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Abstract

In this paper we propose the linear hull construction for block ci-
phers with quadratic Maiorana-McFarland structure round functions.
The search for linear trails with high squared correlations from our
Maiorana-McFarland structure based constructive linear cryptanalysis
is linear algebraic. Hence from this linear algebraic essence, the space
of all linear trails has the structure such that good linear hulls can
be constructed. We apply our method to construct better linear hulls
for the Simon and Simeck block cipher family. Then for Simon2n and
its variants, the linear hull with the fixed input and output masks at
arbitrary long rounds, and with the potential bigger than % can be
constructed.

On the other hand we propose the Maiorana-McFarland structure
based constructive differential cryptanalysis for symmetric-key prim-
itives. The new search for good differential trails for Simon variants
is linear algebraic. The problem of real existent differential trails is
reduced to the finding of a solution of algebraic equations. We apply
our method to the Simon2n variants with arbitrary long rounds and

prove that the expected differential probability is bigger than QL% un-

der the independence assumptions. It seems that at least theoretically
Simon2n is insecure for the key-recovery attack based on our new con-
structed linear hulls and key-recovery attack based on our constructed
differential trails.
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1 Introduction

In symmetric-key primitives, in particular in recent permutation based hash
constructions and the candidates in NIST lightweight cryptography compe-
tition, the algebraic degree of many round functions is two. For example
in Keccak, Subterranean, Gimli, Ascon, Simon and Simeck, see [11, 21, 10,
23, 8, 30, 32, 5, 56, 50], the round functions or the nonlinear layers are
algebraic degree two Boolean permutations. In this paper we propose the
Maiorana-McFarland structure based linear cryptanalysis for block ciphers,
which is suitable to algebraic degree two Boolean round functions with the
Maiorana-McFarland structure.

Linear cryptanalysis was proposed and applied to key-recovery attack
on DES in 1993-1994 by M. Matsui in [42, 43]. The basic ingredient in
linear key-recovery attack on the block ciphers is the linear approximations
with high correlations. The idea of the linear hull of an approximations was
introduced by Nyberg in [49] and analysed in [47, 2, 6, 35|, such that the
required plaintext-ciphertext pairs for key-recovery attack decreased signif-
icantly. We refer to [3, 4, 5, 20, 24] for linear cryptanalysis of block ciphers
such as Simon and PRESENT. In particular the linear attack in [24] gave
a first attack on the 28 round PRESENT, and the attack on the 45 round
Simon96,/144 in [34].

Differential cryptanalysis was initiated from the classical paper [13] and
has been one of the basic analysis tool to evaluate the security margin of
block ciphers. We refer to [33, 25] for independence assumptions and ex-
pected differential probability calculation. There have been many works
[15, 30, 39, 41] on differential cryptanalysis of Simon based on computer-
aided search of good differential trails.

The Maiorana-McFarland class of bent functions was given in the pa-
per [44]. The concept of Maiorana-MacFarland class Boolean functions in
[44, 48, 17, 16] was introduced basically for the construction of good cryp-
tographic Boolean functions. However our motivation in this paper is to
establish good linear hulls and construct many differential trails with the
fixed input and output differences from the Maiorana-McFarland structure
of Boolean round functions. In the Maiorana-McFarland structure based
linear cryptanalysis for degree two restricted Boolean round functions, the
search of good linear trails is linear algebraic. Then linear trails with high
squared correlations can be constructed and searched more efficiently than



previous approaches. We apply our method to construct the linear hull-
s for the Simon variants and the Simeck block cipher. It is possible that
this method can also be partially extended to higher degree round function
block ciphers. We also propose the Maiorana-McFarland structure based
constructive differential cryptanalysis such that many good differential trails
with fixed input and output differences can be constructed and the expected
differential probability can be lower bounded. This paper is the first work to
apply the Maiorana-McFarland structure of round functions to cryptanaly-
sis of block ciphers systematically.

Simon is a lightweight block cipher designed and presented by NSA in
2013. NSA did not provide security analysis and design rationale. For the
description of Simon block cipher family we refer to [8]. Its version Simon2n,
where n € {16,24,32,48,64}, is defined as follows. The Boolean mapping
f: Fy — FZ is a permutation defined by

f(x) = 8'(x) - 8%(x) + 5%(x),

where x € F%, - is the bit-wise multiplication, S? is the shift of bits to the
left by 4 positions. The round function on F3" is defined by

Li = f(Li—1) + Ri—1 + ki,

R;=1L; 1.

Then (Lg, Ro) is the plaintext, after r rounds, (L,_1, Rr—1) is the ciphertext.
When the parameter (1,8,2) is replaced by (a,b,c) the Simon variant with
the parameter triple (a, b, ¢) using

fape(x) =5x) - Sb(x) + 5(x)

was considered in [30]. Notice that there are

possibilities of parameter triples (a, b, ¢)’s. For Simon2n the sizes of master
keys are mn bits where 2 < m < 4. For Simon32/64 the designed num-
ber of rounds is 32, for Simon48/72 and Simon48/96 the designed number
of rounds is 36. For Simon64/96 the designed number of rounds is 42, for
Simon64/128 the designed number of rounds is 44. For Simon96,/96 the de-
signed number of rounds is 52 and 54 for Simon96/144. For Simon128/128



the designed number of rounds is 68, 69 for Simon128/192 and 72 for Si-
mon128/256.

When the parameter triple is (5,0, 1) this is the Simeck block cipher fam-
ily, see [56]. The designed numbers of rounds for Simeck32/64, Simeck48/96.
Simeck64,/128 are 32, 36 and 44.

The Simon and Simeck are key-alternating block ciphers. We refer the
description of key scheduling to [8, 9, 56]. The round keys for Simon
ko, k1, ka,..., are produced from the master keys ko, ki,...,kn_1, wWhere
m = 2,3,4, as follows

kive =k PUEP S kia P Ci,
kivs = ki PUEP S™)S kira P D,
kiva = ki PUIEP S (S kirs P kir1) P Ei,

where C;, D; and FE; are round-dependent constants. Notice that the key
schedule for Simon is linear. We refer to [56] for key scheduling for Simeck.
The recursion is defined by k4 = k' @ f(K') @ C @ 2*, where C and 2
are constants depending on block size and f is the same function f(5 0 10)
used in the data path. This key scheduling is not linear.

2 Previous results and our contribution

2.1 Previous cryptanalysis of Simon and Simeck

We refer to [1, 3, 4, 5, 20, 39, 34] for the linear and differential cryptanalysis
of Simon. For differential cryptanalysis and rotational-XOR cryptanalysis
of Simon, see [15, 41]. Integral attack and impossible differential attack on
Simon were presented in [32]. The most successful attacks on Simon and
Simeck are from linear (hull) cryptanalysis and differential cryptanalysis in
[34]. In [30] exact and explicit-computable differential and linear behaviour
of Simon-like round functions are derived and optimal differential and linear
characteristics of Simon variants are searched by computer-aided SAT /SMT
solvers. The optimal differential and linear trails were searched by their
explicit calculations of differential probability formula in Theorem 3 and
explicit expression of squared correlation in Theorem 5 of [30]. For general
parameters (a, b, ¢) satisfying gcd(a—b,n) = 1 and a < b optimal differential



trails for 10 rounds of Simon32, Simon48 and Simon64 were searched and
presented in Appendix D of [30]. As analysed by Kd&lbl-Leander-Teissen in
[30], 20 parameter triples are optimal for Simon32, Simon48 and Simon64
with respect to 10 rounds differential attack. The computer-aided search re-
sults about differential tails in [30] was verified in [39]. In [32] it was argued
that (4,1,7) and (12,5, 3) belong to the above parameter triples with opti-
mal security against differential attack have the same security level against
integral and impossible differential attacks as the original Simon. We refer
linear hull cryptanalysis and linear analysis using super rounds of Simon
to [4, 20, 5, 40, 3]. For the latest and known best linear and differential
cryptanalysis of Simon and Simeck, we refer to [7, 31, 50, 52, 34]. For a
nice survey on various attacks on Simon family before 2017, we refer to [9].
The present best attack results are key-recovery attacks due to [34] based
on linear hulls, for example, an attack against 45-round Simon96,/144, an
attack against 42 round Simeck64.

2.2 QOur contribution

We present the Maiorana-McFarland structure based linear cryptanalysis
and differential cryptanalysis. In particular when the round functions are
of algebraic degree two the squared correlation can be expressed directly
from the restricted Maiorana-McFarland structure. The search of good lin-
ear trails is reduced to a search for target vectors satisfying some linear
algebraic properties. In this framework linear hulls can be constructed by
linear algebra techniques. This leads to better attacks based on linear hull
for Simon2n and its variants. To the best of our knowledge this is the first
effort to construct good linear hulls from the structures of round functions,
not from the search.

Based on our linear algebraic search of linear trails of the Simon, bet-
ter linear hulls than the best previous known results in [3, 20, 34] can be
constructed directly. The space of all linear trails in our presentation has
the structure such that linear trails for Simon variants can be operated. We
apply our method to construct better linear hulls for the Simon and Simeck
block cipher family. Then for Simon2n with the linear key schedule, the lin-
ear hull with the fixed input mask and the output mask at arbitrary rounds
can be constructed. The potentials of our new constructed linea hulls are
bigger than 2% Then it seems that theoretically Simon2n and its variants
using linear key schedule are insecure for the key-recovery attack based on



our new constructed linear hulls. This method seems possible to extend to
multiply linear or multidimensional linear cryptanalysis.

As indicated in [45, 38, 37] some discovered differential trails by computer-
aided search/solver are always invalid since contradictions may easily occur
in the set of conditions implied in the discovered differential trails. However
we can check that if the Maiorana-McFarland structure based differential
trails are compatible by algebraic equations. The inconsistency problem
of Maiorana-McFarland structure based differential trails is reduced to the
finding of a solution of algebraic equations. This is analysed in Section 8.

We apply the Maiorana-McFarland structure constructive differential
cryptanalysis to Simon variants. Then we prove that the expected differ-

ential probability (EDP) of Simon2n of arbitrary rounds is bigger than Qi%

under independence assumption. Then even when lower bound EDP over
realistic differential trails, the lower bound is bigger than 22% Combining
with the Maiorana-McFarland structure based linear hull construction de-
scribed as above, at least theoretically Simon is not secure because of its
degree two Maiorana-McFarldand structure round function.

Actually from our Maiorana-McFarland structure based linear and dif-
ferential cryptanalysis, for a Feistel block cipher with a degree two restricted
Maiorana-McFarland structure round function, the space of all effective lin-
ear trails and differential trails can be described almost explicitly. Therefore
operations on linear trails and differential trails are possible. Such opera-
tions on linear trails and differential trails can help to give better potential
and EDP lower bounds. From a linear algebraic and counting argument the
linear hull with the big potential can be constructed, though the complexity
to list all linear trails in the hull is high. Similarly EDP can be nicely lower
bounded.

2.3 Outline of our arguments

The main results in this paper are the lower bounds on the potential and the
expected differential probability (EDP) for Simon2n and its variants, under
the following two independent assumptions, we refer to [33, 25].

1) The linear approximations or differentials of different rounds are inde-
pendent;

2) The linear trails or differential trails are independent.



If these two assumptions are assumed, we prove that the lower bound 2%
on the potential and the lower bound 2% on EDP for Simon2n of arbitrary
long rounds. However for key-alternating block ciphers such as Simon the
above assumptions are not realistic. We argue that by the average method
that the lower bound of potential for the linear key schedule Simon2n, is
strictly bigger than 22% And the EDP for Simon2n with linear key schedule
is much bigger than 22% The basic point is that though the realistic poten-
tial and EDP is not so big when the above two assumptions are assumed,

they are still larger than the threshold.

2.4 No dominant trail

From the construction of linear hull and many differential trails with the
fixed input and output differences, it is easy to see that for a given trail
there are many trails produced from this trail with probabilities not much
decreased. This is easy to verify under the above two independent assump-
tions. Even in the realistic case, this non-dominant property seems true.

3 The Maiorana-McFarland structures and the struc-
ture finding algorithm

Definition 3.1. Let @ : F}' — F4 be a Boolean mapping. If there exists
some variables x;,,...,x;,, where i1,...,4, are distinct indices in the set
{1,2,...,m} such that for each component

b= (Dyq,...,D,),

we have '
Qy(z1,- -, T) = E;-L:ng:rij + Gy,

where G, Gy are Boolean functions of variables in the set {z1, ...z} —

{zi,,...,x;, }, we say that the Boolean mapping ® has a Maiorana-McFarland
structure at the variables z;,,...,x;,. The variables in {z1,..., 2y} —

{zi,,...,x;,} are called non-Maiorana-McFarland variables. We call the

number h the Maiorana-McFarland number of ®. The Boolean mapping GI

is G9 = (G))i=1, m : FP" — FI.



Definition 3.2. Let ® : F)' — F74 be a Boolean mapping. If there
exists some variables x;,, ..., x;,, where i1, ...,%, are distinct indices in the
set {1,2,...,m} such that for each component

D= (Dy,..., D),

we have '

(I)t(xla e 7$m) = Zf:ngf] + Gta
where G{, Gy are Boolean functions of variables in the set {z1,..., 2y} —
{xiy, ... @i, } and f1,..., fg are functions of variables in the set {x;,,...,z;, },
we say that the Boolean mapping ® has a generalized Maiorana-McFarland
structure at the variables z;,,...,x;,. The variables in {z1,..., 2y} —
{zi,,...,x;,} are called non-Maiorana-McFarland variables. We call the

number / the Maiorana-McFarland number of ®. The Boolean mapping GI
is G = (G))i=1,..m : F3~h — F.

It is obvious that a linear Boolean mapping L : F§ — F3* has the full
Maiorana-McFarland structure and the Maiorana-McFarland number is n.
An arbitrary Boolean mapping has at least the Maiorana-McFarland number
1. If & : F5* — F74 has a Maiorana-McFarland structure at the variables
Ziys - .., Ti,, then when the variables in {z1,...,zp} —{z;, ..., x;, } are giv-
en fixed values, ® is an affine mapping from F% to F3.

If some Boolean permutations in a symmetric-key primitives have large
Maiorana-McFarland number h, this is a weakness of this symmetric-key
primitive to the adversary. We now establish an algorithm to find the
Maiorana-McFarland structures of Boolean mappings. It is clear that there
is a one-variable Maiorana-McFarland structure for an arbitrary Boolean
mapping. Hence it is a goal for our algorithm to find the Maiorana-McFarland
number h as large as possible for a Boolean mapping ® : FJ* — FZ,

D(x1,...,xm) = (01(x1, oy Tm)y oo vy On(X1y oy ).
Route. Write
O =D (21,..., %5, Tin)Tiy + P (21,2, T,

where ®; and @) are just Boolean mappings from Fg”fl to Fy. Here
Tly.ves @iy .., Tm are m — 1 variables x1,..., % -1, Ti;+1,- .., Tm- 11 this
step the target is to find an index ¢; such that ®; is a Boolean mapping



from F5"7' to FJ* with the maximal possible j;.

When j; = 1 then the Maiorana-McFarland number of ® is (at least) 1
and the algorithm stops.

When j; > 1 we continue the Route for the Boolean mapping @} for
an index x;, which does not appear in ®;. Hence after this step we have

O =Dy (x1,. .. Ty e oy Ty e ooy BTy + Po(Tr, . Ty Tigy oo, T Tiy +
DY (x1, ... Xy, Ty, - - -, ). The Maiorana-McFarland number of ® is (at
least) 2. Here ®; is a Boolean mapping from F5' 7' to F%, @5 is a Boolean

mapping from anfh to F3, @, is a Boolean mapping from FS%Q to F3.

If j1 = 2 or jo = 2 the algorithm stops. Otherwise we repeat the Route to
®,. This process can continue to one step and we get h Maiorana-McFarland
structure variables of the Boolean mapping ®.

Let g be a fixed round function ¢ : F} — F§, the block cipher can be
modeled as follow.

where N, is number of rounds, Ki, Ks,..., Ky, are N, round keys in F3*,
w is the plaintext and y is the ciphertext.

We consider the following Boolean mapping Gy : Fi ™ — F defined
by
Gt(l‘) K17 v 7Kt) = g(Gt—l(Gt—27 K17 oo 7Kt—1)7Kt)

and check if these G;’s have the Maiorana-McFarland structures at many
variables. If many Maiorana-McFarland structure variables can be found in
Gy, by fixing the values of not many non -Maiorana-McFarland variables,
G} is linear. This weakness can be used to cryptanalysis this block cipher.



From the previous analysis the following Maiorana-McFarland criterion
for the compositions of block ciphers seems reasonable.

The Maiorana-McFarland structure criterion for block ciphers.
The Maiorana-McFarland number of Gy, ’s should be 1 for r; < r, where r is
the real round of this block cipher. Hence for any given G,,, we should take
random fixed values of some random variables and then apply the Maiorana-
McFarland structure finding algorithm to check the Maiorana-McFarland
number of above G,,’s with these fixed values, for ry = 1,2,...,r. These
Maiorana-McFarland numbers can not be large.

However it is difficult to get a compact algebraic normal form for sever-
al round compositions of round functions, the above Maiorana-McFarland
structure finding algorithm is not so help to find the real such structures of
these compositions. The problem of Maiorana-McFarland structure finding
in block ciphers without the ANF is interesting and important. We calculate
the compositions of Simon block ciphers of very few rounds and found that
the Maiorana-McFarland numbers are small.

4 The Maiorana-McFarland structure based linear
cryptanalysis

4.1 General facts

For a Boolean mapping f : Fy — F7, the Walsh coefficient of f with the
input mask o and the output mask 8 in F% is defined by

f(av /6) = EXEFQ(—1)<5’f(X)>+<a,x>.

The squared correlation is

For independent assumptions we refer to [33, 25].

Given input mask a and output mask £ the potential of a linear hull
with the fixed input mask o and output mask [ is

ELP(O(, B) = 2(70,...,’77-)02(047 57707 S a’YT)v

10



we refer to [49, 20, 34]. In general linear hull attack requires O(m)
plaintext-ciphertext pairs to succeed. Linear hull effect means that this po-
tential is significantly larger than the squared correlation of individual linear
trail with fixed intermediate masks. As proved in Theorem 1 of [49] (or see
[6] Section 5), if the plaintext X and the key K are independent and the key
K is uniformly distributed, the the bias of the linear approximation with
the input mask at the plaintext and output mask at the ciphertext is indeed
the sum of all correlation squares over all linear trails over all keys. We refer
to [14, 26, 27, 28, 46, 2, 35] for multiply linear cryptanalysis and multidi-
mensional linear cryptanalysis. For Simon block ciphers, we refer to [6] for
analysing of linear hulls and dependent linear trail contribution calculation,

as compared to the paper [53].

4.2 Squared correlation calculation

The following restricted Maiorana-McFarland structure of the Boolean map-
ping f of algebraic degree two makes the calculation of Walsh coefficients and
squared correlation directly. Suppose that the algebraic degree two Boolean
mapping f has the Maiorana-McFarland number h and has the Maiorana-
McFarland structure expansion f(z1,...,2,) = Fiz1+ -+ Fpop + Fpoq +
Fj 40, where F; : F§™" — F% are Boolean mapping of the (n — h) vari-
ables {xp41,...,2n} fori=1,...,h+1. Fj15 is a linear mapping from the
variables z1,...,x, to Fy. Here for general degree two Boolean mapping
f with the Maiorana-McFarland structure, F}, 41 need not to be linear and
there are possible some degree two terms in Fj,1. We restrict ourselves to
the case Fjy1 is linear. The round functions of Simon variants are typical
such degree two restricted Maiorana-McFarland Boolean mappings.

For such a restricted Maiorana-McFarland degree two Boolean mapping
f, when (z1,...,25) € Fb is fixed,

(_1)2?:133h<57Fj >+<ar,x1>+<B-Fhpo,x1>+<a,x2>+<B-Fpi1,%x2>
M

where x; = (21,...,2p) and X2 = (Tpy1,...,2n), can be calculated. Here
a1 and ag are the first A bit vector and the last n — h bit vector of a. Fj,
j =1,..., h are considered as length n vectors with entries of linear func-
tions of Zp41,...,2Tn. Fpyq is considered as n X (n — h) matrix and Fj1o
is considered as n x h matrix. When the Maiorana-McFarland structure
variables x1,...,xp are fixed < a1,x1 > + < - Fri0,x1 > is a fixed 0 or
1. When the round function f is of degree two the Maiorana-McFarland

11



structure-based calculation of Walsh coefficients and squared correlation is
direct as follows.

When the round function f is of algebraic degree two, then F,..., F}
are linear mappings from F3~" to F§. They are considered as n x (n — h)
matrices. For any given nonzero 8 € Fy, we define a linear mapping Bg as
follows

Bg(F) = (< B, Fj >)1<j<h-

This is a h x (n — h) matrix. For 2" possibilities of z1F + --- + x,Fy
when z1,...,x; take over all vectors in FQL, we denote the linear sub-
space of F} of (x1,...,2,) € Fb such that x1F) + --- + x,F), satisfying
B (x1Fy+---+xpFy) =0, that is, (z1,...,xp) is in the kernel of the linear
mapping F§ — ngh defined by Bg(F), by Ws.y,...F,- The dimension of
this subspace is h — rank(Bg(F")).

For fixed x1, when ag + 8 - Fj,41 is not in the image of Bg, then

(_1)2?:1903'<5,Fj>+<al,X1>+<5-Fh+2,xl>+<02,X2>+<5-Fh+1,xz>
is zero since
Sh_jan < B F >+ < ag,x2 >+ < BFhi1,x2 >+ < o1,%X1 > + < B-Flya,x1 >

is a nonzero linear function on F’;*h. When ag + 8- Fj+1 is in the image of
Bg, then

,,,,,

where x{ satisfies
SPa)B - Fi=ag+ 8- Fupa.

In this case if a; + - Fp19 = 0, then we have

f(a’ ﬂ) _ 2n77'ank:(BB(F))‘

More importantly when < a1 + 8- Fji9,%x1 >= 0 for any given x; € x) +
Ws ry,...r, We also have

f(a’ 6) _ 2n77"ank(BB(F))'

From the above analysis we have the following result.

12



Theorem 4.1. When oz + SFj11 is not in the image of Bg, then
f(o, ) =0, when as + BFp11 is in the image of Bg, we have

= onh <o, x1>+<B Fhyo,x1>
f(a’ﬁ) =2" Zx1EX(1)-f—VVﬁ,F1 ,,,,, Fh(_1> o BrFhyzxs )

where x{ satisfies
SPa)B - Fi=ag+ 8- Fup.

Moreover we have |f(c, 8)] < 2@k (Bs(F),

Corollary 4.1. Only when a1 + B - Fyyo has zero inner product with
each vector in the affine space x9 + Wgr ...k, and as + B - Fyyq is in the
image of Bg, we have

fla )] = 2 renk Bl

We have

fla,8) =0

in other cases.
The following statement is direct from Theorem 4.1.

Corollary 4.2. Only when (a1 + 3 - Fp12) is in the linear span of n — h
columns of Bg, and as + B - Fyq1 1s in the linear span of BF1, ..., BFy, we
have

Fla )] = 2 ronBs(r),
We have

fle, B) =0
in other cases.
Proof. If (a; + f - Fh42) is in the linear span of n — h columns of Bjg,

then < oy + B - Fiq2,%1 >= 0 for all x; € W3 iy . p,. Then the exponent
of —1 is fixed and determined by x{. The conclusion follows.

4.3 Feistel round function

In the case that the round function T of is a Feistel map T : F3" — F3"
defined by

F(x,y) = (f(x) +y,%).

13



We need to computer the squared correlation of this function T. Apply-
ing Corollary 4.1 to this round function we have the following result. Here
~v1 and 7y are the Maiorana-McFarland structure variable part and the re-
maining variable part of a vector v € Fi. Here we only need the restricted
Maiorana-McFarland structure of the algebraic degree two Boolean mapping

f.

Theorem 4.3. Set a = (L(a), R(a)) € F3" and 8 = (L(B),R(B)) €
F2". Only when
1)L(a)1+L(B) Fiyo+R(B)1 is in the linear span of n—h columns of Brgy;
2) L(a)s + L(B) - Fry1 + R(B)2 is in the linear span of h rows of Brg);
9L(B) + R(a) =0,
Then we have T(a, §) = 22777 k(Brs) ()

Proof. From the formula

T(a,ﬁ) _ Ey(_1)<L(ﬁ)+R(a),y>Ex(_1)<L(6),f(x)>+<R(,8)+L(a),x>7

we get the conclusion immediately.

4.4 Computer-aided search

Optimal linear trail. Then the search for optimal r-round linear trails is
equivalent to the following problem to find vectors 8°, A%, ..., 3" satisfying
the following conditions. Here F7,..., F}4q are considered as n X (n — h)
binary matrices and Fj9 is considered as an n X h binary matrix.

1) (B} + 8"t - Fyyo) is in the linear span of n — h columns of Bgit1, and

By + B Fia
is in the linear span of 1. Fy, ..., g1 . Fy;
Here 3} is the Maiorana-McFarland structure variable part of the vec-

tor 4° and f3% is the non-Maiorana-McFarland structure variable part of the
vector S

2)Yi=1rank(Bgi) is as small as possible. The squared correlation is

1

22(Erank(BBi)) ’

14



Local optimal. Find one 8! with rank(Bg:) as small as possible, such
that there is another 3% satisfying 1) and rank(Bg:) is as small as possible.
Then for each given 3" we need to find one 87! satisfying 1) with smallest
possible rank(Bgi+1).

It seems that in almost all cases the local optimal does not lead to the
global optimal. Hence the reasonable search strategy for global optimal lin-
ear trail is to restrict to these ;s such that the ranks of corresponding Bg,’s
are smaller than a certain threshold.

4.5 Computer-aided search for Feistel round function

Linear trail. Then the search for optimal r-round linear trails is equivalent
to the following problem to find vectors (8°,0) — (0, 8%) — (8%, 8!) —
(BY, B%) — -+ — (B, i) — (BT, BiT2) — - .. satisfying the follow-
ing conditions.

1) (B + B Frya) + Bi” is in the linear span of n — A columns of
Bgir1, (B5+ B Fyy) + 3572 is in the linear span of h rows of Bgi+.

2)Xi=1rank(Bgi) is as small as possible. The squared correlation of this
linear trail is

1
22(Erank(BBi )

5 The Maiorana-McFarland structure based linear
cryptanalysis for Simon variants

In this Section we apply the Maiorana-McFarland structure-based linear
cryptanalysis to the Simon variants. Around % of all Simon variant parame-
ter triples are figured out as weakest. We construct linear trails of arbitrary
r rounds of Simon variants Simon2n with probability W%Q for these weakest
parameter triples. Our results show that for some parameter triples, the con-
structive arbitrary round good linear trails from the Maiorana-McFarland
structure-based linear cryptanalysis can be obtained directly. This is out of
reach of the computer-aided search/solver used in [30].
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For the Simon variant parameter triple (a,b, c), since ged(a — b,n) = 1
we can assume that a is odd and b is even. We now expand the function

fape(x) = 8%(x) - S”(x) + 5°(x)
where x = (z1,...,2,)" € F3, as
TPy +a3Fs+ -+ ap1 Fho1 + G+ G,

where Fi, Fs,..., F,_1 are functions of z9,x4,...,z,, and G; is the odd-
position part of S¢(x) and G2 is even-position part of S¢(x). The bit at the
i-th position of fq (%) is

ZTitaZitb + Tite-

Then it is clear we can take the Maiorana-McFarland coordinates i1, iz, . . ., 5,2
as all odd position coordinates. The coefficient vector F; of x; is

0,.. . Ziva—p,0,...,0...,0,Zi1p-a,0,...,0)7

where only nonzero coordinates are x;,,—p at the ¢« — b position and z;yp_q
at the ¢ — a position.

Proposition 5.1 We assume that ged(a—b,n) = 1. Then rank(Bg) =1
when and only when wt(B) =1 or wt(B) = 2 and the difference of the two
nonzero positions of 5 is |a — b|. Suppose that wt(B) = t and there are
ezactly u < | 5] pairs of nonzero positions with difference |a — b| with each
nonzero position counted once, then

rank(Bg) =t — u.

Proof. This is direct computation. We assume a is odd and b is even.
In the case 8 has only one non-zero i-th position, there are the following
two possibilities. If ¢ is odd, Bg has only one non-zero entry at ”Ta‘ column
and M’Tﬂ row. If 7 is even, Bg has only one non-zero entry at # column
and % row. The indices should be calculated module n. The conclusion

follows directly.

Here the pairs of positions means that these pairs of indices are i1, 79, ..., 7,
..,jl,jQ,...,jl satisfy j1 — 4 = b—a = 7,...,jl —il =b—a= 7., and
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J1,J2,---,Ji is out of the set {i1,...,7}. That is, each index can not be
counted more than once in pairs.

Proposition 5.2. In one of the following cases we have one arbitrary
r-round linear trail of probability 2%%2 for the Simon variant with the pa-
rameter triple (a,b,c).

1) 2¢ =0 mod n or;
2) b=c modn or;
3) b+ c=0 mod n.

Proof. We construct the linear trail in the case 3). Let 8 € F4 be a vec-
tor supported only at an arbitrary odd-position. Then the following linear
characteristic satisfies the requirement. (/3,0) — (0,3) — (5, 5°(8)) —

(S°(B), 8%(B)) — (5%(B), S%(B)) — (S°(B), §(B)) — (S*(B), 5°(B)) —

The linear trail in case 1) can be constructed as follows. (5,0) —

(0,8) — (8,5°(B)) — (8°(B),0) — (0, 5%(8)) — (S°(8), 5%(B)) —
(5%(8),0) — -+~

The linear trail in case 2) can be constructed as follows. (3,0) —
(0, 8) — (8,5°(8)) — (5°(8), B) — (8,0) — (0,8) — (5,5°(8)) —
(59(8),8) — (8,0) — ---.

Computer-aided search of linear trails for the Simon variants

We assume that a is odd and b is even. 8 € Fy and Bg is a § x § matrix

which is determined as follows. Suppose that g has only one non-zero i-th

position. If 7 is odd, Bg has only one non-zero entry at H'T“ column and

i+b+1 ¢ itb

2 2

i+a+1
2

row. If i is even, Bg has only one non-zero entry a column and
n

row. The indices should be calculated module - Then Bg is deter-

mined from the linearity.

Then rank(Bg) = 1 when and only when wt(3) = 1 or wt(f) = 2 and
the difference of the two nonzero positions of §is b —a = 7.

Example 1. For g = (1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0), the matrix
Bg is a rank 2 matrix as follows.
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000 O0O0O0TO0OO O
00001O0O0O0
000 O0O0OO0TO0OO O
000 0O0O0OO 0O O
10 000001
000 0O0O0TO 0O O
000 O0O0OO0TO0OO O
000 O0O0O0OTO0OOP O

Search. The search for optimal r-round linear trails for the Simon
variants are equivalent to the following problem to find vectors (3!,0) —
(0,8") — (B',8%) — (B*,8°) — -+ —> (B, 8) — (B, %) —
-+ - satisfying the following conditions.

1) The odd-position part of the vector (8% + S¢(B°t!) + 3i2) is in the
linear span of § columns of Bgit1, the even-position part of (B4 S¢(BHH) +
B2) is in the linear span of % rows of Bgit1.

2)Xrank(Bgi) is as small as possible, where rank(Bg,) can be calculated
from Proposition 5.1. Then the squared correlation of the corresponding

linear trail is )

22(Erank(BBi )"

Our search strategy is to restrict to these masks such that their cor-
responding ranks are smaller than a certain threshold. This is reason-
able not only for the Simon variants including the Simeck but also for
other lightweight block cipher families. On the other hand we observe
that the above search has no structural connection for various parameters
n = 16, 24, 32,48, 64 since S? and the formation of the matrix Bg. It has to
search for each n and there is no transformation from chains of vectors in
F7 satisfying connecting condition 1) to chains of vectors in F3" satisfying
connecting condition 1).

Proposition 5.3. Around 22% fraction vectors of all nonzero vectors

B in F™ have their B matrices with their ranks 1. Around 9712(,7;22) fraction

vectors of all nonzero vectors 8 in F™ have their B matrices with their ranks
2. Around W fraction vectors of all nonzero vectors 3 in F™ have

their B matrices with their ranks 3.
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Proof. This is direct from Proposition 5.1.

For Simon32, n = 16, around ﬁ fractions of vectors in F1 have their B
matrices with rank 2. For Simon48, n = 24 around % fractions of vectors

in F3* have their B matrices with rank 2.

6 Linear hull construction

The connecting condition 1) in the search for linear trails for Simon variant
block ciphers as showed in the previous section is totally linear-algebraic.
Hence this gives some ”structures” on the whole set of linear trails, which is
suitable to do linear hull, multiple linear or multidimensional linear crypt-
analysis, see [49, 14, 26, 27, 28]. As noticed in [6, 2] for Simon block ciphers,
linear trails with intermediate masks should be counted carefully to grantee
the potential formula in [49] is correctly used. In our counting of different
linear trails for Simon variant block ciphers, only linear trails with different
intermediate masks on the left sides are counted. Hence the potential for-
mula in [49] can be used in our linear hull construction.

6.1 Operations on linear trails

Proposition 6.1. Let 3: (8',0) — (0,8') — (8%, 8%) — (B%,83) —

- — (B, BY) be a chain of vectors satisfying the connecting condition 1).
The operation S€(X) = (Tey Teq1y -y Tly- -y Te1), wherex = (T1,...,%y) €
F%. For positive integer ¢, S°(3) is the chain of vectors s°(3). When c is
even, S¢(B) is another chain of vectors satisfying the condition 1).

Proof. From Proposition 5.1 the contribution of rows and columns from
B matrices are shifted by S¢, therefore the conclusion follows.

Proposition 6.2. Let 3 : (8',0) — (0, 8) — (8, 8%) — (8%, 3%) —
o (B8 and vy - (41,0) — (0,91) — (v1,97) — (vF9%) —

- — (Y7141 be two chains of t vectors in FY satisfying the connecting
condition 1). Suppose that for any 1 coordinate in the supp(B+1) N supp(v+1),
the columns and rows corresponding to this 1 in Bgit1 and B+ are not used
to construct 572 or v*2 for alli =0,...,t —2. Then the sum of these two
chains of vectors B+~ : (B1++1,0) — (0, B +41) — (B 441, B2 +42) —
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B2+ 2,82 +73) — - — (BT + AL B+ 4Y) satisfies the con-
necting condition 1). In particular if supp(BY) N supp(yith) = 0, for
i =0,...,t — 2, the sum of two chains of vectors satisfies the connecting
condition 1).

Proof. This is direct from the condition 1).

Proposition 6.3. Let 8 : (8, 3%) — (B%,8%) — - — (B4, )
be a chain of vectors satisfying the connecting condition 1). Then [FT¢V¢5¢ .
(B, B — (B, B72) — - — (B2, BY) is a chain of vectors satisfy-
ing the connecting condition 1).

Proof. This is direct from the condition 1).

From Proposition 6.3 we can glue two chains of vectors such that the
first and the last two vectors are fixed arbitrary vectors in F3". Then we
can get a linear trail with the arbitrary input mask and output mask.

Proposition 6.1, Proposition 6.2 and Proposition 6.3 can be used to con-
struct many linear trails with the same input mask and output mask, the
correlation squares have to be calculated for each such linear trails. This
can be completed with the aid of computer search about the condition

supp(B1) () supp() = 0

and the squared correlation calculations. The ”structures” of the whole set
of linear trails can be used to do better linear hull construction. Notice our
method is essentially different with the papers [24, 34].

Computer-aided search for linear hull construction 1.

For Simon2n we do the the following several steps to construct a good
linear hull.

The 1st step: Construct a chain of vectors satisfying connecting condition
1), of length equal to the required round number, such that the Hamming
weights of each vector in this chain is small, for example, upper bounded by
3 or 4. Operation in Proposition 6.3 can help to get such a chain of vectors.
Set Ymain is the squared correlation of this main linear trail. For example,
Ymain Might be 26%1.
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The 2nd step: Construct many short chains of vectors satisfying the
connecting condition 1), of the length smaller than § with vectors with low
Hamming weights. The first vector is of the form (0, ') and the last vector
is of the form (3,0), where v < §. In many cases long linear trail in the
1st step is the glue of short chains of vectors found in the second step. That
is, search of short chains of vectors satisfying the connecting condition 1)
and with the small rank sum is sufficient.

The 3rd step: Using Proposition 6.2, to check if the intersection of sup-
ports of vectors in short chains in the 2nd step and some intervals of the
1st step chain is empty. If it is, we can add short chains to this interval of
the main chain constructed in the 1st step, to get a new chain of vectors
satisfying the connecting condition 1) from Proposition 6.2. If the intersec-
tion is not empty, using the operation S¢ with an even positive integer ¢ to
move the supports of these short chains and test if the intersection is empty.
Then in this way, a lot of new chains of vectors satisfying the connecting
condition 1) and with the same input mask and output mask as the main
linear trail constructed in the 1st step can be obtained.

In general the squared correlations of these Proposition 6.2 operated new
linear trails are lower bounded by Wg% for some positive integer T, if the
number of new linear trails is very large, the good linear hull is obtained.
More importantly, the linear trails in this hull has low Hamming weight in-
termediate masks.

Example 2. Consider the following 7 vectors in Fi,
A = (0000000100000000),

4% = (0000010010000000),

5% = (1001000100000000),

B* = (0000000010010011),

8% = (1000000000000100),

8% = (0000010000000001),
BT =o0.

This is a chain of vectors satisfying the connecting condition 1) and the B
matrices have their ranks at most 3. The rank sum of B matrices is 11.
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Since 39 is of Hamming weight 1 we can operate on this short chain S¢(3)
of vectors by Proposition 6.1, where ¢ is an even number, and then glue to
get long chain of vectors. We also can add some short chains of vectors of
the form S¢(8) to the long chain of vectors from Proposition 6.2.

6.2 Linear hull construction

We observe that if the input mask is fixed, in each step to construct 372 the
columns and rows of the matrix Bgi+1 can be used span a linear subspace of

5 of the dimension equal to 2rank(Bgi+1). We only need the output mask
is the same.

The construction of linear trails is as follows. From arbitrary first o!,
the chains of vectors satisfying 1) are constructed in each step by using all
possible /2 of the form

ol + S’c(aiﬂ) + v,

where v takes all 227%"*(Bai+1) possible vectors in the linear subspace of Fj
spanned by rows and columns of the matrix B,i+1 as in the condition 1).
Then we have a lot of chains of vectors as in the following Proposition 6.4.

Proposition 6.4. For Simon2n or Simon variant with cipher size 2n,
from an arbitrary input mask (0,a') after arbitrary round R, we can con-
struct a linear hull with the fized output mask (a't,af**1). The potential is
bigger than or equal to 22% The complexity to list all linear trails in this lin-
ear hull is 2251 (rank(BL0) - yhere o 0,a') — (at,0?) — (a?,03) —

- — (aff, af**Y) is a chain of vectors in FY satisfying the condition 1).

Proof. For intermediate masks we only use different linear trails with
different left components. Hence the problem indicated in [6] doe not happen
in our linear hull construction. From the first o', in each step to construct
a2 from o and o' we use contributions from the linear span of rows and
columns in the matrix B,:+1 such that B+ has the maximal possible rank.
Then we have a chain of vectors a : (0,a!) — (a!,a?) — (a?,03) —

- — (af, af*1) is a chain of vectors in F} satisfying the condition 1).
For any other possible choices of a2, the corresponding linear trails has
squared correlations not smaller than the potential of this chain. Then the
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squared correlation of each such linear trail is at least

1
222{":1(7"ank(B )N -

at

Notice that the number of linear trails constructed as above is upper bound-

ed by
222?‘:1 (rank(B_;)) )

at

We give the proof that the sum of squared correlations of above linear
trails is 1. First of all we fixed all a!,...,a®, then there exact 2279"F(Byr)
possible a1 the sum of all these 227*"*(Byr) linear trails is

227“ank(BaR) 1

22]?:12rank(3ai) N 22?’:_1127"an(B )’

at

Then we fixed all !, ..., o1 and sum all squared correlations over all pos-
sible (aR, a®*1). Notice the number of all such possible (aR, a®*1) is upper
bounded by 22(rank(Byr-1)+rank(B,r)) -~ The sum of squared correlations is

exact
22rank(BaR_1) 1

o¥I 2rank(Bi)  o¥I*2rank(B,;)’

Continue this process the sum of all linear trails is exact 1.

There are at most 22" output masks (aft,af**1)’s in F2". By collecting
linear trails with the same last two vectors in the chain of vectors among
all above linear trails, we get a linear hull with the same input and output
mask. The potential is at least 22% The conclusion follows.

Computer-aided listing of all linear trails in the hull 2.

Seta=1,b=8and c=2. § € F} and Bg is a § X 5 matrix defined as
follows. Suppose that 3 has only one non-zero i-th position. If i is odd, Bg
has only one non-zero entry at % column and % row. If ¢ is even, Bg has
only one non-zero entry at % column and % row. The indices should be
calculated module 5. Then Bg is determined from the linearity.

Search. To find a chain of vectors (0,a!) — (at, %) — (a?,a3) —

- — (af, ) — (it aft?) — ... satisfying the following condi-
tions.
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1) The odd-position part of the vector (o + S¢(ai*!) + ai*?) is in the
linear span of § columns of By:+1, the even-position part of (o' +8¢(at ) +
o'*2) is in the linear span of % rows of Bi+1.

2) In each step to construct a**2 from the condition 1), we want find
one such /™2 with the maximal possible rank(B,i+2).
3) Collecting linear trails with the last two vectors fixed.

4) Among 232 possible last two vectors or output masks, there is at least
one such output mask such the sum of squared correlations of linear trails
with this fixed last two vectors or output mask, is at least 2%

Using this search the required chains (linear trails) of vectors with the
fixed two first vectors (input mask) and last two vectors (output mask) in
Theorem 6.1 can be found. However there are too many linear trails and
this search in Theorem 6.1 is not good enough to construct a nice linear hull.

We observe that if for some o', the matrix B,i+1 is of rank 5, then
a2 can be an arbitrary vector in F3. In the above Proposition 6.4 the
a'*? after this vector in the chain can have the maximal rank. Hence the
total rank sum in Proposition 6.4 and the complexity to list all linear trails
in Proposition 6.4 is large. However if a® is chosen as a fixed vector with
smallest possible rank 1, this will help us to get the fixed right component
aff*t1 of the output mask among 2" vectors in F§. The following result

follows.

Corollary 6.1. Lett < § be a positive integer. In Proposition 6.4, a-

mong all chains of vectors with one fized o with the property that rank(B,r) <

t, we collect linear trails with the same o1, there is a linear hull with the
fized output mask (aft,aftt1). The potential is at least T}m

Hence it is proved that the input mask can be arbitrary and the left
component of the output mask can be arbitrary. If a lot of chain of vectors
are found such that the R — 1-th vector o~ 1’s in all these chains of vectors
have their B,r-1 matrices of the full rank 7, many chains of vectors with
the above property can be constructed such that the final o of the maximal
rank(B,r) can be fixed as in Corollary 6.1. Then the last fixed a1, the
right component of the output mask can be an arbitrary fixed vector in F7.

The potential is at least 22%
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6.3 Glue of chains of vectors and the sum of the squared
correlations

Let a : (0,a!) — (al,a?) — (e%,03) — -+ — (af,af!) be a

chain of vectors satisfying the connecting condition 1), and 3 : (0, ') —
(B, %) — -+ — (B, B+1) be another chain of vectors satisfying the
connecting condition 1). Assume than (off, oft1) = (841 B8R From
Proposition 6.3 we have a glued chain of vectors « ® 8 : (0,a!) — (at,a?) —
(a2,a3) SN (QR7QR+1> _ (5R’+1’BR’) SN (ﬂR”BRLl) N
(8',0). Using these glued chains of vectors linear trails with the same input
mask and the same output mask can be obtained. We need to calculate the

sum of squared correlations of all such glued linear trails.

We start from an arbitrary o' and reach a vector off with that the prop-

erty the rank(B,r) = %. Similarly we start from an arbitrary (0,3') and

2. Then (afft!, afi+2)

can be an arbitrary vector in F3" and (ﬂR/H,ﬁR/”) can be an arbitrary

vector in F2". Then the above glued chains of vectors can done for any two
such chain of vectors.

reach vector 5% with the property the rank:(BﬁR/) =

Theorem 6.1. From an arbitrary nonzero fized first two vectors in Fy,
after at most 5 wvectors we have a chain of vectors satisfying the connect-
ing condition 1) such that the B matrices of the last two vectors are of the
full rank 5. The sum of the squared correlations of above glued linear trails
with the fived input mask (0,al), where o' € F% is an arbitrary nonze-
ro vector, and the fived output mask of the the form (B',0) where B € F%

. . . 1 _ 1 1
s an arbitrary nonzero vector, is at least TR B rr2) 22m"’“<3ﬁR/+1) = om-

Proof. The first conclusion follows from a direct calculation. As in the
proof of Proposition 6.4 we sum over fixed previous vectors, the only missing
vector is aft2 = R+ The conclusion follows.

Notice that at the glue round, rank(Byr+2) = rank(Bgrs 1) can be from
1 to 5, hence the real lower bound is much larger.

This glue method give us a better linear hull than Corollary 6.1. How-

ever the difference is only i. From Proposition 5.3 the fraction of linear
trails with these intermediate masks with low rank B matrices in the hull is
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significant. Since low rank B matrix implies that the low Hamming weight
of the intermediate masks, it seems that in both Proposition 6.4 and Theo-
rem 6.1, the fraction of linear trails with low Hamming weight masks in the
constructed linear hull is not small.

Secondly for Simon2n, for a fixed squared correlation product (fixed rank
sum), there are many linear trails (chain of vectors satisfying the connecting
condition 1)) with the same rank sum. This observation shows that it seems
not good to pick up only several linear trails with the largest squared corre-
lation product, we should search a batch of linear trails with large squared
correlation product.

6.4 Independent linear trails for linear key schedules

In this subsection we show hoe to construct linear trails which are indepen-
dent for key schedule in the Simon. The main point of the construction is
the linearity of the key schedule of Simon round keys.

Notice that the round keys are only XORed at left n bits and the key
schedule is linear, then from Lemma 1 in [2], if two linear trails are not equal
then they are independent. Hence for two linear trail with masks of the form
(ai,...,ag) and (a),...,a%R), if (a1- A1+ -+arARg)- (ko,..., kmn-1)" € F}
is not equal to (a}-A+-+aRAR)-(ko,. .., kmn—1)" € F§, where Aq,..., Ap
are 16 x 64 matrices determined from the linear key schedule of Simon or its
variants and ko, ..., kmn—1 are the mask keys, then these two linear trails
are independent. Notice that there are 2" possible values. Hence if for each
such a value of if (a1 - Ay + -+ arAR) - (ko,...,kmn—1)", pick up only a
linear trail among the linear trails constructed in Theorem 6.2, with the

maximal squared correlation. Then the sum of squared correlations of such
1

independent linear trails is at least %i,i = 2% However the potential is 2%

only when for each value of (a1 - A1+ -4+arARg)-(ko,...,kmn-1)" € F4, the
squared correlations of all these linear trails are the same. This is not true
from a direct computation for Simon2n block cipher. Hence we have the
following result. Actually from the above argument the realistic potential
should be much larger.

Theorem 6.2. For Simon 2n and its variants of at least n rounds, with

the linear key schedule, we can construct a linear hull with the fixed input
mask (0,a'), where o' € F% is an arbitrary nonzero vector, and the fized
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output mask of the the form (B',0) where B € FY is an arbitrary nonze-
ro vector. These linear trails in this linear hull are independent for rounds
keys. The potential of this linear hull is bigger than 22%

Actually in the process to pick out the linear trail of the largest squared
correlation for each value in F4 of the intermediate sum, only the average
lower bound in given in the above argument of Theorem 6.3, hence the real
potential should be much larger than 22% Observe Proposition 5.3 the low
Hamming weight requirement is reasonable.

Computer-aided search for liner hull construction 3.

The 1st Step: Using Proposition 6.3 to get many chain of low Hamming
weight vectors in F3. The length is the number of required round in the
design. In this way, the input mask and the output mask is the same.

The 2nd Step: Check if the sum of the intermediate masks and round
keys as above is the same, if the value is the same, only the linear trail with
the largest squared correlation is picked out.

Finally we try to find such chain of vectors as more as possible. Then we
get a linear hull consisting of linear trails which are independent for round
keys. To calculate the potential of this linear hull to check if it is bigger
than 2;%.

From the theoretical argument in Theorem 6,3 if without the low Ham-
ming weight requirement in the 1st step, the potential should be large than
1

72 -

6.5 Independence for different rounds

We observe that for a linear trail such that ag - kg, ...,ar - kg are linear
independent linear forms on F5'" of master keys, where ko, ..., kg are round
keys from the master keys, then the linear approximation of different rounds
are linear independent, because the key schedule of Simon is linear. Hence
the chains of vectors satisfying the connecting condition 1) lead to linear
dependent form of master keys is at most % in all summation in Proposi-
tion 6.4, Theorem 6.1 and 6.2. Thus the summation in potential over these
round-linear-independent linear trails of the constructed linear hull should
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be half of the summation as above. From this argument the real potential
summing over round-linear-independent linear trails is also bigger than 22%

7 Linear hull construction for Feistel block ciphers
with degree two restricted Maiorana-McFarland
structure round functions

We observe the connecting condition 1) for the Feistel block ciphers with
the degree two restricted Maiorana-McFarland round functions in Section
4.3.

Connecting condition 1). The search for optimal r-round linear trail-
s is equivalent to the following problem to find vectors in F%, (5°,0) —
(0,8%) — (8%,8") — (B',8%) — -+ — (B, B"F) — (B, B'F2) —
-+ - satisfying the following conditions.

1) (B + B Fyo) + Bi“ is in the linear span of n — h columns of
Bgis1, (85 + B Frp) + B2 is in the linear span of h rows of Bpgit1.

Similarly as the case for Simon we can consider the similar results as
Theorem 6. 1 and 6.2 for this block cipher. In general the sum of squared
correlations of all glued linear trails is at least 2% The main problem is
if the conclusion in Theorem 6.3 is true for the key-scheduling. The case
of Simon and variants with linear key schedule are showed that linear hull
with the large ELP can be constructed and the linear trails in the hull are
independent.

Theorem 7.1. Let Feistel(f) be a key-alternating Feistel block cipher
with the degree two restricted Maiorana-McFarland round function f. The
length of this block cipher is 2n. Suppose the required number of rounds
1s large and the key schedule is linear. Then there is a linear hull with its
potential at least ﬁ

We speculate that the Feistel structure is not the key for the construc-

tion of above linear hull. It seems that the degree two restricted Maiorana-
McFarland round functions lead to the existence of this kind of linear hull.
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8 The Maiorana-McFarland structure based con-
structive differential cryptanalysis

8.1 General facts

For a Boolean permutation ® : F' — F3' and two given difference o and
B, the differential probability is

Pla s )= XS B0 = )|

where Ay (x) = ®(x+a)+ P(x). Then the differential probability of several
rounds with differences aq, ..., q, is

P(Oél — % . Odr) = P(al — QQ)P(OQ — 063) : "P(Oér—l — OCT)

if «; is transformed to «;41 by the round function. For the fixed input dif-
ference a1 and the output difference «., the expected differential probability
is

EDP(a; — ay) = Zq,,...ar Plan — a2)P(ag — a3) -+ Plap—1 — )

if the round keys are assumed independent and uniformly random, we refer
to [33, 25].

The following simple result means that the difference at the Maiorana-
McFarland structure coordinates leads to simple function difference.

Theorem 8.1. Let @ be a Boolean mapping with the Maiorana-McFarland
structure at the variables x;,,...,x;, . Set

vi=(0,---,1,---,1,0)
the vector in F5' only supported at subset I C {i1,...,in}. We have

AV(X) = (I)t($1v cy Ty + 17 Ty Ty, +17 to ,iL'm) +q)t(x1> to 733m) = E?EIGg
Proof. This is direct from the expansion in the Definition 3.1.
In the case that the Maiorana-McFarland structure coordinates can be

distinguished from a Boolean permutation f, Theorem 5.1 can be used to
establish the output differential

(.3l
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at the positions '

with the input difference vi. There are 2" such input differences. The

advantage of such input-output differential pairs is as follows, the identity
S((x1,. .., Zm) + V1) + B(x1, .., ) = (.81 Gl)

is valid for all Maiorana-McFarland structure variable coordinates x;,, ..., x;, .

Probability calculation. Let Gy = ZjGIGj , for any given v in the
image SG1 C F3', let Gy = {%X : Gi(X) = v}, where X is the vector
of variables in {z1,...,zm} — {xi,...,z;, }. The probability that a vector
x € F5' leads to the the input-output difference relation

fx+vi)+ f(x)=v

is

_ |Gy 2" |Gry]

P(vi —v) = om S
where % is just the probability about the variables in the set {x1, ...,z }—
{xi,,..., @i, }. Here it is very interesting to notice that the probability on-

ly depends on the variables in the set {z1,...,zm} — {zi,..., @i, }. This
is because the Maiorana-McFarland structure-based input-output relation
Theorem 6.1 holds for any given inputs of variables of {x;,...,z;, }. It
is clear that when the Maiorana-McFarland number h becomes bigger the
probability as above becomes bigger. Then the high Maiorana-McFarland
number perhaps leads to high probability differential characteristics.

8.2 The Maiorana-McFarland structure based differential trail-
s when the algebraic degree of round functions is 2

When the Boolean permutations with the Maiorana-McFarland structure are
of algebraic degree two, it is obvious that Boolean mappings G7 and Gy are
algebraic degree one Boolean mappings from Fg”*h — FZ. Hence G, Gy’s
are linear. This in this case establishing the Maiorana-McFarland structure
based differential trails from Theorem 8.1 is easy.. Let I C {i1,...,4,} and

Gi1 = BjerGY

be the mapping from an—h to F§. The image J(Gi) of Gy is the main
point in the Maiorana-McFarland structure-based differential cryptanalysis.
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8.3 Establishing t-round differential trails

The following result is direct from the Maiorana-McFarland structure com-
putation.

Corollary 8.1. Let ® : F§' — FI' be an algebraic degree two Boolean
mapping. It has the Maiorana-McFarland structure at the variables z;,, ..., x;, .
Suppose that there exists a subset I C {i1,...,ip} such that Gy be a linear
mapping on variables in the set {z1,...,xm} — {zi,...,x;,}. For any giv-
en v € SGp C FS, let Gry = {X : Gi(}X) = v}, where % is the vector
of variables in {x1,...,xp} —{xi,...,xi, }. Then we have a message space
Evy = {(M, M) : M € Gyy, M' = M+v} such that &(M)+®(M') = v
for each (M,M') € Ewary- Euury is an affine space of dimension
dim(GLV).

For the purpose to get t-round algebraic equations of the differential
trails for the Boolean mapping ® : F3* — FJ', where ® is a composition of
degree two Boolean permutations, we need to do the Maiorana-McFarland
structure based differential consecutively as follows.

First at the last ¢-round, we need to find as more Maiorana-McFarland
structure variables x;,,...,x;s, as possible and a subset I; C {iy,...,i"},
such that v € $(Gry,). Then the ¢-round condition of the form

Gr(x+ki1)=v

forx+k; 1 € Fg”_ht is imposed, where k;_1 is the non Maiorana-McFarland
part of the ¢ — 1-th round keys.

Secondly at the t—1-round, we need to find as more Maiorana-McFarland
structure variables z;,, . .. y T AS possible and a subset I;_; C {iy, ... ,ghi—1 IS

such that vi, € J(Gy,_,). Then the (f — 1)-round condition of the form

Gr, , (X + kt—Q) = VI,

for x + k;_9 € F;n_ht’l is imposed, where k; o is the non Maiorana-
McFarland part of the ¢ — 2-th round keys. Here vy, € F3' is the support

vector of the coordinate positions of the subset I; C {iy,...,i"}.

Thirdly at the £ — 2-round, we need to find as more Maiorana-McFarland
structure variables z;,, ..., x;n,_, as possible and a subset I; 5 C {i1,. . yipt—2},
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such that vy,_, € $(Gy,_,). Then the (¢ — 2)-round condition of the form

Glt—z (X + kt—S) = VI,

m—hg_o

for x € F, is imposed, where k;_3 is the non Maiorana-McFarland
part of the t — 3-th round keys. Here vy, , € F4§' is the support vector of
the coordinate positions of the subset I; 1 C {i1,...,i"1}.

We can continue this process to the the first round. Combining all round
conditions
Gr, (@1 (%) + ki1) = v,

GIt—1(®t72 (X) + kt—Q) = VL,
Gr,_, (q)t—?)(x) +ki—3) = vi,_,,
GI1 (X + ko) = VI,.
This is a system of algebraic equations on the initial input bits in F3".
Here it is important to notice that though in the (¢ — 4)-round condi-

tions where ¢ < ¢, it is linear, the linear conditions Gy, , is imposed on
®;_;_q0---0®Py(x). Hence this system of equations is not linear.

8.4 Independent condition and inconsistency

When the above algebraic equations are independent, then the probability
of the above Maiorana-McFarland structure based differential characteristic
is

‘GI, | |GIt—17VI | ’GILVI |
P,(‘]I1 — \/I2 R — V) — 2mt_;: . 2m_h t .. 2m_h2

If Gy,,G1, ,,..., G, are independent linear mappings, then the above
algebraic equations are independent.

As indicated in [45, 37, 38|, some discovered differential trails of per-
mutation based hash functions by computer-aided search/solver are always
invalid since contradictions may easily occur in the set of conditions im-
plied in the discovered differential trails. In the above Maiorana-McFarland
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structure based differential trails the existence of real differential trail is
formulated by a system of algebraic equations as follows.

Gp, ("' (%) + k1) = v,
GItfl(q)t_2 (X) + kt—2) = VI,,
GIt—z (q)t_g(x) + kt—g) - vIt,17

G11 (X + ko) = VI,-

If we can find a solution of this system of algebraic equations, then we
get a desired real differential trail. When the round number is not big,
this method is efficient. The Maiorana-McFarland structure based differen-
tial cryptanalysis can be thought as deterministic and constructive. If the
above algebraic conditions are independent, the differential probability of a
difference trail is indeed the product of round differential probability, that
is, the conditions at each round is indeed independent.

8.5 Computer-aided search

Global optimal. The optimal Maiorana-McFarland structure based 7-
round differential trail problem can be formulated as follows. Find subsets
I;,...,I, satisfying that

-1
E;:1 |GIj VI ‘
is as small as possible.
Local optimal. For given vy, ,, we find one subset I; C {i1,...,;} such
that
‘G1r7v1r+1 ‘

is as small as possible. Then for given subset I, and the vector vy, we find
one subset I,y C {i1,...,7;} such that

| GIrfl sVIp |

is as small as possible.

In general local optimal does not give the global optimal. Hence the
search complexity is large.
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9 The Maiorana-McFarland structure based dif-
ferential cryptanalysis of the Simon variants

9.1 Difference vectors

In this Section we apply the Maiorana-McFarland structure-based differen-
tial cryptanalysis to the Simon variants. Around % of all Simon variant
parameter triples are figured out as weakest. We construct linear and d-
ifferential characteristics of arbitrary r rounds of Simon variants Simon2n
with probability 22%2 for these weakest parameter triples. Our results show
that for some parameter triples, the constructive arbitrary round good lin-
ear and differential characteristics from the Maiorana-McFarland structure-
based cryptanalysis can be obtained directly. Much better linear hull effect
with more rounds is also presented.

For the Simon variant parameter triple (a,b,c), since ged(a — b,n) = 1
we can assume that a is odd, b is even and c is even. Consider the Boolean
permutation

Fabe(x) = 5(x) - S°(x) + 5°(x),

we can take the Maiorana-McFarland coordinates i1, 2, ... ,%,/; as all odd-
position coordinates or all even position coordinates. For each Maiorana-
McFarland coordinate z; the coefficient vector G* of x; is

©,.. . Zira—p,0,...,1,0. .., Titp—a,0,...,0)7

where only nonzero coordinates are z;,_p at the ¢ —b position, 1 at the ¢ —c¢
position and z;14_, at the i —a position. Let e = (0000000100000000), then
Ae(f) = f(x+e) + f(x) = (00000121500000000x1). This simple example
shows that for an input difference vector «, the output difference vector S
can non be arbitrary since the 6-th coordinate is always 1.

Therefore if we take even number position coordinates as Maiorana-
McFarland variable and construct differential trail as in Theorem 8.1, for
each difference vector a supported only at even number positions, in the
image I(Aq(f)), for i € supp(a), the coordinate at the odd number i — a
position has to be zero. Hence we need impose wtg(a) conditions on the
coordinates at odd number position variables such that the next round dif-
ference vector is always supported at even number positions.
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The differential trail is of the form (a?,a!) — (a3,0?) — -+ —
(@t o) — (a2 a'*1), where o € F%. The connecting condition is as
follows,

at? =v+al,

where f is the round function in Simon variant block cipher, v € (A i+1(f)).

Here A, it1(f) is the affine mapping from F2 of non Maiorana-McFarland
variables, that is, the affine mapping from § odd position variables to F&.
We call such a chain of difference vectors admissible if all a*’s are supported
only at even number positions, such that the Maiorana-McFarland struc-
ture based differential trails can be constructed as in Theorem 8.1. The

differential probability of an admissible chain of difference vectors is

1

22?:1th (ad)

We figure out some Simon variant parameter triples with large differen-
tial probability.

Theorem 9.1. For Simon variant with block size 2n and parameter
triple (a, b, c), suppose that (a,b,c) satisfies one of the following conditions
1) a=cmodn or;

2) b= cmodn or

3) b+ c=a mod n.

Then there is a differential trail of arbitrary round r with the probability
1

22r—2 -

Proof. In the case of Simon variants with parameter triple (a, b, ¢) sat-
isfying a = ¢ mod n or b = ¢ mod n. The above G* of ; is (0,...,Zi1p—q +
1,0...,%44-5,0,...,0)" where only nonzero coordinates are x; ,_p at the
i — b position, 1 4+ x;1,_, at the i — a position if a = ¢, or the G° is
(0,...,%i1p-a,0...,Zirq—p+1,0,...,0)” where only nonzero coordinates are
ZTi+b—a + 1 at the ¢ — b =i — ¢ position, x;1,—p at the ¢ — b position if b = c.
In both cases we have a long differential characteristic of arbitrary r round
with probability 2%%2 of the difference chain (Left:0,...,1,...,0, Right :
0,0...,0) — (Left:0,...,0,Right :0...,1,...,0) — (Left :0,...,1,
...,0,Right : 0,0...,0) — (Left:0,...,0,Right : 0...,1,...,0) — - --.
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In case 3) we consider the following chain of Maiorana-McFarland vari-
able positions

(ili—¢) — (i—b+ali) —s (i—2b+2ali—b+a) — (i—3b+3ali—20+2a) —s ---

In this process the nonzero coordinates 1’s at the positions ¢ —c, i —b+a —c,
i—2b—c+2a, i—3b—c+3a, - - - are vanished by the 1’s from the right positions
i,1—b+a,i—2b+2a, - - - from the fact i—hb—c+h)a =i—(h—1)b+(h—1)a
mod n. The conclusion follows immediately.

9.2 Operations on differential trails

Then we have the following operations on differential trails as in the linear
hull case.

Proposition 9.1. For an admissible chain of difference vectors o, S¢(ax)
s another admissible chain of difference vectors if ¢ is an even number. For
two admissible chain of difference vectors a : (a?,a') — (a3,a?) —
RPN (aiJrl’ai) N (Ozi+2,ai+1) and 6 . (62’51) — (53’52> e
(B, B7) — (B2, B7+1), if supp(a’) N supp(B') = 0, then the sum o+ 5 :
(0424-52,0(14-51) N (a3+ﬁ3,a2+52) ey (OzH_l—I—BH_l,O(i—l—ﬁi) N
(a2 + Bi+2 il 4 B s another admissible chain of difference vectors.

Proof. The first conclusion is obvious. The second conclusion follows
from An15(f) = Aa(f) + Ag(f) when o and § are only supported at even
number positions. If supp(a®) () supp(B?) = 0, the sum of images of two
affine mappings is the direct sum of affine subspaces.

Proposition 9.2. Let 8 : (8%, 8') — (B83,8%) — - — (B, 8171
be an admissible chain of difference vectors. Then Breverse . (Bi=1 gt) —
(B2, 817 — . — (B2,8Y) is another admissible chain of difference
vectors.

9.3 EDP lower bound under independence assumptions

From an arbitrary nonzero fixed input difference vector supported only at
even positions, at the first round the input difference vector is (a?,al) #
0, at each next round connecting, we impose the conditions that the odd
position coordinates of A i+1(f) are zero, and the even position coordinates
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can be 0 and 1. Then we imposed wt(a*!) linear conditions, and the
output difference vector can be nonzero vector in an affine space of dimension
wtp (at1). Hence the probability is m and we get

22?’/:1th (aj)
admissible chains of difference vectors.

Proposition 9.3. The sum of differential probabilities over all above
admissible chains of difference vectors is 1.

Proof. The proof is similar to the proof of Proposition 6.4. If we fix
the first j — 1 vectors in the admissible chain, in the step to get the j-th
vector, the wty(a/~1) linear conditions are imposed and we get wtg(a’~!)
next round nonzero difference vectors. Hence the sum is always 1.

We start from an arbitrary (a?,a!) supported only at even position-
s, and reach a vector (af,a’~!) with the property that the dimension of
S(Age-2(f)) is %. Similarly we start from an arbitrary (of"*!, o) and reach
vector (af, af’~1) with the property that the dimension of S(A,v—2(f)) is
2. Then (a'*!,a?) and (/' *!,a’’) can be arbitrary vectors in F3" support-
ed at even positions. From Proposition 9.2 the above two admissible chains
of difference vectors can be glued to an admissible chain of difference vectors.

Theorem 9.2. For an arbitrary fixed nonzero input difference vector
(a?,al) € F3" supported only at even positions, and an arbitrary nonzero
output difference vector (aR+1,aR) € F3" supported at even positions, we
have a set of admissible chains of difference vectors with input difference
vector (a2, al) at the 1st round and output difference vector (aft+1, aft) at
the R-th round, such that the sum of all differential probability is at least QL%

Proof. This is similar to the proof of Theorem 6.1, we sum over fixed
previous vectors, the only missing vector is a!*! ¥+1 The conclusion
follows.

=

9.4 Real EDP lower bound for key scheduling

It is obvious for two different admissible chains of difference vectors, the set
of points satisfying the input-output difference relation is disjoint. Hence
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the main problem is the existence of the real difference trails, that is , we
need to prove the expected differential probability over all real differential
trails is at least 0(22%) for Simon2n. As argued in the previous section,
when the EDP is only summed over all admissible chains of difference vec-
tors in which the algebraic equations establishing this differential trail are
independent, this is very close the real probability when the key schedule is
used. We observe that there are 2n+mn free variables are used in Simon2n.
Therefore, if the total number of algebraic equations to establish the differ-
ential trial is smaller than 2n + mn the differential trail seems realistic. In
algebraic equations in Subsection 8.3-8.4, if there is a new degree one vari-
able for each new algebraic equation, it is reasonable to assume that the
independence of these algebraic equations and the realistic existence of the
differential trail. Notice that the key scheduling in Simon2n is linear, new
degree one master keys are involved in the different rounds. Therefore in
Theorem 9.2, we only sum over such admissible chains of difference vectors
such that in these algebraic equations of Subsection 8.3-8.4, there is a new
degree one variable among these 2n + mn free variables in each algebraic
equation. It seems even EDP is only summed over such realistic difference
trails, the lower bound is still bigger than 2%

10 Conclusion

Linear cryptanalysis initiated from [42] is a general method to analysis block
ciphers, and the key-recovery attack based on linear hull proposed in [49] is
a powerful extended version. In this paper we show that when the round
functions of the block ciphers have the restricted Maiorana-McFarland struc-
ture and of degree two, the search of linear trails of these block ciphers are
essentially linear algebraic and better linear hull can be constructed. The-
oretically Smon2n with linear key schedule is insecure for the key-recovery
attack from our new constructed linear hulls of the potential bigger than 22%

Similarly the lower bound QL% on the expected differential probability
over all admissible chains of difference vectors, that is, over all Maiorana-
McFarland structure based differential trails with the fixed input and output
differences for Simon2n, is given under independence assumptions. We then
argue that even when EDP is summed over all low dimension (A4 (f)) re-
alistic difference vectors, it is bigger than 22% Both linear hull construction
and EDP lower bound shows that at least theoretically Simon2n with linear
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key schedule is insecure.

The key-recovery attack based on linear hull and differential trails on
Simon2n constructed from the restricted Maiorana-McFarland structure of
round functions presented in this paper illustrates that the Maiorana-McFarland
structure of the round function or the compositions of several rounds of
round functions is indeed a weakness for the cryptanalyst to utilize. Hence it
is interesting and necessary to understand the possible Maiorana-McFarland
structures of compositions of round functions of lightweight cryptography
primitives.
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