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Abstract. We propose a general framework for non-universal SNARKs. It contains (1) knowledge-
sound and non-black-box any-simulation-extractable (ASE), (2) zero-knowledge and subversion-zero
knowledge SNARKs for the well-known QAP, SAP, QSP, and QSP constraint languages that all by
design have relatively simple security proofs. The knowledge-sound zero-knowledge SNARK is similar to
Groth’s SNARK from EUROCRYPT 2016, except having fewer trapdoors, while the ASE subversion-
zero knowledge SNARK relies on few additional conditions. We prove security in a weaker, more realistic
version of the algebraic group model. We characterize SAP, SSP, and QSP in terms of QAP; this
allows one to use a SNARK for QAP directly for other languages. Our results allow us to construct
a family of SNARKs for different languages and with different security properties following the same
proof template. Some of the new SNARKs are more efficient than prior ones. In other cases, the new
SNARKs cover gaps in the landscape, e.g., there was no previous ASE or Sub-ZK SNARK for SSP or
QSP.

Keywords: NIZK, QAP, QSP, SNARK, SAP, SSP, simulation-extractability, subversion zero-
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1 Introduction

There are many different SNARKs [Gro10,Lip12,Lip13,GGPR13,PHGR13,Gro16] that differ in the target
language and the security objectives. Common target languages correspond to specific quadratic constraint
satisfaction systems, and the choice of language depends on the application. The languages QAP [GGPR13]
and SAP [Gro16,GM17a] are useful when arguing about arithmetic circuits, while QSP [GGPR13,Lip13]
and SSP [DFGK14] are handy when arguing about Boolean circuits.1 While QAP, providing efficient
reductions to arithmetic circuits, is the most useful language in general applications like cryptocurren-
cies [BCG+14,KMS+16], other languages have their applications. In particular, SSP is widely used in appli-
cations where Boolean circuits come naturally like in, say, shuffle arguments, [FLZ16,FLSZ17].

The choice of security objectives depends on the application. Knowledge-soundness is often sufficient, but
simulation-extractability (SE) is needed to get UC-security [Can01]. On the other hand, not having SE can
be beneficial in applications that need malleability, [CKLM12]. Finally, security properties evolve. Both Sub-
ZK (subversion zero-knowledge [BFS16,ABLZ17,Fuc18,ALSZ21]; the argument stays zero-knowledge even if
the CRS is not trusted) and non-black-box SE [GM17a] for SNARKs were defined in 2017, after most of
the mentioned zk-SNARKs were proposed. [ABLZ17,Fuc18,ALSZ21] showed that the most efficient known
SNARK by Groth [Gro16] is Sub-ZK.

This has resulted in an era of SNARK proliferation: there exist knowledge-sound SNARKs for the
mentioned four languages, some of which are Sub-ZK or SE. Groth and Maller [GM17a] proposed a non-
black-box strong any-simulation-extractable (SASE) SNARK that is only slightly less efficient than Groth’s
SNARK [Gro16]. Recall that knowledge-soundness means that a successful prover must know the witness,
and SE means that the knowledge-soundness holds even if the prover had access to the simulation ora-
cle, [Sah99]. Dodis et al. [DHLW10] defined different variants of SE, see Section 2 for more information.
1 Within this paper, we always (though implicitly, without mentioning it) refer to the “strong” versions of these
languages as defined in [GGPR13]. First, such versions are most useful and needed in applications. Second, modern
SNARKs like [Gro16] and the ones discussed in the current paper are for “strong’ variants.’ We omit further
discussions.



Intuitively, in an ASE SNARK, one is allowed to maul an argument to a different argument for the same
statement, while this is not allowed in a SASE SNARK. (Non-)black-box SE means that a (non-)black-box
extractor extracts the witness. Black-box ASE is sufficient to obtain UC security.

However, the Groth-Maller SNARK is for the SAP language [Gro16,GM17a]. Since SAP has an efficient
reduction from arithmetic circuits with squaring gates instead of general multiplication gates, the SNARK
from [GM17a] works with approximately two times larger circuits than SNARKs for the QAP language. While
non-black-box SASE is insufficient to obtain UC security, it is a stronger security notion than knowledge-
soundness. In particular, a much simpler transformation suffices to obtain UC security when one starts with
non-black-box SE SNARKs [Bag19]. Due to the use of SAP, this transformation is twice as costly as the ones
starting from SE SNARKs for QAP. Other known simulation-extractable Sub-ZK SNARKs include [BG18],
which works in the random oracle model, and [ARS20], based on updatable signature schemes.

Recently, [BKSV21] showed that Groth’s SNARK [Gro16] satisfies the weaker non-black-box any-
simulation-property ASE. As argued in [KZM+15,BKSV21], (black-box or non-black-box) ASE is sufficient
in many applications, including Hawk [KMS+16], UC security, and the signature of knowledge compiler
of [GM17a] (and in its applications like in Coda [BMRS20]). The only known SE SNARKs are for QAP and
SAP, and no previous efficient SE or Sub-ZK SNARKs are known for SSP or QSP.

Finally, [ABLZ17,ALSZ21] proved the knowledge-soundness of Groth’s SNARK in the generic group
model (GGM) with hashing. The “with hashing” part means that one allows the adversaries to use (say)
elliptic curve hashing [Ica09] to create random group elements without knowing their discrete logarithms.
More modern knowledge-soundness (and ASE) proofs of SNARKs are given in the algebraic group model
(AGM, [FKL18]). Unfortunately, the AGM proof of Groth’s SNARK in [FKL18] does not allow the adver-
saries to hash. Proving the knowledge-soundness of Groth’s SNARK in the AGM “with hashing” seems to
be still an open problem.

We aim to consolidate SNARK research by investigating how the choice of security properties and target
language influences an argument system’s design. This is important as only a few researchers have in-depth
knowledge of secure SNARK design. It is easy for even well-established research groups to err in such an
endeavor; see, for example, [Par15,CGGN17,Gab19,Fuc19] for related cryptanalysis. The resulting complexity
can be seen when following through the soundness proofs in say [Gro16,GM17a]. Each existing SNARK has
a tailored construction with a tailored security proof in its specific security models, and even verifying all
the security proofs for all mentioned SNARKs is probably well beyond the most talented cryptographer’s
capability.

This brings us to the main goal of this paper:

Construct a SNARK framework for a multitude of languages (e.g., QAP, SAP, QSP, and SSP) and
satisfying a multitude of security objectives (knowledge-soundness vs. ASE, ZK vs. Sub-ZK) that
allows for (1) a (relatively) simple security proof that can be easily modified to cover all the languages
and security objectives, and (2) results in ASE and Sub-ZK SNARKs that are almost as efficient
as the most efficient known knowledge-sound non-Sub-ZK SNARKs. Additionally, (3) prove their
security in a realistic version of AGM “with hashing”.

Our Contributions. We propose a family of 2 · 2 · 4 = 16 SNARKs that contains both knowledge-sound
and ASE, and both ZK and Sub-ZK SNARKs, for all four mentioned languages (QAP, SAP, QSP, SSP).
While the derivation of the first two SNARKs (namely, knowledge-sound no-Sub-ZK and its ASE version) is
complicated, we obtain the other fourteen SNARKs with minor additional work. Thus, we obtain a framework
for efficient random-oracle-less pairing-based SNARKs for both arithmetic and Boolean circuits. Previous
knowledge-sound SNARKs for all four languages were each published in a separate paper, with corresponding
ASE and Sub-ZK versions being proposed later, if at all.

The new knowledge-sound zk-SNARK Sqap for QAP is similar to Groth’s SNARK [Gro16], except it has
only two trapdoors instead of five. We replace 3 trapdoors with a well-chosen power of one trapdoor. After an
even more careful choice of the powers, we also achieve CRS-verifiability [ABLZ17,ALSZ21] and thus Sub-ZK;
otherwise, the Sub-ZK version is precisely the same and thus also as efficient. Unlike Groth, who proposed
his SNARK without explaining how he arrived at the construction, we thoroughly motivate each step of it.
This enables researchers aiming for a different goal to deviate from the construction at the appropriate point.
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Table 1. Efficiency comparison of QAP/SAP/SSP/QSP-based random-oracle-less SNARKs Ψ . m (or m̃) and n (or
ñ) denote the number of wires and gates (or constraints) in the solutions. “X” (“≈”) means that the corresponding
SNARK (its slight modification) is Sub-ZK, with a citation to the Sub-ZK construction if needed. “mι” (“aι”) denotes
scalar multiplication (addition) in group Gι, “p” denotes pairing, and gι denotes the representation length of a Gι
element in bits. In the case of |crs| and P’s computation, we omit constant or m0-dependent addends like +(m0+3)g1.
We omit field operations and membership tests since they are dominated by significantly costlier group operations.

Ψ security |crs| P computation |π| V computation Sub-ZK

QAP-based (arithmetic circuit, with n gates), m̃ = m

[Gro16] KS/ASE [BKSV21] (m+ 2n)g1 + ng2 (m+ 3n)m1 + nm2 2g1 + 1g2 3p + m0m1 X[ABLZ17,Fuc18,ALSZ21]
Sqap § 3 ASE (m+ 2n)g1 + ng2 (m+ 3n)m1 + nm2 2g1 + 1g2 3p + m0m1 X

SAP-based (arithmetic circuit, with ñ squaring gates): u = v, ñ ≈ 2n, m̃ ≈ 2m

[GM17a] SASE (m̃+ 2ñ)g1 + ñg2 (m̃+ 2ñ)m1 + ñm2 2g1 + 1g2 5p + m0m1 ≈ [GM17b]
Ssap § A ASE (m̃+ 2ñ)g1 + ñg2 (m̃+ 2ñ)m1 + ñm2 2g1 + 1g2 3p + m0m1 X

SSP-based (Boolean circuit with n gates): u = v = w, ñ = m+ n

[DFGK14] KS (m+ ñ)g1 + ñg2 2ma1 + ñm1 + ma2 3g1 + 1g2 6p + m0a1 –
Sssp § B ASE (m+ 2ñ)g1 + ñg2 2ma1 + ñm1 + ma2 2g1 + 1g2 3p + m0a1 X

QSP-based (Boolean circuit with n gates): w = 0, ñ ≈ 14n [Lip13]

[Lip13] KS – – – – –
Sqsp § C ASE (m̃+ 2ñ)g1 + ñg2 4m̃a1 + ñm1 + m̃a2 2g1 + 1g2 3p + m0a1 X

For example, in Asiacrypt 2020, Lipmaa and Pavlyk [LP20] constructed a succinct functional commitment
scheme by following some of our derivations. Importantly, we provide a simpler knowledge-soundness proof.

To prove ASE, we observe that due to the structure of the new SNARKs, an ASE adversary can suc-
cessfully use at most one simulation query answer in the forgery attempt. We show that if the adversary
used one query answer, this was necessarily a SASE and not an ASE attack. The ASE of Sqap follows. It
is non-trivial that one-time ASE suffices. Moreover, unexpectedly, all powers of the trapdoor that result in
Sqap being knowledge-sound result in it also being ASE.

We prove knowledge-soundness and ASE in a more realistic version of the AGM. The knowledge-soundness
proof in [Gro16] was given in the generic group model, while [FKL18] provided an AGM proof. How-
ever, [FKL18] considers adversaries that are purely algebraic and in particular do not have a capability
to create random group elements without knowing their discrete logarithms. In our proofs, the adversary has
such a capacity. We consider this proof (and the corresponding realistic version of the AGM) to be another
major contribution of this paper.

Based on an observation about algebraic relations between the languages, we modify Sqap to cover SAP,
QSP, and SSP. Hence, almost automatically, we obtain a family of knowledge-sound (or ASE), and zero-
knowledge (or Sub-ZK) SNARKs for four different languages.

Table 1 compares the efficiency of random-oracle-less SNARKs. It is fair to compare SNARKs for the
same language; a comparison of SNARKs for different languages (for example, QAP vs. SAP) has to account
for the complexity of the reduction from circuits to these languages. Note that [Lip13] described a reduction
from Boolean circuits to QSP and a linear PCP [BCI+13] for QSP but did not describe a SNARK. In all
constructions, most of the prover’s scalar multiplications in Table 1 are multi scalar-multiplications. As seen
from the table, the new ASE SNARK for SAP is more efficient than the (SASE) SNARK for SAP by Groth
and Maller. No previous SE or Sub-ZK SNARKs were known for SSP or QSP, and Groth’s SNARK for QAP
was only proven to be ASE in [BKSV21].
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1.1 Technical Overview

In Section 3, we propose a knowledge-sound zk-SNARK Sqap for QAP. The argument consists of evaluations2
[A(x, y)]1, [B(x, y)]2, [Cs(x, y)]1 of three bivariate polynomials A(X,Y ), B(X,Y ), Cs(X,Y ) at a random point
(x, y). Here, [A(x, y)]1, [B(x, y)]2 commit to the vector of left and right inputs to all gates, while [Cs(x, y)]1
combines a commitment to the vector of all output wires with the rest of the argument. The verifier checks
that a bivariate polynomial V, that depends in a known way on A,B,Cs, evaluates to 0 at the same point.

As in [Gro16], we aim to make [Cs(x, y)]1 to be computable only by the honest prover. The prover has
access to the CRS that contains the evaluation of well-chosen polynomials at (x, y) in both G1 and G2.
We optimize to get an efficient SNARK while not sacrificing (much) in the knowledge-soundness proof’s
simplicity. Sqap is very similar to Groth’s SNARK [Gro16]; however, it uses only two trapdoors instead of
five. This distinction is important: in [Gro16], only two out of five trapdoors are used in simulation; thus,
the other three trapdoors seem not to be needed. In general, it is important to minimize the number of
components to the bare minimum so that the importance of each component is well understood. In Sqap,
we use well-chosen powers of one trapdoor y as substitutes for four out of the five trapdoors of Groth’s
SNARK. (A similar technique to use one trapdoor to align “interesting” monomials together was used, e.g.,
in [GKM+18].)
Knowledge-Soundness Proof And A More Realistic Variant of The AGM. The knowledge-soundness proof is
in the algebraic group model (AGM [FKL18]). In the AGM, one considers algebraic adversaries that always
know a linear relationship between their output and input group elements. As an important difference with
the AGM of [FKL18], we additionally allow the cheating prover to sample random elements of G1 and G2.
Such an extension of the generic group model is well-known, [BFS16,ABLZ17,ALSZ21], but not established
in the case of the AGM. It is also well understood why this extension is needed since otherwise, one can
prove the security of false knowledge assumptions. Really, without this extension, one can prove that if an
adversary on input [1]1 outputs [y]1, it must know y. This assumption does not hold since it is easy to
generate random group elements by using hash-then-increment or elliptic curve hashing.

Fuchsbauer et al. [FKL18] give an adversary A access to a programmable random oracle [Nie02] O. A
can create a random group element by querying O that returns a uniformly random group element. In the
security proof, one allows the reduction to program O by creating random group elements together with their
discrete logarithms. Unfortunately, since the reduction knows the discrete logarithms, also in this model, one
can prove the security of the above false knowledge assumption. We overcome this issue by using a different
oracle simulation strategy by defining two adversaries (one for each trapdoor x and y) and by using two
different oracle programming strategies. This results in the first known knowledge-soundness and ASE proof
of (a version) of Groth’s SNARK [Gro16] in a variant of the AGM with hashing where false knowledge
assumptions like the above cannot be proven. This result is of independent importance.
Choosing Powers of y. The way we choose the powers of y is interesting by itself. In the security proof, A,B,Cs
are chosen maliciously and depend on additional indeterminates. Let Y be an indeterminate corresponding
to y and X∗ be the vector of all indeterminates, except Y , in the knowledge-soundness or ASE proof.
X∗ includes X (the indeterminate corresponding to x), indeterminates created when the adversary samples
random group elements, and (in the case of ASE) indeterminates created by simulator queries. Since the
adversary is algebraic, the polynomials A(X), B(X), and Cs(X) belong to the span of the polynomials in
the CRS, the random oracle answers, and (in the case of the ASE) the simulator answers. We use the AGM
extractor to extract their maliciously chosen coefficients in this span, allowing us to recover the coefficients of
the (Laurent) polynomial V. The verification guarantees that V(x∗, y) = 0, where the trapdoor x∗ instantiates
the indeterminate X∗.

The knowledge-soundness proof considers two cases, when V(X∗, Y ) = 0 and V(X∗, Y ) 6= 0 as a polyno-
mial. Consider the first case. Then, V(X∗, Y ) =

∑
VY i(X∗)Y i for known polynomials VY i(X∗), where i is a

linear combination of the coefficients of a public but initially undetermined integer tuple ∆ = (α, β, γ, δ, η).

2 We use the by now standard additive bracket notation for group elements, by fixing first a bilinear group p =
(G1,G2,GT , ê), and then denoting say [a]ι = aPι ∈ Gι for a fixed generator Pι ∈ Gι. See Section 2 for more
information.

4



We prove that an algebraic prover is honest iff VY i(X∗) = 0 for six critical values i. (In Groth’s security
proof, the number of critical values is significantly larger.) We choose ∆ so that the corresponding six crit-
ical values i are distinct from each other and all other non-critical values j; in this case, we say that ∆
is soundness-friendly. Moreover, we choose ∆ so that the SNARK is relatively efficient. For example, we
require that for all critical i, |i| is as small as possible, and check if there is a way to make some non-critical
values j to coincide (this can shorten the CRS).

Finding a suitable ∆, satisfying all the restrictions, is a moderately complex optimization problem. In
particular, the number of non-zero coefficients of VY i(X∗) (even in the knowledge-soundness proof and
without allowing the adversary to create new indeterminates) is at least 30, depending on the SNARK.
Because of the complexity of the problem, we used an exhaustive computer search to find ∆. Due to the use
of exhaustive search, exponents in the resulting SNARKs (see Eq. (11) for a recommended value of ∆ and
Eq. (12) for the description of the CRS when using this value of ∆) may look somewhat obscure. However,
the soundness-friendliness of the results of the exhaustive search are easy to verify manually (intuitively, this
corresponds to checking that when ∆ is instantiated as in Eq. (11), then the critical six entries in Eq. (10)
are different from each other and all other entries). It is easy to find suboptimal choices of the exponents;
however, such choices will usually not be sufficient for Sub-ZK. We feel that using exhaustive search adds to
the strength of this paper.
Other Results. In Section 4, we prove that Sqap is ASE. We use the same proof strategy as in the case of
knowledge-soundness. By analyzing the coefficients of V, we get that the ASE adversary can use the result
of at most one simulation query in the forgery attempt. If she used none, ASE follows from the knowledge-
soundness. If she used one, then, due to an easily satisfiable additional requirement on the QAP instance, she
was performing a SASE attack that is not an attack in the sense of ASE. For this proof to work, one needs∆
to satisfy additional restrictions on ∆; however, we will show that any soundness-friendly ∆ satisfies these
requirements. Thus, any version of Sqap that is knowledge-sound is ASE, modulo a small, easily satisfiable,
technical restriction.

As we mentioned before, Sqap is very similar to Groth’s SNARK. Groth proved knowledge-soundness
in the case of symmetric pairings, and this implies knowledge-soundness in the case of asymmetric pairing.
Asymmetric pairings are much more efficient than symmetric pairings and thus strongly preferred in practice.
We obtain a simpler direct knowledge-soundness proof by explicitly assuming that the pairing is asymmetric.
One corollary of our knowledge-sound proof is the up to our knowledge novel observation that Groth’s
SNARK has a simple knowledge-soundness proof given that one uses asymmetric pairings. Having simpler
(or alternative) security proofs is important by itself due to the easier verifiability; simpler proofs can also
result in the construction of other protocols. We also use a more realistic variant of the AGM to prove
knowledge-soundness. (The use of this variant of the AGM makes the security proof somewhat more complex
again.) Moreover, we emphasize that the number of critical values i is much larger when one follows Groth’s
original proof.

Our goal was not to duplicate Groth’s SNARK but to construct an efficient SNARK with a simple
knowledge-soundness proof. Our exposition of the derivation of Sqap can also be seen as an intuitive peda-
gogical re-derivation of (a slight variant of) the most efficient existing pairing-based SNARK. Lipmaa and
Pavlyk (ASIACRYPT 2020, [LP20]) used this re-derivation to obtain a different cryptographic primitive (a
succinct functional commitment scheme).

We make Sqap subversion-zero knowledge (Sub-ZK). According to the template
U V W

QAP
SAP = U
SSP = U = U
QSP = 0

Fig. 1. Algebraic rela-
tions between languages.

of [ABLZ17,ALSZ21], we construct a public CRS verification algorithm that checks
that the CRS corresponds to some trapdoor, and then use a knowledge assumption
to recover the trapdoor and simulate the argument. For the CRS-verifiability, we
restrict the choice of ∆ even more. This suffices: all new SNARKs are Sub-ZK
when choosing ∆ carefully. We then use the standard BDH-KE [ABLZ17,ALSZ21]
knowledge assumption to recover the trapdoor and simulate the argument.

In Appendices A to C, we consider the languages SAP [Gro16,GM17a],
SSP [DFGK14], and QSP [GGPR13,Lip13]. We explain their algebraic relation
to QAP, and use it to lift Sqap to the setting of the corresponding languages. In the case of SSP and QSP,
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the algebraic relation is not obvious; we explain it in detail in Appendices B and C. See Fig. 1 for a brief
summary. This summary becomes clear later (e.g., QAP states that Uz ◦ V z = Wz for an input-witness
vector z, while SAP states that Uz ◦ Uz = Wz since U = V ; here, U , V , and W are relation-dependent
matrices that characterize the languages as constraint satisfaction problems), but we decided to have it here
for an early reference.3

Our SNARK for SAP (and SSP) has a slightly different ASE proof compared to the SNARK for QAP.
Previous research handled all four languages separately, and our (simple) relations seem to be novel in the
case of SSP and QSP. We propose the first known either Sub-ZK or ASE SNARKs for SSP and QSP, and
more generally, for Boolean circuits. Importantly, the new Sub-ZK ASE SNARK for SSP is more efficient
than the knowledge-sound non-Sub-ZK SNARK of [DFGK14].
History. This is the full version of [Lip22]. This work supersedes [Lip19]. While the idea of using only two
trapdoors is already present in [Lip19], there are too many changes to enlist.

1.2 Further Work

Applications. We concentrate on the construction of the SNARKs themselves and leave possible applica-
tions for future work. The most evident efficiency benefit is in the case of the SSP, where the verifier computes
only 3 pairings instead of 6 in [DFGK14]. This may result in more efficient shuffle arguments [FLZ16,FLSZ17]
that rely on SNARKs for SSP. The ASE and Sub-ZK properties of the new SNARKs, on the other hand,
have the potential to guarantee the same properties in similar applications. For example, given the new ASE
SNARK for SSP, it may be possible (but we leave it to future work) to construct an ASE shuffle argument.
Universal SNARKs. There is an even more significant SNARK proliferation when one also considers
universal SNARKs. Within this paper, we only study SNARKs with circuit-dependent CRSs. Universal
SNARKs deserve their own several papers, especially since much less is known in that scenario. (E.g.,
efficient SE universal SNARKs have only been proposed in a recent eprint [KZ21].) However, some of the
results of the current paper (like the relation between QAP, SAP, SSP, and QSP) are also interesting in the
context of universal SNARKs. We are not aware, e.g., of any efficient universal SNARKs for SSP; our results
mean that a simple variant of say [GWC19,CHM+20,CFF+21] can be used for SSP.

2 Preliminaries

For a matrix A, Ai denotes its ith row and A(j) denotes its jth column. Let vect(A) be the vectorization
of matrix A ∈ Zn×mp , vect(A) = (A11, A12, . . . , A1m, A21, . . . , Anm). Z(≤d)

p [X] denotes the set of univariate
polynomials of degree ≤ d over Zp. PPT denotes probabilistic polynomial-time; λ ∈ N is the security
parameter. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an arbitrary polynomial function.
We write i ≈λ j if |i− j| ≤ negl(λ). For an algorithm A, im(A) is the image of A, that is, the set of
valid outputs of A. RNDλ(A) denotes the random tape of A (for given λ), and r←$ RNDλ(A) denotes the
uniformly random choice of r from RNDλ(A). By y ← A(x; r) we denote the fact that A, given an input x
and a randomizer r, outputs y.

Assume n is a power of two. Let ω be the nth primitive root of unity modulo p. (ω exists, given that
n | (p−1).) Then, Z(X) :=

∏n
i=1(X−ωi−1) is the unique degree n monic polynomial such that Z(ωi−1) = 0

for all i ∈ [1, n]. For i ∈ [1, n], let `i(X) be the ith Lagrange polynomial, the unique degree n− 1 polynomial
such that `i(ωi−1) = 1 and `i(ω

j−1) = 0 for i 6= j. Given χ ∈ Zp, `i(χ) for i ∈ [1, n] can be computed
efficiently(see, for example, [BCG+13]). Clearly, Lk(X) :=

∑n
i=1 ki`i(X) is the interpolating polynomial of

k at points ωi−1, with Lk(ωi−1) = ki.
Bilinear Groups. Let n ∈ N>0 be an upper bound of the size of a circuit in the SNARKs. A bilinear group
generator Pgen(1λ, n) returns (p,G1,G2,GT , ê), where G1, G2, and GT are three additive cyclic groups of
prime order p, and ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear pairing. Assume
n | (p− 1). As in say [BFS16], we assume that Pgen is deterministic and cannot be subverted. (In practice,
one can use a standardized curve.) We require the bilinear pairing to be Type-3; that is, there is no efficient
3 Our definitions of SSP and QSP are very slight variations of the standard SSP and QSP. They are functionally
equivalent but, to our mind, slightly more elegant. See Appendices B and C for more discussion.
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isomorphism between G1 and G2. We use the standard bracket notation of [EHK+13], writing [c]ι to denote
cPι where Pι is a fixed generator of Gι. Note that Pι is not given in p. We denote ê([a]1, [b]2) by [a]1 • [b]2. We
use freely the bracket notation together with matrix notation, for example, AB = C iff [A]1 • [B]2 = [C]T .
Assumptions. Let T1, T2 be sets of small integers. Pgen is (T1, T2)-PDL (Power Discrete Loga-
rithm, [Sta08,THS+09,JR10,Lip12]) secure if for any non-uniform PPT adversary A,

Pr[p← Pgen(1λ, n), x←$Z∗p : A(p; [xi : i ∈ T1]1, [x
i : i ∈ T2]2) = x] ≈λ 0 .

If T1 = [0, n], then we talk about the (n, T2)-PDL assumption. The case T2 = [0, n] is dual.
The BDH-KE assumption [ABLZ17,ALSZ21] holds for Pgen, if for every PPT adversary A, there exists

a PPT extractor ExtA, such that

Pr

[
p← Pgen(1λ); r ← RNDλ(A); ([y]1, [z]2)← A(p; r);

y∗ ← ExtA(p; r) : y = z ∧ y∗ 6= y

]
= negl(λ) .

BDH-KE is one of the weakest known knowledge assumptions in the asymmetric pairing-based setting.
Algebraic Group Model (AGM). AGM is a new idealized model [FKL18] used to prove the security of
a cryptographic assumption, protocol, or a primitive. In addition, [FKL18] proposed to combine the random
oracle (RO) model with the AGM, allowing the adversary to create random group elements. Essentially, in
the AGM with random oracles, one assumes that each PPT algorithm A is algebraic in the following sense.
Assume A’s input includes [xι]ι and no other elements from the group Gι. Moreover, A has an access to
random oracles Oι, ι ∈ {1, 2}, such that Oι samples and outputs a random element [qιk]ι from Gι. The oracle
access models the ability of A to create random group elements without knowing their discrete logarithms qιk.
However, a reduction can program [Nie02] the random oracle so that it knows qιk. Intuitively, one assumes
that if A outputs group elements [yι]ι, then A knows matrices Nι and ([q1, q2]1), such that yι = Nι(

xι
qι )

while the reduction also knows qι.
Formally, a PPT algorithm A is (Pgen-)algebraic if there exists an efficient extractor ExtA, such that for

any PPT-sampleable distribution family D = (Dp)p∈Pgen(1λ), AdvagmPgen,D,A,ExtA(λ) :=

Pr

p←$ Pgen(1λ);x = ([x1]1, [x2]2)←$Dp; r←$ RNDλ(A);

([y1]1, [y2]2)←$A(O1,O2)(x; r); (N1,N2)← ExtA(x; r) :

(y1 6= N1( x1
q1 ) ∨ y2 6= N2( x2

q2 ))

 = negl(λ) .

Oι, ι ∈ {1, 2} is an oracle that samples and returns a random element from Gι. [qι]ι is the list of all elements
output by Oι. We denote the version of the AGM where the reduction can program Oι, by first sampling a
random element qιk from Zp and then returning qιk, as ROfkl-AGM. The ROfkl-AGM states that, given such
programmable random oracles, AdvagmPgen,D,A,ExtA(λ) = negl(λ) for any PPT-sampleable D and PPT algebraic
A.
SNARKs. Let RG be a relation generator, such that RG(1λ) returns a polynomial-time decidable binary
relation R = {(x,w)} together with auxiliary information p. Here, x is a statement, and w is a witness. We
assume that λ is explicitly deductible from the description of R. Intuitively, (p,R) is the common auxiliary
input to the honest parties, the adversary, and the corresponding extractor. We assume that p← Pgen(1λ, n)
for a well-defined n. (Recall that the choice of p and thus of the groups Gι depends on n and that p is not
subvertible.) Let LR = {x : ∃w such that (x,w) ∈ R} be an NP-language.

A non-interactive zero-knowledge (NIZK) argument system Ψ for RG consists of five PPT algorithms:
First, a probabilistic CRS generator G that, given (p,R) ∈ im(RG(1λ)), outputs (crs, td) where crs is a
CRS and td is a simulation trapdoor. Otherwise, it outputs a special symbol ⊥. For the sake of efficiency
and readability, we divide crs into crsP (the part needed by the prover) and crsV (the part needed by the
verifier). Within this paper, crs explicitly encodes R. We also implicitly assume that crs encodes p. Second,
a probabilistic CRS verifier CV that, given crs, returns either 0 (the CRS is malformed) or 1 (the CRS is
well-formed). CV is only required to exist in the case of Sub-ZK argument systems. Third, a probabilistic
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prover P that, given (crsP,x,w) for (x,w) ∈ R, outputs an argument π. Otherwise, it outputs ⊥. Fourth,
a probabilistic verifier V that, given (crsV,x, π), returns either 0 (reject) or 1 (accept). Fifth, a probabilistic
simulator Sim that, given (crs, td,x), outputs an argument π.

A NIZK argument system must be complete (an honest verifier accepts an honest verifier), knowledge-
sound (if a prover makes an honest verifier accept, then one can extract from the prover a witness w), and
zero-knowledge (there exists a simulator that, knowing the CRS trapdoor but not the witness, can produce
accepting statements with the verifier’s view being indistinguishable from the view when interacting with
an honest prover). A Sub-ZK argument system [ABLZ17,ALSZ21] must additionally satisfy Sub-ZK (zero-
knowledge holds even if the CRS is maliciously generated); for this, one requires CRS-verifiability (CV only
accepts a CRS if there exists a trapdoor td corresponding to it).

We will now give the formal definitions. Let Ψ be a non-interactive argument. Ψ is perfectly complete for
RG, if for all λ, (p,R) ∈ im(RG(1λ)), and (x,w) ∈ R,

Pr [(crs, td)← G(p,R) : V(crsV,x,P(crsP,x,w)) = 1] = 1 .

Ψ is computationally (adaptively) knowledge-sound for RG, if for every PPT A, there exists a PPT extractor
ExtA, such that for all λ,

Pr

[
(p,R)← RG(1λ); (crs, td)← G(p,R); r←$ RNDλ(A);

(x, π)← A(crs; r);w← ExtA(crs; r) : (x,w) 6∈ R ∧ V(crsV,x, π) = 1

]
≈λ 0 .

Here, p can be seen as a common auxiliary input to A and ExtA that is generated by using a benign [BCPR14]
relation generator; we recall that we think of p as being the description of a secure bilinear group. A
knowledge-sound argument system is called an argument of knowledge.

Ψ is statistically composable zero-knowledge for RG, if for all λ, (p,R) ∈ im(RG(1λ)), and computationally
unbounded A, εzk0 ≈λ εzk1 , where

εzkb := Pr

[
(crs, td)← KGen(p,R), (x,w)← A(crs, td);π0 ← P(crsP,x,w);

π1 ← Sim(crs, td,x) : (x,w) ∈ R ∧ A(πb) = 1

]
.

Ψ is perfectly composable Sub-ZK for RG if one requires that εzk0 = εzk1 .
Ψ is statistically composable Sub-ZK for RG, if for any PPT subverter S there exists a PPT ExtS , such

that for all λ, all (p,R) ∈ im(RG(1λ)), and all computationally unbounded A, εzk0 ≈λ εzk1 , where

εzkb := Pr

r←$ RNDλ(S); (crs, zS)← S(p,R; r); td← ExtS(p,R; r);

(x,w)← A(crs, zS);π0 ← P(crsP,x,w);π1 ← Sim(crs, td,x);

(x,w) ∈ R ∧ CV(crs) = 1 ∧ A(πb) = 1

 .

Ψ is perfectly composable Sub-ZK for RG if one requires that εzk0 = εzk1 .
A SNARK (succinct non-interactive argument of knowledge) is a NIZK argument system where the

argument is sublinear in the input size.

Simulation-Extractability (SE). An SE argument system [Sah99,DDO+01] stays knowledge-sound even
if the soundness adversary has access to the simulation oracle. SE is motivated by applications like non-
malleability and UC security.

Dodis et al. [DHLW10] differentiated between several favors of SE. In the case of any-simulation-
extractability (ASE), the simulator can be queried with any (potentially false) statements while in the
case of true-simulation-extractability (TSE), the simulator can only be queried with true statements. The
adversary wins if she can come up with a new argument for a statement she has not queried a simulation
for. In the case of strong any-simulation-extractability (SASE), the adversary wins even if she can come up
with a new argument for a statement she has queried a simulation for. ASE suffices for UC security.
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Main Exp s ase

Ψ,A,ExtA(λ)

Q ← ∅; (p,R)← RG(1λ); (crs, td)← G(p,R);

r ← RNDλ(A); (x, π)← ASim
s asecrs,td

(crs; r);w← ExtA(crs; r);
if V(crsV,x, π) = 1 ∧ (x , π ) 6∈ Q ∧ (x,w) 6∈ R
then return 1; else return 0;fi

Sim s ase

crs,td(xj)

πj ← Sim(crs, td,xj);Q ← Q∪ {(xj , πj )}; return πj ;

Fig. 2. Any-simulation (ASE) and strong any-simulation (SASE) experiments. The boxed part is only present in the
boxed (i.e., SASE) experiment.

Groth and Maller [GM17a] define SE SNARKs, where one requires that for each PPT knowledge-
soundness adversary A with oracle access to the simulator, there exists a non-black-box extractor ExtA
that can extract the witness. [GM17a]’s definition of SE corresponds to non-black-box SASE, [DHLW10]. We
assume implicitly SE means non-black-box SE. [GM17a] proved that the argument of any (non-black-box)
SASE SNARK consists of at least three group elements and that there should be at least two verification
equations. They proposed a SASE SNARK for the SAP (Square Arithmetic Program) language that meets
the lower bounds.

The following definition of the SASE property corresponds to the definition of SE SNARKs in [GM17a,
Definition 2.10]. All definitions are inspired by the corresponding black-box definitions from [DHLW10].

Let Ψ be a SNARK for the relation R. Let x ∈ {ase, sase}. Define AdvxΨ,A,ExtA(λ) := Pr[Expx
Ψ,A,ExtA(λ)],

where the experiment Expx
Ψ,A,ExtA(λ) is depicted in Fig. 2. Then, (i) Ψ is non-black-box any-simulation-

extractable (ASE) if for any PPT A there exists a PPT extractor ExtA, such that AdvaseΨ,A,ExtA(λ) ≈λ 0. (ii) Ψ
is non-black-box strong any-simulation-extractable (SASE) if for any PPT A there exists a PPT extractor
ExtA, such that AdvsaseΨ,A,ExtA(λ) ≈λ 0.

3 Knowledge-Sound SNARK for QAP

Next, we will describe the new knowledge-sound SNARK Sqap. Its construction emphasizes two objectives: (i)
simple soundness proof in the AGM and (ii) efficiency. Sqap is similar to Groth’s SNARK from EUROCRYPT
2016 [Gro16] (shown to be Sub-ZK in [Fuc18]), with two major differences: (1) the use of only two trapdoors
instead of five, and (2) an alternative, much more straightforward, knowledge-soundness proof in the case of
asymmetric pairings. On the other hand, Groth provided a more complex knowledge-soundness proof that
is valid for both asymmetric and symmetric pairings.
QAP. Quadratic Arithmetic Program (QAP) was introduced in [GGPR13] as a language where for an
input x and witness w, (x,w) ∈ R can be verified by using a parallel quadratic check. QAP has an efficient
reduction from the (either Boolean or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for QAP
results in an efficient zk-SNARK for Circuit-SAT.

We consider arithmetic circuits that consist only of fan-in-2 multiplication gates, but either input of each
multiplication gate can be any weighted sum of wire values, [GGPR13]. Let m0 < m be a non-negative
integer. For an arithmetic circuit, let n be the number of multiplication gates, m be the number of wires,
and m0 be the number of public inputs.

Let F = Zp. For the sake of efficiency, we require the existence of the nth primitive root of unity
modulo p, denoted by ω. Let U , V , and W be instance-dependent matrices and let z be a witness. A QAP is
characterized by the constraint Uz◦V z = Wz. For j ∈ [1,m], define uj(X) := LU(j)(X), vj(X) := LV (j)(X),
and wj(X) := LW (j)(X) to be interpolating polynomials of the jth column of the corresponding matrix.
Thus, uj , vj , wj ∈ Z(≤n−1)

p [X]. Let u(X) =
∑
zjuj(X), v(X) =

∑
zjvj(X), and w(X) =

∑
zjwj(X). Then

Uz◦V z = Wz iff Z(X) | u(X)v(X)−w(X) iff u(X)v(X) ≡ w(X) (mod Z(X)) iff there exists a polynomial
h(X) such that u(X)v(X)− w(X) = h(X)Z(X).

9



An QAP instance Iqap is equal to (Zp,m0, {uj , vj , wj}mj=1). This instance defines the following relation:

RIqap =

{
(x,w) : x = (z1, . . . , zm0)> ∧w = (zm0+1, . . . , zm)>∧
u(X)v(X) ≡ w(X) (mod Z(X))

}
(1)

where u(X) =
∑m
j=1 zjuj(X), v(X) =

∑m
j=1 zjvj(X), and w(X) =

∑m
j=1 zjwj(X) as above. That is,

(x,w) ∈ R = RIqap if there exists a (degree ≤ n− 2) polynomial h(X), such that the following key equation
holds:

χ(X) := u(X)v(X)− w(X)− h(X)Z(X) = 0 , (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X), and w(X) are correctly
computed: that is, that (i) the first m0 coefficients zj in u(X) are equal to the public inputs, and (ii) u(X),
v(X), and w(X) are all computed by using the same coefficients zj for j ≤ m.

SNARK Derivation. Let u(X), v(X), w(X), and χ(X) be as in Section 2. Recall from Eq. (2) that the key
equation of QAP states that the prover is honest iff χ(X) = 0, that is, h(X) := (u(X)v(X)−w(X))/Z(X) is a
polynomial. We will use bivariate polynomials like A(X,Y ). The indeterminate X is related to the definition
of QAP. The indeterminate Y groups together correct X-polynomials in the security proof; such a grouping
approach was also used in say [GKM+18]. The argument in the new template consists of three elements,
π = ([a, cs]1, [b]2), where a = A(x, y), b = B(x, y), and cs = Cs(x, y) for well-defined polynomials A(X,Y ),
B(X,Y ), and Cs(X,Y ). Intuitively, [a]1 is a succinct commitment to u(X), [b]2 is a succinct commitment
to v(X), and [cs]1 is the “actual” argument that at the same time commits to w(X).

As in all most efficient random-oracle-less zk-SNARKs [GGPR13,PHGR13,Lip13,Gro16], we aim to make
[cs]1 to be computable only by the honest prover. The prover has access to the CRS that contains the
evaluation of well-chosen polynomials at (x, y) in both G1 and G2. The knowledge-soundness proof is in the
AGM. There, we show that if the verification polynomial V(X,Y ) = 0, and A(X,Y ), B(X,Y ), and Cs(X,Y )
are in the span of the polynomials in the CRS, then it must hold that χ(X) = 0 and thus the prover is
honest.

More precisely, let ∆ := (α, β, γ, δ, η) be a tuple of small integers chosen later. We will give a complete
derivation of the new SNARK. We will also derive the conditions ∆ has to satisfy for the SNARK to be
knowledge-sound; in Sections 4 and 5, we add more conditions to achieve both CRS-verifiability (and thus
Sub-ZK) and ASE. We find it instructional to go first through the process with unfixed ∆. In Eq. (11), we
propose a setting of ∆ that is sufficient to obtain all knowledge-soundness, ASE, and CRS-verifiability.

For randomizers ra and rb needed to make the commitment hiding, define

A(X,Y ) := raY
α + u(X)Y β , B(X,Y ) := rbY

α + v(X)Y β (3)

to be “commitments” to u(X) and v(X). We use different powers of Y to separate the randomness from the
committed values. Define also

C(X,Y ) :=(A(X,Y ) + Y γ)(B(X,Y ) + Y δ)− Y γ+δ

=u(X)Y β+δ + v(X)Y β+γ + u(X)v(X)Y 2β +R(X,Y )Y α

=P (X,Y ) + (u(X)v(X)− w(X))Y 2β +R(X,Y )Y α

(4)

where P (X,Y ) := u(X)Y β+δ+v(X)Y β+γ+w(X)Y 2β and R(X,Y ) := rb(A(X,Y )+Y γ)+ra(v(X)Y β+Y δ).
The inclusion of Y γ and Y δ in the definition of C(X,Y ) serves three goals. First, it introduces the addend

P (X,Y ) =
∑m
j=1 zjPj(X,Y ), where

Pj(X,Y ) := uj(X)Y β+δ + vj(X)Y β+γ + wj(X)Y 2β ; (5)

this makes it easier to verify that P uses the same coefficients zj when computing [a]1, [b]2, and [cs]1.
Second, it makes it possible to verify that P uses the correct public input. Third, the coefficient of Y 2β ,

10



G(p,R): Sample x, y←$Z∗p such that xn 6= 1, let td← (x, y). Let

crsP ←

(
[{Pj(x, y)y−α}mj=m0+1, y

α, {xjyβ}n−1j=0 , {x
iZ(x)y2β−α}n−2j=0 , y

γ , yδ]1,

[yα, {xjyβ}n−1j=0 ]2

)
;

crsV ←
(
[{Pj(x, y)y−η}m0

j=1, y
γ ]1, [y

α, yδ, yη]2, [y
γ+δ]T

)
;

crs← (crsP, crsV); return (crs, td);

P(crsP, (zj)
m0
j=1, (zj)

m
j=m0+1):

u(X)←
∑m
j=1 zjuj(X); v(X)←

∑m
j=1 zjvj(X); w(X)←

∑m
j=1 zjwj(X);

h(X)← (u(X)v(X)− w(X))/Z(X);
(ra, rb)←$Z2

p; [a]1 ← ra[yα]1 + [u(x)yβ ]1; [b]2 ← rb[y
α]2 + [v(x)yβ ]2;

[cs]1 ←
∑m
j=m0+1 zj [Pj(x, y)y−α]1 + [h(x)Z(x)y2β−α]1 + rb ([a]1 + [yγ ]1) + ra([yδ]1 + [v(x)yβ ]1);

return π ← ([a, cs]1, [b]2);

V(crsV, (zj)
m0
j=1, π = ([a, cs]1, [b]2)):

[cp]1 ←
∑m0

j=1 zj [Pj(x, y)y−η]1; Check that
[cp]1 • [yη]2 + [cs]1 • [yα]2 = [a + yγ ]1 • [b + yδ]2 − [yγ+δ]T . (7)

Sim(crs, td = (x, y),x = (zj)
m0
j=1): // x is not used by the simulator

[cp]1 ←
∑m0

j=1 zj [Pj(x, y)y−η]1; d←$Zp; e←$Zp; [a]1 ← d[1]1; [b]2 ← e[1]2;
[cs]1 ← y−α((de+ yδd+ yγe)[1]1 − yη[cp]1);
return π ← ([a, cs]1, [b]2);

Fig. 3. The new SNARK Sqap. Moreover, Sqsp is exactly like Sqap, except wj(X) = 0.

u(X)v(X) − w(X), divides by Z(X) iff the prover is honest. That is, it is h(X)Z(X) for some polynomial
h(X) iff the prover is honest and thus x ∈ LIqap .

On top of χ(X) = 0, it must be possible to check that the public input (zj)
m0
j=1 is correct. To this

end, we define polynomials Cs(X,Y ) and Cp(X,Y ), s.t. C(X,Y ) = Cp(X,Y )Y η + Cs(X,Y )Y α. Here,
[cp]1 = [Cp(x, y)]1 is recomputed by the verifier and thus Cp(X,Y ) must not depend on zj for j > m0

(i.e., on the secret information). To minimize the verifier’s computation, Cp(X,Y ) has only m0 addends.
Cs depends both on public and secret inputs, and only an honest prover should be able to compute
[cs]1 = [Cs(x, y)]1. Thus, we define

Cp(X,Y ) :=
∑m0
j=1 zjPj(X,Y )Y −η

Cs(X,Y ) :=
∑m
j=m0+1 zjPj(X,Y )Y −α + (u(X)v(X)− w(X))Y 2β−α +R(X,Y ) .

(6)

Here, we use the factors Y η and Y α to separate the public input and the witness in the security proof. For
efficiency reasons, we use Y α, instead of a new power of Y : now Cs(X,Y ) has an addend rbA(X,Y ) that
reuses the value A(X,Y ).

As mentioned before, the SNARK argument is π = ([a, cs]1, [b]2). The verifier recomputes [cp]1 ←
[Cp(x, y)]1 and [C(x, y)]T ← [cp]1 • [yη]2 + [cs]1 • [yα]2. Then, the verifier checks that C(x, y) is computed
correctly by checking that C(x, y) = (A(x, y) + yγ)(B(x, y) + yδ)− yγ+δ.

We are now ready to describe the SNARK Sqap, see Fig. 3. The CRS consists of elements needed by the
honest prover, the honest verifier, and the simulator. We will explain the simulator in the proof of Theorem 1.
The CRS has two trapdoors (x and y), but the simulator uses only one of them (y). ([ABLZ17,ALSZ21]
formalized the difference by defining two different types of trapdoors, CRS trapdoors tdcrs and simulation
trapdoors tdsim. In Sqap, tdcrs = (x, y) and tdsim = y.)

Security Intuition. We prove knowledge-soundness in the AGM with random oracles. Recall that an
algebraic adversary can use the oracle Oι, ι ∈ {1, 2}, to create new random group elements [q1i]ι. Let Qι be
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the vector of corresponding indeterminates in Gι. Let X = (X,Q1,Q2, Y ) (resp., x = (x, q1, q2, y)) be the
tuple of all indeterminates (resp., corresponding random integers).

Write the CRS in Fig. 3 as crs = (crs1, crs2), where crsι = [(f(x, y))f∈Γι ]ι for a public set Γι of
polynomials. For example, Γ2 = {Y α, Y δ, Y η} ∪ {XjY β}n−1j=0 . (As an optimization, the CRS of Sqap also
includes [yγ+δ]T , but it can be recomputed from the available elements in G1 and G2.) Since we work
in the AGM, the malicious prover is algebraic and thus we can extract matrices N1 and N2, such that
( a
cs ) = N1( crs1

q1 ) and b = N2( crs2
q2 ). This means, that we can write a = A†(x), b = B†(x), and cs = C†s(x),

where A†(X), B†(X), and C†s(X) are maliciously computed polynomials with known coefficients. We can
recover all coefficients of A†(X), B†(X), and C†s(X) from N1 and N2, as follows:

A†(X) :=
∑m0

j=1 a
∗
jPj(X,Y )Y −η +

∑m
j=m0+1 a

∗
jPj(X,Y )Y −α + raY

α+

ua(X)Y β + ha(X)Z(X)Y 2β−α + aγY
γ + aδY

δ +
∑
k qakQ1k ,

C†s(X) :=
∑m0

j=1 c
∗
jPj(X,Y )Y −η +

∑m
j=m0+1 c

∗
jPj(X,Y )Y −α + rcY

α+

uc(X)Y β + hc(X)Z(X)Y 2β−α + cγY
γ + cδY

δ +
∑
k qckQ1k ,

B†(X) :=rbY
α + vb(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k ,

(8)

where, say a∗j ∈ Zp, ua(X) ∈ Z(≤n−1)
p [X], and ha(X) ∈ Z(≤n−2)

p [X].
The verification equation Eq. (7) guarantees V(x) = 0, where

V(X) := (A†(X) + Y γ)(B†(X) + Y δ)− Y γ+δ − Cp(X,Y )Y η − C†s(X)Y α . (9)

Note that Cp is honestly computed. Since we know all coefficients of polynomials like A†(X), we also know
all coefficients of V(X).
On the Use of AGM. In the knowledge-soundness proof, we assume that the knowledge-soundness adversary
A is algebraic and then break the PDL assumption. More precisely, with use the AGM with random oracles.
However, we note that ROfkl-AGM is not realistic since it allows to prove the security of false knowledge
assumptions. 4 Really, consider the assumption that any PPT adversary A, that on input [1]1 generates
[x]1, must know x. This assumption is false in the settings where A has access to an efficient method (e.g.,
hash-and-increment or elliptic curve hashing, [Ica09]) of creating random group elements without knowing
their discrete logarithms. However, in the ROfkl-AGM, one can extract an integer vector N and group
element vector [q]1, such that [x]1 = N>

[
1
q

]
1

= N1[1]1 +
∑
i≥1N1+i[qi]1. Moreover, the reduction can

program the random oracle by first creating the discrete logarithms qk of each coordinate of [q]1. Then,
[x]1 = (N1 +

∑
i≥1N1+i)[1]1 and thus the reduction can output its discrete logarithm x← N1 +

∑
i≥1N1+i.

One has exactly the same issue when using AGM without random oracles (in this case, q has length 0).
The problem is that the reduction knows q and can thus compute x. The knowledge of q should be

impossible if A has created [qk]1 by using elliptic curve hashing. We modify the AGM with random oracles so
that one can still prove the security of (thought to be) secure knowledge assumptions but not of assumptions
of the above type. The first idea is to restrict the way the reduction is allowed to program the random
oracle: given that the input of the reduction (who aims to break the PDL assumption) is xA = (p; [xi :
i ∈ T1]1, [x

i : i ∈ T2]2), we require that the reduction programs the random oracle Oι by creating random
integers s, t←$Zp and then outputting s[x]ι + t. Such “linear programming” was already used in [FKL18]
but in a different context. For example, it was used to implicitly create other CRS trapdoors from xA and in
one case (the security proof of the RO-model BLS signature) also to program the random oracle. However,
our usage of this strategy is in a novel context and for a novel goal.

We modify the strategy of AGM with random oracles of [FKL18] even further. When using the described
“linear programming” strategy to construct a PDL adversary B that obtains input, depending on one trapdoor
(say, x), and then uses this to create a multivariate crs for the knowledge-soundness adversary A. For the
reduction to be successful, B creates other trapdoors (notably, including qιk) implicitly as linear functions of

4 This is probably one reason why [FKL18] uses AGM with random oracles in the case where the analyzed protocol
itself uses random oracles. [FKL18] proves the knowledge-soundness of Groth’s SNARK in the AGM without
random oracles.
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x. E.g., B sets [y]1 ← sy[x]1 + ty[1]1, for random sy and ty, and similarly [yi]1 ← [(syx+ ty)i]1; this assums
that [1, x, . . . , xi]1 are given in the CRS. In the security proof, this means that one can write V as a univariate
(Laurent) polynomial Vx(X) = V(X) and then use a polynomial factorization algorithm to compute x in
the case V(X) 6= 0 but V(x) = 0.

This strategy has some undesirable properties. First, for every monomial [xiyj ]ι in the CRS, we need
to give [xi+j ]ι as an input to the PDL adversary. Since max i,max j < max(i + j) and (n + 1, n′)-PDL is
stronger than (n, n′)-PDL in the AGM [BFL20], one uses a stronger PDL assumption. Second, this strategy
is challenging to implement when, as in our case, the CRS depends on the negative powers of some trapdoors.
Really, given [1/xi]1 for various i-s, it is presumably hard to compute [1/(sx+ t)j ]1 for j > 1 and random s
and t; due to this reason, the “linear programming” strategy cannot be used to prove the knowledge-soundness
of Sqap (or Groth’s SNARK since it also involves negative powers of trapdoors).5 Finally, the degree of Vx is
related to the total degree of V.

We use a different strategy. We define two different adversaries, one aiming to compute x (given a PDL
input that depends on x) and another aiming to compute y (given a PDL input that depends on y). Both
adversaries generate the second trapdoor randomly. The reduction programs the oracles differently, by using
the “linear programming” strategy in one case and the ROfkl strategy in another case. (This is detailed in
Fig. 4.) As a direct benefit, inside the reduction, we deal with polynomials of smaller degrees. Moreover,
instead of giving [xi+j ]ι to the adversary, we give [xi]ι as an input to one adversary and [yj ]ι to another
adversary. Hence, we can potentially rely on a weaker PDL assumption. Finally, since the second adversary
(By in Fig. 4) uses the ROfkl strategy, it is easy to handle CRS elements of type [y−1]1 since one chooses y
randomly. On the other hand, since the first adversary uses the “linear programming” strategy, one cannot
prove the security of the false knowledge assumption described above.

On the Choice of Exponents. Another complicated part of the knowledge-soundness proof is the analysis of
what happens if V(X) 6= 0 as a Laurent polynomial, but the verification succeeds, that is, V(x) = 0. Let
X∗ = (X,Q1,Q2) and x∗ = (x, q1, q2). Writing V(X) =

∑
i VY i(X∗)Y i for known Laurent polynomials

VY i(X∗), we get VY i(X∗) = 0 for each i. There are 29 non-trivial coefficients VY i(X∗), for i ∈{
2α, 2β , α+ β, 3β − α, α+ γ, β + γ ,−α+ 2β + γ, 2δ , α+ δ, β + δ ,

− α+ 2β + δ, γ + δ ,−α+ β + γ + δ,−α+ β + 2δ, α+ 2β − η, 3β − η,
α+ β + γ − η, 2β + γ − η, α+ β + δ − η, 2β + δ − η, β + γ + δ − η, β + 2δ − η,
α+ η, β + η,−α+ 2β + η, γ + η ,−α+ β + γ + η, δ + η,−α+ β + δ + η

}
.

(10)

It is possible but very tedious to show that from VY i(X∗) = 0 for each twenty nine i-s, we get that χ(X) = 0
and thus, the prover is honest. To simplify the knowledge-soundness proof, we constructed Sqap so that there
exists a small set Crit of six elements, such that χ(X) = 0 follows from VY i(X∗) = 0 for Y i ∈ Crit.

For this idea to work, we need to restrict the choice of ∆: namely, ∆ has to be such that the exponents
in Crit are different from each other and all other exponents of Y in V(X). More precisely, define Coeff :=
{Y i : VY i(X∗) 6= 0},

Crit := {Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ} ,

and let Crit := Coeff \ Crit be the “symbolic” complement of Crit; that is, Y j ∈ Crit if j is symbolically not
the same as one of the exponents in Crit, so |Coeff| = 29 and |Crit| = 29 − 6 = 23. We highlighted the 6
critical coefficients in Eq. (10), not highlighted coefficients correspond to coefficients in Crit.

We say that ∆ is soundness-friendly if Crit consists of mutually different powers of Y (|Crit| = 6) and
Crit∩Crit = ∅. We will give a concrete soundness-friendly suggestion for∆ in Eq. (11). We depict the critical
coefficients VY i(X∗), Y i ∈ Crit, in Table 2. (The last rows in Table 2 are only relevant for the ASE proof

5 In the case of the original Groth’s SNARK, this holds true since there are two different trapdoors that are given in
negative power in the CRS. One can solve this issue by modifying Groth’s SNARK: for example, one can multiply
all its CRS elements with a positive power of such trapdoors (but then one has to be carefully check that Sub-ZK
still holds); [FKL18] solved this issue by having an additional game inside the knowledge-soundness proof that
modified the CRS correspondingly.
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Table 2. Sqap: the critical coefficients in the knowledge-soundness proof (up, left), addends to the same coefficients
in the ASE proof (up, right), and coefficients that only occur in the ASE proof (bottom). Here, z̃j = zj − bηa∗j for
j ≤ m0, z̃j = c∗j − rba∗j for j > m0, u(X) =

∑m
j=1 z̃juj(X), v(X) =

∑m
j=1 z̃jvj(X), w(X) =

∑m
j=1 z̃jwj(X), and

h(X) = hc(X)− rbha(X).

Y i · · · VY i···(X∗) (KS and ASE) V̂Y i1 ···(X∗) (ASE only)

Y γ+δ (aγ + 1)(bδ + 1)− 1
Y γ+η (aγ + 1)bη
Y 2δ (bδ + 1)aδ
Y β+δ (bδ + 1)ua(X) + aδvb(X)− u(X)

∑
k (sc2k − rbsa2k)

∑
j σkjuj(X)

Y β+γ (aγ + 1)vb(X)− v(X)
∑
k (sc2k − rbsa2k)

∑
j σkjvj(X)

Y 2β ua(X)vb(X)− w(X)− h(X)Z(X)
∑
k (sc2k − rbsa2k)

∑
j σkjwj(X)

Used only in the ASE proof

Y −α+2δDk (bδ + 1)sa2k
Y γEk rbsa2k + (aγ + 1)sbk − sc2k
DkEk rbsa2k + sa1ksbk − sc2k
Y δDk rbsa2k + (bδ + 1)sa1k − sc2k
Used only in the case (ii) in the ASE proof, if sa1k = aγ + 1 and sc2k = (aγ + 1)sbk

Dk1Ek2 , k1 6= k2 sa1k1sbk2
Y βEk ua(X)sbk

in Section 4.) In the knowledge-soundness proof of Theorem 1, we show that if VY i(X∗) = 0 for Y i ∈ Crit,
then χ(X) = 0 and thus the prover is honest.

3.1 Security Theorem

Theorem 1. Let Iqap = (Zp,m0, {uj , vj , wj}mj=1) be a QAP instance. Let Sqap be the SNARK in Fig. 3. Let
T xι be the minimal set of exponents i such that the CRS of Sqap in Fig. 3 can be computed by an algebraic
adversary given [xi : i ∈ T x1 ]1, [x

i : i ∈ T x2 ]2 and y. We define T yι dually.
(1) Assume ∆ is soundness-friendly. Then, Sqap is knowledge-sound in the AGM under the (T x1 , T x2 )-PDL
and the (T y1 , T

y
2 )-PDL assumptions.

(2) Sqap is perfectly zero-knowledge.

Here, T x1 = [0, 2n − 2], T x2 = [0, n − 1], T y1 = {β − α + δ, β − α + γ, 2β − α, α, β, 2β − α, γ, δ, β − η +
δ, β − η + γ, 2β − η}, and T y2 = {α, β, δ, η}. This can be contrasted to [FKL18] that provided an AGM
knowledge-soundness proof under the stronger ([1, 2n− 1], [1, 2n− 1])-PDL assumption.

We emphasize that the following knowledge-soundness proof depends minimally on the concrete SNARK:
the only intrinsically Sqap-dependent part is the analysis of the abort probability. The rest of the proof can
essentially be copied to the knowledge-soundness (and ASE ) proofs of all following SNARKs.

Proof. (1: knowledge-soundness) Let A be an algebraic knowledge-soundness adversary. Assume that
A(O1,O2)(crs; rA) outputs (x, π), such that V accepts with a non-negligible probability εA. Let crs =
(crs1, crs2), with crsι = [{f(x)}f∈Γι ]ι, as before. Since A is algebraic and the distribution Dp of crs
is PPT-sampleable, there exists an extractor ExtA, such that with probability εA − εExt, where εExt =
AdvagmPgen,D,A,ExtA(λ) = negl(λ), ExtA(crs; rA) succeeds.

We construct two different PDL adversaries, Bx and By, see Fig. 4. Intuitively, the main difference between
them is that they use the knowledge-soundness adversary A, whose input depends on either x or y, to break
PDL with respect to x or y, correspondingly.
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By(p,R,xy) Bx(p,R,xx) // xz = ([zk : k ∈ T z1 ]1, [z
k : k ∈ T z2 ]2)

q1 ← ∅; q2 ← ∅; ξ1 ← 0; ξ2 ← 0;

x←$Z∗p y←$Z∗p ;Create crs from (p,R, xy, x xx, y );

rA ←$RNDλ(A); ([a, cs]1, [b]2)← A(O1,O2)(p,R; crs, rA);
(N1,N2)← ExtA(crs; rA);
if ExtA does not succeed then abort fi ; // Abort probability: εExt
Compute the coefficients of V(X∗, Y ) from Nι;
(∗)if V(X∗, Y ) = 0 then abort fi ; // Abort prob.: 0
Let bad be the event V(x∗, Y ) = 0;

if bad then abort fi ;
// Now, V(x∗, Y ) 6= 0

{yj} ← roots(V(x∗, Y ), Y );

y ← yj s.t. [yδj ]1 = [yδ]1;
return y;

if bad then abort fi ;
// Now, V(x∗, Y ) = 0

Write V(X∗, Y ) =
∑
Vi(X∗)Y i;

Let i be s.t. Vi(X∗) 6= 0 but Vi(x∗) 6= 0;
{xj} ← roots(Vi(X∗), X);
return x← xj s.t. [xj ]1 = [x]1;

Oι // ι ∈ {1, 2}

ξι ← ξι + 1; qιξι ←$Zp ; sιξι , tιξι ←$Zp; [qιξι ]ι ← sιξι [x]ι + tιξι [1]1 ; return [qιξι ]ι;

Fig. 4. The adversarjes Bz(p,R,xy), z ∈ {x, y}, and how they emulate Oι to A in the proof of Theorem 1. The parts
where the two adversaries differ are boxed. Full-boxed entries are only in By and its emulation, and dash-boxed
entries are only in Bx and its emulation. E.g., By samples a random x and By samples a random y.

Let z ∈ {x, y} and Z ∈ {X,Y }, correspondingly. Bz obtains an input xz = ([zk : k ∈ T z1 ]1, [z
k : k ∈ T z2 ]2).

Intuitively, Bz reduces the actions of A to a univariate case by sampling the second trapdoor (y or x)
uniformly at random. The verification equation states that V(x∗, y) = 0, where V(X∗, Y ) is a known Laurent
polynomial due to the use of the AGM. The adversary aborts if V(X∗, Y ) = 0 as a Laurent polynomial. The
most complicated part of the proof is to show that if A is successful, then V(X∗, Y ) 6= 0 and thus the abort
on this step is never executed. (For this, we need to analyze the six critical coefficients of V, and we will do
it at the end of the proof.)

Otherwise, we choose a polynomial f(Z), such that f(Z) 6= 0 but f(z) = 0. Note that By samples the
oracle answers qιk uniformly at random, while Bx sets implicitly qιk ← sιkx+ tιk. (Differently from [FKL18],
we only use this technique in the case of Bx.) Thus, Qι = sιX + tι. If V(X∗, Y ) 6= 0 but V(x∗, Y ) = 0, then
V ′(X,Y ) := V(X, s1X + t1, s2X + t2, Y ) satisfies V ′(x, Y ) = 0. We set f(X) to be equal to some non-zero
coefficient V ′i(X) 6= 0 of V ′(X,Y ) =

∑
V ′i(X)Y i.

Bz finds all the roots of f(Z) and then checks which of the roots is equal to z by using information given
in her input. For this, we define event bad = 1 if V(x∗, Y ) = 0 as a Laurent polynomial, where x is either
the value imminent in the input of Bx or sampled by By. By aborts if bad = 1 and otherwise finds y. Bx
aborts if bad = 0 and otherwise finds x. Clearly,

Pr[A succeeds] ≤Pr[ExtA failed] + Pr[ExtA succeeds|bad] + Pr[ExtA succeeds|bad]

≤Pr[ExtA failed] + Pr[Bx succeeds|bad] + Pr[By succeeds|bad] .

Analysis of the abort probability in step (*). Both Bx and By abort if V(X∗, Y ) = 0 as a Laurent polynomial.
Assume now that V(X) = 0, thus VY i(X∗) = 0 for Y i ∈ Crit. We must show that (a) the critical coefficients
are as in Table 2 and (b) from “VY i(X∗) = 0 for Y i ∈ Crit” it follows that χ(X) = 0.

One can derive a by inspection (we verified it by using computer algebra), assuming that Crit satisfies the
theorem conditions. For example, the coefficient of Y γ+δ in V(X) is (aγ + 1)(bδ + 1)− 1 since the coefficient
of Y γ+δ in (A†(X) + Y γ)(B†(X) + Y δ) is (aγ + 1)(bδ + 1). Other coefficients can be checked similarly.

Now, b follows. Really, since VY γ+δ(X∗) = bδ+aγ(bδ+1) = 0, we get aγ = −bδ/(bδ+1). Thus, aγ , bδ 6= −1
and (aγ + 1)(bδ + 1) = 1. Since VY γ+η (X∗) = (aγ + 1)bη = 0 and aγ 6= −1, we get bη = 0. Thus, z̃j =
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Table 3. Soundness-friendly values of ∆ with each parameter having absolute value ≤ 7. “X” in the last column
means that this choice of ∆ results in a Sub-ZK SNARK

α β γ δ η Sub-ZK

−1 0 −7 3 −2
0 −1 6 −4 1
0 −1 7 −4 1
0 −1 7 −5 1
0 −2 −3 7 2 X

α β γ δ η Sub-ZK

0 −2 6 7 2 X
0 −3 5 7 1
0 1 −6 4 −1
0 1 −7 4 −1
0 1 −7 5 −1

α β γ δ η Sub-ZK

0 2 −6 −7 −2 X
0 2 3 −7 −2 X
0 3 −5 −7 −1 X
1 0 7 −3 2

zj−bηa∗j = zj for j ≤ m0. Since VY 2δ(X∗) = (bδ+1)aδ = 0 and bδ 6= −1, we get aδ = 0. From the remaining
coefficients, we get (bδ + 1)ua(X) = u(X), (aγ + 1)vb(X) = v(X), and u(X)v(X) − w(X) = Z(X)h(X).
Thus, (x,w) ∈ RIqap .

(2: zero-knowledge) To see that V accepts, note that (a + yγ)(b + yδ) − csy
α − cpy

η − yγ+δ = de +
dyδ + eyγ − (de+ dyδ + eyγ − cpy

η)− cpy
η = 0. Sim’s output comes from the correct distribution since a and

b are individually uniform in Zp, and c is chosen so that V accepts. ut

Efficiency. Compared to [Gro16], see Table 1, Sqap has fewer trapdoors but otherwise the same complexity.
For example, crsP has (m−m0)+1+n+(n−1)+1 = m+2n−m0 +1 elements from G1 and n+2 elements
from G2. Moreover, crsV has m0 + 1 elements from G1, 3 elements from G2, and one element from GT . Since
crsP and crsV have one common element in G1 then |crs| = (m+ 2n+ 2)g1 + (n+ 4)g2 + gT . (Recall that gι
denotes the representation length of an element of Gι.) Clearly, [a]1 can be computed from [yα]1 and [xiyβ ]1
by using n+ 1 scalar multiplications. It takes ≈ m+ 2n additional scalar multiplications to compute [c]1.
A Soundness-Friendly Choice of ∆. Recall that we need to find values for ∆ = (α, . . .), such that
Crit∩Crit = ∅ and |Crit| = 6. We require that both sets Γ1 and Γ2 contain a non-zero monomial corresponding
to Y 0 = 1 (then we can publish [1]1 and [1]2) and that the values i, for which i ∈ T y1 ∪ T

y
2 , have as

small absolute values as possible. The latter makes the PDL assumption somewhat more reasonable and
additionally enables us to construct a CRS verification algorithm and thus prove Sub-ZK [ABLZ17,ALSZ21]
in Section 5. We are also interested in minimizing the CRS length.

Since there are many coefficients to take into account, we have a moderately hard optimization problem.
We used a computer search to find all possible values for α, β, . . . under the restriction that each has an
absolute value at most 7. See Table 3 for the full list of found tuples ∆. Note that for each ∆ = (α, β, . . .),
this table contains also −∆ = (−α,−β, . . .).

We recommend to use the following setting:

α = 0, β = −2, γ = −3, δ = 7, η = 2. (11)

As we will see in Sections 4 and 5, this is one of the settings that allow obtaining both ASE and Sub-ZK
security. Assuming the setting of Eq. (11), Crit = {Y −4, Y −5, Y 5, Y 4, Y −1, Y 14} and

crsP =

(
[{uj(x)y5 + vj(x)y

−5 + wj(x)y
−4}mj=m0+1, y

0, {xjy−2}n−1
j=0 ]1,

[{xiZ(x)y−4}n−2
j=0 , y

−3, y7]1, [y
0, {xjy−2}n−1

j=0 ]2

)
,

crsV =
(
[{uj(x)y3 + vj(x)y

−7 + wj(x)y
−6}m0

j=1, y
−3]1, [y

0, y7, y2]2, [y
4]T
)
.

(12)

In addition, our computer search tries to minimize the CRS length, but none of the choices of ∆ in Table 3
results in a shorter CRS.
On 2-Phase Updatability. Each of Y α, Y β , . . . can be changed to an independent indeterminant,
Yα, Yβ , . . ., without invalidating the knowledge-soundness (or ASE) proof. This offers us the flexibility of
choosing the number of trapdoors. In particular, Kohlweiss et al. proved recently [KMSV21] that Groth’s
SNARK [Gro16] is two-phase updatable. Similarly, Sqap is two-phase updatable, when one defines three trap-
doors, x, y, z, and uses well-chosen powers of z instead of yα and yη throughout the construction of Sqap.
Then, one can update x and y in the first and z in the second phase. We will omit further discussion.
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4 Any-Simulation Extractability of Sqap

Next, we prove that Sqap is ASE. The ASE proof is similar to the knowledge-soundness proof Theorem 1.
The main difference is the handling of the case when V(X) = 0 as a Laurent polynomial. We use some
monomials of V(X) to simplify the formulas and then arrive at a crossroad: in one case, the adversary did
not use simulation query results, and thus we are back to the knowledge-soundness proof. In the second case,
the adversary used some of the query results; then, we use specific coefficients of V(X) to argue that she
used the result of precisely one query. After that, we show that the adversary used the same input to the
simulator in this query as in the forgery attempt. (This result relies on an additional assumption that each
uj(X), for j ≤ m0, is linearly independent of all other ui(X), i ≤ m. This assumption can be easily satisfied
by adding to the QAP m0 dummy constraints uj ·1 = uj , similarly to [GGPR13].) Hence, this is not an ASE
but a SASE attack, and thus not valid in our context. Thus, Sqap is ASE.

In the ASE proof, the algebraic adversary A also sees the outputs of the simulator. Thus, A has more
inputs than in the knowledge-soundness proof. Let σk = (σkj)

m0
j=1 be the maliciously chosen simulator

input that the adversary used, instead of (zj)
m0
j=1, during the kth query. Let X = (X,Q1,Q2,D,E, Y )

and X∗ = (X,Q1,Q2), where Dk (resp., Ek) is the indeterminate corresponding to the trapdoor d = dk
(resp., e = ek) generated by the simulator during the kth query. Observing Fig. 3, Sim answers with
([dk, y

−α((dkek + yδdk + yγek) −
∑m0

j=1 σkjPj(x, y))]1, [ek]2). Thus, in the ASE proof, A†(X), B†(X), and
C†s(X) have the following additional addends:

A†(X) = . . .+
∑
k sa1kDk +

∑
k sa2kY

−α((DkEk + Y δDk + Y γEk)−
∑m0
j=1 σkjPj(X,Y )) ,

C†s (X) = . . .+
∑
k sc1kDk +

∑
k sc2kY

−α((DkEk + Y δDk + Y γEk)−
∑m0
j=1 σkjPj(X,Y )) ,

B†(X) = . . .+
∑
k sbkEk .

Here, the coefficients like sa1k are chosen by the adversary. Let V(X) =∑
i1,i2,i3,i4,k1,k2,k3

V
Y i1D

i2
k1
E
i3
k2
E
i4
k3

(X∗)Y i1Di2
k1
Ei3k2E

i4
k3
. The addition of new addends to polynomials

like A†(X) means that the existing critical coefficients of VY i1 ··· of V(X) change by extra addends; we
have denoted these extras by V̂Y i··· in Table 2. Moreover, there are a number of new critical coefficients,
depicted in the bottom of Table 2. For example, VY β+δ(X∗) = (bδ + 1)ua(X) + aδvb(X) − u(X) +∑
k(sc2k − rbsa2k)

∑
j σkjuj(X) and, for any k, VY γEk(X∗) = rbsa2k + (aγ + 1)sbk − sc2k. Since here,

the index Y i1Di2
k1
Ei3k2E

i4
k3

of VY i1 ··· depends on a non-constant number of indeterminates, here both
Coeffse := {Y i1Di2

k1
Ei3k2E

i4
k3

: V
Y i1D

i2
k1
E
i3
k2
E
i4
k3

(X∗) 6= 0} and

Critse ={Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ} ∪ {Y −α+2δDk}k ∪ {Y γEk}k∪
{Dk1Ek2}k1,k2 ∪ {Y δDk}k ∪ {Y βEk}k

also contain a non-constant number of coefficients. For example, Critse contains Dk1Ek2 for any k1, k2 ≤ qs,
where qs is the number of simulation queries. However, there are only 12 “families” of critical coefficients,
and the members of the same family (say D1E2 and D7E2) can be analyzed similarly.

For Critse to consist of different monomials and for Critse ∩Critse, the new critical monomials Y i1Di2
k E

i3
k

(see Table 2, the last 6 monomials) must be different from all other monomials. We say that ∆ is ASE-
friendly if these conditions are satisfied. While the number of additional monomials in Crit and Coeff is
huge, ascertaining that the new critical monomials are unique is relatively easy, even if tedious, since one
needs to guarantee that for each fixed (i2, i3), if Y i1Di2

k E
i3
k ∈ Critse and Y i

′
1Di2

k E
i3
k ∈ Coeffse then i1 6= i′1.

By inspection, one can establish that it means the following.
(a) When i2 = 1 and i3 = 0, we need −α+ 2δ 6= δ (i.e., δ 6= α, which follows from the fact that Y β+δ ∈ Crit

and Y α+β ∈ Crit) and −α+ 2δ, δ 6∈ {α, β,−α+ β + δ, η,−α+ δ + η}.
This guarantees, say, that Y −α+2δDk (which is a critical monomial) is not equal to Y −α+δ+ηDk.

(b) When i2 = 0 and i3 = 1, we need γ 6= β and γ, β 6∈ {α,−α + 2β,−α + β + γ, δ,−α + β + δ,−α + γ +
δ, 2β − η, β + γ − η, β + δ − η,−α+ γ + η}.

(c) When i2 = 1 and i3 = 1, we need 0 6∈ {−α+ β,−α+ δ,−α+ η}.
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By(p,R,xB) Bx(p,R,xB)

[d]1 ← ∅; [e]2 ← ∅; ζ ← 0;
Run Bz(p,R,xB) in Fig. 4, except give A also access to OSim;

OSim((σj)
m0
j=1)

[cp]1 ←
∑m0
j=1 σj [Pj(x, y)y

−η]1;

ζ ← ζ + 1; dζ , eζ ←$Zp ; s′ζ , s′′ζ , t′ζ , t′′ζ ←$Zp ;
[dζ ]1 ← s′ζ [x]1 + t′ζ [1]1; [eζ ]2 ← s′′ζ [x]2 + t′′ζ [1]2 ; [a]1 ← [dζ ]1; [b]2 ← [eζ ]2;

[cs]1 ← y−α([aeζ ]1 + yδ[a]1 + yγ [eζ ]1 − yη[cp]1); return [qιξι ]ι;

Fig. 5. B(p,R,xB) in the proof of Theorem 2, and the emulation of OSim. Full-boxed and dashed-boxed are defined
as in Fig. 4.

By simple but tedious case analysis, one can prove the following lemma.

Lemma 1. If ∆ is soundness-friendly, then it is also ASE-friendly.

Proof. (a) Here, −α+2δ 6= δ (i.e., δ 6= α) follows from the fact that Y β+δ ∈ Crit and Y α+β ∈ Crit. Moreover,
−α + 2δ 6= α and δ 6= α follow since α 6= δ, −α + 2δ 6= β follows since Y 2δ ∈ Crit and Y α+β ∈ Crit, δ 6= β
follows since Y 2β , Y 2δ ∈ Crit, −α + 2δ 6= −α + β + δ follows since β 6= δ, δ 6= −α + β + δ follows since
α 6= δ, −α + 2δ 6= η follows from Y 2δ ∈ Crit and Y α+η ∈ Crit, δ 6= η follows from Y γ+δ, Y γ+η ∈ Crit,
−α+ 2δ 6= −α+ δ + η follows from δ 6= η, δ 6= −α+ δ + η follows form Y γ+η ∈ Crit and Y α+γ ∈ Crit.

(b) Next, γ 6= β follows from Y 2β , Y β+γ ∈ Crit, γ 6= α follows from Y β+γ ∈ Crit and Y α+β ∈ Crit,
β 6= α follows from Y 2β ∈ Crit and Y α+β ∈ Crit, γ 6= −α + 2β follows from Y 2β ∈ Crit and Y α+γ ∈ Crit,
β 6= −α+ 2β follows from α 6= β, γ 6= −α+ β + γ follows from α 6= β, β 6= −α+ β + γ follows from α 6= γ,
γ 6= δ follows from Y β+γ , Y β+δ ∈ Crit, β 6= δ is already proven, γ 6= −α+β+ δ follows from Y β+γ ∈ Crit and
Y −α+2β+δ ∈ Crit, β 6= −α+ β + δ follows from α 6= δ, γ 6= −α+ γ + δ follows from α 6= δ, β 6= −α+ γ + δ
follows from Y γ+δ ∈ Crit and Y α+β ∈ Crit, γ 6= 2β−η follows from Y 2β , Y γ+η ∈ Crit, β 6= 2β−η (i.e., β 6= η)
follows from Y β+γ , Y γ+η ∈ Crit, γ 6= β + γ − η follows from β 6= η, β 6= β + γ − η (i.e., γ 6= η) follows from
Y β+δ ∈ Crit and Y β+γ+δ−η ∈ Crit, γ 6= β+ δ− η follows from Y β+δ, Y γ+η ∈ Crit, β 6= β+ δ− η follows from
δ 6= η, γ 6= −α+ γ + η follows from Y γ+η ∈ Crit and Y α+γ ∈ Crit, β 6= −α+ γ + η follows from Y γ+η ∈ Crit
and Y α+β ∈ Crit.

(c) Finally, α 6= β and α 6= δ is already known, and α 6= η follows from Y γ+η ∈ Crit and Y α+γ ∈ Crit. ut

Theorem 2. Let T xι and T yι be as in Theorem 1. Let Iqap = (Zp,m0, {uj , vj , wj}mj=1) be a QAP instance.
Let Sqap be the SNARK in Fig. 3. Assume ∆ is soundness-friendly. Assume uj(X), j ≤ m0, are linearly
independent from each other and from other polynomials ui for i > m0. Sqap is non-black-box ASE in the
AGM under the (T x1 , T x2 )-PDL and (T y1 , T

y
2 )-PDL assumptions.

Proof. The ASE proof is similar to the knowledge-soundness proof. There are two main differences. First,
B also has to emulate Sim to A. Second, the analysis of the abort probability is different due to the larger
number of critical monomials.

Hence, we refer to the proof of Theorem 1, except that the full description of Bz in Fig. 5 contains also
the emulation of simulation queries. (Obviously, there is more going on behind the scene: for example, V is
defined differently, and X∗ includes D,E, but we already explained that part.)

The only thing left to do now is the different (more complicated) analysis of the abort probability.
Analysis of the abort probability in step (*). Assume that V(X) = 0, thus also VY i1 ···(X∗) = 0 for all critical
monomials (see Table 2). From the coefficient of Y γ+δ of V, we get bδ = −aγ/(aγ + 1) and thus aγ , bδ 6= −1.
From the coefficients of Y γ+η and Y 2δ, and since aγ , bδ 6= −1, we get bη = 0 and aδ = 0. Up to now, the
proof looks similar to that of Theorem 1. The rest of the coefficients have to be handled differently.
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From the coefficients of Y β+δ and Y β+γ , we get

ua(X) =(aγ + 1)(u(X) +
∑
j (
∑m0

k=1 σkj(rbsa2k − sc2k))uj(X)) ,

vb(X) =(v(X) +
∑
j (
∑m0

k=1 σkj(rbsa2k − sc2k)) vj(X))/(aγ + 1) .

From the coefficient of Y −α+2δDk, we get sa2k = 0. From the coefficients of Y γEk and DkEk, we get
sc2k = (aγ + 1)sbk = sa1ksbk. Thus, for all k, either (i) sbk = sc2k = 0 or (ii) sa1k = aγ + 1 6= 0 and
sc2k = (aγ + 1)sbk 6= 0.

If the case (i) holds for all k, then the first three polynomials V̂Y i in Table 2 are 0 and we are back to the
knowledge-soundness case. One can then follow the remaining proof of Theorem 1, and obtain knowledge-
soundness and ASE. Note that then, from the coefficient of Y δDk, it follows that also sa1k = 0 for all k.
Thus, the adversary did not benefit from the simulation queries.

Consider the case when at least for one k, (ii) holds. From the coefficient of Y δDk of this k, we get
0 = rbsa2k + (bδ + 1)sa1k − sc2k = 1− (aγ + 1)sbk and thus sbk = 1/(aγ + 1). From the coefficient of Dk1Ek2
for any k1 6= k2, we get sa1k1sbk2 = 0. Thus, if some sa1k2 6= 0, then (since we are in the case (ii)) also
sbk2 6= 0, and thus sa1k1 = sbk1 = sc2k1 = 0 for all k1 6= k2. Hence, rbsa2k1 − sc2k1 = 0, and thus making the
k1th simulation query, k1 6= k2, does not help the adversary. Thus, we can assume that A makes only one
query, say the k2th one, with the simulator input σ = (σj).

From the coefficient of Y βEk2 , we get sbk2ua(X) = 0. Since sbk2 6= 0 and aγ 6= −1,∑
j≤m0

(σj(rbsa2k2 − sc2k2) + zj)uj(X) +
∑
j>m0

z̃juj(X) = 0. Since sa2k2 = 0 and sc2k2 = 1,∑
j≤m0

(zj − σj)uj(X) +
∑
j>m0

z̃juj(X) = 0. Since uj(X) are linearly independent for j ≤ m0, it means
zj = σj for all j ≤ m0. Thus, A made the only simulation query on the same input that she used to cheat
on, and thus this corresponds to a SASE but not an ASE attack. Hence, A did not succeed in an ASE attack
and thus χ(X) = 0. ut

On Lower-Bound of [GM17a]. Groth and Maller proved that in any SASE SNARK, the verifier has
to perform two verification equations. Our result does not contradict it since we achieve ASE, a weaker
property. (Similarly, the ASE SNARK of [BKSV21] has only one verification equation.)

5 Subversion-Zero Knowledge

In a subversion zero-knowledge (Sub-ZK) SNARK [BFS16,ABLZ17,Fuc18,ALSZ21], the goal is to obtain zero-
knowledge even if the CRS creator cannot be trusted. As noted in [ALSZ20], one has to use non-falsifiable
assumptions to achieve Sub-ZK. Next, we show that Sqap is Sub-ZK (under the BDH-KE assumption),
assuming ∆ satisfies some additional requirements. The same argument applies in the case of all other new
SNARKs. In particular, five different choices of ∆ in Table 3 result in a Sub-ZK SNARK; this includes the
setting of Eq. (11).

According to the blueprint of [ABLZ17,Fuc18,ALSZ21], one can follow the next steps to make a SNARK
subversion-resistant:
1. Construct a public CRS verification algorithm CV that checks that the CRS is correct (that is, it corre-

sponds to some trapdoor td).
2. To facilitate public verification, this can mean adding new elements to the CRS. Let us denote the set

of new elements by crsCV. If crsCV is non-empty, then one must reprove knowledge-soundness and/or
simulation-extractability, taking crsCV into account.

3. Under a reasonable knowledge assumption, extract td from the CRS.
4. Show how to simulate the argument by using the extracted trapdoor.
This blueprint is formalized in [ALSZ21], and we refer the reader to it for a further discussion, including
proof that trapdoor-extractability and ZK suffice to get Sub-ZK. Moreover, for trapdoor-extractability, it
suffices to have CRS-verifiability and a strong enough extractability assumption.

Let us show that under the setting in Eq. (11) with CRS as in Eq. (12), the correctness (that is, that it
corresponds to some choice of trapdoors) of the CRS of Sqap can be verified by using a public CV algorithm.
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CV(crs, crsCV):

1 : Check that the following holds:
2 : // Trapdoors are not 0 and xn 6= 1:
3 : [xyβ ]1 6= [0]1; [Z(x)y

2β−α]1 6= [0]1;
4 : // The bracketed elements y4 = y

δ
, z, x

j
y
β
= x

j
y in G1 and G2 are consistent:

5 : [yδ]1 • [1]2 = [1]1 • [yδ]2;
6 : for j = 0 to n− 1 do [xjyβ ]1 • [1]2 = [1]1 • [xjyβ ]2; endfor
7 : // Degrees of yi are consistent: depends on ∆; recall α = 0, β = −2, γ = −3, δ = 7, η = 2

8 : [1]1 • [yη]2 = [y]1 • [y]2; [yβ ]1 • [yη]2 = [1]1 • [1]2; [yγ ]1 • [y]2 = [yβ ]1 • [1]2;
9 : [yγ ]1 • [yδ]2 = [yη]1 • [yη]2;

10 : // Degrees of xjyβ = x
j
y are consistent:

11 : for j = 1 to n− 2 do [xj+1yβ ]1 • [yβ ]2 = [xjyβ ]1 • [xyβ ]2; endfor
12 : // xjZ(x)y

2β−α
= x

j
Z(x)y

2 are consistent:

13 : [Z(x)y2β−α]1 • [1]2 =
[
xyβ−α

]
1
• [xn−1yβ ]2 −

[
yβ−α

]
1
• [yβ ]2;

14 : for j = 0 to n− 3 do [xj+1Z(x)y2β−α]1 • [yβ ]2 = [xjZ(x)y2β−α]1 • [xyβ ]2; endfor
15 : // Polynomials Pj(x, y)y

−η
= uj(x)y

β−η+δ
+ vj(x)y

β−η+γ
+ wj(x)y

2β−η are consistent:
16 : for j = 1 to m0 do
17 : [Pj(x, y)y

−η]1 • [yη]2 =
18 :

∑n−1
i=0 uji[x

iyβ ]1 • [yδ]2 + [yγ ]1 •
∑n−1
i=0 vji[x

iyβ ]2 +
∑n−1
i=0 wji[x

iyβ ]1 • [yβ ]2;
19 : endfor
20 : // Polynomials Pj(x, y)y

−α
= uj(x)y

β−α+δ
+ vj(x)y

β−α+γ
+ wj(x)y

2β−α are consistent:
21 : for j = m0 + 1 to m do
22 : [Pj(x, y)y

−α]1 • [1]2 =

23 :
∑n−1
i=0 uji[x

iyβ ]1 •
[
y−α+δ

]
2
+
[
y−α+γ

]
1
•
∑n−1
i=0 vji[x

iyβ ]2+

24 :
∑n−1
i=0 wji[x

iyβ ]1 •
[
yβ−α

]
2
;

25 : endfor

Fig. 6. The CRS verification algorithm CV in Sqap. dashed elements are guaranteed to be in the CRS if α = 0. dotted
equalities and the integer exponents in comments depend on the concrete of ∆ (namely, Eq. (11))

Modelling after [ABLZ17,ALSZ21], CV needs to check that (1) all trapdoors belong to correct domain (for
example, it checks y ∈ Z∗p by checking that [y]1 6= [0]1), and that (2) all CRS elements [f(x)]ι, where f is a
public rational function, are correctly computed from trapdoors x. The last verification can be done step by
step, starting from simpler (for example, lower-degree) functions and then using the already verified values
as helpers to verify more complex functions.

We present the CRS verification algorithm CV for Sqap in Fig. 6. Note that here we assume uj(X) =∑
ujiX

i, vj(X) =
∑
vjiX

i, and wj(X) =
∑
wjiX

i. It is easy (though tedious) to check that CV suffices to
check that the CRS of Sqap has been correctly generated but for the following two exceptions:
1. The dashed elements are not guaranteed to be in the CRS unless ∆ is well-chosen. A simple way of

solving this problem is to set α ← 0. This is not too restrictive, since 12 out of 14 ∆-s in Table 3 have
α = 0.

2. One must verify that, for some ι such that [yκ]ι is in the CRS, yκ is correctly computed, where κ ∈
{β, γ, δ, η}. (Recall that α = 0.)
This involves adding a small number of pairing equations of type [yi]1 • [yj ]2 = [yk]2 • [y`]2, such that
each equation introduces exactly one new degree (either i, j, k or `) and reuses three degrees that are
already “verified”. For example, in the first equation i, j, k ∈ {0, 1}. In this case, one can use pairings to
establish the correctness of y` for ` ∈ {−1, 0, 1, 2}. This means we need to put additional restrictions on
∆.

Lemma 2. From the 14 settings of ∆ in Table 2, the five ones marked with X are CRS-verifiable.
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Proof. Intuitively, we just need to describe how we (manually) found which of the choices of ∆ from Table 3
satisfy both above restrictions. As already mentioned, the first restriction is straightforward to satisfy. Now,
assuming that α = 0, consider two cases of ` from the first pairing equation in the second restriction:
1. ` = −1. In the second pairing equation, then (say) i, j, k ∈ {−1, 0, 1}. In this case, one can establish the

correctness of y` for ` ∈ [−3, 3].
To solve this, we look at the possible ∆-s in Table 3, such that α = 0 and one of β, γ, δ, η is equal to
either −1 or 2. This only weeds out one additional possibility (namely, ∆ = (0,−3, 5, 7, 1)).
In the case one of β, γ, δ, η is equal to −1, we will look at the cases when one of the three other
values κ ∈ {β, γ, δ, η} belongs to [−3, 3]. This leaves still several possibilities, ∆ ∈ {(0,−1, 6,−4, 1),
(0,−1, 7,−4, 1), (0,−1, 7,−5, 1), . . .}.
However, in only one case, ∆ = (0, 3,−5,−7,−1), it is possible to verify all 5 values yκ for κ ∈
{α, β, γ, δ, η}: namely, by checking that (say) [yη]1 • [y]2 = [1]1 • [1]1, [yη]1 • [yβ ]2 = [y]1 • [y]1,
[yγ ]2 • [yβ ]1 = [yη]1 • [yη]1, and [yδ]2 • [y]1 = [yγ ]1 • [yη]1.

2. ` = 2. Then, in the second equation, one can establish the correctness of y` for ` ∈ [−2, 3]. W.l.o.g., we
assume that ` 6= −1 (otherwise we are back to the previous case). Thus, after two verification equations,
we have the following cases left: ∆ ∈ {(0,−2,−3, 7, 2), (−2, 6, 7, 2), (2,−6,−7, 2), (2, 3,−7,−2)}.
A simple inspection establishes that in all the three cases, where both −2 and 2 are present, one has an
efficient CRS-verification algorithm. For example, one can take ∆ = (−2,−3, 7, 2), that is, the setting in
Eq. (11). Then, one has to verify that [1]1•[yη]2 = [y]1•[y]2, [yβ ]1•[yη]2 = [1]1•[1]2, [yγ ]1•[y]2 = [yβ ]1•[1]2,
and [yγ ]1 • [yβ ]2 = [yη]1 • [yη]2. (Those are the dotted equations in Fig. 6.) ut

For the sake of concreteness, we recommend to choose ∆ as in Eq. (11). However, one can use any of the
five checkmarked choices in Table 3.

One can significantly speed up CV in Fig. 6 by using batching techniques, as explained
in [ABLZ17,ALSZ21]. CV for other new SNARKs are essentially the same, modulo some simplifications
due to say wi(X) = 0 in the case of the QSP.
Trapdoor-Extractability and Sub-ZK. Trapdoor-extractability [ALSZ21] means that if CV accepts the
CRS, then one can extract the simulation trapdoor. In all new SNARKs, the simulation trapdoor is equal
to td = y since Sim does not use x. Clearly, in all new SNARKs, if CV accepts crs, one can use the BDH-
KE assumption to extract y. Thus, BDH-KE guarantees trapdoor-extractability, and the CRS-verifiability
and the trapdoor-extractability together guarantee that one can extract td. Hence, by the general result
of [ALSZ21], all new SNARKs are Sub-ZK, assuming that their CRS is verifiable and that the BDH-KE
holds.

Corollary 1. Under the five X-ed settings of ∆ in Table 2, Sqap is statistically composable Sub-ZK under
the BDH-KE assumption.
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A SAP-Based SNARK

In Appendices A to C, we will describe SNARKs for three different languages SAP, SSP, and QSP. Since
these SNARKs and their security proofs are modifications of Sqap, we will omit most of the details.

SAP has been used at least in [Gro16,GM17a,Nit19,FLPS21] to construct SNARKs or SNARGs. The
algebraic distinction with QAP is that v(X) = u(X) and thus a SAP instance is Isap = (Zp,m0, {uj , wj}mj=1).
RIsap is defined as RIqap in Eq. (1) except that u(X) = v(X). Thus, each gate in the arithmetic circuit
gets the same left and right inputs, which means that the circuit consists of squaring gates only. Since each
multiplication gate c = ab can be implemented by using two squaring gates (ab = (a/2+b/2)2−(a/2−b/2)2),
one can verify the correctness of an arbitrary d-gate arithmetic circuit by transferring it to a circuit that
has m̃ ≤ 2d squaring gates and then constructing a SNARK for SAP for the resulting circuit. The primary
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Table 4. Ssap: the critical coefficients in the knowledge-soundness proof (left) and addends to the same coefficients
in the ASE proof (right). Highlighted entries denote differences with Table 2. Here, z̃j = zj − bηa∗j , z̃i = c∗i − rba∗i ,
u(X) =

∑m
i=1 z̃iui(X)= v(X) , w(X) =

∑m
i=1 z̃iwi(X), h(X) = hc(X)− rbha(X).

Y i · · · VY i···(X∗) (KS and ASE) V̂Y i1 ···(X∗) (ASE only)
Y γ+δ (aγ + 1)(bδ + 1)− 1
Y γ+η (aγ + 1)bη
Y 2δ (bδ + 1)aδ
Y β+δ (bδ + 1)ua(X) + aδvb(X)− u(X)

∑
k (sc2k − rbsa2k)

∑
j σkjuj(X)

Y β+γ (aγ + 1)vb(X)− u(X)
∑
k (sc2k − rbsa2k)

∑
j σkj uj (X)

Y 2β ua(X)vb(X)− w(X)− h(X)Z(X)
∑
k (sc2k − rbsa2k)

∑
j σkjwj(X)

Used only in the ASE proof

Y −α+2δDk (bδ + 1)sa2k
Y γDk rbsa2k + (aγ + 1)sbk − sc2k
D2
k rbsa2k + sa1ksbk − sc2k

Y δDk aδsbk+rbsa2k + (bδ + 1)sa1k − sc2k
Used only in the case (ii) in the ASE proof, if sa1k = aγ + 1 and sc2k = (aγ + 1)sbk

Dk1Dk2 , k1 6= k2 sa1k1sbk2
Y βDk ua(X)sbk+vb(X)sa1k

motivation behind introducing SAP is that one can construct a zk-SNARK where A(X,Y ) = B(X,Y ), which
simplifies the description and security proofs of certain SNARKs. It can also result in a slightly more efficient
verifier, though the prover will be less efficient due to the larger size of the SAP instance.

We will next modify our approach to the case of SAP. Since u(X) = v(X), the corresponding key equation
is χsap(X) = 0, where

χsap(X) = u(X)2 − w(X)− h(X)Z(X) .

In this case, we simplify Eqs. (3) and (4) by setting v(X) = u(X) and ra = rb. Then A(X,Y ) = B(X,Y ) =
raY

α + u(X)Y β .
The knowledge-soundness/ASE proof is similar to the QAP case in Theorems 1 and 2 but with the

replacements vi → ui and Ek → Dk throughout the proof. In the knowledge-soundness proof, the changes
are only syntactic. However, since Dk = Ek, in the ASE proof certain non-critical coefficients will collide with
critical coefficients (see Table 4), and this changes slightly the analysis in Theorem 2 of the case V(X) = 0
as a Laurent polynomial.
– The coefficient of Y δDk is now aδsbk+rbsa2k + (bδ + 1)sa1k − sck. Since we already established that
aδ = 0, we can fall back to the QAP case.

– Case (ii) in the ASE proof: The coefficient of Y βDk is ua(X)sbk+vb(X)sa1k . As in the QAP case, we
already know that ua(X) = (aγ +1)(u(X)+ . . .) and vb(X) = 1/(aγ +1) · (v(X)+ . . .), sa1k = aγ +1, and
sbk = 1/(aγ+1). Similarly to the QAP case, we get

∑
j≤m0

(zj−σj)(uj(X)+vj(X))+
∑
j≥m0

z̃j(uj(X)+
vj(X)) = 0. Since ui(X) = vi(X) for i ≤ m, we get that zj = σj for all j ≤ m0 and thus we have again
a SASE attack.

Thus, also Ssap is non-black-box ASE. Note that the verifier does not have to check that [a]1 • [1]2 = [1]1 • [b]2
and this saves us two pairings.

Let Tι be the set of exponents k such that [yk]ι is in the CRS of Ssap in Fig. 7 assuming x = 1. In Fig. 7,
Pj(X,Y ) is defined as in Eq. (5) but setting vj = uj .

Theorem 3. Let T xι , T yι be defined as in Theorem 1. Let Isap = (Zp,m0, {uj , wj}mj=1) be a SAP instance.
Let Ssap be the SNARK in Fig. 7.
(1) Assume ∆ is soundness-friendly. Then, Ssap is knowledge-sound in the AGM under the (T x1 , T x2 )-PDL
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G(p,R): Sample x, y←$Z∗p such that xn 6= 1, let td← (x, y). Let

crsP ←

(
[{Pj(x, y)y−α}mj=m0+1, y

α, {xjyβ}n−1j=0 , {x
iZ(x)y2β−α}n−2j=0 , y

γ , yδ]1,

[yα, {xjyβ}n−1j=0 ]2

)
;

crsV ←
(
[{Pj(x, y)y−η}m0

j=1, y
γ ]1, [y

α, yδ, yη]2, [y
γ+δ]T

)
;

crs← (crsP, crsV); return (crs, td);

P(crsP, (zj)
m0
j=1, (zj)

m
j=m0+1):

u(X)←
∑m
j=1 zjuj(X); w(X)←

∑m
j=1 zjwj(X); h(X)← (u(X)2 − w(X))/Z(X);

ra←$Zp; [u′]1 ← ra[yα]1; [u′′]1 ← [u(x)yβ ]1;
[a]1 ← ([u′]1 + [u′′]1); [b]2 ← ra[yα]2 + [u(x)yβ ]2;
[cs]1 ←

∑m
j=m0+1 zj [Pj(x, y)y−α]1 + [h(x)Z(x)y2β−α]1 + ra

(
[u′]1 + 2[u′′]1 + [yγ ]1 + [yδ]1

)
);

return π ← ([a, cs]1, [b]2);

V(crsV, (zj)
m0
j=1, π = ([a, cs]1, [b]2)):

[cp]1 ←
∑m0

j=1 zj [Pj(x, y)y−η]1;
Check that [cp]1 • [yη]2 + [cs]1 • [yα]2 = [a + yγ ]1 • [b + yδ]2 − [yγ+δ]T ;

Sim(crs, td = (x, y),x = (zj)
m0
j=1):

[cp]1 ←
∑m0

j=1 zj [Pj(x, y)y−η]1;
d←$Zp; [a]1 ← d[1]1; [b]2 ← d[1]2;
[cs]1 ← y−α((d2 + d(yγ + yδ))[1]1 − yη[cp]1);
return π ← ([a, cs]1, [b]2);

Fig. 7. The new SNARKs for SAP and SSP, Ssap and Sssp. Sssp is like Ssap, except that then also wj(X) = uj(X).

and the (T t1 , T
y
2 )-PDL assumptions.

(2) Assume ∆ is soundness-friendly. Assume that uj(X), j ≤ m0, are linearly independent from each other
and from other polynomials ui for i > m0. Then, Ssap is non-black-box ASE in the AGM under the (T x1 , T x2 )-
PDL and the (T t1 , T

y
2 )-PDL assumptions.

(3) Ssap is perfectly zero-knowledge.

B SSP-Based SNARK

In this section, we will construct a SNARK Sssp for SSP (Square Span Programs, [DFGK14]). We recall
that by using SSP, one can prove that different linear combinations of witness coefficients are simultaneously
Boolean. As shown in [DFGK14], this is sufficient to show that a Boolean circuit has been correctly evaluated
on (secret or public) inputs:
– For each wire, one checks that the wire value is Boolean.
– For each gate, one can check that it has implemented its Boolean function correctly by checking that

certain linear combination of its input and output wire values is Boolean. For example, a∧̄b = c iff
a+ b+ 2c− 2 ∈ {0, 1} and a⊕ b = c iff (a+ b+ c)/2 ∈ {0, 1} [DFGK14].

One can implement SSP by using a QAP-type approach, by checking n = d + m constraints of type
(
∑m
j=1 Uijzj)

2 =
∑m
j=1 Uijzj , i ∈ [1, n], where d is the number of the gates and m is the number of the wires.

(In a QAP-based approach for arithmetic circuits, n = d.) Based on this observation, we design Sssp around
the verification equation as in Section 3. The only difference in the language is that u(X) = v(X) = w(X);
thus, the key equation is χssp(X) = 0, where

χssp(X) = u(X)(u(X)− 1)− h(X)Z(X) .
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Thus, h(X) = u(X)(u(X)− 1)/Z(X) is a polynomial iff the prover is honest. The new SNARK Sssp for SSP
in Fig. 7 is like Ssap, except that now we have uj(X) = vj(X) = wj(X) instead of just uj(X) = vj(X).
Relation to “Standard” SSP. In the SSP, as defined in [DFGK14], one considers constraints of type
(
∑m
j=1 Vijzj + bj − 1)2 = 1, or equivalently, (

∑m
j=1 Vijzj + bj)

2 = 2(
∑m
j=1 Vijzj + bj), where V is a public

matrix and b is a public vector. Defining U = (b‖V ) and assuming z
′ = ( 1

z
), the last equation is equal

to (
∑m
j=1 Uijz

′
j)

2 = 2(
∑m
j=1 Uijzj). Hence, the only difference between the SSP of [DFGK14] and the SSP,

defined in the current paper, is that in the former, the right hand side is multiplied with 2, which enforces∑m
j=1 Uijz

′
j ∈ {0, 2} instead of

∑m
j=1 Uijz

′
j ∈ {0, 1} in our case. Assuming that the characteristic of the finite

field is not 2, there is a trivial reduction between the two variants of the SSP.
Security Theorem. Let Issp = (Zp,m0, {uj}mj=1) be a SSP instance. RIssp is defined as RIqap in Eq. (1)
except that u(X) = v(X) = w(X). Let T xι / T yι be the set of exponents k such that [xk]ι / [yk]ι is in the
CRS in Fig. 7 in the case of Sssp, assuming x = 1.

Theorem 4. Let T xι , T yι be defined as in Theorem 1. Let Issp = (Zp,m0, {uj}mj=1) be a SSP instance.
(1) Assume ∆ is soundness-friendly. Sssp in Fig. 7 is knowledge-sound in the AGM under the (T x1 , T x2 )-PDL
and the (T t1 , T

y
2 )-PDL assumptions.

(2) Assume ∆ is soundness-friendly. Assume that uj(X), j ≤ m0, are linearly independent from each other
and from other polynomials ui for i > m0. Sssp is non-black-box ASE in the AGM under the (T x1 , T x2 )-PDL
and the (T t1 , T

y
2 )-PDL assumptions.

(3) Sssp is perfectly zero-knowledge.

Proof. Follows directly from Theorem 3. ut

Efficiency. Importantly, since zj are Boolean, it is cheaper to compute say [u(X)uβ ]1 ←
∑m
j=1 zj [uj(X)yβ ]1:

this requiresm additions compared to n scalar multiplications in the case of QAP and SAP. (Here, and in the
next section, we count the number of multiplications in the worst case. In the average case, it will be reduced
by a factor of two.) Moreover, setting wj(X) = uj(X) allows for additional minor optimizations. For example,
to compute [a]1 and [cs]1, the prover can first set [u′]1 ← ra[yα]1; [u′′]1 ←

∑m
j=1 zj [uj(x)yβ ]1, and then

[a]1 ← [u′]1+[u′′]1 and [cs]1 ←
∑m
j=m0+1 zj [uj(x)yβ−α+δ+uj(x)yβ−α+γ+wj(x)y2β−α]1+[h(x)Z(x)y2β−α]1+

ra
(
[u′]1 + 2[u′′]1 + [yγ ]1 + [yδ]1

)
. Thus, the prover spends one scalar multiplication and m additions in G1

to compute [u′]1 and [u′′]1, and additional m −m0 additions and (n − 1) + 1 = n scalar multiplications in
G1 to compute [cs]1. She also spends 1 scalar multiplication and m additions in G2 to compute [b]2.

C QSP-Based SNARKs

In addition to QAP, Gennaro et al. [GGPR13] proposed another formalism called QSP (Quadratic Span
Program). This approach was further optimized by Lipmaa [Lip13]. Without going to full details, we mention
that there exists a reduction from Boolean circuit satisfiability to QSPs. The reduction itself is not as efficient
as the reduction to SSPs, and in particular, the size of the QSP, given the same circuit, is considerably larger
than that of the SSP. (According to [DFGK14], if the Boolean circuit has m wires and n gates, SSP matrices
have size ≈ m× (m+n) while QSP matrices have size ≈ 14n× 11n.) However, QSP-based solutions like the
SSP-based solutions have a short argument and CRS. They also result in 2-query linear PCPs for Circuit-
SAT, [BCI+13,Lip13].

In this section, we assume that one has already constructed a reduction to the QSP. Given now a concrete
QSP instance, we construct a SNARK fo QSP. We also assume that the QSP matrix size is n×m (thus, n
and m do not correspond to the circuit size anymore.)

In the case of QSP [GGPR13,Lip13], w(X) = 0 and thus the key equation is

χqsp(X) = u(X)v(X)− h(X)Z(X) = 0 .

Relation to “Standard“ QSP. In the QSP, as defined in [GGPR13,Lip13], one considers constraints of
type (Ua−u0) ◦ (V b− v0) = 0, or equivalently, ( u0

U )(−1a ) ◦ ( v0

V )
(−1
b

)
= 0, where ( u0

U ) and ( v0

V ) are public

27



matrices. As always, one can think of the first coefficient −1 as a part of the public input. Hence, the only
difference between the QSP of [Lip13] and the QSP, as defined in the current paper, is that in the former,
one allows for a 6= b while here, we assume a = b. However, the QSP from [Lip13] can be easily modified
so that also there a = b. Really, each column of U and V in the QSP of [Lip13] corresponds to a column in
a span program that implements the “gate checker” for some gate. Moreover, U and V are largely similar.
The only different part of U and V , the “wire checker”, checks that columns from different gate checkers are
consistent. It is easiest to implement both gate checkers and wire checkers in the case a = b. [Lip13] made
a different choice resulting in b of fixed permutation of a.

Thus, one does not win by allowing for the generalization a 6= b. In fact, since the new zk-SNARK
guarantees that a = b, one can simplify the construction of the “circuit checker” from [Lip13]. For example,
one only has to apply the gate checker in G1, instead of doing it in both groups.)
Construction of Sqsp. Based on the observation that QSP corresponds algebraically to QAP, except that
w(X) = 0, the new SNARK for QSP, Sqsp, is a simple variant of Sqap. Sqap and Sqsp are depicted in Fig. 3,
and Sqsp just has wj(X) = 0 throughout the construction.

Let Iqsp = (Zp,m0, {uj , vj}mj=1) be a QSP instance. RIqsp is defined as RIqap in Eq. (1) except that
w(X) = 0. Let Tι be the set of exponents k such that [yk]ι is in the CRS in Fig. 3 assuming x = 1, as in the
case of Sqsp.

Theorem 5. Let T xι , T yι be defined as in Theorem 1. Let Iqsp = (Zp,m0, {uj , vj}mj=1) be a QSP instance.
(1) Assume ∆ is soundness-friendly. Sqsp in Fig. 3 is knowledge-sound in the AGM under the (T x1 , T x2 )-PDL
and the (T t1 , T

y
2 )-PDL assumptions.

(2) Assume ∆ is soundness-friendly. Assume that uj(X), j ≤ m0, are linearly independent from each other
and from other polynomials ui for i > m0. Sqsp is non-black-box ASE in the AGM under the (T x1 , T x2 )-PDL
and the (T t1 , T

y
2 )-PDL assumptions.

(3) Sqsp is perfectly zero-knowledge.

Each cost parameter is the same as in the case of Sqap except that the more costly reduction from
circuits to QSP results in n being significantly larger. On the other hand, as in the case of SSP, since the
witness is Boolean, we can significantly speed up the prover’s computation. Really, the prover computes
[a]1 ← ra[yα]1 +

∑m
j=1 zj [uj(x)yβ ]1, [b]2 ← rb[y

α]2 +
∑m
j=1 zj [vj(x)yβ ]2, and

[cs]1 ←
∑m
j=m0+1 zj [uj(x)yβ−α+δ + vj(x)yβ−α+γ ]1 + [h(x)Z(x)y2β−α]1+

rb ([a]1 + [yγ ]1) + ra([yδ]1 +
∑m
j=1 zj [vj(x)yβ ]1) .

Thus, the prover executes 1 + 1 + ((n−1) + 1) = n+ 2 scalar multiplications and m+m+ ((m−m0) +m) =
4m−m0 additions in G1 and 1 scalar multiplications and m additions in G2.
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