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Abstract

The hidden discrete logarithm problem(HDLP) over non-commutative associative algebras
(FNAAs) in [1] was broken in [8] by reducing to discrete logarithm problem(DLP) in a finite
field through analyzing the eigenvalues of the representation matrix. A generalized form of
HDLP(GHDLP) was proposed in [11], which is claimed to be computationally hard under quan-
tum computers. Based on this, several schemes are proposed. In this paper, we will show that
GHDLP can also be reduced to DLP in a finite field by algebraic representation. With all the
instruments in hand, we will show how some schemes based on GHDLP can be broken. Thus we
conclude that these schemes are not secure under quantum attack. So constructing schemes based
on GHDLP is fundamentally wrong.

1 Introduction

We first recall the integer factorization problem(IFP) and the discrete logarithm problem(DLP):
IFP: given a big number of the form n = pq, find the two prime divisors p and q.
DLP: having known g, h in a cyclic group G, find t ∈ N such that gt = h.
IFP and DLP have been used as mathematical base of cryptography for a long time. RSA and

ElGamal may be the most famous two. Until now, a lot of digital signatures and cryptosystems are
still using the two difficult problems. They are proved by time to be usable for a long time since there
is still no polynomial methods to break them in classical computers.

However, quantum computers can solve the two difficult problems in very short time.[6] So new
difficult mathematical problems are in urgent need. In this background, a great many problems are
proposed and announced to be safe under quantum computers. A possible try is to construct equations
with several variables in stead of one, for example, Rainbow in [7] is built based on the difficulty of
solving multivariable polynomial systems. The hidden discrete logarithm problem(HDLP) proposed
in [1] is also one try to extend the one variable problem DLP to an equation of several variables. The
units(or just local units) are used to hide the initial element. This is similar in spirits to the methods
in [23, 36, 37] and [24, 35]. in [23] Also, in [32, 33, 34], matrix are used in multivariate schemes to
diffuse the initial functions or change the basis to hide the initial one.

HDLP is defined in a finite non-commutative associative algebra (FNAA). Let V be a vector field
of dimension m over the finite field GF (q). By an operation on V we just mean a map f : V ×V → V ,
while instead of f(s, t) = u we often write sft = u. Endowed V with a bilinear operation which we
call multiplication and denote it by a round dot or just omit it. Then for each fi ∈ GF (q), vi ∈ V we
have:

(f1v1 + f2v2) · v3 = f1v1 · v3 + f2v2 · v3, v3 · (f1v1 + f2v2) = f1v3 · v1 + f2v3 · v2
Then V together with the multiplication is called an algebra. We may still call the underlying space

V an algebra, when the multiplication is known. If in particular the operation is not commutative but
associative, V is called an FNAA.

Now we can define HDLP [1, 17] : Suppose A is an FNAA, B ⊂ A is a given subspace. Given two
elements x, y in A, find a unit (invertible element) u ∈ B, and an integer t, such that uxtu−1 = y, if
they exist. The answer may not be unique, but any one may be okay since they will give an equivalent
key in the schemes. But in most cases, t is unique in Z/o(x), where o(x) is the order or local order of
x. This is to say, if (u, t) and (u′, t′) are solutions to uxtu−1 = y, then xt = xt

′
.
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In [11, 18], a more general form of HDLP(GHDLP) is proposed: Given two elements x, y in A,
compute a triple (t, u, v), such that uxtv = y, and r = vu is a global (or local) right unit: ar = a, for
all a ∈ A (or just for a = x, respectively). Still, the solutions may not be unique, u, v may be required
to lie in a given subspace B.

In the definition above, ”right” can be replaced with ”left”. Then a similar problem is proposed,
which is still called GHDLP.

Based on HDLP, one can construct an interesting method to exchange secrets(A Diffie-Hellman, in
more sophisticated voice)[1]: Publicly choose a big prime number p, an FNAA A of dimension m over
GF (p), a big subalgebra B of A, and a element x /∈ A. Now (p,A,m,B, x) are known to all people.

To exchange secrets, Alice choose secretly a unit g ∈ B together with a secret integer number t while
Bob choose secretly another unit h ∈ B and integer number s. Now, only Alice knows (g, t) and only
Bob knows (h, s). Then Alice compute k1 = gxtg−1 and send it to Bob. Bob compute k2 = hxsh−1 and
send it to Alice. Now Alice knows (g, t, k2) and computes kA = gkt2g

−1 = ghxsth−1g−1. Bob knows
(h, s, k1) and computes kB = hks1h

−1 = hgxtsg−1h−1. Now since g and h are chosen in a commutative
subalgebra B of A, gh = hg, thus kA = kB and they share a common secret k = kA = kB .

In [1], a digital signature is constructed similarly using a publicly known hash function H. (p,A,m)
are also publicly known. Now if Alice wants to sign something, she secretly choose a number t,
x, h, g, v ∈ A, such that x, g, h do not commute with one another, x is only invertible in some subalgebra
B of A with a local unit v. This is to say, x ∈ B and there exist some x′ ∈ B such that xx′ = x′x = v,
with vb = bv = b, for all b ∈ B. Now (z, y, w) where z = hxh−1, y = gxtg−1, w = gvh−1 are published
as public keys, (x, h, g, t) are kept as secret keys. Here secret keys are used to sign a massage. They
represents the identification of the signer so they must be kept secretly. Public key are used to verify
a signature, which can be done by any one who receives Alice’s message, so any one should know it
when needed.

Now if Alice wants to sign a message M , she will first randomly choose k, compute u = gxkh−1, e =
H(M,u), and then sign M with e and s = k − te mod o(x) where o(x) is the order of x.

Suppose Bob get (M, e, s) from Alice, He can verify it in the following procedure. He will compute
u′ = yewzs, e′ = H(M,u′) and then check whether e = e′. If the signature is valid, then u′ = yewzs =
gxteg−1gvh−1hxsh−1 = gxkh−1 = u. Here we have used that s+ te = k and that xv = vx = x because
v is a local unit to the subalgebra containing x.

However, these two problems are not post-quantum safe, and even not classical safe when then size
of the keys are too small.[5] gives an attack towards HDLP in special cases where x has a nonzero
and non-identity ’determinant’. This can be resisted by taken non-special elements. [8] gives a classic
attack towards HDLP with time O(t1/2), where t is the order of the base element x. The invertible
element u is also computed. But there is a small mistake there. We will correct it and demonstrate
it again in a more clear way. We will also improve the estimation about the complexity, by citing a
stronger method of computing DLP in finite fields.

If quantum computer is available, then a polynomial attack to GHDLP is possible. In [9], the
author gives a quantum attack towards two concrete signatures in [10] using HSP(Hidden subgroup
problem). It also works for the signatures in [4], [14] and [18]. In this paper, we will break a family of
related systems by reducing them to DLP in finite fields, which is of polynomial time using quantum
computers[6]. Thus constructing schemes based on HDLP is fundamentally wrong.

These attacks work just because using conjugation in HDLP or quasi-conjugation in GHDLP can
not really hide all information about the exponentiation. Linear algebra tells us that such operations
do not change the determinant and at least one eigenvalue. Then one have an important observation:
eigenvalues of a power of a matrix are just the powers of eigenvalues at first. These two propositions
from linear algebra will help us work out all we need. A similar analysis, but for different schemes,
can be found in [20] and [21]. In [5] , the determinant homomorphism attack(DHA) is explained in
details. If the attack above is impossible, then one can try eigenvalue attack(EA). In this case, we may
extend the field if necessary. All the attacks above requires that we must transform the problems to
a matrix form. Since FNNA are often defined using a group or just a semigroup, any representation
of the initial (semi)group will extend to a representation of the FNNA. One can also using regular
representations as well. To demonstrate this, a little algebra and representation theory is shown. Once
GHDLP is solved, all the schemes based on it are broken.
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2 How to break the two schemes if HDLP is solved

Suppose now we can solve HDLP in any FNNA. We will show the two schemes referred in the intro-
duction is not safe.

2.1 How to break the Diffie-Hellman

Suppose Carol wants to obtain Alice and Bob’s common secret. By listening to the internet, he can
obtain (p,A,m,B, x, k1, k2). Now he can solve the HDLP of k1 = gxtg−1, and then he will know a
pair t′, g′ with g′ ∈ B, such that k1 = g′x′tg′−1. Carol can calculate h′ and s′ in the same way. Now
Carol can compute the secret g′h′xs

′t′h′−1g′−1 = ghxsth−1g−1, as one can easily check. Thus the
Diffie-Hellman is broken. The schemes in [19] and [20] can be similarly broken as well.

2.2 How to break the digital signature

Suppose now Carol wants to forge Alice to sign messages. He knows z = hxh−1, y = gxtg−1, w = gvh−1

for some h, x, t, g, v. So if d = gh−1, then y = dztd−1. By solving HDLP, Carol now knows (t′, d′), such
that y = d′zt

′
d′−1. Then Carol can compute wzk

′
= gvh−1hxk

′
h−1 = gxk

′
h−1, where k′ is randomly

chosen. Furthermore, he can compute e = H(M,u), s = k′ − t′e and thus he can sign as if he was
Alice.

3 About other systems

In this section, suppose we can solve GHDLP.

3.1 About the zero-knowledge protocol in [19]

In [19], a zero-knowledge protocol based on the general form of HDLP is constructed: Now Bob wants
to know if Alice knows the private key (t, x) corresponding to the public key y, where y = btgxat,
where g is locally invertible, a, b, g is known to all, ab = r is a local unit to g. The author constructed
a series of procedures to verify that if Alice knows. But as we have shown, this do not make sense
when GHDLP is solved, because any one who knows y can computes a corresponding x, t. Similar
arguments goes to the cryptosystems in [20].

3.2 How to break the digital signature in [18]

In [2], a signature scheme is also proposed: Alice choose two commutative elements N,G of prime or-
der q in A, then she secretly choose two integers t, w, and compute J = N tUw, then she choose
secretly A1, B1, A2, B2, B3, A4, B4, such that R1 = B1A1, R2 = B2A2, R3 = B3A1, R4 = B4A4

are all global right-sided element. Next, she will compute Z1 = A1NUB1, Y1 = A2N
xB2, T1 =

RA1B2, Z2 = A1JU
2B3, Y2 = A4J

x/2B4, T2 = R′A1B4, where R,R′ are secret global right-sided unit.
Then (Z1, Y1, Z1, Z2, Y2, Z2) is published as a public key.

To sign a message M , generate a random K ∈ A,compute V1 = KNkB2, V2 = Jk/2B4, e =
H(M,V1, V2), s = k + xe mod q. Alice then calculate a solution S of the following equation:SA1U

s =
K, and finally the signed message is (M, e, s, S). To verify the signature, Bob will compute V ′1 =

SZs
1T1Y

−e
1 , V ′2 = SZ

s/2
2 T2Y

−e
2 , e′ = H(M,V ′1 , V

′
2) and finally check if (M, e, s, S = (M, e′, s′, S).

To break this signature, we may first observe that it is also unnecessary to know the real secret key,
an equivalent one is just okay. we first find x and P,Q. In attacking this signature, the right regular
representation R in section 5.2 is used. This is to map all right-sided units to the identity matrix. So
under the representation, the equations about the public keys become{

Z1 = O1NUO
−1
1 , Y1 = O2N

xO−12 , T1 = O1O
−1
2

Z2 = O1JU
2O−11 , Y2 = O4J

x/2O−14 , T2 = O1O
−1
4

(1)
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So if we take P = O1NO
−1
1 , Q = O1UO

−1
1 , H = O1JO

−1
1 , then PQ = QP , and they both have order

q. Now the equations above can be translated to the following one :{
Z1 = PQ,L1 = T1Y1T

−1
1 = Nx

Z2 = HQ2 = P tQw+2, L2 = T2Y2T
−1
2 = P tx/2Qwx/2

(2)

So Z
x/2
2 = P tx/2Qwx/2+x = L2Q

x, Zx
1 = P xQx and thus L1L

−1
2 = (Z2

1Z
−1
2 )(x/2) so x can be com-

puted. Once x is known, P = Ly
1 is known, where y is the inverse of x in Z∗q . So Q = P−1Z1 and

H = Z2Q
−2 are also known.

Now, go back to the algebra, and we get the preimages of P,Q,H. We may still denote them by
P,Q,H. Use these data, we can sign any message as if we are Alice now: First we select a random K
and compute V1 = KP kT1, V2 = KHk/2T2, e = H(M,V1, V2), s = k + xe, SQs = K. One can easily
check that this satisfies the verification, and thus the signature is broken. The signature in [26] and
[27] can be broken similarly.

3.3 How to break the digital signature in [2]

In [2], the author gives another signature scheme:
Alice selects two commutative elements g, h ∈ A, two unit a, b ∈ A, and two integer numbers

x,w. These six form the private keys. Then she compute u = agxhb−1, y = bgb−1, z = bhwa−1, and
announce (u, y, z) as public keys.

To sign a message m, Alice selects two random integers k, t and computes v = agkhta−1, e =
H(m, v), then she solve a system of equations in GF (q) to get two numbers s and l:{

es2 + xs+ xl = k

s+ ws+ l + wl = t
(3)

Then the signed message is (m, e, s, l).
Computing v′ = (uyesz)s(uz)l and checking if H(m, v′) is equal to e verifies this signature.
How can we imitate Alice? Now we knows u, y, z and can compute uz = agxhb−1bhwa−1 =

agxhw+1a−1, zu = bhwa−1agxhb−1 = bgxhw+1b−1. So we know uz = rzur−1, where r = ab−1. Using
the method in section 4.3, we can find what r is. Then if we set f = bhb−1, then zr = bhwb−1 =
fw,r−1uf−1 = yx. Take w′ = 1, that is we take f = zr and compute x′ in the DLP r−1uf−1 = yx

′
,

then we get an equivalent secret key (w′, x′). Now we can imitate Alice to sign m:
v = agkhta−1 = ab−1ykf tba−1 = rykf tr−1, e = H(m, v). s and l can be computed in the same

way as Alice because we now know an equivalent private key (x′, w′).
Signatures in [15] can be broken in a similar way.

3.4 How to break the digital signature in [11]

In [11], a signature scheme is presented as well: Alice firstly selects a non-invertible element g in A
together with a local left-sided unit l and local right-sided unit r. Then she compute g′ = lg, y′ = rgx.
The private key is (l, r, x, g), the public key is g′, y′.

To sign a message m, Alice choose a random integer k, and compute u = rgkl, v = H(m,u), s =
k − xv, where the last equation is in GF (q). Then the signed message is (m, v, s).

This signature is verified in the following procedures:
1.Compute u′ = y′vg′s, v′ = H(m,u′).
2. Check if v = v′.
So how can we break this schemes?
Suppose the local inverse of l, r is l−1, r−1, then l−1, r−1 must be local one-sided unit, too. So

g′ = gl = l−1gl, y′ = rgx = rgxr−1, So y′ = wg′xw−1 for some w = rl, which is also local invertible.
One can see that a conjugation by local invertible element can also pass the procedures we demonstrate
in the following sections. Thus x and w is computed using GHDLP, and now we know (g′, y′, x, w) So
we can imitate Alice to sign a message m as follows:

choose a random integer k, and compute u = rgkl = rlg′krl = wgkw, v = H(m,u), s = k − xv. So
the signature can be forged.
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Signatures in [12], [13] and [14] can be broken in a similar way. Other schemes constructed based
on GHDLP on different algebras(as in [16] and [25]) can also be broken in the same way, because
our algorithm is independent of the algebra itself. Changing algebras just changing the representing
matrix, and thus cannot really resist our attack.

4 GHDLP in matrix form

Now everything is over if GHDLP is solved. In this section, We first solve GHDLP in matrix algebra.
For GHDLP in any FNAA, one need more algebraic preliminaries. We will treat those later. However,
all the spirits are demonstrated here.

4.1 Solution to HDLP in matrix algebra

We first give the solution to HDLP. The problem in matrix form is: Given matrix X,Y of order m,
find n ∈ N,U ∈ GL(m,F ) such that U−1XnU = Y , where F is the finite field we are considering.

Extend the field if necessary, X can be changed to its Jordan form. The extension field can be
chosen as K = F [x]/f(x), where f(x) = det(xI − X) is the characteristic function of X. This can
be computed of time O(m3log2p) using Gaussian elimination, where log2p is the time cost of multiply
two elements in GF(p). f can also be chosen to be the minimal polynomial of X when convenient,
which will decrease the size of the extended field K.

By linear algebra we know U−1XnU have the same characteristic polynomial with Xn, the eigenval-
ues of Xn consist of nth power of the eigenvalues of X. The roots of the characteristic polynomial are
just the eigenvalues. Comparing the eigenvalues on both sides of the equation U−1XnU = Y , we will
get an equation of sets for which repetitions are allowed: {λn1 , λn2 , ..., λnn−1, λnm} = {τ1, τ2, ..., τn−1, τm},
where {λ1, λ2, ..., λn−1, λm} are eigenvalues of X with multiplicity, and {τ1, τ2, ..., τn−1, τm} are are
eigenvalues of Y with multiplicity. To compute these eigenvalues, one need compute roots of polynomial
in a finite field, which cost O(d3log(q)) if we use the probabilistic Cantor–Zassenhaus algorithm.[30]
Here q is the order of the extended field K = GF (q), d is the degree of the polynomial. This is
polynomial in both log(q) and d = m. When GRH(generalized Riemann Hypothesis) is assumed to be
true, a deterministic polynomial algorithm can be found in [30].

Then at most m (linear in m) matches are needed before we can find n: we may first select an
element (one may select at most m times) in {λ1, λ2, ..., λn−1, λm}, say λi, and solve DLP at most m2

times for each τj with base λi, one of these discrete log must be n. If we have factorized the polynomials
in GF (p), the procedure goes faster, we can just match a subset, not all of the m elements, using the
knowledge of degree and multiplicities. In [8], the author omits the matches. This is wrong, because
the first r-degree root of the characteristic polynomial may match another r-degree root.

All together, we find a polynomial method to reduce the problem to at most m2 DLPs. In most
cases, just O(m) DLPs is okay.

When n is found, it is easy to find one U ∈ A by using Gaussian elimination to a linear fuction
XnU = UY in m2 variables (the entries of U) and m2 equations. The total cost here is about
O(m6log2q). Taking an intersection with B gives a correct one element. Also, in practice, it is more
efficient to compute such a U in equation of the FNNA, and the total cost becomes O(m3log2q), since
an FNNA of dimension m has only m components.

Since DLP in finite fields can be done in polynomial time by [6], we can solve HDLP in polynomial
time. By the way, we know that just expanding m, the size of the matrix, do not lift the security,
because this just increase the difficulty of the matches of eigenvalues in polynomial coefficients (no
more than m2).

4.2 Solution to GHDLP in matrix algebra

In matrix form, GHDLP is: GivenX and Y , find U, V ∈ B, t ∈ N , with V U = R,XR = X,Y = UXtV .
The GHDLP can also defined demanding RX = X, or they both hold. In practice, X comes from a
representation and thus almost always have a special Jordan form: For some invertible S, SXS−1 =(
A O
O B

)
, with A digonal and B Jordan blocks of eigenvalues 0.
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(This can be proved true if the local order r of X do not divide the field character p: Since
X2r − Xr = 0, we know the minimal polynomial f(x) of X divides x2r − xr = 0, which have no
repeated root except a possible 0, this is because xr − 1 has no repeated roots since its derivative
rxr−1 is not zero when x 6= 0.)

We will prove that our methods still work for GHDLP in the above case. One can still compute
the eigenvalues of X and match them to the eigenvalues of Y , then at least one in the m2 DLPs will
give the right t.

Suppose X has eigenvalues λi 6= 0, 1 with eigenvector ~vi(X always has such an eigenvalue, or it can
not have many different powers and thus can not be used in crptosystems), then at least one of such
eigenvalues is preserved in UXV : UXV U~vi = UX~vi = Uλi~vi = λiU~vi. So either U~vi = ~0, or it is an
eigenvector with the same eigenvalue λi. However, U~vi = ~0 can not always holds, since the eigenvalues
~vi span the column space of X l for l ≥ m. So if U~vi = ~0 for all vi, then UX lV = 0, a contradiction.
This shows that UXtV and Xt have common eigenvalues, and thus our methods work.

For generalized form, the analysis above do not work, we will use another instrument in lin-
ear algebra, the root subspace decomposition. V = ⊕N((X − λiI)ri), where ri + 1 is equal to the
size of the Jordan block corresponding to λi, which may not be different from another λj . Then if
~vi ∈ N((X−λiI)ri), then (X−λiI)ri~vi =

∑ri
j=0(−λi)ri−jCj

riX
j~vi = 0 And thus (AXB−λiI)riA~vi =∑ri

j=0(−λi)ri−jCj
riAX

jBA~vi = A(
∑ri

j=0(−λi)ri−jCj
riX

j~vi) = 0 So either A~vi is zero, or it is a gen-
eralized eigenvector corresponding to λi. Now since the sum of subspace corresponding to nonzero
eigenvalues form the column space of X l for large l, there must be a common eigenvalue between X
and AXB.

Now we try to find U and V . Now Y = UXtV goes to Y U = UXt, since V U = R is a right unit
to X. Then by taking intersection with B, we compute U out. Then V can be computed by solving
Y = UXtV and take an intersection.

So far we have solve GHDLP in matrix forms.

5 HDLP and GHDLP in any FNNA

To solve HDLP and GHDLP in a general FNNA, we reduce it to the matrix case.Here we introduce
some algebraic instruments, including structure constants and representation theory.

5.1 Structure constants

To describe multiplication in an FNNA A, we choose a basis(as a vector space) B = {e1, ..., em} of
A, then if all the multiplications of any two elements of B is given:ei · ej =

∑m
k=1 Γk

i,jek, then we can
know all the multiplications of any two elements of V , just by the bi-linearity of the multiplication.

The coefficients of ei · ej , say, Γk
i,j is called the structure constants of A corresponding to the basis

B. Clearly, for a given basis, the structure constants and the multiplication determine each other.

5.2 Algebraic representation

A representation of an associative algebra A is by definition an algebraic homomorphism φ from A
to End(W ), the algebra of all linear transformations of W , with trivial addition and composition as
multiplication.

Now we consider the left regular representation L, with L(a) = La ∈ End(A), where La(r) = a·r,for
all r ∈ A). Respectively, we can also consider the right regular representation R,with R(a) = Ra ∈
End(A), where Ra(r) = r · a, for all r ∈ A). In most cases the left regular representation is enough,
but sometimes the right regular representation is more convenient.

Then L can be easily proved to be an homomorphism: (L(a)L(b))(r) = abr = L(ab)(r), so
L(a)L(b) = L(ab). The same arguments goes to R, the only difference is that R is an antihomo-
morphism: R(ab) = R(b)R(a).

One can prove that if A is chosen with no nonzero left(right) annihilator, then L(R,respectively)
is injective, since their nontrivial kernel consists of such elements. For algebras with no nonzero left
annihilators, we may first project the algebra to its quotient A/N , where N is the annihilators, which
must be a left ideal and of course a subspace. For the right annihilators, the same method works as
well. In these cases, the dimension of the algebra is reduced, and things become easier.

6



So any associative algebra and in particular any such FNAA can be considered as a subalgebra of
an algebra of the form End(V ) when divided by their annihilators, where V is a vector space.

Besides the left and right representation, other presentations can also be used, when it is convenient
or more natural. For example, when an FNAA is constructed from a group, then the irreducible
representations can always extend to the FNAA, which is often of less dimension than the regular
representations.

5.3 Representation described as structure constants

Now suppose we are given an algebra A with a basis B, together with the structure constants {Γk
i,j}.

we will determine explicitly the representation, using matrix language.
For any vector v ∈ A, we have v =

∑m
i=1 v

iei, for some vi ∈ GF (p), then Lv(ej) = L∑m
i=1 viei(ej) =

(
∑m

i=1 v
iei) · ej =

∑m
i=1 v

iei · ej =
∑m

i=1 v
i(
∑m

k=1 Γk
i,jek) =

∑m
k=1(

∑m
i=1 v

iΓk
i,j)ek

Let ckj =
∑m

i=1 v
iΓk

i,j , then we have Lv(ej) =
∑m

k=1 c
k
j ek. So the matrix of Lv is {ckj },that is, ckj

lies on the jth row crossing the kth column.
If we identify (v1, ...vm) with v, and rename L as φ, then we see the injective homomorphism:

φ(v1, ...vm) 7→ {
∑m

i=1 v
iΓk

i,j}.

5.4 Reduction of HDLP and GHDLP to matrix algebra

In the above subsection, we have shown that any FNAA can be treated as a subalgebra of some matrix
algebra. Since we can do HDLP in matrix algebra, we can do it in any FNAA: With a φ action to both
side of uxtu( − 1) = y, one can get φ(u)(φ(x))t(φ(u))−1 = φ(y). This can be calculate then because
this is HDLP in matrix algebra. Solve this we get t, and the same solution goes to the initial equation
because φ is injective. For GHDLP, the equation is φ(u)(φ(x))t(φ(v)) = φ(y), with xvu = x.

Now all the reduction above can be done in polynomial time even in classical computer, so HDLP
and GHDLP is never safe in any FNNA.

6 Some examples of matrix representations

In all of the reference[1, 2, 3, 4, 5] about FNAAs, given i, j, Γk
i,j 6= 0 for just one k, this makes the

matrix much simpler and one can even construct a basis-vector multiplication table (BVMT). For

example, about Table 1 in [1], we can construct the map φ:( (a, b, c, d) means a~e+ b~i+ c~j + d~k)

φ(a, b, c, d) =


µa −µ−1τb −µ−1c −µ−1τd
µb µa −d c
µc τd µa −τb
µd −c b µa

 (4)

Table 1: Table 1: The basis-vector multiplication table

· ~e ~i ~j ~k

~e µ~e µ~i µ~j µ~k
~i µ~i −µ−1τ~e ~k −τ~j
~j µ~j −~k −µ−1~e ~i
~k µ~k τ~j −~i −µ−1τ~e

As for Table 2(Table 1 in [4]), we can also construct the corresponding map φ:( (a, b, c, d) means
a~e0 + b~e1 + c~e2 + d~e3)

φ(a, b, c, d) =


a+ τd 0 a+ d 0

0 b+ c 0 τb+ c
τb+ c 0 b+ c 0

0 a+ d 0 a+ τd

 (5)

For Table 3(Table 2 in [4]), we also construct another corresponding map φ:( (a, b, c, d, e, f) refers
a~e0 + b~e1 + c~e2 + d~e3 + e~e4 + f~e5)
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Table 2: Table 2:BVMT2
· ~e0 ~e1 ~e2 ~e3
~e0 ~e0 ~e3 ~e0 ~e3
~e1 τ~e2 ~e1 ~e2 τ~e1
~e2 ~e2 ~e1 ~e2 ~e1
~e3 τ~e0 ~e3 ~e0 τ~e3

φ(a, b, c, d, e, f) =


a+ λf 0 τa+ µf 0 a+ f 0

0 b+ e 0 µb+ τe 0 λb+ e
c+ λd 0 τc+ µd 0 c+ d 0

0 c+ d 0 τc+ µd 0 c+ λd
λb+ e 0 µb+ τe 0 b+ e 0

0 a+ f 0 τa+ µf 0 a+ λf

 (6)

Table 3: Table 3:BVMT3
· ~e0 ~e1 ~e2 ~e3 ~e4 ~e5
~e0 ~e0 ~e5 τ~e0 τ~e5 ~e0 ~e5
~e1 λ~e4 ~e1 µ~e4 µ~e1 ~e4 λ~e1
~e2 ~e2 ~e3 τ~e2 τ~e3 ~e2 ~e3
~e3 λ~e2 ~e3 µ~e2 µ~e3 ~e2 λ~e3
~e4 ~e4 ~e1 τ~e4 τ~e1 ~e4 ~e1
~e5 λ~e0 ~e5 µ~e0 µ~e5 ~e0 λ~e5

Thus we can see that whatever the FNAAs seems to be complicated, it behaves no more than the
corresponding matrix algebra.

7 Concrete examples

In this section, we use brackets to denote codes. Only key codes are shown here. All the codes in the
following can be run within one second in the calculator (it uses the machine V2.26-9) at the official
website of Magma:(see http://magma.maths.usyd.edu.au/calc/).

7.1 A concrete example of solving HDLP

In this subsection, We use the FNAA with BVMT given in Table 1 in section 6.
The parameters are :µ = 1, τ = 1, p = 823057273411232437763981(this is a number of about

80 bits, as the author gives in [5]). This p is found using Magma by a random integer less than
280 = 1208925819614629174706176 composed by a function which finds the first prime behind a given
number:

[NextPrime(Random(1208925819614629174706176));]
Now A is the quaternion-like algebra(The only difference is that this is in a finite field.) And so

the following representation is more natural from algebra:

φ(a, b, c, d) =


a d −c b
−d a −b −c
c b a −d
−b c d a

 (7)

One can easily get the components of a vector from the entries of its representing matrix. Then we set

x = (401061284016651457375229, 140498875087816015438562,

407926716616598678661430, 661420587423165019065860)

u = (627968683547310283890579, 760824309936500718069644,

523867729517403306136890, 301803738536395935875170)
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The components in this two vectors are generated in Magma using random integers less than p, 8 times
altogether.

Then we can compute:

u−1 = (426021070292446930431969, 521593949463115030659558,

473044701953953683568965, 661353650774322361555897)

we can then compute a random number 46548060726748433200355 as the power parameter, this is
the main secret n. We use it to compute the hidden power:

y = u · x46548060726748433200355 · u−1 = (794230956107611693885597, 288671916524669674923644,

197995833127620693524665, 50359205096408517009191) =: (e, f, g, h)

Take (n, u) as secrets, and publicly show others x and y.
Now we compute n and u from x and y.
First, we represent x and y in matrix with X and Y through the representation φ mentioned above.

Then we have an equation in matrix algebra:

UXnU−1 = Y (8)

We then try to compute the Jordan form of X and Y (This can give all the eigenvalue quickly using
computer), see details in the appendix.

[JordanForm(X);JordanForm(Y);]
Then all the eigenvalues of X and Y is known.
The eigenvalues of X are 549650594809927781389712,252471973223375133360746.
The eigenvalues of Y are 613363570925274286294157,152041067878716663713056.
We may first try the determinant attack: Try to find the discrete log of Y in the base of X:
[Log(Determinant(X),Determinant(Y));]
This works, and gives
[46548060726748433200355].
In special cases, the determinants of both X and Y are 1 or 0, but our method still works, because

the eigenvalues can not always be 1 or 0. One may try to compute the dicrete logs of the eigenvalues.
One can see the codes and outputs in the appendix.

Then we may compute u. suppose u = (s, t, u, v) now they can be calculated out by solving the
linear system uxn = yu. One can first compute

z = xn = (794230956107611693885597, 820866556270721139098199,
163522795984598859655862, 742582741592428191070721) = (E,F,G,H)

Then to find s, t, u, v we refer to the equation (s, t, u, v)(E,F,G,H) = (e, f, g, h)(s, t, u, v), which
is equivalent to the following system:

Es− Ft−Gu−Hv = es− ft− gu− hv;

Fs+ Et+Hu−Gv = fs+ et− hu+ gv;

Gs−Ht+ Eu+ Fv = gs+ ht+ eu− fv;

Hs+Gt− Fu+ Ev = hs− gt+ fu+ ev;

(9)

This is just 
(E − e)s− (F − f)t− (G− g)u− (H − h)v = 0;

(F − f)s+ (E − e)t+ (H + h)u− (G+ g)v = 0;

(G− g)s− (H + h)t+ (E − e)u+ (F + f)v = 0;

(H − h)s+ (G+ g)t− (F + f)u+ (E − e)v = 0;

(10)

Then vectors in the null space of the coefficient matrix gives what we need:
(1 0 294682108297506267818653 17886283966910151881866)
One may find this is not the u at first, this does no harm, because it is an equivalent one that gives

the same conjugation. In practice, it matters only that we know such a u that satisfies the equation,
it is unnecessary to find the one generated secretly.
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7.2 A concrete example of solving GHDLP

In this subsection, We use the FNAA with BVMT given in Table 2 in section 6.
We use the parameters τ = −1, p = 823057273411232437763981

x = (401061284016651457375229, 140498875087816015438562,

140498875087816015438562, 401061284016651457375229)

u = (26131572261834006134192, 213914772837551899590870,

213914772837551899590870, 26131572261834006134192)

v = (627968683547310283890579, 760824309936500718069644,

178256814794268587889944, 627968683547310283890579)

Then one can check xvu = x. The new representation is

φ(a, b, c, d) =


a− d 0 a+ d 0

0 b+ c 0 −b+ c
−b+ c 0 b+ c 0

0 a+ d 0 a− d

 (11)

So the matix form of X is
0 0 97811724485225935280767 0
0 46227468992939704387227 0 0
0 0 46227468992939704387227 0
0 97811724485225935280767 0 0


We still use the number 46548060726748433200355 as the power parameter, this is the main secret

n. We use it to compute the hidden power:

y = u · x46548060726748433200355 · v = (24417931581393991043416, 73030926097725151815655,

161739355084967174674242, 210352349601298335446481) =: (e, f, f, e)

Take (n, u) as secrets, and publicly show others x and y.
Now we compute n and u, v from x and y.
Just compute the Jordan form of the representation matrix of x and y as in section 7.1. We get

the eigenvalues of X are 0,0,46227468992939704387227,46227468992939704387227. The eigenvalues of
Y are 0,0,48835863162787982086832,48835863162787982086832.

Then by computing the discrete log

Log(46227468992939704387227, 48835863162787982086832)

we get n = 17201775578911892389118. This is not the n at first, but we can check

x17201775578911892389118 = x46548060726748433200355

So this is an equivalent one.
Then we may compute u and v. suppose u = (a, b, c, d) now they can be calculated out by solving

the linear system uxn = yu. One can first compute

z = xn = (175213399325000626307812, 24417931581393991043416,

24417931581393991043416, 175213399325000626307812)

Then to find a, b, c, d we refer to the matrix equation UZ = Y U . This is a different method from
7.1. From the form of z and y, we may first take b = c, a = d, then the equation above is just
48835863162787982086832b = 88708428987242022858587a. Take a = 1, then a solution is found:

u = (1, 173249154218164496747681, 173249154218164496747681, 1)
To find v, observe that if s = t, g = h, s + t = 1, h + g = 1, then r′ = (s, g, h, t) is a right side

unit of x, so v can be find by vu = r′. One can compute a solution using linear algebra and get
v = (113542900532618781725880, 230257776396113645760578, 0, 0).
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8 conclusion

Now we have proved that HDLP and GHDLP is not as secure as it seems. It can not resist attacks
from quantum computers, and even from classical computers if the order of the finite field is taken too
small. In fact, we have subexponetial attack towards it.

Since we can solve HDLP and GHDLP, all the schemes based on it is never safe. We have broken a
family of these schemes in the beginning of this paper, other similar schemes can also be broken using
the same method with a little modification.
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A The Magma codes for section 7

[X := Matrix(GF(823057273411232437763981), 4, 4, [a,-b,-c,d,b,a,-d,c,c,d,a,-b,d,-c,b,a]) where a is
401061284016651457375229 where b is 140498875087816015438562 where c is 407926716616598678661430
where d is 661420587423165019065860;

U := Matrix(GF(823057273411232437763981), 4, 4, [a,-b,-c,d,b,a,-d,c,c,d,a,-b,d,-c,b,a]) where a is
627968683547310283890579 where b is 760824309936500718069644 where c is 523867729517403306136890
where d is 301803738536395935875170;

Y:=U*Xˆ(46548060726748433200355)*Uˆ(-1);
JordanForm(X);JordanForm(Y);]
which gives:
[549650594809927781389712 0 0 0]
[0 549650594809927781389712 0 0]
[0 0 252471973223375133360746 0]
[0 0 0 252471973223375133360746]
[613363570925274286294157 0 0 0]
[0 613363570925274286294157 0 0]
[0 0 152041067878716663713056 0]
[0 0 0 152041067878716663713056]
Then to compute using eigenvalues, the new codes are:
[F:=GF(823057273411232437763981);
a:=549650594809927781389712;
b:=613363570925274286294157;
c:=152041067878716663713056;
Log(F!a,F!b);Log(F!a,F!c);]
This gives:
[136876177176888301461603 46548060726748433200355]
Only the second is right because we can check the first:
[(F!252471973223375133360746)ˆ136876177176888301461603;]
This is 667142049711814210926783 and do not equal to any eigenvalue of Y .
To find U, we use the null space:
[V:= Matrix(GF(823057273411232437763981), 4, 4,
[E-e,-F+f,-G+g,-H+h,F-f,E-e,H+h,-G-g,G-g,-H-h,E-e,F+f,H-h,G+g,-F-f,E-e])
where E is 794230956107611693885597
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where e is 794230956107611693885597
where F is 820866556270721139098199
where f is 288671916524669674923644
where G is 163522795984598859655862
where g is 197995833127620693524665
where H is 742582741592428191070721
where h is 50359205096408517009191;
Nullspace(V);]
It gives :
[Vector space of degree 4, dimension 2 over GF(823057273411232437763981)
Echelonized basis:
(1 0 294682108297506267818653 17886283966910151881866)
(0 1 672240600032663527345589 111029520703059731116372)]
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