk[ib],m

∗)

b̃← ARevoke(·,·)
2 (st,Σ∗)

Return 1 if b = b̃, else return 0

Here, the oracle Revoke takes i ∈ [1, n] and j ∈ [1, T ], adds i to the list RUj, and returns grt[i][j]. We
note that it is not allowed to query (i0, j

∗) and (i1, j
∗) to the Revoke oracle. We say that GS satisfies

full anonymity if the advantage AdvanonGS,A(λ, n, T ) =
∣∣Pr[ExpanonGS,A(λ, n, T ) = 1] − 1/2

∣∣ is negligible for any
polynomial n = n(λ) and T = T (λ), and any PPT adversary A.
Definition 2.3 (Traceability). Let A be an adversary for the traceability. We define the experiment
ExptraceGS,A(λ, n, T ) as follows.

ExptraceGS,A(λ, n, T ) : CU← ∅; QL← ∅; (gpk,gsk,grt)← GS.Gen(1λ, n, T )

(j∗,m∗,Σ∗,RU∗)← AGS.Sign(·,·,·),Corrupt(·)(gpk,grt)

RL∗ := {grt[i][j∗] | i ∈ RU∗}
i∗ ← GS.Open(gpk, j∗,grt,m∗,Σ∗)

Return 1 if all of the following holds, else return 0

GS.Verify(gpk, j∗,RL∗,m∗,Σ∗) = 1

i∗ = ⊥ ∨ i∗ /∈ CU ∨ i∗ ∈ RU∗

(i∗, j∗,m∗,Σ∗) /∈ QL

Here, the oracle GS.Sign takes (i, j,m), computes Σ← GS.Sign(gpk, j, gsk[i],m), adds (i, j,m,Σ) to the list
QL, and returns Σ. The oracle Corrupt takes i ∈ [1, n], adds i to the list CU, and returns gsk[i]. We say
that GS satisfies traceability if the advantage AdvtraceGS,A(λ, n, T ) = Pr[ExptraceGS,A(λ, n, T ) = 1] is negligible for
any polynomial n = n(λ) and T = T (λ), and any PPT adversary A.

Remark 1. Our scheme seems to be relatively easy to extend to CCA security. If a tag-based encryption
scheme is deployed and an OTS verification key is regarded as a tag, the group signature scheme becomes
non-malleable, that is, it satisfies CCA anonymity. Moreover, to achieve dynamic setting in the sense of
the Bellare-Shi-Zhang (BSZ) model [6], a user also generates a part of signing key that the issuer does not
know. Each technique is standard and widely used, for example, in the papers [29, 27].

3 A Fully Anonymous VLR-GS Scheme

In this section, we give a construction of a fully anonymous VLR-GS scheme (for T = 1). Concretely, we
construct a VLR-GS scheme from a digital signature scheme, an OTS scheme, a key-private PKE scheme,
and an NIZK proof system. Here, there is only one time period j = 1, thus, we do not specify the time
period and omit it. Here, we assume that once grt[i] is contained in RU, grt[i] is not removed from RU.

As mentioned, all existing schemes [9, 35, 36, 50, 54, 12, 26, 31] only provide selfless anonymity regardless
of whether or not the scheme has backward unlinkability. Specifically, there is an attack against the full
anonymity for most of the schemes [9, 35, 36, 50, 54, 12, 26] due to their structure allowing the revocation
token to be constructed from the user’s signing key. Therefore, in order to achieve full anonymity, a VLR-
GS scheme must not have such a structure provided the revocation token and signing key of the same user
have some relation.

Intuitively, we achieve this by employing an encryption/decryption key pair of a PKE scheme as a part
of the user signing key and the revocation token. In the following, we explain the proposed VLR-GS scheme
without backward unlinkability in detail, which we call Scheme 1. Before describing the construction, we
give the high-level idea of this scheme.
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3.1 High Level Idea

Scheme 1 mainly follows the BMW construction [5], which allows us to construct a fully anonymous group
signature scheme from a digital signature scheme, a PKE scheme, and an NIZK proof system. Now, we
review the BMW construction.

In the BMW construction, the group manager possesses a key pair (vkSIG, skSIG) of a digital signature
scheme and a key pair (ekPKE, dkPKE) of a PKE scheme. Each user possesses a key pair (vki, ski) of a
digital signature scheme and its certificate certi given by the manager where certi is the signature of the
verification key vki under the signing key skSIG. When a user i signs a message m, the user generates an
internal signature σ on the message m using his signing key ski, and encrypts σ using ekPKE along with
the verification key vki and the corresponding certificate certi. Let ct be this ciphertext. Moreover, the
user produces an NIZK proof π which proves that the whole procedure is honestly done and the encrypted
certificate certi is a valid signature on vki. Thus, the signature Σ in the BMW construction consists of a
ciphertext ct and a proof π. The full anonymity is ensured by the IND-CPA security of the underlying
PKE scheme and the zero-knowledgeness of the underlying NIZK proof system. The traceability is ensured
by the EUF-CMA security of the underlying digital scheme and the soundness of the underlying NIZK
proof system.

We add revocation functionality by introducing additional key pairs of a key-private PKE scheme to
the BMW construction. In our construction, the manager generates an encryption/decryption key pair
(eki, dki) for each user i and sends only the encryption key eki as a part of the signing key to the user. In
addition, the manager sets the decryption key dki as the revocation token of the user i. To certify that the
key eki is generated for a user i by the manager, he also computes a signature certi on the message ⟨eki, vki⟩
under the signing key skSIG as a certificate. Unlike the BMW construction, when signing a message m, a
user i generates an OTS key pair (vkots, skots)← OTS.Gen(1λ) and generates an internal signature σ on the
message vkots using the signing key ski. The reason of this replacement is to achieve strong unforgeability
which is captured by traceability in the VLR setting while only the usual unforgeability is required by
traceability in the BMW model. As in the BMW model construction, the user encrypts σ, ⟨eki, vki⟩, and
certi under ekPKE.

Moreover, in our construction, the signer i generates a ciphertext c̃t which is the encryption of the same
plaintext ⟨σ, eki, vki, certi⟩ as the ciphertext ct under the encryption key eki.

6 Then, the user produces an
NIZK proof π which proves that the whole procedure is honestly done and certi is a valid signature on
⟨eki, vki⟩, in the case of the BMW construction. That is, the signature Σ in our construction consists of
ciphertexts ct and c̃t, and a proof π. An OTS is also added for providing strong unforgeability. We remark
that we do not have to introduce a tag-based PKE scheme since we do not consider CCA anonymity in
this paper.

Our scheme does not have a structure allowing the revocation token to be computed from the corre-
sponding signing key since it is hard to compute the decryption key dki even if knowing the corresponding
encryption key eki because of the security of the underlying PKE scheme. The decryption key dki works
as a revocation token as follows. If a user i is revoked, his/her revocation token grt[i] = dki is listed in the
revocation list RL. If a verifier checks whether the ciphertext c̃t can be decrypted by each element in RL
as the decryption key, the verifier can check whether the signer is a revoked user.

The security of our scheme can be discussed in almost the same way as the BMW construction.
However, the underlying PKE scheme is required to be key-private in our construction since the ciphertext
c̃t is computed by the encryption key eki depending on the signer i. The full anonymity is ensured by the
IND-CPA security and the key privacy of the underlying PKE scheme, and the zero-knowledgeness of the
underlying NIZK proof system. The traceability is ensured by the EUF-CMA security of the underlying
digital scheme and the soundness of the underlying NIZK proof system. Also, note that we can rule out
the possibility that the ciphertext c̃t decrypts to the same message σ under two different decription keys
since the encryption key eki is bound by the verification key vki with the certificate certi. Therefore, we
do not require the underlying PKE scheme to be robust [1].

6A reader might think that the ciphertext ct is redundant and it is enough that the ciphertext ct is replaced with the
ciphertext c̃t. However, if so, it is difficult to reduce its traceability to the EUF-CMA security of the underlying digital
signature scheme. More precisely, if an adversary uses an uncertified encryption key to generate c̃t, the reduction algorithm
cannot extract a forgery of the digital signature scheme. Also, it is not necessary to encrypt the whole value ⟨σ, eki, vki, certi⟩
in both ct and c̃t. Therefore, part of the value is encrypted in the ciphertexts in our scheme described in Section 3.2.

9



3.2 Description

Scheme 1 is given in Figure 6. We construct a VLR-GS scheme Π1 = (GS.Gen,GS.Sign,GS.Verify) from a
digital signature scheme SIG = (SIG.Gen,SIG.Sign,SIG.Verify), an OTS schemeOT S = (OTS.Gen,OTS.Sign,
OTS.Verify), a PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec), and an NIZK proof system PL =
(ZK.Gen,ZK.Prove,ZK.Verify). We say that a statement x = ⟨ekPKE, vkSIG, vkots, c̃t, ct⟩ and a witness
w = ⟨eki, vki, certi, σ, r1, r2⟩ satisfy the relation RL if the following equations hold:

(a) c̃t = PKE.Enc(eki, σ; r1),

(b) ct = PKE.Enc(ekPKE, ⟨eki, vki, certi⟩; r2),

(c) SIG.Verify(vkSIG, ⟨eki, vki⟩, certi) = 1,

(d) SIG.Verify(vki, vkots, σ) = 1.

Moreover, for a statement x = ⟨ekPKE, vkSIG, vkots, c̃t, ct⟩, if there exists a witness that satisfies the above
equations, then we say that the statement x belongs to the language L and denote it x ∈ L.

GS.Gen(1λ, n):
crs← ZK.Gen(1λ); (vkSIG, skSIG)← SIG.Gen(1λ)
(ekPKE, dkPKE)← PKE.Gen(1λ)
For 1 ≤ i ≤ n:
(eki, dki)← PKE.Gen(1λ); (vki, ski)← SIG.Gen(1λ)
certi ← SIG.Sign(skSIG, ⟨eki, vki⟩); grt[i]← (dki, vki)

gpk = (crs, vkSIG, ekPKE); gsk[i] = (eki, vki, ski, certi)
gsk = {gsk[i]}i; grt = {grt[i]}i
Return (gpk,gsk,grt)

GS.Sign(gpk, gsk[i],m):
(vkots, skots)← OTS.Gen(1λ)
σ ← SIG.Sign(ski, vkots)
c̃t← PKE.Enc(eki, σ; r1)
ct← PKE.Enc(ekPKE, ⟨eki, vki, certi⟩; r2)
π ← ZK.Prove(crs, ⟨gpk, c̃t, ct⟩, ⟨eki, vki, certi, σ, r1, r2⟩)
σall ← OTS.Sign(skots, ⟨m, vkots, c̃t, ct, π⟩)
Return Σ = (vkots, c̃t, ct, π, σall)

GS.Verify(gpk,RL,m,Σ):
If OTS.Verify(vkots, ⟨m, vkots, c̃t, ct, π⟩, σall) = 0, return 0
If ZK.Verify(crs, ⟨gpk, c̃t, ct⟩, π) = 0, return 0
For (dk, vk) ∈ RL:
If SIG.Verify(vk, vkots,PKE.Dec(dk, c̃t)) = 1, return 0

Return 1

Figure 6: Scheme 1: A VLR-GS Scheme without Backward Unlinkability

For the correctness of Scheme 1, the following theorem holds.

Theorem 3.1. Scheme 1 is correct if the underlying OTS scheme OT S satisfies correctness, the underlying
NIZK proof system PL satisfies completeness, and the underlying digital signature scheme SIG satisfies
EUF-CMA security.

Proof. Let A be an adversary for the correctness of Π1 and the output of A in the experiment ExpcorrΠ1,A(λ, n)
be (i∗, j∗,m∗,RU∗). We note that now the number of time periods satisfies T = 1, then it holds that j∗ = 1.
Therefore, we do not specify the time period j∗ as in the description of Scheme 1. If the experiment
ExpcorrΠ1,A(λ, n) outputs 1, GS.Verify(gpk,RL,m

∗,Σ∗) = 0 and i∗ /∈ RU∗ hold where RL = {grt[i] | i ∈ RU∗}
and Σ∗ ← GS.Sign(gpk, gsk[i∗],m∗). Let Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all).
From the definition of the GS.Verify algorithm, one of the event EA, the event EB , or the event EC

happens when GS.Verify(gpk,RL,m∗,Σ∗) = 0 holds.

10



EA: OTS.Verify(vk∗ots, ⟨m∗, vk∗ots, c̃t
∗
, ct∗, π∗⟩, σ∗

all) = 0 holds.

EB: ZK.Verify(crs, ⟨gpk, c̃t∗, ct∗⟩, π∗) = 0 holds.

EC : For some i ∈ RU∗, SIG.Verify(vki, vk
∗
ots,PKE.Dec(dki, c̃t

∗
)) = 1 holds.

However, Pr[EA] = 0 holds if OT S satisfies correctness, and Pr[EB ] = 0 holds if PL satisfies completeness.
Therefore, it holds that Pr[ExpcorrΠ1,A(λ, n) = 1] = Pr[EA ∨ EB ∨ EC ] ≤ Pr[EA] + Pr[EB ] + Pr[EC ] = Pr[EC ].

We evaluate Pr[EC ] by constructing an algorithm B that breaks the EUF-CMA security of the digital

signature scheme SIG. At the beginning of the game, B randomly chooses î ∈ [1, n], and sets vk̂i ← vk
where vk is the key given by the challenger of the EUF-CMA security game. B generates the rest of
instance for the scheme Π1 and sends gpk = (crs, vkSIG, ekPKE) to A. For A’s output (i∗,m∗,RU∗), B
outputs ⊥ if î = i∗. Otherwise, if î ̸= i∗, B computes Σ∗ ← GS.Sign(gpk, gsk[i∗],m∗). Then, B computes
σ∗ ← PKE.Dec(dki∗ , c̃t

∗
), and outputs (m∗, σ∗) as a forged signature.

When the event EC happens, there exists at least one pair (dki, vki) ∈ RL such that SIG.Verify(vki,m
∗,

PKE.Dec(dki, c̃t)) = 1 holds. Let I be the set of such indexes i and Good be the event that î ∈ I holds

where î is the index chosen by B at the beginning of the game. Since the guess of î ∈ [1, n] and the behavior
of A are independent, we get Pr[EC ∧ Good] = Pr[EC ] · Pr[Good]. When both events EC and Good happen,
it holds that SIG.Verify(vk̂i, vk

∗
ots, σ

∗) = 1 where Σ∗ = (vk∗ots, c̃t
∗
, ct∗, π∗, σ∗

all) and σ∗ ← PKE.Dec(dk̂i, c̃t).

Therefore, (m∗, σ∗) is a forgery of the digital signature scheme SIG, and Pr[EC ∧ Good] ≤ AdvunforgeSIG,B (λ)

holds. Moreover, since î ∈ [1, n] is randomly chosen, we get Pr[Good] = 1/n. Putting all together, we

have AdvcorrΠ1,A(λ, n) = Pr[ExpcorrΠ1,A(λ, n) = 1] ≤ Pr[EC ] = (1/Pr[Good]) · Pr[EC ∧ Good] ≤ n ·AdvunforgeSIG,B (λ).
Therefore, Π1 is correct if the underlying OTS scheme OT S satisfies correctness, the NIZK proof system
PL satisfies completeness, and the digital signature scheme SIG satisfies EUF-CMA security.

3.3 Security Analysis

Here, we discuss the security of Scheme 1. That is, we explain that Scheme 1 satisfies full anonymity and
traceability defined in Section 2.2.

Full Anonymity. For a signature Σ = (vkots, c̃t, ct, π, σall) of Scheme 1, the user’s information is con-
tained in the encryption key eki and the plaintext σ of the ciphertext c̃t, the plaintext ⟨eki, vki, certi⟩ of
the ciphertext ct, and the witness of the proof π. Intuitively, the information of the plaintexts σ and
⟨eki, vki, certi⟩ is not revealed from the ciphertexts c̃t and ct since the underlying PKE scheme is IND-CPA
secure. Also, the information of the encryption key eki is not revealed from c̃t by the key privacy of the
underlying PKE scheme. Moreover, the information of the witness is not revealed from the proof π since
the NIZK proof system PL is zero-knowledge. Since the user’s information is hidden from the adversary
who has the corresponding signing key (eki, vki, ski, certi), Scheme 1 satisfies full anonymity. Formally, the
following theorem holds.

Theorem 3.2. Scheme 1 satisfies full anonymity if the underlying NIZK proof system PL satisfies zero-
knowledgeness and the underlying PKE scheme PKE satisfies IND-CPA security and key privacy.

Proof. Let A be an adversary for full anonymity of Π1. We consider the following sequence of games. Let
Pr[Sucℓ] denote the event that A succeeds in guessing the challenge bit in Game ℓ. Let b be the challenge
bit, i0 and i1 be the challenge users, and m∗ be the challenge message.

Game 0: This is the experiment ExpanonΠ1,A(λ, n) itself. For simplicity, the challenge bit b is chosen at the
beginning of the game. This change does not have an effect on the behavior of the adversary A.

Game 1: This game is the same as Game 0, except that the common reference string crs in the group public
key gpk, and a proof π∗ in the challenge signature Σ∗ are computed by using the simulator S = (Sim1, Sim2)
of the NIZK proof system.

Game 2: In this game, we change the plaintext of the ciphertext ct∗ in the challenge signature Σ∗. Con-
cretely, the plaintext 0|⟨ekib ,vkib ,certib ⟩| is encrypted to the ciphertext ct∗ instead of ⟨ekib , vkib , certib⟩.

Game 3: In this game, we change the plaintext of the ciphertext c̃t
∗
in the challenge signature Σ∗. Con-

cretely, the plaintext 0|σ
∗| is encrypted to the ciphertext c̃t

∗
instead of σ∗ where σ∗ = SIG.Sign(skib ,m

∗).
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Game 4: In this game, we change the encryption key of the ciphertext c̃t
∗
. Concretely, we use a random

key ek∗ to compute c̃t
∗
instead of using the key ekib .

For the advantage AdvanonΠ1,A(λ, n),

AdvanonΠ1,A(λ, n) =
∣∣Pr[Suc0]− 1

2

∣∣ ≤ 3∑
ℓ=0

∣∣Pr[Sucℓ]− Pr[Sucℓ+1]
∣∣+ ∣∣Pr[Suc4]− 1

2

∣∣
holds. Moreover, the following lemmas hold.

Lemma 3.1. There exists a PPT algorithm B1 such that
∣∣Pr[Suc0]− Pr[Suc1]

∣∣ = AdvzkPL,B1
(λ).

Proof of Lemma 3.1. Let B1 be an adversary for the zero-knowledgeness of PL. First, B1 chooses
the challenge bit b, and receives the common reference string crs from the challenger. Next, B1 generates
the rest of instance for the scheme Π1, and sends gpk = (crs, vkSIG, ekPKE) and gsk = {gsk[i]} to A where
gsk[i] = (eki, vki, ski, certi). If A sends a query i to the Revoke oracle, B1 returns grt[i] = (dki, vki). For
the challenge query (i0, i1,m

∗), B1 computes the challenge signature Σ∗ as follows:

1. Generate (vk∗ots, sk
∗
ots)← OTS.Gen(1λ).

2. Compute σ∗ ← SIG.Sign(skib , vk
∗
ots).

3. Choose values r∗1 and r∗2 uniform randomly, and compute c̃t
∗ ← PKE.Enc(ekib , σ

∗; r∗1) and ct∗ ←
PKE.Enc(ekPKE, ⟨ekib , vkib , certib⟩; r∗2).

4. Set x ← ⟨gpk, c̃t∗, ct∗⟩ and w ← ⟨ekib , vkib , certib , σ∗, r∗1 , r
∗
2⟩, and send (x,w) to the oracle of the

NIZK proof system. Then, obtain a proof π.

5. Set π∗ ← π, generate σ∗
all ← OTS.Sign(sk∗ots, ⟨m∗, vk∗ots, c̃t

∗
, ct∗, π∗⟩), and send Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗,

σ∗
all) to A as the challenge signature.

Finally, when A terminates with b̃, B1 outputs 1 if b = b̃, and 0 otherwise. If crs is generated by the
ZK.Gen algorithm and B1 accesses the Prove oracle, then B1 perfectly simulates Game 0 for A. On the other
hand, if crs is generated by using the simulator Sim1 and B1 accesses the SimProve oracle, then B1 perfectly
simulates Game 1. Thus, since Pr[ExpproofPL,B1

(λ) = 1] = Pr[Suc0] and Pr[Expsim-proof
PL,B1

(λ) = 1] = Pr[Suc1]

hold, we get AdvzkPL,B1
(λ) =

∣∣Pr[Suc0]− Pr[Suc1]
∣∣.

Lemma 3.2. There exists a PPT algorithm B2 such that
∣∣Pr[Suc1]− Pr[Suc2]

∣∣ = 2 ·Advind-cpaPKE,B2
(λ).

Proof of Lemma 3.2. Let B2 be an adversary for the IND-CPA security of PKE and β be the challenge
bit in the IND-CPA security game. B2 chooses the challenge bit b, and receives the public key ek from the
challenger. B2 sets ekPKE ← ek and generates the common reference string crs by using the simulator Sim1
where (crs, td) ← Sim1(1

λ). Also, B2 generates the rest of instance for the scheme Π1 by himself. Then,
B2 sends gpk = (crs, vkSIG, ekPKE) and gsk = {gsk[i]} to A where gsk[i] = (eki, vki, ski, certi). If A sends
a query i to the Revoke oracle, then B2 returns grt[i] = (dki, vki). For the challenge query (i0, i1,m

∗), B1
computes the challenge signature Σ∗ as follows:

1. Generate (vk∗ots, sk
∗
ots)← OTS.Gen(1λ).

2. Compute σ∗ ← SIG.Sign(skib , vk
∗
ots).

3. Choose a value r∗1 uniform randomly, and compute c̃t
∗ ← PKE.Enc(ekib , σ

∗; r∗1).

4. Set M0 ← 0|⟨ekib ,vkib ,certib ⟩| and M1 ← ⟨ekib , vkib , certib⟩. Then, send (M0,M1) to the challenger for
the IND-CPA game and obtain a ciphertext ct∗.

5. Compute π∗ ← Sim2(crs, td, ⟨gpk, c̃t
∗
, ct∗⟩) where td is the trapdoor generated by Sim1.

6. Generate σ∗
all ← OTS.Sign(sk∗ots, ⟨m∗, vk∗ots, c̃t

∗
, ct∗, π∗⟩) and send Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all) to A
as the challenge signature.
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Finally, when A terminates with b̃, B2 outputs β̃ = 1 if b = b̃, and β̃ = 0 otherwise. If β = 0, ct∗ is
represented as ct∗ = PKE.Enc(ekPKE, 0

|⟨ekib ,vkib ,certib ⟩|). Therefore, B2 perfectly simulates Game 2 if β = 0.
On the other hand, if β = 1, ct∗ is represented as ct∗ = PKE.Enc(ekPKE, ⟨ekib , vkib , certib⟩), and thus B2
perfectly simulates Game 1. Thus, we get Advind-cpaPKE,B2

(λ) =
∣∣Pr[β = β̃]− 1

2

∣∣ = 1
2 ·

∣∣Pr[β̃ = 1|β = 1]−Pr[β̃ =

1|β = 0]
∣∣ = 1

2 ·
∣∣Pr[b = b̃|β = 1] − Pr[b = b̃|β = 0]

∣∣ = 1
2 ·

∣∣Pr[Suc1] − Pr[Suc2]
∣∣. That is, it holds that∣∣Pr[Suc1]− Pr[Suc2]

∣∣ = 2 ·Advind-cpaPKE,B2
(λ).

Lemma 3.3. There exists a PPT algorithm B3 such that
∣∣Pr[Suc2]− Pr[Suc3]

∣∣ = 2n ·Advind-cpaPKE,B3
(λ).

Proof of Lemma 3.3. Let B3 be an adversary for the IND-CPA security of PKE and β be the challenge
bit in the IND-CPA security game. B3 chooses the challenge bit b, and receives the public key ek from
the challenger. Moreover, B3 chooses an index i∗ ∈ [1, n] uniform randomly. Then, B3 sets eki∗ ← ek and
generates the common reference string crs by using the simulator Sim1 where (crs, td) ← Sim1(1

λ). Also,
B3 generates the rest of instance for the scheme Π by himself. Then, B3 sends gpk = (crs, vkSIG, ekPKE) and
gsk = {gsk[i]} to A where gsk[i] = (eki, vki, ski, certi). We remark that B3 cannot compute grt[i∗] since
B3 does not know the decryption key dki∗ corresponding to the encryption key eki∗ . However, B3 can
generate the i∗’s user signing key gsk[i∗] = (eki∗ , vki∗ , ski∗ , certi∗) without knowing the value dki∗ . When
A sends a query i to the Revoke oracle, then B3 returns grt[i] = (dki, vki) if i ̸= i∗. Otherwise, if i = i∗,

then B3 outputs a random bit β̃. For the challenge (i0, i1,m
∗), B3 computes the challenge signature Σ∗ as

follows:

1. If ib ̸= i∗, then output a random bit β̃. If ib = i∗, go to the next step.

2. Generate (vk∗ots, sk
∗
ots)← OTS.Gen(1λ).

3. Compute σ∗ ← SIG.Sign(skib , vk
∗
ots).

4. Set M0 ← 0|σ
∗| and M1 ← σ∗. Then, send (M0,M1) to the challenger for the IND-CPA game and

receive a ciphertext c̃t
∗
.

5. Choose a value r∗2 uniform randomly, and compute ct∗ ← PKE.Enc(ekPKE, 0
|⟨ekib ,vkib ,certib ⟩|; r∗2).

6. Compute π∗ ← Sim2(crs, td, ⟨gpk, c̃t
∗
, ct∗⟩) where td is the trapdoor generated by Sim1.

7. Generate σ∗
all ← OTS.Sign(sk∗ots, ⟨m∗, vk∗ots, c̃t

∗
, ct∗, π∗⟩) and send Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all) to A
as the challenge signature.

Finally, when A terminates with b̃, B3 outputs β̃ = 1 if b = b̃, and β̃ = 0 otherwise. If ib = i∗ and β = 0,
c̃t

∗
is represented as c̃t

∗
= PKE.Enc(ekib , 0

|σ∗|). Therefore, B3 perfectly simulates Game 3. On the other
hand, if ib = i∗ and β = 1, c̃t

∗
is represented as c̃t

∗
= PKE.Enc(ekib , σ

∗), and thus B3 perfectly simulates
Game 2. Let Good be the event that ib = i∗ holds where i∗ is chosen by B3 at the beginning of the game.
Since the guess of i∗ ∈ [1, n] and the behavior of A are independent with each other, Pr[Good] = 1/n holds.

Thus, we get
∣∣Pr[Suc2]− Pr[Suc3]

∣∣ = 2n ·Advind-cpaPKE,B3
(λ).

Lemma 3.4. There exists a PPT algorithm B4 such that
∣∣Pr[Suc3]− Pr[Suc4]

∣∣ = 2n ·Advkey-privPKE,B4
(λ).

Proof of Lemma 3.4. Let B4 be an adversary for the key privacy of PKE and β be the challenge bit
in the key privacy game. B4 chooses the challenge bit b, and receives two public keys ek and ek∗ from the
challenger. Moreover, B4 chooses the index i∗ ∈ [1, n] uniform randomly. Then, B4 sets eki∗ ← ek and
generates the common reference string crs by using the simulator Sim1 where (crs, td) ← Sim1(1

λ). Also,
B4 generates the rest of instance for the scheme Π1 by himself. Then, B4 sends gpk = (crs, vkSIG, ekPKE)
and gsk = {gsk[i]} to A where gsk[i] = (eki, vki, ski, certi). We remark that B4 cannot compute grt[i∗]
since B4 does not know the decryption key dki∗ corresponding to the encryption key eki∗ . However, B4 can
generate the i∗’s user signing key gsk[i∗] = (eki∗ , vki∗ , ski∗ , certi∗) without knowing dki∗ . When A sends
a query i to the Revoke oracle, then B4 returns grt[i] = (dki, vki) if i ̸= i∗. Otherwise, if i = i∗, then B4
outputs a random bit β̃. For the challenge (i0, i1,m

∗), B4 computes the challenge signature Σ∗ as follows:

1. If ib ̸= i∗, then output a random bit β̃. If ib = i∗, go to the next step.
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2. Generate (vk∗ots, sk
∗
ots)← OTS.Gen(1λ).

3. Compute σ∗ ← SIG.Sign(skib , vk
∗
ots).

4. Set M∗ ← 0|σ
∗|. Then, send M∗ to the challenger for the key privacy game and receive c̃t

∗
.

5. Choose a value r∗2 uniform randomly, and compute ct∗ ← PKE.Enc(ekPKE, 0
|⟨ekib ,vkib ,certib ⟩|; r∗2).

6. Compute π∗ ← Sim2(crs, td, ⟨gpk, c̃t
∗
, ct∗⟩) where td is the trapdoor generated by Sim1.

7. Generate σ∗
all ← OTS.Sign(sk∗ots, ⟨m∗, vk∗ots, c̃t

∗
, ct∗, π∗⟩) and send Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all) to A
as the challenge signature.

Finally, when A terminates with b̃, B3 outputs β̃ = 1 if b = b̃, and β̃ = 0 otherwise. If ib = i∗

and β = 0, c̃t
∗
is represented as c̃t

∗
= PKE.Enc(ekib , 0

|σ∗|), and thus B4 perfectly simulates Game 3.
On the other hand, if ib = i∗ and β = 1, c̃t

∗
is represented as c̃t

∗
= PKE.Enc(ek∗, 0|σ

∗|), and thus B4
perfectly simulates Game 4. Let Good be the event that ib = i∗ holds where i∗ is chosen by B4 at the
beginning of the game. Since the guess of i∗ ∈ [1, n] and the behavior of A are independent with each
other, Pr[Good] = 1/n holds. As in the same formula deformation in the proof of Lemma 3.3, we get∣∣Pr[Suc3]− Pr[Suc4]

∣∣ = 2n ·Advkey-privPKE,B4
(λ).

In Game 4, the choice of the challenge bit b and the distribution of the challenge signature Σ∗ = (c̃t
∗
,

ct∗, π∗) are independent. Thus, Pr[Suc4] = 1/2 holds. Putting all together, we get

AdvanonΠ1,A(λ, n) ≤
3∑

i=0

∣∣Pr[Suci]− Pr[Suci+1]
∣∣+ ∣∣Pr[Suc4]− 1/2

∣∣
=AdvzkPL,B1

(λ) + 2 ·Advind-cpaPKE,B2
(λ) + 2n ·Advind-cpaPKE,B3

(λ) + 2n ·Advkey-privPKE,B4
(λ).

Since the choice of the parameter n and the adversary A is arbitrary, our scheme Π1 satisfies full anonymity
if the underlying NIZK proof system PL satisfies zero-knowledgeness and the underlying PKE scheme PKE
satisfies IND-CPA security and key privacy.

Traceability. Intuitively, due to the soundness of PL, the probability that a valid proof π for a statement
⟨ekPKE, vkSIG, vkots, c̃t, ct⟩ ̸∈ L can be constructed is negligible where L is the language defined in Section 3.2.
Therefore, if Σ = (vkots, c̃t, ct, π, σall) is a valid signature on m, it holds that ⟨ekPKE, vkSIG, vkots, c̃t, ct⟩ ∈ L
with high probability. Thus, there exists a witness ⟨ek∗, vk∗, cert∗, σ∗, r∗1 , r

∗
2⟩ satisfying the equations (a)

c̃t = PKE.Enc(ek∗, σ∗; r∗1), (b) ct = PKE.Enc(ekPKE, ⟨ek∗, vk∗, cert∗⟩; r∗2), (c) SIG.Verify(vkSIG, ⟨ek∗, vk∗⟩,
cert∗) = 1, and (d) SIG.Verify(vk∗, vk∗ots, σ

∗) = 1.
From the EUF-CMA security of the scheme SIG, it is difficult to generate the value cert∗ which satisfies

Equation (c) for an uncertified key pair ⟨ek∗, vk∗⟩. Therefore, for some index i ∈ [1, n], (ek∗, vk∗) = (eki, vki)
holds. Thus, the only way to generate a forgery is to produce a signature σ∗ which satisfies Equation (d).
However, it is also difficult to produce such a signature due to the EUF-CMA security of SIG. Therefore,
Scheme 1 satisfies traceability. Formally, the following theorem holds.

Theorem 3.3. Scheme 1 satisfies traceability if the underlying OTS scheme OT S satisfies strong EUF-
CMA security, the underlying NIZK proof system PL satisfies soundness and the underlying digital signa-
ture scheme SIG satisfies EUF-CMA security.

Proof. Let A be an adversary for traceability of Π1, and (m∗,Σ∗,RU∗) be the output of A in the experiment
ExptraceΠ1,A(λ, n) where Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all). Let i
∗ be the output of the GS.Open algorithm with an

input (m∗,Σ∗). We consider the following six cases:

I. ⟨ekPKE, vkSIG, vk∗ots, c̃t
∗
, ct∗⟩ ̸∈ L, II. i∗ = ⊥, III. i∗ /∈ CU, and IV. i∗ ∈ RU∗

V. for some (i,m,Σ) ∈ QL, vkots = vk∗ots and (m,Σ) ̸= (m∗,Σ∗) where Σ = (vkots, c̃t, ct, π, σall),

VI. for all (i,m,Σ) ∈ QL, vkots ̸= vk∗ots or (m,Σ) = (m∗,Σ∗) where Σ = (vkots, c̃t, ct, π, σall).

If the output of the experiment ExptraceΠ1,A(λ, n, T ) is 1 (i.e., A succeeds in producing a forged signature),
we can classify the type of the forgery as follows:

(1) I, (2) ¬I ∧ II, (3) ¬I ∧ III ∧V, (4) ¬I ∧ III ∧VI, (5) ¬I ∧ IV,
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Let Eℓ be the event that A outputs a forged signature in Type ℓ. We estimate the each probability
that the event Eℓ happens in the following lemmas.

Lemma 3.5. There exists a PPT algorithm B1 such that Pr[E1] ≤ AdvsoundPL,B1
(λ).

Proof of Lemma 3.5. Let B1 be an adversary for soundness of PL. First, B1 receives the common
reference string crs from the challenger. Next, B1 generates the rest of instance for the scheme Π1, and
sends gpk = (crs, vkSIG, ekPKE) and grt = {grt[i]} to A where grt[i] = (dki, vki). Since B1 has all signing
keys, he can easily simulate the GS.Sign oracle and the Corrupt oracle. Let (m∗,Σ∗,RU∗) be the output of
A where Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all). Then, B1 outputs (⟨gpk, c̃t∗, ct∗⟩, π∗) as a forgery for the soundness

of PL. When A’s output (m∗,Σ∗,RU∗) is a forgery in Type 1, ZK.Verify(crs, ⟨gpk, c̃t∗, ct∗⟩, π∗) = 1 and
⟨ekPKE, vkSIG, vk∗ots, c̃t

∗
, ct∗⟩ ̸∈ L hold. Therefore, (⟨gpk, c̃t∗, ct∗⟩, π∗) is the forgery for the soundness of PL.

Thus, we have Pr[E1] ≤ AdvsoundPL,B1
(λ).

Lemma 3.6. There exists a PPT algorithm B2 such that Pr[E2] ≤ AdvunforgeSIG,B2
(λ).

Proof of Lemma 3.6. Let B2 be an adversary for the EUF-CMA security of SIG. First, B2 receives
the verification key vk from the challenger of the EUF-CMA security game, and sets vkSIG ← vk. Next,
B2 generates the rest of instance for the scheme Π1, except for the certificates certi where i ∈ [1, n]. In
terms of the certificates, B2 sends ⟨eki, vki⟩ to the Sign oracle of the scheme SIG, and receives certi. B2
sends gpk = (crs, vkSIG, ekPKE) and grt = {grt[i]} to A where grt[i] = (dki, vki). Since B2 has all signing
keys, he can easily simulate the GS.Sign oracle and the Corrupt oracle. Let (m∗,Σ∗,RU∗) be the output
of A where Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all). Then, B2 outputs (⟨ek∗, vk∗⟩, cert∗) as a forged signature of

SIG. When A’s output (m∗,Σ∗,RU∗) is a forgery in Type 2, ⟨ekPKE, vkSIG, vk∗ots, c̃t
∗
, ct∗⟩ ∈ L holds. Also,

SIG.Verify(vkSIG, ⟨ek∗, vk∗⟩, cert∗) = 1 holds where ⟨ek∗, vk∗, cert∗⟩ is the decryption result of ct∗ by the
decryption key dkPKE. Since for all i ∈ [1, n], (ek∗, vk∗) ̸= (eki, vki) holds, B2 does not send (ek∗, vk∗) to
the Sign oracle. Thus, (⟨ek∗, vk∗⟩, cert∗) is a forged signature of the digital signature scheme SIG, and we

get Pr[E2] ≤ AdvunforgeSIG,B2
(λ).

Lemma 3.7. There exists a PPT algorithm B3 such that Pr[E3] ≤ qGS.Sign · Advstrong-unforgeOT S,B3
(λ) where

qGS.Sign is the number of signing queries.

Proof of Lemma 3.7. Let B3 be an adversary for the strong EUF-CMA security of OT S.
First, B3 receives the verification key vkots from the challenger of the strong EUF-CMA se-
curity game. Next, B3 chooses random ĵ ∈ [1, qGS.Sign] and generates the instance for the

scheme Π1. For the ĵ-th signing query (i, 1,m), B3 generates (c̃t, ct, π) as in the scheme
Π1, sends ⟨m, vkots, c̃t, ct, π⟩ to the Sign oracle of the scheme OT S, receives σall, and sends
Σ = (vkots, c̃t, ct, π, σall) back to A. For any other query, B3 simulates GS.Sign oracle and the
Corrupt oracle honestly. Let (m∗,Σ∗,RU∗) be the output of A where Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all).

Then, B3 outputs (⟨m∗, vk∗ots, c̃t
∗
, ct∗, π∗⟩, σ∗

all) as a forged signature of OT S. When A’s output

(m∗,Σ∗,RU∗) is a forgery in Type 3, OTS.Verify(vk∗ots, ⟨m∗, vk∗ots, c̃t
∗
, ct∗, π∗⟩, σ∗

all) = 1 holds. Fur-
thermore, for at least one query (i, 1,m) to the GS.Sign oracle and the response Σ to it, it holds
that vkots = vk∗ots and (m,Σ) ̸= (m∗,Σ∗). The latter implies that (⟨m∗, vk∗ots, c̃t

∗
, ct∗, π∗⟩, σ∗

all) ̸=
(⟨m, vkots, c̃t, ct, π⟩, σall). If the ĵ-th query to the GS.Sign oracle is such a query, B3’s signing
query is ⟨m, vkots, c̃t, ct, π⟩ and the response to it is σall. Then in that case B3’s output is a

forgery for the OT S scheme. The probability that the ĵ-th query is such a query is at least
1/qGS.Sign, then we have (1/qGS.Sign) · Pr[E3] ≤ Advstrong-unforgeOT S,B3

(λ).

Lemma 3.8. There exists a PPT algorithm B4 such that Pr[E4] ≤ n ·AdvunforgeSIG,B4
(λ).

Proof of Lemma 3.8. Let B4 be an adversary for the EUF-CMA security of SIG. First, B4 receives vk
from the challenger of the EUF-CMA security game, and randomly chooses the index i∗ ∈ [1, n]. Then,
B4 sets vki∗ ← vk. Next, B4 generates the rest of instance for the scheme Π1, and sends gpk = (crs, vkSIG,
ekPKE) and grt = {grt[i]} to A where grt[i] = (dki, vki). We remark that B4 does not know the signing
key ski∗ corresponding to vki∗ . Thus, B4 cannot compute gsk[i∗]. If A sends (i,m) to the GS.Sign oracle
and it holds i ̸= i∗, then B4 easily computes Σ since B4 knows gsk[i] for all users i ̸= i∗. On the other
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hand, if A sends (i∗,m) to the GS.Sign oracle, B4 generates (vkots, skots) ← OTS.Gen(1λ) and sends vkots
to the Sign oracle of SIG and receives a signature σ. Then, he computes (c̃t, ct), π and σall according to
the GS.Sign algorithm, and returns Σ = (vkots, c̃t, ct, π, σall) to A. If A sends i∗ to the Corrupt oracle, then
B4 outputs ⊥. Otherwise, if A sends i such that i ̸= i∗ to the Corrupt oracle, then B4 returns gsk[i]. Let
(m∗,Σ∗,RU∗) be the output of A where Σ∗ = (vk∗ots, c̃t

∗
, ct∗, π∗, σ∗

all). If GS.Open(gpk,grt,m∗,Σ∗) ̸= i∗,

B4 outputs⊥. Otherwise, if GS.Open(gpk,grt,m∗,Σ∗) = i∗, then B4 decrypts c̃t
∗
by using dki∗ and gets the

decryption result σ∗. Then, B4 outputs (vk∗ots, σ
∗) as a forged signature. Since the guess of i∗ ∈ [1, n] and

the behavior of A are independent with each other, the probability that GS.Open(gpk,grt,m∗,Σ∗) = i∗

holds is 1/n. If GS.Open(gpk,grt,m∗,Σ∗) = i∗, i∗ ̸∈ CU holds by the condition of Type 4. Thus, i∗

is not queried to the Corrupt oracle and B4 can succeed in simulating the Corrupt oracle. Due to the
condition of Type 4, for all (i,m,Σ) ∈ QL, it satisfies either vkots ̸= vk∗ots or (m,Σ) = (m∗,Σ∗). Now,
we claim that vk∗ots is not queried by the above B4 even in the case (m,Σ) = (m∗,Σ∗). Let (i,m)
be an arbitrary query issued by A during the execution. Then there is some (i,m,Σ) ∈ QL where
Σ = (vkots, c̃t, ct, π, σall). For each such a query (i,m) B might issue a signing query vkots to its Sign
oracle. We can assume (m,Σ) = (m∗,Σ∗). If i ̸= i∗, then B4 does not issue a signing query. If i = i∗, then
(i∗,m∗,Σ∗) = (i,m,Σ) ∈ QL, which contradicts the success condition of A. Thus this case never occurs.
Moreover, if GS.Open(gpk,grt,m∗,Σ∗) = i∗, it holds that GS.Verify(gpk, {grt[i∗]},m∗,Σ∗) = 0. Thus,
either ZK.Verify(crs, ⟨gpk, c̃t∗, ct∗⟩, π∗) = 0 or SIG.Verify(vki∗ , vk

∗
ots,PKE.Dec(dki∗ , c̃t

∗
)) = 1 hold. Here, due

to the success condition of A, ZK.Verify(crs, ⟨gpk, c̃t∗, ct∗,m∗⟩, π∗) = 1 holds. Thus, SIG.Verify(vki∗ , vk
∗
ots,

PKE.Dec(dki∗ , c̃t
∗
)) = 1 holds. Therefore, if GS.Open(gpk,grt,m∗,Σ∗) = i∗ holds, (vk∗ots, σ

∗) is a forged
signature of the SIG scheme where σ∗ is the decryption result of c̃t

∗
by using the decryption key dki∗ . Since

the probability that GS.Open(gpk,grt,m∗,Σ∗) = i∗ holds is 1/n, we have (1/n) · Pr[E4] ≤ AdvunforgeSIG,B4
(λ).

Lemma 3.9. Pr[E5] = 0 holds.

Proof of Lemma 3.9. Let (m∗,Σ∗,RU∗) be the output of A, and i∗ be the result of the the GS.Open
algorithm with the input (m∗,Σ∗). If i∗ ∈ RU∗, then grt[i∗] ∈ RL∗. Due to the success probabil-
ity, GS.Verify(gpk,RL∗,m∗,Σ∗) = 1 holds. Thus, due to the description of the GS.Verify algorithm,
ZK.Verify(crs, ⟨ekPKE, vkSIG, vk∗ots, c̃t

∗
, ct∗⟩, π∗) = 1 holds. Also, for grt[i∗] = (dki∗ , vki∗) ∈ RL∗, it holds

that SIG.Verify(vki∗ , vk
∗
ots,PKE.Dec(dki∗ , c̃t

∗
)) = 0. Moreover, since the opening result is i∗, we have

GS.Verify(gpk, {grt[i∗]},m∗,Σ∗) = 0. Thus, either ZK.Verify(crs, ⟨ekPKE, vkSIG, vk∗ots, c̃t
∗
, ct∗⟩, π∗) = 0 or

SIG.Verify(vki∗ , vk
∗
ots,PKE.Dec(dki∗ , c̃t

∗
)) = 1 holds. However, this contradicts the condition that ZK.Verify(crs,

⟨ekPKE, vkSIG, vk∗ots, c̃t
∗
, ct∗⟩, π∗) = 1 and SIG.Verify(vki∗ , vk

∗
ots,PKE.Dec(dki∗ , c̃t

∗
)) = 0. Thus, we get

Pr[E5] = 0.
Putting all together, we get

AdvtraceΠ1,A(λ, n) = Pr[ ExptraceΠ1,A(λ, n) = 1 ]

= Pr[ E1 ∨ E2 ∨ E3 ∨ E4 ∨ E5 ]

≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4] + Pr[E5]

≤ AdvsoundPL,B1
(λ) + AdvunforgeSIG,B2

(λ) + qGS.Sign ·Advstrong-unforgeOT S,B3
(λ) + n ·AdvunforgeSIG,B4

(λ).

Since the choice of the parameters qGS.Sign and n, and the adversary A are arbitrary, our scheme Π1

satisfies traceability if the underlying NIZK proof system PL satisfies soundness and the underlying digital
signature scheme SIG satisfies EUF-CMA security.

4 A Fully Anonymous VLR-GS Scheme with Backward Unlink-
ability

In Figure 7, we give a construction of a fully anonymous VLR-GS scheme (Scheme 2) which satisfies
backward unlinkability from the same building blocks of Scheme 1. In Scheme 2, encryption/decryption
key pairs of a user i are provided for each time period j, and when generating a signature at the time period

j, the user uses the corresponding encryption key ek
(j)
i to encrypt a signature σ. Also, the decryption key

dk
(j)
i is set to be i’s revocation token for the time period j. To force users to use the encryption key related

to the appropriate time period, each encryption key ek
(j)
i is certified along with the verification key vki by

using the manager’s signing key sk
(j)
SIG that depends on the time period j.
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GS.Gen(1λ, n, T ):
crs← ZK.Gen(1λ)

For 1 ≤ j ≤ T : (vk
(j)
SIG, sk

(j)
SIG)← SIG.Gen(1λ)

(ekPKE, dkPKE)← PKE.Gen(1λ)
For 1 ≤ i ≤ n and 1 ≤ j ≤ T :

(ek
(j)
i , dk

(j)
i )← PKE.Gen(1λ); (vki, ski)← SIG.Gen(1λ)

cert
(j)
i ← SIG.Sign(sk

(j)
SIG, ⟨ek

(j)
i , vki⟩); grt[i][j]← (dk

(j)
i , vki)

gpk = (crs, {vk(j)SIG}j , ekPKE); gsk[i] = ({ek(j)i }j , vki, ski, {cert
(j)
i }j)

gsk = {gsk[i]}i; grt = {grt[i][j]}ij
Return (gpk,gsk,grt)

GS.Sign(gpk, j, gsk[i],m):
(vkots, skots)← OTS.Gen(1λ)
σ ← SIG.Sign(ski, vkots)

c̃t← PKE.Enc(ek
(j)
i , σ; r1)

ct← PKE.Enc(ekPKE, ⟨ek(j)i , vki, cert
(j)
i ⟩; r2)

π ← ZK.Prove(crs, ⟨ekPKE, vk(j)SIG, c̃t, ct⟩, ⟨ek
(j)
i , vki, cert

(j)
i , σ, r1, r2⟩)

σall ← OTS.Sign(skots, ⟨m, vkots, c̃t, ct, π⟩)
Return Σ = (vkots, c̃t, ct, π, σall)

GS.Verify(gpk, j,RLj ,m,Σ):
If OTS.Verify(vkots, ⟨m, vkots, c̃t, ct, π⟩, σall) = 0, return 0

If ZK.Verify(crs, ⟨ekPKE, vk(j)SIG, c̃t, ct⟩, π) = 0, return 0
For (dk, vk) ∈ RLj :
If SIG.Verify(vk,m,PKE.Dec(dk, c̃t)) = 1, return 0

Return 1

Figure 7: Scheme 2: A Fully Anonymous VLR-GS Scheme with Backward Unlinkability

For the security requirements, Theorems 4.1 to 4.3 hold. Each theorem can be shown as the case of
Scheme 1.

Theorem 4.1. Scheme 2 is correct if the underlying OTS scheme OT S satisfies correctness, the underlying
NIZK proof system PL satisfies completeness, and the underlying digital signature scheme SIG satisfies
EUF-CMA security.

Theorem 4.2. Scheme 2 satisfies full anonymity if the underlying NIZK proof system PL satisfies zero-
knowledgeness and the underlying PKE scheme PKE satisfies IND-CPA security and key privacy.

Theorem 4.3. Scheme 2 satisfies traceability if the underlying OTS scheme OT S satisfies strong EUF-
CMA security, the underlying NIZK proof system PL satisfies soundness, and the underlying digital sig-
nature scheme SIG satisfies EUF-CMA security.

A Drawback of Scheme 2. Although Scheme 2 satisfies backward unlinkability, it has one drawback
that the sizes of the group public key and the user signing key depend on the number of time periods.
This is because the user needs to change the encryption key to encrypt a signature σ for the time period

when generating a signature Σ. Therefore, the user i possesses T encryption keys ek
(1)
i , . . . , ek

(T )
i as a part

of the user signing key where T is the number of time periods. Consequently, the size of certificate is also
grown.

Since the number of time periods is fixed in the setup phase and the user signing keys are also fixed
at the beginning of using the system, it is not necessary to redistribute the group public key and the user
signing keys. However, it is still undesirable that the size of these keys depends on the number of time
periods. Therefore, we also propose the VLR-GS scheme with backward unlinkability which overcomes the
weakness by using an IBE scheme. The description of the scheme is given in the next section.
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5 A Fully Anonymous VLR-GS Scheme with Backward Unlink-
ability and with Constant-Size Keys

In this section, we reduce the sizes of gpk and gsk by employing an IBE scheme. Intuitively, grt[i][j] is set
as a decryption key of the underlying IBE scheme for the identity i||j. Moreover, we employ an IBS scheme
that allows us to simplify the certification part. Then, a user i has gsk[i] = ski where ski is the signing
key of the IBS scheme. The security of Scheme 3 is discussed as with that of Scheme 1. Specifically, the
underlying IBE scheme is required to be key-private as we require the underlying PKE scheme in Scheme 1
to satisfy the security.

5.1 Description

The description of Scheme 3 is given in Figure 8. Concretely, we construct a VLR-GS scheme Π3 = (GS.Gen,
GS.Sign,GS.Verify) from an IBS scheme IBS = (IBS.Gen, IBS.Ext, IBS.Sign, IBS.Verify), an OTS scheme
OT S = (OTS.Gen,OTS.Sign,OTS.Verify), a PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec), an IBE
scheme IBE = (IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec), and an NIZK proof system PL̂ = (ZK.Gen,ZK.Prove,

ZK.Verify). We say that a statement x = ⟨paramsIBS, paramsIBE, ekPKE, j, vkOTS, c̃t, ct⟩ and a witness w = ⟨i,
σ, r1, r2⟩ satisfy the relation RL̂ if the following equations hold:

(a) c̃t = IBE.Enc(paramsIBE, i||j, σ; r1),

(b) ct = PKE.Enc(ekPKE, ⟨i, σ⟩; r2), and

(c) IBS.Verify(paramsIBS, i, vkOTS, σ) = 1

- GS.Gen(1λ, N, T )
crs← ZK.Gen(1λ); (ekPKE, dkPKE)← PKE.Gen(1λ)
(paramsIBS,mskIBS)← IBS.Gen(1λ); (paramsIBE,mskIBE)← IBE.Gen(1λ)
For 1 ≤ i ≤ N : ski ← IBS.Ext(mskIBS, i)
For 1 ≤ i ≤ N and 1 ≤ j ≤ T : di||j ← IBE.Ext(mskIBE, i||j)
gpk = (crs, ekPKE, paramsIBS, paramsIBE); gsk[i] = ski; grt[i][j] = di||j

Return (gpk, {gsk[i]}i, {grt[i][j]}ij)
- GS.Sign(gpk, j, gsk[i],m)

(vkOTS, skOTS)← OTS.Gen(1λ) : σ ← IBS.Sign(ski, i, vkOTS)
c̃t← IBE.Enc(paramsIBE, i||j, σ; r1); ct← PKE.Enc(ekPKE, ⟨i, σ⟩; r2)
π ← ZK.Prove(crs, ⟨paramsIBS, paramsIBE, ekPKE, j, vkOTS, c̃t, ct⟩, ⟨i, σ, r1, r2⟩)
σall ← OTS.Sign(skOTS, ⟨m, vkOTS, c̃t, ct, π⟩)

Return Σ = (vkOTS, c̃t, ct, π, σall)
- GS.Verify(gpk, j,RLj ,m,Σ)

If OTS.Verify(vkOTS, ⟨m, vkOTS, c̃t, ct, π⟩, σall) = 0, return 0
If ZK.Verify(crs, ⟨paramsIBS, paramsIBE, ekPKE, j, vkOTS, c̃t, ct⟩, π) = 0, return 0
For 1 ≤ i ≤ N such that grt[i][j] ∈ RLj :

If IBS.Verify(paramsIBS, i, vkOTS, IBE.Dec(paramsIBE, i||j, grt[i][j], c̃t)) = 1, return 0
Else return 1

Figure 8: Scheme 3: A Fully Anonymous VLR-GS Scheme with Backward Unlinkability and with Constant-
Size Keys

For the correctness, the following theorem holds.

Theorem 5.1. Scheme 3 is correct if the underlying OTS scheme OT S satisfies correctness, if the underly-
ing NIZK proof system PL̂ satisfies completeness and the underlying IBS scheme IBS satisfies EUF-CMA
security.

Basically, it can be shown as the case of Scheme 1 and we give a proof sketch. For Σ∗ = (vk∗ots, c̃t
∗
, ct∗, π∗,

σ∗
all) that A outputs, σ∗

all is always a valid signature due to the correctness of OT S, and π∗ is a
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valid proof due to the completeness of PL̂. The remaining part is the case that for some ĩ ∈ RU∗,

IBS.Verify(paramsIBS, ĩ, vkOTS
∗, σ̃) = 1 holds where σ̃ ← IBE.Dec(paramsIBE, ĩ||j∗, grt[̃i][j∗], c̃t

∗
). Since

i∗ ̸∈ RUj∗ , ĩ ̸= i∗ holds. Thus, (̃i, vk∗ots, σ̃) is a forged signature of the IBS scheme.

5.2 Security

Here, we give the intuition of the security of Scheme 3. Basically, it can be shown as the case of Scheme 1
and we give a proof sketch.

Full Anonymity. As with the case of Scheme 1, the user’s information is not revealed from a signature
by the IND-ID-CPA security of the IBE scheme, the IND-CPA security of the PKE scheme, and the
zero-knowledgeness of the NIZK proof system. Formally, the following theorem holds.

Theorem 5.2. Scheme 2 satisfies full anonymity if the underlying NIZK proof system PL̂ satisfies zero-
knowledgeness, the underlying PKE scheme PKE satisfies IND-CPA security, and the underlying IBE
scheme IBE satisfies IND-ID-CPA security and key privacy.

Let A be an adversary for full anonymity of Π3. We consider the following sequence of games. Let
Pr[Sucℓ] denote the event that A succeeds in guessing the challenge bit in Game ℓ. Let b be the challenge
bit, i0 and i1 be the challenge users, and m∗ be the challenge message.

Game 0: This is the experiment ExpanonΠ3,A(λ, n) itself. For simplicity, the challenge bit b is chosen at the
beginning of the game. This change does not have an effect on the behavior of the adversary A.

Game 1: This game is the same as Game 0, except that the common reference string crs in the group public
key gpk, and a proof π∗ in the challenge signature Σ∗ are computed by using the simulator S = (Sim1, Sim2)
of the NIZK proof system.

Game 2: In this game, we change the plaintext of the ciphertext ct∗ in the challenge signature Σ∗. Con-
cretely, the plaintext 0|⟨ib,σ

∗⟩| is encrypted to the ciphertext ct∗ instead of ⟨ib, σ∗⟩.

Game 3: In this game, we change the plaintext of the ciphertext c̃t
∗
in the challenge signature Σ∗. Con-

cretely, the plaintext 0|σ
∗| is encrypted to the ciphertext c̃t

∗
instead of σ∗ where σ∗ = IBS.Sign(skib , ib, vk

∗
ots).

Game 4: In this game, we change the encryption key of the ciphertext c̃t
∗
. Concretely, we use the identity

0|i||j| to compute c̃t
∗
instead of using the key i||j.

As in Scheme 1, the following lemmas hold.

Lemma 5.1. There exists a PPT algorithm B1 such that
∣∣Pr[Suc0]− Pr[Suc1]

∣∣ = AdvzkPL,B1
(λ).

Lemma 5.2. There exists a PPT algorithm B2 such that
∣∣Pr[Suc1]− Pr[Suc2]

∣∣ = 2 ·Advind-cpaPKE,B2
(λ).

Lemma 5.3. There exists a PPT algorithm B3 such that
∣∣Pr[Suc2]− Pr[Suc3]

∣∣ = 2 ·Advind-id-cpaIBE,B3
(λ).

Lemma 5.4. There exists a PPT algorithm B4 such that
∣∣Pr[Suc3]− Pr[Suc4]

∣∣ = 2 ·Advkey-privIBE,B4
(λ).

In Game 4, the choice of the challenge bit b and the distribution of the challenge signature Σ∗ = (c̃t
∗
,

ct∗, π∗) are independent. Thus, Pr[Suc4] = 1/2 holds. From the above lemmas, putting all together, we
get

AdvanonΠ3,A(λ, n) ≤
3∑

i=0

∣∣Pr[Suci]− Pr[Suci+1]
∣∣+ ∣∣Pr[Suc4]− 1/2

∣∣
=AdvzkPL,B1

(λ) + 2 ·Advind-cpaPKE,B2
(λ) + 2n ·Advind-id-cpaIBE,B3

(λ) + 2n ·Advkey-privIBE,B4
(λ).

Since the choice of the parameter n and the adversary A is arbitrary, our scheme Π1 satisfies full anonymity
if the underlying NIZK proof system PL satisfies zero-knowledgeness and the underlying IBE scheme IBE
satisfies IND-ID-CPA security and key privacy.
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Remark 2. We remark that the underlying IBE scheme is not required to be adaptive-ID secure, and
we can employ a selective-ID secure IBE scheme. Unlike IBE, the number of users (and the number of
time periods also) is polynomial of the security parameter, and it is sufficient to guess the challenge user
with reduction loss O(n) by the reduction algorithm in the security proof. That is, as in the proof of
Lemmas 3.3 and 3.4, the reduction algorithm chooses the index i∗ ∈ [1, n] uniform randomly in the proof
of Lemmas 5.3 and 5.4. By employing an adaptive-ID secure IBE scheme, the reduction algorithm does
not have to guess i∗. Thus, we have removed the n factor from Lemmas 5.3 and 5.4.

Traceability. In terms of traceability, the security of Scheme 3 can be proved in almost the same way
as that of Scheme 1. First, the traceability of Scheme 1 does not rely on the security of the PKE scheme.
Therefore, if we use an IBE scheme instead of a PKE scheme, it does not influence the security proof
of the traceability. Second, we modify the condition I. ⟨ekPKE, vkSIG, vk∗ots, c̃t

∗
, ct∗⟩ ̸∈ L in the proof of

Theorem 3.3 to I. ⟨paramsIBS, paramsIBE, ekPKE, j
∗, vkOTS

∗, c̃t
∗
, ct∗⟩ ̸∈ L̂. Then, as in the same discussion of

the proof of Theorem 3.3, the following theorem holds.

Theorem 5.3. Scheme 3 satisfies traceability if the underlying OTS scheme OT S satisfies strong EUF-
CMA security, the underlying NIZK proof system PL̂ satisfies soundness, and the underlying IBS scheme
IBS satisfies EUF-CMA security.

6 Cryptanalysis of the Perera-Koshiba Scheme

Here, we review the Perera-Koshiba (PK) scheme [41] and show that it does not satisfy full anonymity.
Firstly, we give the description of the PK scheme. This scheme mainly follows the Langlois-Ling-

Nguyen-Wang (LLNW) scheme [26], and specifically, the zero-knowledge protocol in the PK scheme is
identical to that in the LLNW scheme.

In the following, we use the notation and the algorithms given in the papers [26, 41]. Let n be a security
parameter, N = 2ℓ be the maximum number of group members. We fix other parameters as follows:

• Modulus q : q = ω(n2 log n),

• Dimension m : m ≥ 2n log q,

• Gaussian Parameter σ : σ = ω(
√
n log q log n),

• Integer norm bound β : β = ⌈σ · logm⌉,

• Number of decompositions p : p = ⌊log β⌋+ 1,

• Sequence of integers β1, . . . , βp : β1 = ⌈β/2⌉, β2 = ⌈(β−β1)/2⌉, β3 = ⌈(β−β1−β2)/2⌉, . . . , βp = 1,

• Number of protocol repetitions λ : λ = ω(log n).

Let H1 : {0, 1}∗ → Zn×ℓ
q and H2 : {0, 1}∗ → {1, 2, 3}t be hash functions modeled as a random oracle. The

description of the PK scheme is as follows:

GS.Gen(n,N): Given security parameter n and the number of members N , the GS.Gen algorithm works
as follows:

1. Run the TrapGen(n,m, q) algorithm to obtain a pair of a matrix and its trapdoor (A0,R), where
A0 ∈ Zn×m

q , and randomly sample matrixes Ab
i ← Zn×m

q for all 1 ≤ i ≤ ℓ and all b ∈ {0, 1}.
Then, define the matrix A = [A0|A0

1|A1
1| . . . |A0

ℓ |A1
ℓ ] ∈ Zn×(2ℓ+1)m

q .

2. Sample a random vector u
$←− Zn

q .

3. For a group member with an index d ∈ {0, 1}ℓ where d = d[1] . . . d[ℓ], do the following procedure:

(a) Sample vectors x
d[1]
1 , . . . ,x

d[ℓ]
ℓ ← DZm,σ and compute z =

∑ℓ
i=1 A

d[i]
i · xd[i]

i mod q. Set

vectors x
1−d[1]
1 , . . . ,x

1−d[ℓ]
ℓ to be zero-vector 0m.

(b) Run the SampleD algorithm and obtain x0 ← SampleD(R,A0,u−z, σ). Then define a vector

x(d) = (x0∥x0
1∥x1

1∥ . . . ∥x0
ℓ∥x1

ℓ) ∈ Z(2ℓ+1)m
q .
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If ∥x(d)∥∞ > β, go back to the step (a). Let the secret key of the member be gsk[d] = x(d), and
the revocation token of the member be grt[d] = A0 · x0 mod q.7

4. Output (gpk,gsk,grt) where gpk = (A,u,B), gsk = {gsk[1], . . . , gsk[N ]}, and grt = {grt[1],
. . . , grt[N ]}.

GS.Sign(gpk, gsk[d],M): Given the pubic key gpk, the member’s secret key gsk[d], and a message M , the
GS.Sign algorithm works as follows:

1. Generate a key pair of a one-time signature scheme (ovk, osk).

2. Encrypt the index d as follows:

(a) Compute G = H1(ovk).

(b) Sample s← χn, e1 ← χm, and e2 ← χℓ.

(c) Compute c1 ← BTs+ e1 and c2 ← GTs+ e2 + ⌊2/q⌋d.
3. Run t = ω(log n) times the zero-knowledge protocol [26] with the public parameter (A,u) and

the witness x(d). Then, compute a triple Π = ({CMT(k)}tk=1, {Ch
(k)}tk=1, {RSP

(k)}tk=1) where

{Ch(k)}tk=1 = H2(M, {CMT(k)}tk=1, c1, c2).

4. Compute a signature sig← OSig(osk, (c1, c2,Π)).

5. Output a signature Σ = (ovk, c1, c2,Π, sig).

GS.Verify(gpk,RL,M,Σ): Given a pubic key gpk, a revocation list RL, a message M , and a signature Σ,
the GS.Verify algorithm works as follows:

1. Parse the signature Σ as (ovk, c1, c2,Π, sig).

2. If OVer(ovk, (c1, c2,Π), sig) = 0, output 0.

3. For the proof Π = ({CMT(k)}tk=1, {Ch
(k)}tk=1, {RSP

(k)}tk=1), compute the values {Ch(k)}tk=1 ←
H2(M, {CMT(k)}tk=1, c1, c2). Then, if it holds that {Ch

(k)}tk=1 ̸= {Ch
(k)}tk=1, output 0.

4. Check the validity of the response {RSP(k)}tk=1 by running the verification algorithm of the zero-

knowledge protocol [26]. That is, for 1 ≤ k ≤ t, check whether RSP(k) is the valid response for

the commitment CMT(k) and the challenge Ch(k). If some response RSP(k) is invalid, output 0.
Otherwise output 1.

As we mentioned, if a VLR-GS scheme has the structure allowing the revocation token to be constructed
from the corresponding user’s signing key, the scheme does not satisfy full anonymity. The PK scheme
has this structure. More precisely, in the PK scheme, the revocation token of a user with an index d
is represented as grt[d] = A0 · x0 mod q. Since the matrix A = [A0|A0

1|A1
1| . . . |A0

ℓ |A1
ℓ ] is a part of the

group public key gpk, and the signing key gsk[d] is denoted by the vector x(d) = (x0∥x0
1∥x1

1∥ . . . ∥x0
ℓ∥x1

ℓ),
the revocation token can be computed by using the corresponding signing key and the public values.
Therefore, in the full anonymity game of the PK scheme, the adversary can compute revocation tokens
of all users. Thus, for an any valid signature Σ on a message M , the adversary can identify its signer by
computing values GS.Verify(gpk, {grt[d]},M,Σ) for all d ∈ [1, N ]. This is because if GS.Verify(gpk, {grt[d]},
M,Σ) = 0 holds whereas GS.Verify(gpk,RL,M,Σ) = 1, this indicates that a user d is the signer of Σ.

Here, we fully describe our attack against the full anonymity of the PK scheme. In the following, we use
the notation and the algorithms given in the papers [26, 41]. Firstly, we review how to generate the challenge
signature Σ∗. Let d0 and d1 be the challenge users, Σ∗ = (ovk∗, c∗1, c

∗
2,Π

∗, sig∗) be the challenge signature
on the message M∗, and b be the challenge bit. Let gsk[db] = x(db) = (x0,b∥x0

1,b∥x1
1,b∥ . . . ∥x0

ℓ,b∥x1
ℓ,b). Let

COM be the Kawachi-Tanaka-Xagawa commitment scheme [24]. Let A∗ ← MatrixExt(A) and z∗1, . . . , z
∗
p ←

WitnessDE(x(db)). Now, we consider the case that it holds Ch(1) = 2 which happens with the probability
1/3. In this case, the challenge signature Σ∗ is computed as follows:

7According to the paper [26], it is required that the revocation tokens of two different users must be different. Namely, if

d ̸= d̂, it holds that grt[d] ̸= grt[d̂].

21



1. Generate a key pair of a one-time signature scheme (ovk∗, osk∗).

2. Encrypt the index d as follows:

(a) Compute G∗ = H1(ovk
∗).

(b) Sample s∗ ← χn, e∗1 ← χm, and e∗2 ← χℓ.

(c) Compute c∗1 ← BTs∗ + e∗1 and c∗2 ← G∗Ts∗ + e∗2 + ⌊2/q⌋db.

3. Run t = ω(log n) times the zero-knowledge protocol [26] with the public parameter (A,u) and the

witness x(db). Then, compute a proof Π∗. Specifically, the elements (CMT(1),Ch(1),RSP(1)) where

Ch(1) = 2 is computed as follows:

(a) Sample e(1)
$←− {0, 1}ℓ, p permutations π

(1)
1 , . . . , π

(1)
p

$←− S, and p vectors r
(1)
1 , . . . , r

(1)
p

$←−
Z(2ℓ+1)3m
q randomly where S is the set of all permutations that keep the arrangement of the

blocks. For each 1 ≤ j ≤ p, let r
(1)
j,0 be the first m elements of r

(1)
j .

(b) Set

c
(1)
0 = COM(e(1), {π(1)

j }
p
j=1, A0 · (

∑p
j=1 βj · r(1)j,0) mod q),

c
(1)
1 = COM(e(1), {π(1)

j }
p
j=1, A∗ · (

∑p
j=1 βj · r(1)j ) mod q),

c
(1)
2 = COM({Te(1) ◦ πj(r

(1)
j )}pj=1),

c
(1)
3 = COM({Te(1) ◦ πj(z

∗
j + r

(1)
j )}pj=1).

(c) Set RSP(1) = (e(1), {πj}pj=1, {s
(1)
j }

p
j=1) where s

(1)
j = z∗j + r

(1)
j .

4. Compute a signature sig∗ ← OSig(osk∗, (c∗1, c
∗
2,Π

∗)).

5. Set Σ∗ = (ovk∗, c∗1, c
∗
2,Π

∗, sig∗).

Secondly, we construct the adversary A who breaks the full anonymity of the PK scheme. In full
anonymity games, the adversary is allowed to possess all user signing keys, that is, the adversary knows
gsk[d0] = (x0,0∥x0

1,0∥x1
1,0∥ . . . ∥x0

ℓ,0∥x1
ℓ,0) and gsk[d1] = (x0,1∥x0

1,1∥x1
1,1∥ . . . ∥x0

ℓ,1∥x1
ℓ,1). For the challenge

signature Σ∗, the adversary A operates as follows:

1. Compute w∗ = A0 · (
∑p

j=1 βj · s(1)j,0)−A0 · x0,0 mod q.

2. If c
(1)
0 = COM(e(1), {π(1)

j }
p
j=1,w

∗), output b̃ = 0. Otherwise output b̃ = 1.

Finally, we show that the adversary A break the full anonymity of the PK scheme. In terms of the
vector w∗, it holds that

w∗ = A0 ·
( p∑
j=1

βj · s(1)j,0

)
−A0 · x0,0 mod q

= A0 ·
( p∑
j=1

βj · (z∗j,0 + r
(1)
j,0)

)
−A0 · x0,0 mod q

= A0 ·
p∑

j=1

βj · z∗j,0 +A0 ·
p∑

j=1

βj · r(1)j,0 −A0 · x0,0 mod q

= A0 · x0,b +A0 ·
p∑

j=1

βj · r(1)j,0 −A0 · x0,0 mod q.

If b = 0, it holds that w∗ = A0 ·
∑p

j=1 βj · r(1)j,0 mod q. Therefore, we have c
(1)
0 = COM(e(1), {π(1)

j }
p
j=1,A0 ·

(
∑p

j=1 βj ·r(1)j,0) mod q) = COM(e(1), {π(1)
j }

p
j=1,w

∗), and A outputs b̃ = 0. Thus, b = b̃ holds. On the other

hand, if b = 1, it holds that w∗ = A0 ·
∑p

j=1 βj · r(1)j,0 + A0 · x0,1 −A0 · x0,0 mod q. Since it holds that

grt[d0] = A0 ·x0,0 ̸= A0 ·x0,1 = grt[d1], we get w
∗ ̸= A0 ·

∑p
j=1 βj ·r(1)j,0 mod q. Therefore, from the binding

property of the commitment scheme, we have c
(1)
0 = COM(e(1), {π(1)

j }
p
j=1,A0 · (

∑p
j=1 βj · r(1)j,0) mod q) ̸=

COM(e(1), {π(1)
j }

p
j=1,w

∗). Thus, the adversary outputs b̃ = 1, that is, b = b̃. Hence, the adversary A
breaks the full anonymity of the PK scheme.
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7 Conclusion

In this paper, for the first time we showed that full anonymity can be achieved in the VLR setting. We
proposed three schemes that show a minimum requirement for achieving full anonymity (Scheme 1), a
minimum requirement for achieving backward unlinkability (Scheme 2), and constant-size keys can be
realized in a fully anonymous VLR-GS scheme with backward unlinkability by additionally employing IBE
(Scheme 3). Since our schemes employ general NIZK proof systems, proposing an efficient instantiation,
by, for example, Groth-Sahai proofs [22], is an open problem of this paper.
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