
Efficient Linear Multiparty PSI and Extensions to
Circuit/Quorum PSI

Nishanth Chandran1, Nishka Dasgupta1, Divya Gupta1, Sai Lakshmi Bhavana Obbattu1, Sruthi
Sekar2, and Akash Shah1

1 Microsoft Research, Bangalore
{nichandr, t-nidasg, divya.gupta, t-saobb, t-akshah}@microsoft.com

2 Indian Institute of Science, Bangalore
{sruthi.sekar1@gmail.com}

Abstract. Multiparty Private Set Intersection (mPSI), enables n parties, each holding private
sets (each of size m) to compute the intersection of these private sets, without revealing any other
information to each other. While several protocols for this task are known, the only concretely
efficient protocol is due to the work of Kolesnikov et al. (KMPRT, CCS 2017), who gave a semi-
honest secure protocol with communication complexity O(nmtλ), where t < n is the number of
corrupt parties and λ is the security parameter. In this work, we make the following contributions:
− First, for the natural adversarial setting of semi-honest honest majority (i.e. t < n/2), we
asymptotically improve upon the above result and provide a concretely efficient protocol with
total communication of O(nmλ).
− Second, concretely, our protocol has 6(t + 2)/5 times lesser communication than KMPRT and
is upto 5× and 6.2× faster than KMPRT in the LAN and WAN setting even for 15 parties.
− Finally, we introduce and consider two important variants of mPSI - circuit PSI (that allows the
parties to compute a function over the intersection set without revealing the intersection itself)
and quorum PSI (that allows P1 to learn all the elements in his/her set that are present in at least
k other sets) and provide concretely efficient protocols for these variants.

1 Introduction

Multiparty PSI. Private set intersection (PSI) [64, 45] enables two parties P1 and P2, with respective
input sets X and Y , to learn the intersection X ∩ Y , without revealing any other information to any of
the parties. General secure multiparty computation protocols [66, 33, 5, 4] have proven to be inefficient
to solve this problem and hence several works have focused on obtaining concretely efficient specialized
protocols [39, 36, 17, 18, 22, 54, 49, 42, 59, 60, 57, 52, 55, 13, 53, 43]. The problem of Multiparty PSI
(mPSI) was first introduced in [28] and it generalizes PSI – i.e., n parties compute the intersection of
their n private data sets, without revealing any additional information. While the protocol with best
asymptotic communication complexity for mPSI was given in [37], the first and only known practical
realization was provided in [43]. This protocol is secure in the semi-honest dishonest majority setting3

(i.e., the adversary can corrupt up to n− 1 parties and follows the protocol specification faithfully) and
its total communication complexity is O(nmtλ), where n is the number of parties, t < n is the corruption
threshold, m is the set size of each party and λ is the computational security parameter. While such a
high communication overhead might be unavoidable for concretely efficient dishonest majority protocols
(i.e., not based on homomorphic encryption), in many scenarios, security against honest majority (i.e.,
t < n/2) is acceptable and widely studied in several practical contexts [20, 44, 47, 2, 68, 7, 16]. Hence, it is
important to explore the concrete efficiency of mPSI protocols in this setting. Unfortunately, even under
this relaxation (also considered in [14]), the best known protocol [43] is no better and has complexity
O(nmtλ).

3 The works of [43, 40] also build concretely efficient mPSI in a weaker augmented semi-honest model; in this
work, we focus on standard semi-honest security.
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1.1 Our Contributions

In this work, we build the first concretely efficient mPSI protocol in the semi-honest honest majority set-
ting, with total communication of O(nmλ), thus obtaining an O(t)-factor improvement over [43]. While
theoretically, this matches the complexity of the protocol from [37] based on homomorphic encryption4,
concretely, our protocol is approximately 6(t + 2)/5 times more communication frugal than [43]. This
amounts to more than an order of magnitude lesser communication than [43] when the number of parties
> 15 and t ≈ n/2; even when t = 1, our protocol has nearly 4× lesser communication than [43]. We also
implement our protocol and show it to be up to 5× and 6.2× faster than [43] in the LAN and WAN
settings, respectively in the honest majority setting considered in their experiments (as an example for
n = 15, t = 7 and set size m = 220, our protocol executes under 40s and 245s in LAN and WAN settings).

Next, we consider 2 important variants of the mPSI problem - circuit PSI and quorum PSI providing
semi-honest security in honest majority setting.

Circuit PSI. The problem of circuit PSI was introduced in the 2 party setting [38] and enables parties
P1 and P2, with their private input sets X and Y , respectively, to compute f(X ∩ Y ), where f is any
symmetric function (i.e., f operates on X∩Y and is oblivious to the order of elements in it). Circuit PSI
allows to keep the intersection X ∩ Y itself secret from the parties while allowing to securely compute
f(X ∩ Y ) and has found many interesting applications. Some examples of symmetric functions include
cardinality, set intersection sum [67], and threshold intersection [35]. Circuit PSI has received a lot of
attention and has also shown to be practically feasible in the 2-party context [54, 56, 55, 24, 15, 12]. The
problem of circuit PSI is equally well-motivated in the multiparty setting. However, to the best of our
knowledge, it has remained unexplored.

In our work, we provide the first multiparty ciruit PSI protocol achieving a communication of ap-
proximately O(mn(λκ+ log2 n)). Concretely, its communication is only ≈ 4× the cost of mPSI. We also
give a circuit PSI protocol achieving a communication complexity of O(mn(λ+ (logm+ κ)2)), which is
asymptotically linear in n. However, this protocol is concretely less efficient than the first one.

Quorum PSI. We consider another variant of mPSI, called quorum PSI (qPSI), where a leader P1 wishes
to obtain the elements of his/her set that are also present in at least k of the other n− 1 parties’ sets.
Such a variant lends itself to natural applications - e.g. in the context of anti-money laundering [26, 25]
and checking if a list of entities are present in multiple blacklists. We provide an efficient qPSI protocol
in the semi-honest honest majority setting achieving a communication cost of O(nmκ(λ+ κ log n)).

We implement both circuit PSI and qPSI protocols showing that these protocols are concretely effi-
cient as well. These are the first implementations of multiparty circuit PSI and quorum PSI.

Protocol blueprint. Our protocols for all three problem settings, namely, mPSI, circuit PSI and qPSI,
broadly have two phases. At a high level, in the first phase, a fixed designated party, say P1, interacts
with all other parties P2, . . . , Pn using 2-party protocols. In the second phase, all parties engage in n-
party protocols to compute a circuit to get the requisite output. We describe these phases in the context
of mPSI and then discuss the changes for the other variants.

For mPSI, in the first phase, we invoke a two-party functionality, which we call weak private set
membership (wPSM) functionality, between a leader, P1 and each Pi (for i ∈ {2, · · · , n}). Informally,
the wPSM functionality, when invoked on inputs of P1 and Pi (their individual private sets5) does the
following: for each element in P1’s set, it outputs the same random value to both P1 and Pi, if that

4 We remark here that [37], through the use of homomorphic encryption, provide an mPSI protocol in the semi-
honest (as well as malicious) dishonest majority setting, achieving a communication of O(nmλ); however, they
do not show it to be concretely efficient. As mentioned in [43] the protocol of [37] is expected to be much
slower than [43] due to its use of homomorphic encryption.

5 Strictly speaking, as is common in PSI protocols, a phase of local hashing is done before invoking this func-
tionality.
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element is in Pi’s set, and outputs independent random values, otherwise6. By invoking only n instances
of the wPSM functionality overall, we ensure that the total communication complexity of this phase is
linear in n. In the second phase, all the parties together run a secure multiparty computation to obtain
shares of 0 for each element in P1’s set that is in the intersection and shares of a random element for
other elements. Having invoked wPSM between P1 and every other party, this can be computed using a
single multiplication protocol. We evaluate this multiplication using the MPC protocol from [20, 44] in
the second phase, resulting in the total communication complexity being linear in n.

In our circuit and quorum PSI protocols, the first phase additionally includes conversion of the
outputs from the wPSM functionality to arithmetic shares of 1 if P1 and Pi received the same random
value, and shares of 0, otherwise (this is similar to how 2-party circuit-PSI protocols work). In the second
phase, in circuit-PSI, for every element of P1, all parties must get shares of 1 if that element belongs
to the intersection, and shares of 0, otherwise. To do this, we use the following trick: for every element
x in P1’s set, count the number of other sets qx in which element x is present (the first phase of our
protocol does indeed give us such a count). Now, if we compute wx = (qx − (n− 1))p−1 over Fp, where
p > n is prime, then wx = 0 if qx = n− 1 (and 1 otherwise), which precisely gives us whether or not x is
in the intersection. Hence, one can compute shares of whether x is in the intersection or not by simply
computing this polynomial (which can be securely done using 2 log p multiplications). In the case of
qPSI, we appropriately choose another polynomial such that for each element in P1’s set, the polynomial
evaluates to 0 if and only if that element belongs to the quorum intersection, and random otherwise.

Next, we make a few observations on our protocol blueprint. As already mentioned, this blueprint
allows us to get sub-quadratic complexity in n for all our protocols. Moreover, in the first phase, Pi for
i 6= 1 interacts with P1 alone. As an example, in mPSI, Pi only engages in one instance of weak-PSM,
whereas P1 engages in n− 1 instances of the same. Also, we show in technical sections, the complexity
of phase-one significantly dominates the overall complexity. With these observations, our protocols give
a desirable property of all-but-1 parties being light-weight, making them suitable to be used in client-
server setting, where only one party needs to be computationally heavy and is played by the server.
Note that unlike prior works in client-server setting [46, 1], we allow collusion between the server, P1,
and any subset of the clients, P2, . . . , Pn as long as t < n/2 parties are corrupt. Finally, protocol in [43]
also had an asymmetry between load on different parties, and our clients require 7(2t+ 3)/10 times less
communication than clients in [43].

To summarize our contributions:

– We give the first concretely efficient protocol for mPSI, with communication complexity of O(nmλ)
and constant rounds.

– We construct the first multiparty circuit-PSI and qPSI protocols and show them to be concretely
efficient.

– Finally, we implement our protocols and show that our mPSI protocol is up to 5× and 6.2× faster
than prior state of the art [43] in LAN and WAN settings, respectively even for 15 parties.

Our protocols are semi-honest secure in the honest majority setting.

1.2 Other Related Works

The works of [28, 14, 61, 62, 41, 37] build theoretical multiparty PSI protocols in the malicious setting,
relying on homomorphic encryption (or bilinear groups in [62]); however, none of these works are
concretely efficient. The work of [40] build an mPSI protocol in the semi-honest dishonest majority
setting, using garbled bloom filters, but provide no implementation. The works of [30, 3] and [9] consider
variants of mPSI - multiparty threshold PSI (where the parties learn the intersection only if its size is
greater than a threshold) and multiparty cardinality testing for threshold PSI (where the parties learn

6 This resembles the two-party oblivious programmable pseudorandom function (OPPRF) functionality [43], and
we indeed show that it can be instantiated using an OPPRF.
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the cardinality of the intersection under the same condition). Setting the threshold to 0 in multiparty
threshold PSI gives a protocol for mPSI with complexity matching our protocol [3]; however, these
protocols are based on homomorphic encryption and are not concretely efficient. The works of [46, 1]
build mPSI protocols in the server-aided model (which assumes the existence of a server that does not
collude with the clients).

1.3 Organization

We begin with the details of the security model and cryptographic primitives in Section 2 on preliminaries.
Then, we describe our multiparty PSI protocol in Section 3, our circuit PSI protocol in Section 4, and
our quorum PSI protocol in Section 5. Finally, we present our experimental results in Section 6 on
implementation and performance.

2 Preliminaries

Notations. Let κ and λ denote statistical and computational security parameters respectively. For a
positive integer k, [k] denotes the set {1, 2, · · · , k}. For a set S, |S| denotes the cardinality of S. For two
sets S and S′, S \ S′ denotes the set of elements that are present in S but not in S′. For x ∈ {0, 1}∗,
|x| denotes the bit-length of x. For integers a and b such that (a < b), [a, b] denotes the closed interval
of integers between a and b. We use log to denote logarithms with base 2. For any x ∈ {0, 1}`, ` > 1,
we also use its natural interpretation as an integer in the range {−2`−1, 2`−1 − 1} using 2’s complement
representation. Fp denotes a finite field with prime order p.

Secret Sharing. An (n, t)− secret sharing scheme [63, 6] for t < n allows to distribute a secret s amongst
n parties as shares s1, · · · , sn, such that any t+ 1 parties can collectively reconstruct the secret s from
their shares and no collusion of t parties learn any information about s. We instantiate (n, t)− secret
sharing for a secret s ∈ F with the Shamir secret sharing scheme [63]. Additionally, we make use of
the additive secret sharing scheme, which is an (n, n − 1)- secret sharing scheme. Here, to share s ∈ F,
shares of n parties 〈s〉1, · · · , 〈s〉n are chosen uniformly from the field F subject to the constraint that
〈s〉1 + · · ·+ 〈s〉n = s, where + is the addition operation in F. We use the additive secret sharing both in
the general n-party setting and also more specifically in the 2-party setting. To secret share a boolean
value b ∈ {0, 1} we use additive secret sharing scheme over the field F2. We use boolean sharing only in
the two party setting. If a bit b is shared amongst two parties P1 and P2, the shares are denoted by 〈b〉B1
and 〈b〉B2 respectively.

2.1 Security Model

We consider the multiparty setting with n parties: P1, · · · , Pn. We consider a semi-honest adversary
A that corrupts t < n/2 parties and tries to learn as much information as possible from the protocol
execution but faithfully follows the protocol specification. This is called the semi-honest honest majority
setting. To capture semi-honest security of a protocol in the simulation based model [34, 31, 10], we show
that for any semi-honest adversary, there exists a simulator such that the view of a distinguisher in the
following two executions are indistinguishable: one is the view of the real execution of the protocol in
the presence of a semi-honest adversary and the second is the view of an ideal execution of the protocol
where a simulator interacts with the ideal functionality (which, given the inputs of all parties, computes
the function being evaluated and returns the outputs). We further also consider semi-honest security
in a hybrid model [10], where, in addition to communicating as usual in the standard execution of the
protocol, the parties have access to an ideal functionality. Specifically, in an F-hybrid protocol, the
parties may give inputs to and receive outputs from this functionality F . By the universal composition
theorem [10], if we have any semi-honest secure protocol π realizing the functionality F , then any F-
hybrid protocol can be realized in the standard model, by replacing F with the protocol π.
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2.2 Cuckoo Hashing

Cuckoo hashing [51] uses K random hash functions h1, · · · , hK : {0, 1}σ → [β] to map m elements into
β bins. The mapping procedure is as follows. An element x is inserted into the bin hi(x), if this bin is
empty for some i ∈ [K] (if there are multiple empty bins, then we pick the first one in the lexicographic
ordering of the bins). Otherwise, pick a random i ∈ [K], insert x in bin hi(x), evict the item currently
in hi(x) and recursively insert the evicted item. The recursion proceeds until no more evictions are
necessary or until a threshold number of re-allocations are done. If the recursion stops because of the
latter reason, it is considered as a failure event. This failure signifies existence of an element that didn’t
map to any of the bins. Some variants of Cuckoo hashing maintain a set called the stash, to store such
elements. Stash-less cuckoo hashing is where no special stash is maintained.

In stash-less Cuckoo hashing, Pinkas et al. [57] showed that for K = 3, 4 and 5 and β = 1.27m, 1.09m
and 1.05m respectively, the failure probability is atmost 2−40, by extrapolating their experimental anal-
ysis for the failure probability 2−30. All protocols in this work are in this stash-less setting. To bound
the overall failure probability of our proposed protocols to 2−40, we require an analysis of the parame-
ters of Cuckoo hashing such that the failure probability in stash-less Cuckoo hashing scheme is atmost
2−41/2−42/2−46. Extrapolating, similar to [57], we get β = 1.28m/1.28m/1.31m to ensure that the failure
probability in stash-less Cuckoo hashing is atmost 2−41/2−42/2−46 respectively for K = 3.

2.3 Two-party Functionalities

Equality Test We use a two-party equality test functionality F`EQ. In this functionality, parties P1 and

P2 have a ∈ {0, 1}` and b ∈ {0, 1}` respectively as private inputs and receive boolean shares of the bit
1 if a = b and 0 otherwise, as the output. We make use of the protocol given in [12] that builds on the
ideas of [29, 21, 58] to realize this functionality. The simplified expression of the concrete communication
complexity of this protocol is 3`λ/4 + 8` and round complexity is log `.

Boolean to Arithmetic Share Conversion We also use a two-party functionality FF
B2A, which con-

verts boolean shares of a bit to its additive shares (in a field F). More specifically, the functionality
requires parties P1 and P2 to input their boolean shares b1 and b2 (of a bit b) respectively and outputs
the additive shares x1 and x2 of b over F to P1 and P2 respectively. We instantiate this functionality with
the share conversion protocol given in [58] that uses one corelated OT and has total communication of
λ+ dlog |F|e bits and round complexity 2.
We remark here that OT extension using the recent line of work on SilentOT [8, 65] can be used to
improve the communication cost of both the equality test and boolean to arithmetic share conversion
functionalities. Our implementations do not incorporate these recent optimizations, which would only
improve their performance.

2.4 Weak Private Set Membership Test Functionality

We define a 2-party functionality, Fβ,σ,Nw−PSM, called weak private set membership (weak-PSM) test that
allows a clean exposition of our protocols. We note that this functionality is similar in spirit to the batch
oblivious programmable PRF considered in [55] and as we discuss later, that is indeed one way to realize
this functionality efficiently. In a single instance of the weak PSM test, one party holds an element q and
another party holds a set X. Parties learn the same random element w if q ∈ X, else one party learns y
and other party learns w, where y and w are independent random values. A weak PSM test is where the
two parties do multiple instances of membership tests together as a batch. We define the functionality
Fβ,σ,Nw−PSM formally in Figure 1, where β is the batch size, σ is length of input and output elements, and
N is the total size of all sets input by the second party.

We consider three instantiations of this functionality using primitives considered in the line of obliv-
ious programmable pseudorandom functions (OPPRF) [43]. We provide details on instantiations in
Appendix A and summarize their costs below.
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P1 and P2 are the receiver and the sender respectively.
Receiver P1’s Inputs: The queries q1, · · · , qβ ∈ {0, 1}σ.
Sender P2’s Inputs: Sets {Xj}j∈[β], where |Xj (i) | = σ for every j ∈ [β] and i ∈ [|Xj |] and

∑
j |Xj | = N .

Output:

– For each j ∈ [β], sample wj uniformly from {0, 1}σ.
– For each j ∈ [β], if qj ∈ Xj , set yj = wj , else sample yj uniformly from {0, 1}σ.
– Return {yj}j∈[β] to P1 and {wj}j∈[β] to P2.

Fig. 1: Weak PSM Functionality Fβ,σ,Nw−PSM

– Polynomial-based batch-OPPRF [55]: When we instantiate using the polynomial-based OPPRF
from [55], the concrete communication cost is 3.5λβ +Nσ and round complexity is 4.

– Table-based OPPRF [43]: The instantiation using table-based OPPRF [43] assumes an upper-bound
on the size of the input sets, which is derived specific to its application. Let d ∈ N be the minimum
value such that the aforementioned upper-bound is bounded by 2d. When we instantiate using the
table-based OPPRF, the concrete communication cost is (4.5λ+ 2dσ)β and round complexity is 4.

– Relaxed batch OPPRF: We can instantiate Fβ,σ,Nw−PSM functionality by invoking relaxed batch OPPRF
[12] followed by an invocation of table-based OPPRF [43]. The concrete communication of this case is
(8λ+ 4σ)β + 1.31Nσ and round complexity is 8.

Execution Cost: Instantiations of the Fβ,σ,Nw−PSM functionality using the above 3 approaches provide trade-
offs between computation and communication [43, 55, 12]. Due to this, different protocols are more
efficient in different experimental settings as is evident from the empirical results given in Section 6.

2.5 Multiparty Functionalities

Our protocols invoke several n-party functionalities in the honest majority setting and we describe them
below. The protocols from [20, 44] can be used to realize these functionalities and we summarize their
communication complexity in Table 1.

Let F(+, ·) be a finite field. Let n be the number of parties and t < n/2 be the corruption threshold.
We use [a] to denote an (n, t)− linear secret sharing of element a ∈ F such that each party Pi holds [a]i.
Further, 〈a〉 denotes additive sharing of a ∈ F where Pi holds the additive share 〈a〉i. For any a, b, c ∈ F,
c · [a]+[b] (resp. c ·〈a〉+〈b〉) represents that, for each i ∈ [n], Pi computes c · [a]i+[b]i (resp. c ·〈a〉i+〈b〉i)).
Linearity ensures that for any a, b, c ∈ F, c · [a] + [b] = [c ·a+ b]. For a, c ∈ F, [a] + c and 〈a〉+ c represent
the local computation required to get [a+ c] and 〈a+ c〉.

– RandomFn,t(`) : Generates [r1], · · · , [r`] for uniform elements r1, · · · , r` in F.

– MultFn,t([a], [b]): Takes [a], [b] for a, b ∈ F and outputs [a · b].

Additionally, we use the following functionalities which can be realized using techniques from [20].

– Revealn,t([a]) : Takes [a] where a ∈ F and outputs a to P1.
To realize this functionality, Pi, for all i ∈ {2, . . . , n}, sends [a]i to P1, who reconstructs and learns a.

– RevealnReshareFn(d, 〈a〉) : Takes 〈a〉 where a ∈ F and d < n. Outputs an (n, d)- sharing of a and in
addition outputs a to P1.
To realize this, parties send additive shares of a to P1, who reconstructs a, and distributes (n, d) shares
of a to all parties.

– DoubleRandomFn,t(`) : Generates [r1], · · · , [r`] and 〈r1〉, · · · , 〈r`〉 for uniform elements r1, · · · , r` in F.
We show a realization of this functionality in Appendix E and present its cost in Table 1.
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We summarize the communication and round complexity of realizing the above functionalities as per
[20] in Table 1. In our results we invoke RandomFn,t and DoubleRandomFn,t on `� n and for simplicity
we let d`/(n − t)e to be `/(n− t). In the complexity analysis of our results, for ease of exposition, we
approximate t/n with 1/2. This approximation only overestimates our costs as t < n/2.

Functionality Communication Rounds

RandomFn,t(`)
⌈

`
n−t

⌉
n(n− 1)dlog |F|e 1

< 2`(n− 1)dlog |F|e

MultFn,t([a], [b]) 2( 2n
n−t +3)(n−1)dlog |F|e 5

(amortized cost) < 14(n− 1)dlog |F|e

Revealn,t([a]) (n− 1)dlog |F|e 1

RevealnReshareFn(d, 〈a〉) 2(n− 1)dlog |F|e 2

DoubleRandomFn,t(`) 2
⌈

`
n−t

⌉
n(n− 1)dlog |F|e 1

< 4`(n− 1)dlog |F|e

Table 1: Communication costs of n-party functionalities. The upper bounds given are for t < n/2.

2.6 Weak Comparison Functionality

We define a weak form of multiparty comparison functiontionality, Fp,k,n,tw-CMP (where k is an element in
Fp, n, t denotes the number of parties and corruption threshold). Here n parties P1, · · · , Pn input their
(n, t)-shares of some 0 ≤ a < n and the functionality outputs the indicator bit comp, which is 1 iff a ≥ k,
to the leader P1 and the other parties receive no output. We formally describe this functionality in Figure
2. We show two instantiations of this functionality, which offer different trade-offs to our communication

There are n parties P1, · · · , Pn. All elements are considered over Fp such that k < n < p.
Inputs: For each i ∈ [n], Pi inputs its (n, t)− share [a]i corresponding to some 0 ≤ a < n and [a]i ∈ Fp.
Output: Reconstruct the shares to get a, and if a ≥ k, set comp = 1, else set comp = 0. Send comp to P1.
Other parties receive no output.

Fig. 2: Weak Comparison Functionality Fp,k,n,tw-CMP

costs. The details of these instantiations are in Section 5.2.

3 Multiparty PSI

We begin by formally defining the multiparty private set intersection functionality, Fn,mPSI in Figure 3
that computes the intersection of private sets of all the parties.

There are n parties P1, · · · , Pn.
Inputs: For each i ∈ [n], Pi has a set Xi of size m.
Output: Return ∩ni=1Xi to each Pi.

Fig. 3: Private Set Intersection Functionality Fn,mPSI
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Parameters: There are n parties P1, . . . , Pn with private sets of size m. Let β = 1.28m,σ = κ+dlogme+3
and p > 2σ is a prime. Additions and multiplications in the protocol are over Fp.
Input: Each party Pi has input set Xi = {xi1, · · · , xim}, where xij ∈ {0, 1}σ. Note that element size can
always be made σ bits by first hashing the elements using an appropriate universal hash function.
Protocol:

1. Pre-processing (Randomness generation (required for Step (4))): P1, · · · , Pn invoke the following mul-
tiparty functionalities.
– ([r1], · · · , [rβ ], 〈r1〉, · · · , 〈rβ〉)← DoubleRandomFn,t(β)
– ([s1], · · · , [sβ ])← RandomFn,t(β)

2. Hashing: Parties agree on hash functions h1, h2, h3 : {0, 1}σ → [β].
P1 does stashless cuckoo hashing on X1 using h1, h2, h3 to generate Table1 and inserts dummy elements
into empty bins.
For i ∈ {2, · · · , n}, Pi does simple hashing of Xi using h1, h2, h3 into Tablei, i.e., stores each x ∈ Xi at
locations h1(x), h2(x) and h3(x). If the three locations are not distinct, dummy elements are inserted in
bin with collision.

3. Invoking the Fβ,σ,Nw−PSM functionality: For each i ∈ {2, · · · , n} , P1 and Pi invoke the Fβ,σ,Nw−PSM function-
ality for N = 3m as follows:
– Pi is the sender with input {Tablei[j]}j∈[β] .
– P1 is the receiver with input {Table1[j]}j∈[β].
– P1 receives the outputs {yij}j∈[β] and Pi receives {wij}j∈[β].

4. Evaluation: For j ∈ [β],
– P1 computes 〈aj〉1 =

∑n
i=2(−yij mod p) and for i ∈ {2, · · · , n}, Pi sets 〈aj〉i = (wij mod p).

– For i ∈ [n], Pi computes 〈zj〉i = 〈aj〉i − 〈rj〉i.
– P1, · · · , Pn compute [zj ]← RevealnReshareFn(t, 〈zj〉).
– For i ∈ [n], Pi computes [uj ]i = [zj ]i + [rj ]i.
– P1, · · · , Pn invoke the following multiparty functionalities.
• [vj ]← MultFn,t([uj ], [sj ]).
• vj ← Revealn,t([vj ]).

5. Output: P1 computes the intersection as Y =
⋃

j∈[β]:vj=0

Table1[j] , permutes its elements and announces

to all parties.

Fig. 4: MULTIPARTY PSI PROTOCOL

3.1 Multiparty PSI Protocol

Building blocks: Our protocol uses the weak-PSM functionality Fβ,σ,Nw−PSM (Section 2.4) and the multi-
party functionalities from Section 2.5 (with n parties and corruption threshold t) as building blocks. We
describe our protocol formally in Figure 4 and provide an overview below.

Protocol Overview: As discussed in protocol blueprint from Section 1.1, our mPSI protocol proceeds
in two main phases. In the first phase (steps 2 and 3 in Figure 4), P1 and Pi (for each i ∈ [n]\{1})
execute a protocol such that for each element in P1’s set, they receive as output the same random value,
if the element belongs to Pi’s set, and otherwise each receive independent random values. In the second
phase, all the parties execute a secure multiparty computation (steps 1 and 4 in Figure 4) such that for
every element in the intersection, P1 obtains a 0 value and otherwise learns a random value. We now
explain the details of each phase below.

On input Xi from party Pi, for each i ∈ [n], the protocol proceeds in the following steps. First,
is the input independent Pre-processing step. Here, the parties generate the randomness required in
the Evaluation step using the functionalities in Section 2.5. Note that the size of this randomness only
depends on the size of the input sets and hence, can be generated independent of the inputs. In the
second Hashing step, the parties store their input sets in their respective tables as follows: Let h1, h2, h3
be the hash functions used to map elements into β = 1.28m bins. Party P1 hashes its elements into Table1
using Cuckoo hashing with h1, h2, h3 (see Section 2.2). Also, P1 inserts a dummy element in empty bins.
With this, note that each bin of Table1 has exactly one element. Parties Pi for i ∈ {2, . . . , n} do simple
hashing of Xi into Tablei, i.e., insert each element of Xi into three locations corresponding to h1, h2 and
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h3. If for some element these three locations are not distinct (due to collision of the hash values), dummy
element is inserted into any bin (may be randomly picked). Each bin in Tablei can have arbitrary number
of elements and in total (including dummies) each Tablei has 3m elements. To avoid false positives in
the final intersection due to dummies being inserted, we set it up so that dummy elements are different
from real elements and the dummy element of P1 is different from dummy elements inserted by Pi for
i ∈ {2, . . . , n}.

In the third step, for each i = 2, · · · , n, P1 and Pi invoke the Fβ,σ,Nw−PSM functionality for N = 3m with
P1 acting as a receiver with queries Table1, and Pi acting as the sender with input sets Tablei. By the
definition of Fβ,σ,Nw−PSM, for query j, P1 and Pi receive the same random element if P1’s query, i.e., Table1[j]
belongs to Pi’s bin/set, i.e., Tablei[j] and different random elements, otherwise. In the Evaluation step,
all parties evaluate a circuit for each bin such that P1’s output for bin j is 0 if and only if Table1[j]
belongs to the intersection. The circuit is as follows: For each j ∈ [β], P1 adds the negation of the query
outputs from its interaction with each Pi (for each i = 2, · · · , n) in step 3 to get its additive share 〈aj〉1
and for each i = 2, · · · , n, Pi sets its additive share 〈aj〉i as its response from the same interaction of Step
(3). Observe that, aj = 0 if and only if P1’s element Table1[j] belongs to the intersection (except with a
small error probability as explained later). The next goal is to reveal vj = sj · aj to P1, where sj ∈ Fp
is uniformly random. This ensures that if aj is 0 then vj is still 0, else vj is a uniform random element
in Fp (except with small probability when sj = 0) and hides aj . To realize this, the parties convert
the additive shares of aj to (n, t)− shares of aj (denoted by [uj ]) and then invoke the multiplication
functionality to multiply with a random sj that is generated during the Pre-processing step. The values
vj are revealed to P1 for each j ∈ [β]. In the final step P1 sets Y =

⋃
j∈[β]:vj=0

Table1[j], permutes the

elements in Y (to hide the relative ordering of elements in Table1) and sends it to all the other parties.

3.2 Correctness and Security Proof

Theorem 1. The protocol in Figure 4 securely realizes Fn,mPSI in the F-hybrid model, where F = (Fβ,σ,Nw−PSM,

DoubleRandomFn,t, RandomFn,t,RevealnReshareFn,MultFn,t,Revealn,t), against a semi-honest adversary
corrupting t < n/2 parties.

Proof. Correctness. Let Y ∗ = ∩i∈[n]Xi and the output of the protocol is denoted by Y . To prove
correctness, we wish to show that Y = Y ∗, with all but negligible probability. For the rest of the proof
we assume that the Cuckoo hashing by P1 succeeds, i.e., all elements in X1 get inserted successfully in
Table1. For β = 1.28m, this happens with probability at least 1− 2−41, as discussed in Section 2.2. Now,
we prove the following two lemmata.

Lemma 1. Y ∗ ⊆ Y

Proof. Let e = Table1[j] ∈ Y ∗. By the property of simple hashing, e ∈ Tablei[j] for all i ∈ {2, · · · , n}.
Now, by correctness of Fβ,σ,Nw−PSM, yij = wij for all i ∈ {2, · · · , n}. Then, using the reconstruction of additive
secret sharing, aj = 0, and zj = aj−rj . Finally, by the correctness of the multiparty functionalities from
Section 2.5, we have uj = 0 = vj . Hence, ej ∈ Y .

Lemma 2. Y ⊆ Y ∗, with probability at least 1− 2−κ−1.

Proof. Suppose for some j ∈ [β], let e = Table1[j] be such that e ∈ Y and e 6∈ Y ∗. Since e ∈ Y , it
holds that vj = 0. Hence, by correctness of MultFn,t, either uj = 0 or sj = 0. The latter happens with
probability F1 = p−1 < 2−σ. If uj = 0, then it holds that aj = 0. There are following two disjoint and
exhaustive cases for e.

Case 1: e ∈ X1: Since e /∈ Y ∗, there exists i ∈ {2, . . . , n} such that e /∈ Xi. Using the fact that dummy
elements are different from real elements, it implies that e /∈ Tablei[j]. Now, the probability that aj = 0
when e /∈ Tablei[j] for some i is bounded by F2 = 2−σ.
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Case 2: e /∈ X1: That is, e is a dummy element inserted by P1. Now, since dummy elements are
different from real elements and are disjoint for P1 and Pi for all i ∈ {2, . . . , n}, it holds that e /∈ Tablei[j]
for all i ∈ {2, . . . , n}. Hence, same as case 1, the probability that aj = 0 is bounded by F2 = 2−σ.

Thus, the probability of false positive happening at bin j is upper bounded by F = F1 +F2 < 2 ·2−σ.
Hence, taking a union bound on all bins, Y * Y ∗ with probability at most β · F < β(2 · 2−σ) < 2−κ−1.

Hence, our protocol gives the correct output with probabililty at least (1− 2−41 − 2−κ−1) ≥ 1− 2−κ for
κ = 40.

Security Proof. Let C ⊂ [n] be the set of corrupted parties (|C| = t < n/2). We show how to simulate
the view of C in the ideal world, given the input sets XC = {Xj : j ∈ C} and the output Y = ∩nj=1Xj .
We consider two cases based on party P1 being honest or corrupt.

– Case 1 (P1 6∈ C): In the pre-processing step, the parties run the functionalities DoubleRandomFn,t

and RandomFn,t from [20]. The simulator can pick random rj ’s and sj ’s, generate their shares and give
their t shares to the corrupted parties. The hashing step is local, and can be executed by the simulator
using the inputs of the corrupted parties. In step 3, where the Fβ,σ,Nw−PSM functionality is executed by
P1 and Pi for each i ∈ [n]\{1}, the corrupted parties C, only see the sender’s views (since P1 6∈ C),

{wij}i∈C,j∈[β] , which can all be picked at random by the simulator (by the definition of Fβ,σ,Nw−PSM). In
step 4, besides the local computations, which can all be executed by the simulator, the parties call the
functionalities RevealnReshareFn, MultFn,t and Revealn,t. The corrupted parties get at most t shares
for values zj , uj , and vj , for each j ∈ [β]. The simulator can pick the t shares of the zj ’s as shares
of some random value (by the security of secret sharing). Then, it adds the t shares of rj ’s (from the
pre-processing step) and the corresponding shares of zj ’s to get the t shares of uj ’s. Finally, it sets the
t shares of the vj ’s as shares of some random value (by the security of secret sharing) and sends the
output Y to the corrupted parties.

– Case 2 (P1 ∈ C): The simulation of the pre-processing step and the hashing step is exactly same

as in Case 1. In step 3, where the Fβ,σ,Nw−PSM functionality is executed by P1 and Pi for each i ∈ [n],
since P1 ∈ C, the corrupted parties get the receiver’s view, {yij : i ∈ {2, · · · , n}, j ∈ [β]}, in addition
to the sender’s views, {wij}i∈C,j∈[β]. For a corrupted Pi, the simulator picks a random yij = wij , if

Table1[j] ∈ Tablei[j], else picks a random yij and wij independently (by the definition of Fβ,σ,Nw−PSM and
since the simulator has both Table1 and Tablei). For an honest Pi, the simulator can pick all yij ’s at

random (again by the definition of Fβ,σ,Nw−PSM). Step 4 is simulated as follows: For all j ∈ [β], give random
zj ’s and t shares of random value as shares of zj to the adversary (using uniform randomness of rj , zj
are random). Next, add t shares of rj and t shares of zj to compute t shares of uj . Now, the simulator
sets vj to be 0 for all j ∈ [β] such that Table1[j] ∈ Y , and vj is uniformly random otherwise (since sj
are unformly random given t shares of the corrupt parties). It gives t shares of vj as output of MultFn,t

and vj as output of Revealn,t,∀j ∈ [β].

3.3 Complexity

First, we note that our protocol makes n−1 invocations of weak-PSM functionality. With this and using
linear complexity of n-party functionalities from Section 2.5, our total communication is linear in n
(irrespective of the specific instantiation of weak-PSM used). In contrast, Kolesnikov et al. [43] makes nt

calls to OPPRF functionality (which is a primitive stronger than Fβ,σ,Nw−PSM as shown in the instantiation
of the same).

Concretely, instantiating using n-party functionalities in Section 2.5 and polynomial based instanti-
ation of weak-PSM (that has the least communication), our protocol requires at most m(n− 1)(4.5λ+
35(κ+dlogme)+140) bits of communication. Its round complexity is 10. On the other hand, [43] requires
communication of m(nt+ 2n− 1)(4.5λ+ 46(κ+ dlogme)) and 8 rounds.

In our protocol, as well as in [43], we can see that the communication cost of P1, the leader, and
Pi, for i ∈ {2, · · · , n}, the clients, are different. Specifically, the client communication complexity of our
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protocol is m(4.5λ + 64(κ + dlogme) + 256). In comparison, [43] client communication complexity is
m(2t+ 3)(4.5λ+ 46(κ+ dlogme)).

For instance, consider a setting where m = 220, λ = 128 and κ = 40. For this setting our total
communication cost and per- client communication cost are 6(t + 2)/5 times and 7(2t + 3)/10 times
better than the corresponding costs of [43] respectively.

4 Multiparty Circuit PSI

The goal of multiparty Circuit PSI is to evaluate a symmetric function on the private set intersection of
n parties. We formally define this functionality, Fn,m,fC−PSI in Figure 5.

There are n parties P1, · · · , Pn and a function f .
Inputs: For each i ∈ [n], Pi has a set Xi of size m.
Output: Return f(∩ni=1Xi) to each Pi.

Fig. 5: Circuit PSI Functionality Fn,m,fC−PSI

4.1 Circuit PSI Protocol

Building blocks: Our protocol uses the two-party functionalities weak private set membership Fβ,σ,Nw−PSM

(Sec. 2.4), equality test FσEQ (Sec. 2.3), boolean to arithmetic share conversion FFp
B2A (Sec. 2.3), and the

n-party functionalities (from Sec. 2.5).

We consider standard multiparty functionality FMPC that is parameterized by a circuit C. The circuit
C takes as inputs Ii from each Pi, for i ∈ [n] and the functionality computes the circuit C on these inputs
and returns C(I1, · · · , In). In our construction, to evaluate a symmetric function f , we consider the circuit
Cβ,σ,p, which takes as inputs {[cj ]i}j∈[β] from Pi for each i ∈ [n] such that cj ∈ Fp and a1, . . . , aβ ∈ {0, 1}σ
from P1, computes {cj}j∈[β] by reconstructing the shares, and computes T = f(

⋃
j∈[β]:cj=1

aj).

We describe our protocol formally in Figure 6 and provide an overview below.

Protocol Overview. On input Xi from party Pi, for each i ∈ [n], the protocol proceeds in eight steps:

The first three steps of the protocol, namely the Pre-processing, Hashing and Invoking the Fβ,σ,Nw−PSM
functionality, are the same as the first three steps of our multiparty PSI protocol (Figure 4). At the end
of these steps, P1 holds Table1 of β bins containing one element each and other parties Pi’s hold Tablei
with β bins of arbitrary size. Moreover, for each i ∈ {2, . . . , n} and j ∈ [β], P1 holds yij ∈ {0, 1}σ and
Pi holds wij ∈ σ such that yij = wij if Table1[j] ∈ Tablei[j] (except with negligible probability). Now, in
the next step, the parties check whether this equality holds or not. Formally, in the fourth step, for each
i ∈ {2, · · · , n}, parties P1 and Pi invoke the FσEQ functionality with inputs yij and wij , respectively and
receive as outputs, the boolean shares7.

Rest of the steps are executed for each bin j independently. In the fifth step, for each i ∈ {2, · · · , n},
parties P1 and Pi invoke the FFp

B2A functionality to convert the boolean shares to additive shares over
Fp, where p > n is a prime. Next, in step (6), parties convert these additive shares between P1 and

7 We note here that these four steps of our protocol together follow the blueprint of executing a circuit PSI
protocol [54, 55, 38, 15, 24, 56] between P1 and Pi (for each i ∈ {2, · · · , n}), while ensuring a consistent
mapping of elements of P1 (via Cuckoo hashing into Table1) across all instantiations. To explicitly spell out
this consistent hashing and for ease of exposition, we make a whitebox use of the circuit-PSI blueprint from [55]
and describe these steps as well.
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Parameters: n parties P1, . . . , Pn with private sets of size m. Let β = 1.28m,σ = κ + dlogme + 2.
Additions and multiplications in the protocol are over Fp, where p > n is a prime. Let d = dlog pe − 1
and bdbd−1 · · · b1b0 denote the binary representation of p − 1. Let S = {i ∈ ({0} ∪ [d]) : bi = 1} and
indk, . . . , ind1, ind0 be the ascending order of elements in S, where k = |S| − 1 .
Input: Each party Pi has input set Xi = {xi1, · · · , xim}, where xij ∈ {0, 1}σ. Note that element size can
always be made σ bits by first hashing the elements using an appropriate universal hash function.

Protocol:

1. Pre-processing: P1, · · · , Pn invoke DoubleRandomFn,t(β) to get ([r1], · · · , [rβ ], 〈r1〉, · · · , 〈rβ〉).
2. Hashing: Parties agree on hash functions h1, h2, h3 : {0, 1}σ → [β].

P1 does stashless cuckoo hashing on X1 using h1, h2, h3 to generate Table1 and inserts random elements
into empty bins.
For i ∈ {2, · · · , n}, Pi does simple hashing of Xi using h1, h2, h3 into Tablei, i.e., stores each x ∈ Xi
at locations h1(x), h2(x) and h3(x). If the three locations are not distinct, random dummy values are
inserted in bin with collision.

3. Invoking the Fβ,σ,Nw−PSM functionality: For each i ∈ {2, · · · , n} , P1 and Pi invoke the Fβ,σ,Nw−PSM function-
ality for N = 3m as follows:
– Pi is the sender with inputs {Tablei[j]}j∈[β] and P1 is the receiver with inputs {Table1[j]}j∈[β].
– Pi receives the outputs {wij}j∈[β] and P1 receives {yij}j∈[β].

4. Invoking the FσEQ functionality: For each i ∈ {2, · · · , n} and for each j ∈ [β], P1 and Pi invoke the
FσEQ functionality as follows: P1 and Pi send their inputs yij and wij , resp., and receive boolean shares
〈eqij〉B1 and 〈eqij〉Bi resp., as outputs.

5. Invoking the FFp
B2A functionality: For each i ∈ {2, · · · , n} and for each j ∈ [β], P1 and Pi invoke

the FFp
B2A functionality as follows: P1 and Pi send their inputs 〈eqij〉B1 and 〈eqij〉Bi , resp., and receive the

additive shares 〈fij〉1 and 〈fij〉i resp., as outputs.
6. Converting to (n, t) shares: For each j ∈ [β],

– P1 computes 〈aj〉1 =
∑n
i=2〈fij〉1 and for each i ∈ {2, · · · , n}, Pi sets 〈aj〉i = 〈fij〉i.

– Compute 〈zj〉 = 〈aj〉 − 〈rj〉
– [zj ]← RevealnReshareFn(t, 〈zj〉)
– Compute [uj ] = [zj ] + [rj ].

7. Computing shares of intersection: For each j ∈ [β],

– Compute [v
(0)
j ] = [uj ]− n+ 1.

– For each i ∈ [d], compute [v
(i)
j ]← MultFn,t([v

(i−1)
j ], [v

(i−1)
j ]).

– Let [q
(0)
j ] = [v

(ind0)
j ].

– For i ∈ [k], compute [q
(i)
j ]← MultFn,t([q

(i−1)
j ], [v

(indi)
j ]).

– Compute [cj ] = 1− [q
(k)
j ].

8. Computing the circuit Cβ,σ,p: The parties invoke the FMPC functionality parameterized Cβ,σ,p by as
follows:
– P1 inputs {[cj ]1}j∈[β] and Table1. For i ∈ {2, · · · , n}, Pi inputs {[cj ]i}j∈[β].
– All parties receive the output T .

Fig. 6: CIRCUIT PSI PROTOCOL
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Pi for i ∈ [n] \ {1} to (n, t)-shares of values uj such that uj denotes the number of parties in [n]\{1}
that have the element stored at Table1[j]. In Step (7), the task is to securely compute shares of whether
uj = n − 1 or not. Let vj = uj − (n− 1). Now, using property of fields with prime order, vj = 0 (and

hence, uj = n− 1) if and only if vp−1j = 0. For this, parties first compute shares of v2
i

j for i ∈ {0} ∪ [d]

where d = dlog pe − 1 (requiring d calls to MultFn,t) and then multiply shares of appropriate powers of
vj (requiring at most d calls to MultFn,t). Then, parties locally compute shares of cj = 1−vp−1j . It holds
that cj is 1 if and only if uj = n− 1.

Finally, parties invoke FMPC functionality for circuit Cβ,σ,p (described above) with shares of cj and
Table1[j], for all j ∈ [β].

4.2 Correctness and Security Proof

Theorem 2. The protocol in Figure 6 securely realizes Fn,m,fC−PSI in the F-hybrid model, where F =

(Fβ,σ,Nw−PSM,DoubleRandomFn,t, RandomFn,t,RevealnReshareFn,MultFn,t,Revealn,t), against a semi-honest
adversary corrupting t < n/2 parties.

Proof. Correctness: Let Y =
⋃

j∈[β]:cj=1

Table1[j] and Y ∗ = ∩ni=1Xi. For statistical correctness, we

need to show that T = f(Y ∗) with all but negligible probability in κ. By correctness of the FMPC

(parameterized by the circuit Cβ,σ,p) functionality, whenever Y = Y ∗ we have T = C(Table1, {cj}j∈[β]) =
f(Y ) = f(Y ∗). So it suffices to upper bound the probability of Y ∗ 6= Y . For the rest of the proof we
assume that cuckoo hashing by P1 succeeds which happens with probability atmost 1− 2−41.

As we will see later, steps 4–7 do not lead to correctness error of our protocol. We make a few
observations about these steps below, that will be used in both lemmata that follow. For each j ∈ [β],

– (Step 4) By correctness of FσEQ, for each i ∈ [n] \ {1}, eqij equals 1 when yij = wij and 0 otherwise.

– (Step 5) By correctness of FFp
B2A, for each i ∈ [n] \ {1}, fij = eqij .

– (Step 6) Using reconstruction of additive secret sharing, aj =
n∑
i=2

fij < n. Moreover, by linearity of

(n, t)-secret sharing and correctness of RevealnReshareFn, uj = aj .

– (Step 7) First, v
(0)
j = uj− (n− 1). Also, let vj = v

(0)
j . Next, by correctness of MultFn,t for every i ∈ [d],

it holds that v
(i)
j ≡ (vj)

2i and q
(k)
j = vp−1j . Finally, cj = 1− q(k)j .

Now, using the property of finite fields, we get that q
(k)
j = 0, and consequently, cj = 1, if and only if

vj = 0. Using above properties, we get that cj = 1 if and only if uj = n − 1 = aj . This in turn implies
that eqij = 1 for all i ∈ {2, . . . , n}. To conclude, we have shown that cj = 1 if and only if eqij = 1 for all
i ∈ {2, . . . , n} and this is what we use below. We now prove the following two lemmata.

Lemma 3. Y ∗ ⊆ Y .

Proof. Let e = Table1[j] ∈ Y ∗. Therefore, for each i ∈ {2, · · · , n}, by the definition of simple hashing

e ∈ Tablei[j]. Hence by correctness of Fβ,σ,Nw−PSM guarantees that yij = wij (and hence eqij = 1) for each
i ∈ {2, · · · , n}. Using what we show above, we get that in this case cj = 1 and hence, e ∈ Y .

Lemma 4. Y * Y ∗ with probability atmost 1− 2−κ−1.

Proof. Suppose e = Table1[j] /∈ Y ∗. Since e /∈ Y ∗, let i∗ ∈ {2, · · · , n} be such that e /∈ Xi∗ . We now
show that e /∈ Tablei∗[j] with the following disjoint and exhaustive scenarios.

– Suppose e ∈ X1. Since e /∈ Xi∗ and any dummy elements inserted by Pi∗ are distinct from real elements,
it holds that e /∈ Tablei∗ [j].
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– Suppose e /∈ X1. Since dummy elements of P ∗i and real elements are distinct from dummy elements of
P1, it holds that e /∈ Tablei∗ [j].

Probability that yi∗j = wi∗j (and hence eqi∗j=1) when e /∈ Tablei∗ is atmost 2−σ. Recall that cj 6= 1
when eqi∗j 6= 1. Therefore, probability that cj = 1 is atmost 2−σ. Note that this is the probability that
Table1[j] ∈ Y \Y ∗. By union bound over all bins it holds that with probability atleast 1− β2−σ the set
Y \Y ∗ is empty.

Hence, except with failure probability atmost 2−κ (that includes the probability of cuckoo hashing
failure), the output of the protocol is correct, for κ = 40.

We give a detailed security proof in Appendix B.

4.3 Circuit PSI Complexity

We discuss the communication complexity of our protocol in Figure 6 for Fn,m,fC−PSI functionality. In the

protocol, instantiate FσEQ, FFp
B2A and multiparty functionalities as described in sections 2.3, 2.3 and 2.5,

respectively. Here, we instantiate the Fβ,σ,Nw−PSM functionality with the polynomial-based batch-OPPRF
(Sec. 2.4) that gives least concrete communication. We pick the smallest prime p > n, and hence, we
can assume that dlog pe ≤ dlog ne+ 1. Also, recall that β = 1.28m.

We split the communication of the protocol into two parts. 1) Steps 2–5 where P1 interacts with each
Pi for i ∈ [2, . . . , n] separately. 2) Steps 1, 6, and 7 where parties run n-party functionalities. In the first

part, protocol invokes Fβ,σ,Nw−PSM, FσEQ, FFp
B2A functionalities (n−1), β(n−1), and β(n−1) times respectively.

Concretely, communication cost of this part is at most m(n− 1)(λσ + 5.8λ+ 14σ + 1.28dlog ne), where
σ = κ+ dlogme+ 2. In the second part, the protocol invokes RandomFn,t(β) once and Revealn,t β times.
It also makes at most 2βdlog ne calls to the MultFn,t functionality. The concrete cost of this part is at
most m(n− 1)(36(dlog ne)2 + 40dlog ne).

Total cost of our protocol is simply the sum of the cost of both parts and is dominated by 2mn(λκ+
36(log n)2). Round complexity of the protocol is atmost 4dlog ne+ dlog σe+ 8.

4.4 A Linear Circuit PSI Protocol

We also show how to obtain a circuit PSI protocol, with asymptotically better communication complexity
(linear in n) than the protocol in Figure 6. This protocol follows a similar blueprint to Figure 6, but
works over a different field Fp whose size is independent of n. In particular, it works over a prime field
where p > 2σ.
Parameters: n parties P1, . . . , Pn with private sets of size m. Let β = 1.28m,σ = κ + dlogme + 3.
Additions and multiplications in the protocol are over Fp, where p > 2σ is a prime. Let d = dlog pe − 1
and bdbd−1 · · · b1b0 denote the binary representation of p − 1. Let S = {i ∈ ({0} ∪ [d]) : bi = 1} and
indk, . . . , ind1, ind0 be the ascending order of elements in S, where k = |S| − 1 .
Input: Each party Pi has input set Xi = {xi1, · · · , xim}, where xij ∈ {0, 1}σ.
Protocol: The protocol executes steps (1)-(3) of the circuit PSI protocol from Figure 6. Then, it executes
the first four sub-steps of step (4) of the mPSI protocol from Figure 4. At the end of step (4), the parties
have shares [uj ], for each j ∈ [β]. Now, execute step (7) and (8) of the circuit PSI protocol (figure 6),

albeit over a different field compared to what is used in Figure 6, while setting [v
(0)
j ] = [uj ] for each

j ∈ [β] in step (7).

The correctness and security proof of the protocol combines the analysis of appropriate steps in mPSI
and circuit PSI and is straightforward.

Complexity. The above protocol has a total communication cost of atmost m(n−1)(4.5λ+36σ2+83σ+36)
and a round complexity of 8 + 2σ, where recall that σ = κ+ logm+ 3. Note, that while asymptotically,
this solution has lower communication, its concrete communication cost is more than that of the circuit
PSI in Figure 6; hence, we choose to only implement that protocol.
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5 Quorum Private Set Intersection

The goal of quorum private set intersection is to compute the set of all elements which are present in the
leader P1’s private set and in at least k other parties’ sets, where k denotes the quorum threshold (ex-
cluding P1), and output it to P1 only. We begin by formally defining the quorum private set intersection

functionality Fn,m,kQPSI in Figure 7. Observe that when k = n − 1, (intuitively) this is simply multiparty
private set intersection and reduces to the functionality of Figure 3.

There are n parties P1, · · · , Pn, where P1 is the leader and k ∈ [n− 1] denotes the quorum threshold.
Input: For each i ∈ [n], Pi inputs a set Xi of size m.
Output: For each x ∈ X1, let qx = |{i : x ∈ Xi for i ∈ {2, · · · , n}}|. Then, output Y ∗ = {x ∈ X1 : qx ≥ k}
to P1.

Fig. 7: Quorum PSI Functionality Fn,m,kQPSI

5.1 Quorum PSI Protocol

Building blocks: Our protocol uses the two-party functionalities weak private set membership Fβ,σ,Nw−PSM

(Section 2.4), equality test FσEQ (Sec. 2.3), boolean to arithmetic share conversion FFp
B2A (Section 2.3), the

n-party functionalities from Section 2.5, and the weak comparison functionality Fp,k,n,tw-CMP (Section 2.6)
in the honest majority setting. In Section 5.2 we provide two weak comparison protocols that realize
Fp,k,n,tw-CMP and discuss their trade-offs.

Overview. Since the protocol follows most of the steps of circuit-PSI protocol from Section 4, we provide
an in-text description of the quorum PSI protocol highlighting only the changes (with full description
in Figure 9). At a high level, for each j ∈ [β], after obtaining (n, t)-shares of value uj that denotes
the number of Pi’s that contain the element of P1 stored at Table1[j], they invoke an n-party weak
comparison protocol that compares the value of uj with k and outputs the result to P1. We now provide
more details.

Parameters: There are n parties P1, . . . , Pn with private sets of size m and 1 < k ≤ n−1 is the quorum.
Let β = 1.28m,σ = κ+ dlogme+ dlog ne+ 2. Additions and multiplications in the protocol are over Fp,
where p is a prime (larger than n) that depends on specific instantiation of Fw-CMP.

Input: Each party Pi has input set Xi = {xi1, · · · , xim}, where xij ∈ {0, 1}σ. Element size can always
be made σ bits by first hashing the elements using an appropriate universal hash function.

Protocol: The protocol executes steps (1)-(6) of the circuit-PSI protocol from Figure 6. After this step,

for each j ∈ [β], parties hold [uj ]. Then, parties P1, · · · , Pn invoke Fp,k,n,tw-CMP with Pi’s input being [uj ]i
for i ∈ [n] and P1 learns cj as output.

P1 computes the quorum intersection as Y =
⋃

j∈[β]:cj=1

Table1[j].

Complexity. Based on the two intantiations of Fp,k,n,tw-CMP described in the next section, we have two protocols
for quorum PSI and we discuss their complexities in Section 5.3.

Theorem 3. The protocol given above securely realizes Fn,m,kQPSI in the F-hybrid model, where F =

(Fβ,σ,Nw−PSM,FσEQ,F
Fp
B2A,F

p,k,n,t
w-CMP , DoubleRandomFn,t, RevealnReshareFn, MultFn,t, Revealn,t), against a semi-

honest adversary corrupting t < n/2 parties.

We give a complete proof of the above theorem in Appendix C.
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5.2 Weak Comparison Protocols

In this section, we describe two protocols realizing the weak comparison functionality Fp,k,n,tw-CMP (Sec-
tion 2.6), w-CMP1 and w-CMP2 and discuss their trade-offs in Section 5.2.

Weak Comparison Protocol w-CMP1 This protocol uses the multiparty functionalities in Section
2.5 (with n parties and corruption threshold t) as building blocks.
On input, the (n, t)− shares [a]i from each Pi, for i ∈ [n] (where 0 ≤ a < n and a ∈ Fp), the protocol
proceeds as follows: For k ≥ n/2, consider the polynomial ψ(x) = (x− k) · (x− (k + 1)) · · · (x− n),
of degree n − k + 1, that satisfies the following property: ψ(x) = 0 for all n > x ≥ k. Similarly, for
k < n/2, consider the polynomial ψ(x) = x · (x− 1) · (x− 2) · · · (x− (k − 1)), of degree k, that satisfies
the following property: ψ(x) = 0 for all 0 ≤ x < k. The protocol takes as input [a] and uses the MultFn,t

funcitonality to evaluate [ψ(a) · s], for random s ∈ Fp. Now, P1 recovers ψ(a) · s, which is 0 whenever
ψ(a) = 0 and is random, otherwise (hiding ψ(a) 6= 0). By the property of ψ, P1 gets the required
comparison bit comp. We formally describe the protocol in Figure 8.

Parameters: There are n parties P1, · · · , Pn with (n, t)− shares [a], of a ∈ Fp and a < n. Here, p, n, t and
k are such that p is a prime, p > n > k and n > 2t. Additions and multiplications in the protocol are over
Fp.
Define the polynomial ψ (publicly known to all parties):

ψ(x) =

(x− k) · (x− (k + 1)) · · · (x− n) , if k ≥ n
2

x · (x− 1) · (x− 2) · · · (x− (k − 1)) , if k < n
2

Input: For each i ∈ [n], Pi inputs its (n, t)− share [a]i.
Protocol:

1. Pre-processing: P1, · · · , Pn invoke:
[s]← RandomFn,t(1).

2. Evaluating the polynomial: P1, · · · , Pn invoke the following functionalities:
– On input [a], invoke MultFn,t to compute all the required [ai], followed by scalar multiplications and

additions to compute [ψ(a)].
– [v]← MultFn,t([ψ(a)], [s]).
– v ← Revealn,t([v]).

Output: If k ≥ n/2, P1 sets comp = 1, if v = 0 and comp = 0, otherwise. If k < n/2, P1 sets comp = 0 if
v = 0 and comp = 1, otherwise. Other parties get no output.

Fig. 8: WEAK COMPARISON PROTOCOL I

Theorem 4. The protocol in Figure 8 securely realizes Fp,k,n,tw-CMP in the F-hybrid model, where F =
(RandomFn,t, MultFn,t, Revealn,t), against a semi-honest adversary corrupting t < n/2 parties.

We give a complete proof of Theorem 4 in Appendix D.1.

Weak Comparison Protocol w-CMP2 This protocol is a slight modification of the comparison
protocol from [11]. The main idea of their comparison protocol is as follows: For 0 ≤ a, k < n, a ≥ k

iff
⌊
(a−k)
2γ

⌋
= 0 (where γ = dlog ne+ 1). Hence, the protocol takes the (n, t)− shares of a and evaluates

the (n, t)− shares of
⌊
(a−k)
2γ

⌋
. This protocol invokes the multiparty functionalities MultFn,t, RandomFn,t

and Revealn,t. Corresponding to the instantiations of these funcitonalities used in [11], their protocol



Efficient Linear Multiparty PSI and Extensions to Circuit/Quorum PSI 17

has an n2 factor in the communication complexity. Instead, we use the instantiations from [20] for these
functionalities, which reduces the communication complexity of their protocol. For completeness, we give
the full protocol, which is modified (and simplified) appropriately to instantiate Fp,k,n,tw-CMP , in Appendix
D.2.

Trade-offs between w-CMP1 and w-CMP2 We first discuss the communication complexity and
rounds of both protocols. Multiparty functionalities in both the protocols are instantiated as referred
in Sec. 2.5. Since these instantiations provide good amortized complexities, we give amortized costs of
both the protocols.

The amortized communication cost of w-CMP1 is atmost (14k′ + 3)(n − 1)(dlog ne + 1) and the
round complexity is 4 + 2k′, when we set dlog pe = dlog ne + 1 and k′ = min{k, n − k + 1}.While for
w-CMP2, the (expected8) communication complexity is 20(n − 1)dlog 2ne(κ + dlog 2ne)2, when we set
dlog pe = κ+ dlog ne+ 2. The expected round complexity is 9 + 2dlog ne.

We now discuss trade-offs between the two comparison protocols. Complexity of w-CMP2 protocol
is independent of k, in contrast to w-CMP1 protocol’s dependence on k. Hence, theoretically, for large
values of k′, the communication complexity and round complexity of w-CMP2 is better than w-CMP1.
However, for practical setting of k′ < n < 512, the concrete communication of w-CMP1 is better than
that of w-CMP2. For any dlog ne + 5 < k′, the round complexity of w-CMP2 is better than that of
w-CMP1.

5.3 Quorum PSI Complexity

We instantiate the FσEQ,F
Fp
B2A,DoubleRandomFn,t,Revealn,t functionalities as specified in sections 2.3,

2.3 and 2.5. We instantiate the Fβ,σ,Nw−PSM functionality using the polynomial-based batch OPPRF. Let

Quorum-I and Quorum-II denote instantiations of Fn,m,kQPSI when Fp,k,n,tw-CMP is instantiated with w-CMP1
and w-CMP2 respectively.

Our protocol, in total, calls the Fβ,σ,Nw−PSM, FσEQ, FFp
B2A, RandomFn,t, Revealn,t and Fp,k,n,tw-CMP functionalities

(n− 1), β(n− 1), β(n− 1), 1, β and β times respectively, where β = 1.28m. Let k′ = min{k, n− k+ 1}.
Recall that σ = κ+ dlogme+ dlog ne+ 2. We first give the costs of the steps common to Quorum-I and
Quorum-II.

– Steps (2)-(5) cost less than m(n− 1)(λσ + 5.8λ+ 14σ + 1.28dlog pe).
– Steps (1) and (6) contribute atmost 8m(n− 1)dlog pe.

The total cost of w-CMP1 executions by Quorum-1 is atmost m(n − 1)(18k′(dlog ne + 1) + 4dlog ne).
Therefore, the concrete communication of Quorum-I is atmost m(n−1)(λσ+5.8λ+14σ+18k′(dlog ne+
1) + 14dlog ne), when we set dlog pe = dlog ne + 1. The round complexity of Quorum-I is atmost 10 +
dlog σe+ 2k′.

The (expected) total cost of w-CMP2 executions by Quorum-II is atmost 26m(n−1)(dlog ne+1)(κ+
dlog ne + 1)2. Therefore, (expected) concrete communication of Quorum-II is atmost m(n − 1)(λσ +
5.8λ+ 14σ + 27(dlog ne+ 1)(κ+ dlog ne+ 1)2), when we set p = κ+ dlog ne+ 2. The (expected) round
complexity of Quorum-II is atmost 10 + dlog σe+ 2dlog ne.

6 Implementation and Performance

In this section, we discuss the performance of our mPSI (multiparty PSI) protocols when instantiated
using the three different instantiations of weak-PSM (see Section 2.4), as well as the Circuit PSI and qPSI

8 One of the underlying sub-protocol uses rejection sampling for randomness that incurs repeated executions
with small probability, namely, 1/p.
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n, t 4, 1 5, 2 10, 4 15, 7

m 212 216 220 212 216 220 212 216 220 212 216 220

KMPRT 7.2 114.1 2057.7 13.4 211.2 3805.4 44.7 706.2 12730.4 103.4 1635.4 29487.9

Protocol A 3.2 49.4 790.2 4.6 72.7 1162.8 12.3 192.4 3077.2 22.5 353.4 5652.9

Table 2: Total communication in MB of mPSI protocols: KMPRT [43] and Protocol A.

n, t 4, 1 5, 2 10, 4 15, 7

m 212 216 220 212 216 220 212 216 220 212 216 220

KMPRT 3.3 51.9 935.2 4.9 77.8 1402.0 8.3 131.7 2373.5 13.1 207.5 3741.0

Protocol A 1.3 19.9 318.0 1.5 23.3 372.6 2.0 30.8 492.1 2.4 38.8 620.1

Table 3: Client communication in MB of mPSI protocols: KMPRT [43] and Protocol A.

(quorum PSI) protocols when instantiated using relaxed batch OPPRF [12]. Let Protocol A, Protocol B
and Protocol C denote our mPSI protocol when instantiated with polynomial-based batch OPPRF [55],
table-based OPPRF [43] and relaxed batch OPPRF [12] respectively. We compare the performance of
our mPSI protocols with the state-of-the-art mPSI protocol in literature [43].

Protocol Parameters. We set statistical security parameter κ=40 and computational security parameter
λ=128. From the correctness analysis in proof of Theorem 1, we note that we need failure probability of
atmost 2−41 in Cuckoo hashing at step 2 of mPSI protocol in Figure 4. Similar to [43, 57, 55, 12], we use
the empirical analysis to instantiate the parameters of Cuckoo hashing scheme in the stashless setting.
Based on the analysis given in Section 2.2, we instantiate cuckoo hashing with β = 1.28m for K = 3.
Based on Theorem 1, we set size of elements σ = κ+ dlogme+ 3 to achieve statistical security of κ bits.
Hence, the minimum element size σ required in mPSI protocol to ensure that the failure probability of
the overall protocol is at most 2−40 is 55, 59 and 63 for input set size 212, 216 and 220 respectively. In
the implementation of step 4 (see Figure 4) of mPSI protocol for input set size 212 and 216, we perform
arithmetic over prime field where the prime is the Mersenne prime 261 − 1. For input set size 220, we
choose the prime field with Mersenne prime 2127 − 1 for the LAN setting; for WAN setting we choose
the Galois Field over an irreducible polynomial where each element is represented in 64 bits. This is due
to compute vs communication trade-offs between the two fields.

Based on correctness analysis, we set σ = κ + dlogme + dlog ne + 2 for our Circuit PSI and qPSI
protocols, i.e., the maximum of the minimum element size required by these two protocols.

LAN Setting

n, t 4, 1 5, 2 10, 4 15, 7

m 212 216 220 212 216 220 212 216 220 212 216 220

KMPRT 0.28 2.47 41.30 0.39 4.03 65.43 0.67 6.77 98.04 1.40 13.32 193.90

Ours 0.23 (B) 1.60 (B) 23.80 (C) 0.23 (B) 1.66 (B) 25.48 (C) 0.31 (B) 2.48 (B) 31.45 (C) 0.44 (B) 3.27 (C) 39.45 (C)

WAN Setting

n, t 4, 1 5, 2 10, 4 15, 7

m 212 216 220 212 216 220 212 216 220 212 216 220

KMPRT 2.5 10.3 108.2 3.7 14.4 196.2 4.2 37.6 615.4 6.8 87.6 1524.5

Ours 1.9 (A) 7.0 (A) 69.6 (C) 2.2 (A) 7.6 (A) 86.3 (C) 3.0 (A) 10.4 (C) 153.9 (C) 3.3 (A) 15.4 (C) 244.8 (C)

Table 4: Total run-time in seconds of mPSI protocols: KMPRT [43] and Ours. For our protocols, we
report the best time among the three protocols and the label in parenthesis denotes the name of this
protocol.
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Implementation Details. We make use of the implementation of polynomial-based batch OPPRF [55]
and table-based OPPRF [43] available at [23] and [50] respectively. For implementation of relaxed batch
OPPRF [12] and equality test functionality F`EQ [12, 29, 21, 58], we use the code of [12]. For Boolean

to Arithmetic Share Conversion functionality FF
B2A [58], we use the implementation of correlated OTs

available at [48]. Finally, we use the code available at [19] for multiparty functionalities [20, 44] (see
Section 2.5).

Experimental Setup. Similar to [43], we ran our experiments on a single machine with 64-core Intel
Xeon 2.6GHz CPU and 256GB RAM, and simulated the network environment using linux tc command.
We configure a LAN connection with bandwidth 10 Gbps and round-trip latency of 0.06ms. For WAN
setting, we set the network bandwidth to 200 Mbps and round-trip latency to 96ms.

In this section, n, t and m denote the number of parties, corruption threshold and the size of the
input sets respectively. In our experiments, we consider the following values of (n, t): (4, 1), (5, 2), (10, 4)
and (15, 7). We note that among these, three settings, namely, (4, 1), (5, 2), and (15, 7) were considered
explicitly in the experimental analysis of KMPRT [43, Section 7]. We compare the performance of our
protocols with the implementation of KMPRT protocol provided at [50].

6.1 Communication Comparison of mPSI

In this section, we compare the concrete communication cost of our most communication frugal mPSI
protocol Protocol A with that of KMPRT protocol [43]. Table 2 summarizes the overall communication
cost of Protocol A and KMPRT protocol [43]. As can be observed from the table, Protocol A is 2.3−5.2×
more communication efficient than KMPRT protocol9.

Further, as noted earlier, the clients (parties P2, . . . , Pn) in our protocol are much lighter compared to
KMPRT protocol as is illustrated by Table 3. The concrete communication cost of a client in Protocol A
is 2.6 − 6× less than that of KMPRT protocol. Recall that a client in KMPRT is involved in 2t + 3
calls to OPPRF functionality whereas in our protocol a client only makes a single call to weak-PSM
functionality followed by the interaction in Evaluation phase (step 4 in Figure 4).

n 4 5 10 15

m 212 216 218 212 216 218 212 216 218 212 216 218

Run-time LAN (s) 1.46 2.91 9.32 1.62 3.10 9.49 2.19 4.12 11.27 2.26 4.54 13.12

Run-time WAN (s) 7.10 13.74 34.04 6.98 15.44 39.34 7.88 23.08 74.02 8.14 31.28 108.36

Total Communication (MB) 16.98 209.86 874.23 24.64 290.68 1166.28 55.44 667.73 2627.01 86.24 1038.68 4086.45

Client Communication (MB) 5.66 69.95 291.41 6.16 72.67 291.57 6.16 74.19 291.9 6.16 74.19 291.89

Table 5: Run-time in seconds and communication in MB for steps 2–5 of our Circuit PSI and qPSI
protocols.

6.2 Run-time Comparision of mPSI

In this section, we compare the run-times of our mPSI protocols with that of KMPRT Protocol [43].
In Table 4, we report the run-time of KMPRT protocol along with the run-time of our best performing

9 Protocol A’s implementation depends on the Polynomial based Batch OPPRF [55], which is implemented in [23]
over prime field with Mersenne prime 261−1. We remark here that this only gives statistical security of 38 bits
for input sets of size 220. To obtain statistical security of 40 bits, one can implement Protocol A over a field
with at least 263 elements, i.e., each element is represented using 64 bits. However, since an element over prime
field with Mersenne Prime 261 − 1 is communicated using 64 bits in the implementation, the communication
with 40 bits of security would remain the same if Protocol A were to be implemented over a field where an
element is represented using 64 bits. Hence, the communication obtained from the current implementation [23]
of Protocol A gives us a correct bound on the communication of Protocol A.
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protocol (i.e., Protocol A, Protocol B, or Protocol C as discussed above). For each entry in Table 4, we
report the median value across 5 executions. As can be observed from Table 4, our best protocol achieves
a speedup of 1.2−4.9× and 1.3−6.2× over KMPRT protocol [43] in LAN and WAN setting respectively.
This is because KMPRT protocol involves execution of n(t+2)−1 instances of OPPRF protocol whereas
our protocols involve execution of just n− 1 weak-PSM protocols followed by a very efficient Evaluation
phase (step 4 in Figure 4).

In the LAN Setting, Protocol A is the least efficient of the three instantiations of our mPSI protocol.
This is because Protocol A involves expensive computation of polynomial interpolation in contrast to
Protocol B and Protocol C which involve inexpensive hashing computations. Between Protocol B and
Protocol C, there is a trade-off between compute and communication. Protocol B has non-linear (in set-
size m) communication that starts to dominate as m increases. Protocol C has higher fixed compute but
linear communication in m. Hence, Protocol C is slower than Protocol B for smaller set size but is faster
as the set size increases.

In the WAN Setting, Protocol A owing to its least concrete communication cost, is the most efficient
for small sized input sets. But as the set size increases, the non-linear compute starts to become a
bottleneck and it loses to Protocol C. Note that Protocol C enjoys much more light-weight compute and
linear communication complexity. Since Protocol B communicates more, it is inefficient when compared
to the other two protocols in the WAN setting (due to lower bandwidth).

6.3 Performance of Circuit PSI and qPSI

Circuit PSI. As discussed in Section 4, in steps 1,6,7 (Figure 6), we need to work over a prime field
Fp such that p > n. Hence, the Mersenne prime 25 − 1 suffices for upto 30 parties and also for all the
settings we consider. However, the smallest prime p for which the implementation of these protocols is
available (at [19]) is for the Mersenne prime 231− 1, which is an overkill for our implementations. Based
on the concrete communication analysis discussed in Section 4.3, we observe that the communication
in steps 1,6,7 using Mersenne prime 31 is < 8.2% of the communication involved in steps 2 – 5 of the
protocol for the values of n, t and m considered in our experiments. Moreover, the computation done in
these steps are arithmetic operations over the small field F31. Hence, performance of the steps 2–5 of the
protocol is a strong indicator of its overall performance.

We illustrate the performance of steps 2–5 in Table 5 when weak-PSM is instantiated using relaxed-
batch OPPRF [12]. These numbers can be extrapolated to estimate the overall run-time of the protocol.
For instance, we estimate our Circuit PSI protocol to take 12.19s and 80.09s in LAN and WAN setting
respectively for 10 parties with t = 4 and input set size 218.

qPSI. Protocol Quorum-I convincingly outperforms Quorum-II for the values of n, t and m that we
consider in our experiments (see Section 5.3). The aforementioned discussion in the context of Circuit
PSI protocol also holds for protocol Quorum-I. From the concrete communication analysis in Section 5.3,
for the values of n, t,m considered in experiments, the communication in steps 1,6 (see Figure 9) using
Mersenne prime 31 is < 8.2% of the communication involved in steps 2 – 5 for all values of k ≤ n − 1.
Hence, for instance, the run-time of Quorum-I protocol can be estimated to be 4.91s and 33.84s in LAN
and WAN setting respectively for 15 parties with t = 7, m = 216 and any k ≤ 14.
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Appendices

A Instantiations of the Weak-PSM functionality

The weak-PSM functionality from Section 2.4 can be instantiated using an oblivious programmable
pseudorandom function (OPPRF), which was first introduced in [43]. More specifcally, we can instantiate
this functionality using any of the three OPPRF: polynomial-based batch OPPRF, table-based OPPRF
and relaxed-batch OPPRF, each of which offer a different trade-off in parameters. We infomally describe
these variants below, and explain how they can be used to realize the Fβ,σ,Nw−PSM functionality. We refer
the reader to [43, 12] for detailed definitions.
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Batch PPRF. [43] Informally, a pseudorandom function (PRF) [32], sampled with a key from a
function family, is guaranteed to be computationally indistinguishable from a uniformly random function,
to an adversary (who does not have the key), given oracle access to the function. In a programmable PRF
(PPRF), the PRF function outputs “programmed” values on a set of “programmed” input points. A
“hint”, which is also given to the adversary, helps in encoding such programmed inputs and outputs. The
guarantee is that the hint leaks no information about the programmed values (but can leak the number
of programmed points). When β instances of a PPRF are used, then the corresponding β hints can be
combined into a single hint, that hides all the programmed values (but not the number of programmed
points). This variant of PPRF is called as a Batch PPRF [55].

OPRF and Batch OPPRF. An oblivious PRF (OPRF) functionality [27] is a two-party functionality,
where the sender learns a PRF key k and the receiver learns the PRF outputs on its queries q1, · · · , qt.
An oblivious PPRF (OPPRF) is a two-party functionality, Fopprf , similar to the OPRF, where now the
sender specifies the programmed inputs/outputs, the receiver specifies the evaluation points q1, · · · , qt,
and the sender gets the PPRF key k and the hint, while the receiver gets the hint and the PPRF outputs
on q1, · · · , qt. The OPPRF functionality defined with respect to a Batch PPRF is called a Batch OPPRF,
denoted by Fb−opprf .

Relaxed Batch OPPRF. [12] A relaxed batch PPRF is a variant of PPRF, where now the function
outputs a set of d pseudorandom values corresponding to every input point, with the constraint that
for a programmed input, the programmed output is one of these d elements. The corresponding relaxed
batch OPPRF functionality, denoted by Fdrb−opprf , uses the relaxed batch PPRF to respond to the sender
and receiver. The sender inputs the programmed inputs/outputs and gets the relaxed batch PPRF keys
and the hint, while the receiver inputs the evaluation points and gets the hint and the relaxed batch
PPRF outputs on its queries.

We now describe the three variants of OPPRFs, which can be used to instantiate the Fβ,σ,Nw−PSM func-
tionality:

– Using the Batch OPPRF functionality [55]: On sender’s inputs {Xj}j∈[β] and receiver’s input
q1, · · · , qβ , the protocol proceeds as follows: the sender picks wj at random for each j ∈ [β], sets Tj
as a set of size |Xj |, all equal to wj , and the sender and receiver invoke the Fb−opprf functionality
on inputs {(Xj , Tj)}j∈[β] and {qj}j∈[β], respectively. The receiver gets its output {yj}j∈[β] from the
OPPRF functionality and the sender sets its output as {wj}j∈[β] (and ignores its output from the
OPPRF functionality). By the property of the batch OPPRF, it is guaranteed that yj = wj for each
j ∈ [β] such that qj ∈ Xj and yj is random otherwise. Hence, this protocol securely realizes the

Fβ,σ,Nw−PSM functionality in the Fb−opprf -hybrid model.
Specifically, the polynomial-based batch-OPPRF from [55] can be used to instantiate Fb−opprf in the
above construction, which gives a concrete communication cost of 3.5λβ+Nσ and has a round com-
plexity of 4.

– Using the OPPRF functionality [43]: On sender’s inputs {Xj}j∈[β] and receiver’s input q1, · · · , qβ ,
the protocol proceeds as follows: the sender picks wj at random for each j ∈ [β], sets Tj as a set
of size |Xj |, all equal to wj . Let maxβ be the application specific upper-bound on the size of the
input sets. The sender pads set Xj with dummy elements and set Tj with random elements, upto
the upper-bound maxβ , ∀j ∈ [β]. The sender and receiver invoke the Fopprf functionality on inputs
(Xj , Tj) and qj respectively, ∀j ∈ [β]. The receiver gets output yj from jth OPPRF functionality
invocation. The sender sets its output as {wj}j∈[β] (and ignores its output from the invocations of
OPPRF functionalities). By the property of OPPRF, it is guaranteed that yj = wj for each j ∈ [β]

such that qj ∈ Xj and yj is random otherwise. Hence, this protocol securely realizes the Fβ,σ,Nw−PSM
functionality in the Fopprf -hybrid model.
Specifically, the table-based OPPRF from [43] can be used to instantiate Fopprf in the above construc-
tion, which gives a concrete communication cost of (4.5λ + 2dlog(maxβ)eσ)β and a round complexity
of 4. For the application of PSI, maxβ is O(logm/ log logm).

– Using the Relaxed Batch OPPRF functionality [12]: Fix d = 3 in the relaxed batch OPPRF
functionality, Fdrb−opprf . On sender’s inputs {Xj}j∈[β] and receiver’s input q1, · · · , qβ , the protocol
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proceeds as follows: the sender picks wj at random for each j ∈ [β], sets Tj as a set of size |Xj |, all
equal to wj , and the sender and receiver invoke the Frb−opprf functionality on inputs {(Xj , Tj)}j∈[β]
and {qj}j∈[β] respectively. The receiver gets its output {Wj}j∈[β] from the relaxed batch OPPRF
functionality. By the property of relaxed batch OPPRF, it is guaranteed that wj ∈Wj and the other
elements in Wj are random if qj ∈ Xj , else Wj is completely random. Observe that |Wj | = 3, ∀j ∈ [β].

In the next phase, the receiver of Fβ,σ,Nw−PSM functionality picks vj at random for each j ∈ [β], sets target

set Vj as a set of size |Wj |, all equal to vj . The sender and receiver of Fβ,σ,Nw−PSM functionality invoke

β many instances of OPPRF functionality, where the receiver of Fβ,σ,Nw−PSM functionality plays the role

of sender with inputs (Wj , Uj) and the sender of Fβ,σ,Nw−PSM functionality plays the role of receiver with

input wj in the jth OPPRF instance. The sender of Fβ,σ,Nw−PSM functionality gets output yj from jth

OPPRF functionality invocation. The receiver of Fβ,σ,Nw−PSM functionality sets output as {vj}j∈[β]. By
the property of OPPRF, it is guaranteed that yj = vj for each j ∈ [β] such that wj ∈ Wj and
yj is random otherwise. Transitively, this implies that yj = vj for each j ∈ [β] such that qj ∈ Xj

and yj is random otherwise. Hence, this protocol securely realizes the Fβ,σ,Nw−PSM functionality in the
(Frb−opprf ,Fopprf)-hybrid model.
Specifically, using the solution proposed in [12] to instantiate Frb−opprf and table-based OPPRF [43] to
instantiate Fopprf gives a concrete communication cost of (8λ+4σ)β+1.31Nσ and a round complexity
of 8.

B Security Proof of Circuit PSI

We complete the proof of Theorem 2, by giving a security proof for our Circuit PSI protocol (Figure 6)
below.
Security Proof. Let C ⊂ [n] be the set of corrupted parties (|C| = t < n/2). We show how to simulate
the view of C in the ideal world, given the input sets XC = {Xj : j ∈ C} and the output, T = f(∩ni=1Xi).
We consider two cases based on party P1 being corrupt or not.

– Case 1 (P1 6∈ C): In the pre-processing step, the parties run the functionality DoubleRandomFn,t

from [20] and the corrupted parties get up to t shares of the random rj ’s, which can all be picked as
shares of some random strings by the simulator. The hashing step is local, and can be executed by
the simulator using the inputs of the corrupted parties. In step 3, P1 and Pi (for each i ∈ {2, · · · , n})
invoke the Fβ,σ,Nw−PSM functionality and the corrupted parties only see the sender’s views (since P1 6∈ C),

{wij}i∈C,j∈[β], which can all be picked at random by the simulator (by the definition of Fβ,σ,Nw−PSM). In

steps 4 and 5, for each i ∈ {2, · · · , n}, parties P1 and Pi invoke the FσEQ and FFp
B2A functionalities

and the corrupted parties see only one of the two boolean and additive shares, {〈eqij〉Bi }i∈C,j∈[β] and
{〈fij〉i}i∈C,j∈[β], respectively, which can be generated as corresponding shares of some random bit (by
the security of secret sharing). In step 6, besides the local computations, which the simulator can do,
the corrupted parties see at most t shares of the values zj and uj . Here, the simulator can pick shares
of some random values as the t shares of the zj ’s (by the security of secret sharing) and add them
with the t shares of the rj ’s (from the pre-processing step), to get the t-shares of the uj ’s. In step 7,
besides the local computations, the parties invoke the MultFn,t functionality. The view of corrupted

parties includes: at most t shares of the values {v(i)j }i∈[d],j∈[β], {q
(i)
j }i∈[k],j∈[β] and {cj}j∈[β]. Each of

the t shares of the v
(i)
j ’s and the q

(i)
j ’s can be picked as shares of random values (by the security of

secret sharing) and the t shares of cj ’s can be obtained by local computation. Finally, for step 8, the
simulator can set the output as T .

– Case 2 (P1 ∈ C): The simulation of the pre-processing step and the hashing step is exactly the same

as in Case 1. In step 3, P1 and Pi (for each i ∈ {2, · · · , n}) invoke the Fβ,σ,Nw−PSM functionality and the
corrupted parties see both the receiver’s view {yij : i ∈ {2, · · · , n}, j ∈ [β]}, and the sender’s views
{wij}i∈C,j∈[β]. For each i ∈ C, the simulator picks a random yij = wij , if Table1[j] ∈ Tablei[j], else picks
a random yij and wij independently, for each j ∈ [β] (the faithfulness of this step of simulation follows

from the definition of Fβ,σ,Nw−PSM and since the simulator has both Table1 and Tablei). For each i 6∈ C,
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the simulator picks yij ’s at random. In steps 4 and 5, for each i ∈ {2, · · · , n}, parties P1 and Pi invoke

the FσEQ and FFp
B2A functionalities and the corrupted parties see both the boolean and additive shares

for i ∈ C, {〈eqij〉B1 , 〈eqij〉Bi }i∈C,j∈[β] and {〈fij〉1, 〈fij〉i}i∈C,j∈[β], and only one of the two shares for
i 6∈ C, {〈eqij〉B1 }i∈[n]\C,j∈[β] and {〈fij〉1}i∈[n]\C,j∈[β]. For each i ∈ C, the simulator sets eqij = fij = 1,
if Table1[j] ∈ Tablei[j] and sets eqij = fij = 0, otherwise, for each j ∈ [β]. It then generates the boolean
and arithemetic shares of the eqij ’s and fij ’s, respectively. For each i 6∈ C, the simulator generates
both the boolean and additive shares as shares of some random bit (by the security of secret sharing).
The simulation of steps 6 and 7 is exactly as in Case 1, with the only addition of giving the random
zj ’s along with their shares (since P1 ∈ C). Again, for step 8, the simulator sets the output as T .

C Correctness and Security of Quorum PSI

We recall the Quorum PSI protocol from Section 5.1 in Figure 9.

Parameters: There are n parties P1, . . . , Pn with private sets of size m and 1 < k ≤ n− 1 is quorum. Let
β = 1.28m,σ = κ+ dlogme+ dlogne+ 2. Additions and multiplications in the protocol are over Fp, where
p is a prime (larger than n) that depends on specific instantiation of Fw-CMP.
Input: Each party Pi has input set Xi = {xi1, · · · , xim}, where xij ∈ {0, 1}σ. Note that element size can
always be made σ bits by first hashing the elements using an appropriate universal hash function.
Protocol:

1. Pre-processing: P1, · · · , Pn invoke DoubleRandomFn,t(β) to get ([r1], · · · , [rβ ], 〈r1〉, · · · , 〈rβ〉).
2. Hashing: Parties agree on hash functions h1, h2, h3 : {0, 1}σ → [β].

P1 does stashless cuckoo hashing on X1 using h1, h2, h3 to generate Table1 and inserts random elements
into empty bins.
For i ∈ {2, · · · , n}, Pi does simple hashing of Xi using h1, h2, h3 into Tablei, i.e., stores each x ∈ Xi
at locations h1(x), h2(x) and h3(x). If the three locations are not distinct, random dummy values are
inserted in bin with collision.

3. Invoking the Fβ,σ,Nw−PSM functionality: For each i ∈ {2, · · · , n} , P1 and Pi invoke the Fβ,σ,Nw−PSM function-
ality for N = 3m as follows:
– Pi is the sender with inputs {Tablei[j]}j∈[β] and P1 is the receiver with inputs {Table1[j]}j∈[β].
– Pi receives the outputs {wij}j∈[β] and P1 receives {yij}j∈[β].

4. Invoking the FσEQ functionality: For each i ∈ {2, · · · , n} and for each j ∈ [β], P1 and Pi invoke the
FσEQ functionality as follows: P1 and Pi send their inputs yij and wij , resp., and receive boolean shares
〈eqij〉B1 and 〈eqij〉Bi resp., as outputs.

5. Invoking the FFp
B2A functionality: For each i ∈ {2, · · · , n} and for each j ∈ [β], P1 and Pi invoke

the FFp
B2A functionality as follows: P1 and Pi send their inputs 〈eqij〉B1 and 〈eqij〉Bi , resp., and receive the

additive shares 〈fij〉1 and 〈fij〉i resp., as outputs.
6. Invoking n-party functionalities: For each j ∈ [β],

– P1 computes 〈aj〉1 =
∑n
i=2〈fij〉1 and for each i ∈ {2, · · · , n}, Pi sets 〈aj〉i = 〈fij〉i.

– For i ∈ [n], Pi computes 〈zj〉i = 〈aj〉i − 〈rj〉i
– [zj ]← RevealnReshareFn(t, 〈zj〉)
– For each i ∈ [n], Pi computes [uj ]i = [zj ]i + [rj ]i.
– Parties invoke Fp,k,n,tw-CMP with Pi’s input being [uj ]i for i ∈ [n] and P1 learns cj as output.

7. Output: P1 computes the quorum intersection as Y =
⋃

j∈[β]:cj=1

Table1[j].

Fig. 9: QUORUM PSI PROTOCOL

We now give a complete proof of Theorem 3, by proving the correctness and security of the protocol in
Figure 9.
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Correctness. For x ∈ X1, define qx = |{i ∈ {2, · · · , n} : x ∈ Xi}|. Let Y ∗ = {x ∈ X1 : qx ≥ k}
and the output of the protocol is denoted by Y . We now show that Y = Y ∗, with all but negligible
in κ probability. For the rest of the proof we assume that the cuckoo hashing by P1 succeeds (i.e., all
elements of X1 get inserted successfully in Table1), which happens with probability atleast 1− 2−41 (see
Section 2.2). Now, the following two lemmata complete the proof of correctness.

Lemma 5. Y ∗ ⊆ Y .

Proof. Let e = Table1[j] ∈ Y ∗ and E = {i ∈ {2, · · · , n} : e ∈ Xi}. By the property of simple hashing,

e ∈ Tablei[j] for all i ∈ E . By correctness of Fβ,σ,Nw−PSM, FσEQ and FFp
B2A, we have yij = wij , eqij = 1

and fij = 1 respectively, for all i ∈ E . For i /∈ E , since FσEQ gives a boolean output, eqij ∈ {0, 1},
and by correctness of FFp

B2A, we have fij ∈ {0, 1}. By reconstruction of additive secret sharing we get,
aj =

∑
i∈{2,··· ,n} fij < n < p. Since e ∈ Y ∗, we get aj ≥ |E| ≥ k. Using linearity of both additive and

(n, t) secret sharing schemes and correctness of multiparty functionalities used, we get uj = aj . Finally,

by correctness of Fp,k,n,tw-CMP we will get cj = 1 when invoked on shares of uj ≥ k. Therefore, e ∈ Y .

Lemma 6. Y ⊆ Y ∗, with probability at least 1− 2−κ−1.

Proof. Suppose Y * Y ∗. Let e = Table1[j] ∈ Y \Y ∗. First, e ∈ Y implies cj = 1. Further, by correctness

of Fp,k,n,tw-CMP , and linearity of additive and (n, t) secret sharing schemes, it follows that aj = uj ≥ k and

aj =
∑
i∈{2,··· ,n} fij . Now, for every i ∈ {2, · · · , n}, by correctness of FFp

B2A fij = eqij and by correctness
of FσEQ, eqij equals 1 if yij = wij and 0 otherwise.

Let E = {i ∈ {2, · · · , n} : e ∈ Xi}, the set of indices of parties (other than P1) who possess e in their
private sets. Let E ′ = {i ∈ {2, · · · , n} : eqij = 1}, the set of indices of parties (other than P1) whom
the protocol interprets to have possession of e. We now show that false positive (Y * Y ∗) implies when
E ′\E and finally prove that the later event occurs with low probability. Since

∑
i∈{2,··· ,n} fij = aj ≥ k

and for all i ∈ {2, · · · , n}, eqij ∈ {0, 1} we have |E ′| ≥ k. Consider the following disjoint cases.

– Case 1: e /∈ X1. By the construction of Table1, this implies that e is a dummy element inserted by P1.
Then, |E| = 0 since real elements are distinct from e. Therefore, E ′\E is non-empty. Further, since
any dummy elements inserted by parties other than P1 are distinct from e, for every i ∈ E ′\E it holds
that e /∈ Tablei[j].

– Case 2: e ∈ X1. Since e /∈ Y ∗, we have |E| < k and hence E ′\E is not a null set. Further, for each
i ∈ E ′\E , since dummy elements added by Pi are distinct from real elements it holds that e /∈ Tablei[j].

Probability that i ∈ E ′ (that is yij = wij) when e /∈ Tablei[j] is atmost 2−σ. Note that for any
i ∈ E , by correctness of simple hashing e ∈ Tablei[j]. Therefore, probability that E ′\E is non-empty (
and hence e ∈ Y \Y ∗) is atmost n · 2−σ. By union bound, the probability that there exists j ∈ [β] such
that Table1[j] ∈ Y \Y ∗ is atmost βn · 2−σ < 2−κ−1.

Hence with probability atleast 1− 2−41− 2−κ−1 > 1− 2−κ (for κ = 40) the protocol’s output will be
correct.

Security Proof. Let C ⊂ [n] be the set of corrupted parties (|C| = t < n/2). We show how to
simulate the view of C in the ideal world, given the input sets XC = {Xj : j ∈ C} and the output,
Y = {x ∈ X1 : qx ≥ k}, where, for each x ∈ X1, qx = |{i : x ∈ Xi for i ∈ {2, · · · , n}}|, when P1 ∈ C,
and no output, otherwise. We consider two cases based on party P1 being corrupt or not.

– Case 1 (P1 6∈ C): In the pre-processing step, the parties run the functionality DoubleRandomFn,t

from [20] and the corrupted parties get up to t shares of the random rj ’s, which can all be picked as
shares of some random strings by the simulator. The hashing step is local, and can be executed by
the simulator using the inputs of the corrupted parties. In step 3, P1 and Pi (for each i ∈ {2, · · · , n})
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invoke the Fβ,σ,Nw−PSM functionality and the corrupted parties only see the sender’s views (since P1 6∈ C),

{wij}i∈C,j∈[β], which can all be picked at random by the simulator (by the definition of Fβ,σ,Nw−PSM).

In steps 4 and 5, for each i ∈ {2, · · · , n}, parties P1 and Pi invoke the FσEQ and FFp
B2A functionalities

and the corrupted parties see only one of the two boolean and additive shares, {〈eqij〉Bi }i∈C,j∈[β] and
{〈fij〉i}i∈C,j∈[β], respectively, which can be generated as corresponding shares of some random bit
(by the security of secret sharing). In step 6, besides the local computations, the parties invoke the

functionalities RevealnReshareFn and Fp,k,n,tw-CMP . The view of the corrupted parties in this step includes:
at most t shares of the values zj and uj , for each j ∈ [β]. Here, the simulator can pick shares of
some random values as the t shares of the zj ’s (by the security of secret sharing) and add them with
the t shares of the rj ’s (from the pre-processing step), to get the t-shares of the uj ’s. Note that, the
corrupted parties get no output from the Fw-CMP functionality (since P1 6∈ C), and also no output
from the protocol.

– Case 2 (P1 ∈ C): The simulation of the pre-processing step and the hashing step is exactly the same

as in Case 1. In step 3, P1 and Pi (for each i ∈ {2, · · · , n}) invoke the Fβ,σ,Nw−PSM functionality and the
corrupted parties see both the receiver’s view {yij : i ∈ {2, · · · , n}, j ∈ [β]}, and the sender’s views
{wij}i∈C,j∈[β]. For each i ∈ C, the simulator picks a random yij = wij , if Table1[j] ∈ Tablei[j], else
picks a random yij and wij independently, for each j ∈ [β] (the faithfulness of this step of simulation

follows from the definition of Fβ,σ,Nw−PSM and since the simulator has both Table1 and Tablei). In steps

4 and 5, for each i ∈ {2, · · · , n}, parties P1 and Pi invoke the FσEQ and FFp
B2A functionalities and

the corrupted parties see both the boolean and additive shares for i ∈ C, {〈eqij〉B1 , 〈eqij〉Bi }i∈C,j∈[β]
and {〈fij〉1, 〈fij〉i}i∈C,j∈[β], and only one of the two shares for i 6∈ C, {〈eqij〉B1 }i∈[n]\C,j∈[β] and
{〈fij〉1}i∈[n]\C,j∈[β]. For each i ∈ C, the simulator sets eqij = fij = 1, if Table1[j] ∈ Tablei[j] and sets
eqij = fij = 0, otherwise, for each j ∈ [β]. It then generates the boolean and arithemetic shares of the
eqij ’s and fij ’s, respectively. For each i 6∈ C, the simulator generates both the boolean and additive
shares as shares of some random bit (by the security of secret sharing). To simulate steps 6 and 7,
the simulator does the following: for all j ∈ [β], give random zj ’s and t shares of the random value
as shares of zj ’s (since rj ’s are random, zj ’s are random). Next, add t shares of rj and t shares of zj
to get t shares of uj . Finally, for each j ∈ [β], set cj = 1 if Table1[j] ∈ Y and set cj = 0, otherwise,
and set the final output as Y .

D Weak Comparison Protocols

D.1 Correctness and Security of Weak Comparison Protocol I

We give a complete proof of Theorem 4 by proving the correctness and security of the weak comparison
protocol I in Figure 8.
Correctness. The correctness of the protocol directly follows from the correctness of the multiparty
functionalities RandomFn,t and MultFn,t from [20] and the definition of the polynomial ψ(x).
Security Proof. Let C ⊂ [n] be the set of corrupted parties (|C| = t < n/2). We show how to simulate
the view of C in the ideal world, given the input shares {[a]i}i∈C and the output comp, if P1 ∈ C, and
no output, otherwise. We consider two cases based on party P1 being corrupt or not.

– Case 1 (P1 6∈ C): For the pre-processing step, the simulator can pick a random string s and send
t shares of s to parties in C. To simulate step 2, the simulator picks random values and gives their
t shares as shares of [ai]. The scalar multiplications and additions are done locally on these shares
to obtain t shares of ψ(a). Next, it picks v at random and gives its t shares to corrupted parties.
Simulation of this step is correct by security of (n, t)-secret sharing scheme.

– Case 2 (P1 ∈ C): The simulation of step 1 and step 2 until generating t shares of v is done exactly
as in the previous case. The opened value v = ψ(a) · s is simulated as follows: Since s is uniformly
random (as only t shares are known to the corrupted parties), v = ψ(a) · s looks random whenever
v 6= 0. Hence, if k ≥ n/2, the simulator sets v = 0, if comp = 1 and picks v at random, otherwise, and
vice versa, if k < n/2. The simulator sends v to the corrupted parties.
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D.2 Weak Comparison Protocol II

Building Blocks: The protocol uses the multiparty functionalities in Section 2.5 (with n parties and
corruption threshold t) and the Fp,n,tMod functionality, which we define in Figure 10, as building blocks.

The Fp,n,tMod functionality takes as input the (n, t)− shares of some a ∈ Fp and outputs the (n, t)− shares
of (a mod 2).

There are n parties P1, · · · , Pn. t denotes the corruption threshold. All operations and elements are over
Fp, such that n < p.
Inputs: For each i ∈ [n], Pi inputs its (n, t)− share [a]i corresponding to some 0 ≤ a < n and [a]i ∈ Fp.
Output: Reconstruct the shares to get a, evaluate d = a mod 2, generate (n, t)− shares of d and output
[d]i to each Pi.

Fig. 10: Mod2 Functionality Fp,n,tMod

We instantiate the Fp,n,tMod functionality using the protocol from [11], which sets p > 2κ+γ to be a
prime such that p mod 4 = 3 and γ = log n+ 1. The details of this protocol are given in Appendix D.2.

The weak comparison protocol takes as input, the (n, t)− shares [a]i from each Pi (i ∈ [n]), where
a ∈ Fp (such that 0 ≤ a < n). For k ∈ Fp (with 0 ≤ k < n) and γ = dlog ne + 1, the protocol
proceeds as follows: it first computes the (n, t)− shares of (a − k). Next, by sequentially invoking the

Fp,n,tMod functionality, the parties P1, · · · , Pn receive the (n, t)− shares of
⌊
(a−k)
2γ

⌋
. Finally, by invoking

the Revealn,t functionality, party P1 recovers
⌊
(a−k)
2γ

⌋
, which is 0 iff a ≥ k. A formal description of the

protocol is given in Figure 11.

Parameters: There are n parties P1, · · · , Pn with (n, t)− shares [a], of a ∈ Fp and a < n. Let p, n, k, t be
such that p is a prime, p > n > k and n > 2t. Let γ = dlogne + 1. Additions and multiplciations in the
protocol are over Fp, where p depends on the specific instantiation of Fp,n,tMod .
Input: For each i ∈ [n], Pi inputs its (n, t)− share [a]i.
Protocol:

1. For each i ∈ [n], Pi computes [b]i = [a]i − k.
2. Let c1 = b. For each i = 1, · · · , γ, P1, · · · , Pn do the following:

– Invoke the Fp,n,tMod functionality with the input [ci] to get the output [di].
– For each j ∈ [n], Pj sets [ci+1]j = ([ci]j − [di]j) · 2−1.

3. cγ+1 ← Revealn,t([cγ+1]).

Output: P1 sets comp = 1, if cγ+1 = 0 and comp = 0, otherwise. Other parties get no output.

Fig. 11: WEAK COMPARISON PROTOCOL II

Theorem 5. The protocol given in Figure 11 securely realizes Fp,k,n,tw-CMP in the F−hybrid model, where

F = (Fp,n,tMod ,Reveal
n,t), against a semi-honest adversary corrupting t < n/2 parties.

Proof. Correctness. The correctness of the protocol follows from the correctness of the functionalities

Fp,n,tMod and Revealn,t and the fact that
⌊
(a−k)
2γ

⌋
= 0 iff a ≥ k.

Security Proof. Let C ⊂ [n] be the set of corrupted parties (|C| = t < n/2). We show how to simulate
the view of C in the ideal world, given the input shares {[a]i}i∈C and the output comp, if P1 ∈ C, and
no output, otherwise. We consider two cases based on party P1 being corrupt or not.
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– Case 1 (P1 6∈ C): For the first step, the simulator can perform local addition to get t shares of b. For
the second step, the corrupted parties get at most t shares of the values, di and ci, for i = 1, · · · , γ,
and cγ+1. The simulator picks the t shares of [di]’s as shares of random value (by the security of
secret sharing) and performs the local addition and scalar multiplication to get the t shares of the
[ci]’s. Here, the corrupted parties get no output.

– Case 2 (P1 ∈ C): The simulation of the first and second steps is done exactly as in Case 1. For the
third step, the simulator sets cγ+1 = 0, if comp = 1 and cγ+1 = p − 1, otherwise. Finally, set the
output as comp.

The Mod2 Protocol We now describe the Mod2 protocol from [11] (using the instantiations from [20]),
which we use to instatiate the Fp,n,tMod functionality, used in our weak comparison protocol II (Figure 11).
Building Blocks: The protocol uses the multiparty functionalities in Section 2.5 (with n parties and
corruption threshold t) as building blocks.
The protocol takes as input, the (n, t)− shares [a] from parties P1, · · · , Pn, where a ∈ Fp (such that
0 ≤ a < n), for prime p > 2κ+γ (where γ = dlog ne + 1) with p mod 4 = 3 and proceeds as follows:
first, in an input-independent Pre-processing step, the parties generate (n, t)− shares of a pair of random
non-negative integers (s′, s′′), such that (2 · s′′+ s′) is of γ+κ bits, which is required for security reasons
as discussed later. Then, they locally compute and get the (n, t)− shares of c = 2γ−1 + a + 2s′′ + s′,
which is revealed to P1. P1 then computes c0 = c mod 2 and sends it to all parties. Finally, all parties
locally compute and get (n, t)− shares of d = c0 + s′ − 2c0s

′, which is the required output. A formal
description of the protocol is given in Figure 12.

Parameters: There are n parties P1, · · · , Pn with (n, t)− shares [a], of a ∈ Fp and a < n. Let γ = dlogne+1.
Additions and multiplications in the protocol are over Fp, where p > 2κ+γ is a prime such that p mod 4 = 3.
Input: For each i ∈ [n], Pi inputs its (n, t)− shares [a]i.
Protocol:

1. Pre-processing:
– For each i = 1, · · · , κ+ γ, P1, · · · , Pn use the RandBit() sub-protocol (Figure 13) to get [bi].
– For each i ∈ [n], Pi sets [s′′]i =

∑κ+γ−1
j=1 2j−1 · [bj ]i and [s′]i = [bκ+γ ]i.

2. For each i ∈ [n], Pi sets [c]i = (2γ−1 + [a]i + 2[s′′]i + [s′]i).
3. c← Revealn,t([c]).
4. P1 computes: c0 = c mod 2 and sends to all parties.
5. For each i ∈ [n], Pi sets [d]i = c0 + [s′]i − 2 · c0 · [s′]i.

Output: For each, i ∈ [n], Pi gets the output [d]i.

Fig. 12: Mod2 PROTOCOL

We now describe the sub-protocol RandBit used in the pre-processing step of the above protocol, which
takes no input and outputs the (n, t)− shares of a random bit b. The parameters of this sub-protocol
are as in the main Mod2 protocol of Figure 12.

Theorem 6. The protocol given in Figure 12 securely realizes Fp,n,tMod in the F− hybrid model, where
F = (RandomFn,t, MultFn,t, Revealn,t), against a semi-honest adversary corrupting t < n/2 parties.

Proof. Correctness. We begin by proving the correctness of the RandBit sub-protocol, invoked in the
first step. For this, it suffices to show that b ∈ {0, 1}. By the correctness of the functionalities RandomFn,t

and MultFn,t from [20], we know that u = r2. If u 6= 0, (vr + 1)2−1 mod p = (r(1−p)/2 + 1)2−1 mod p.
We know that for any prime order field element r, r(1−p)/2 = ±1 mod p and hence b ∈ {0, 1}. Now, the
correctness of the Mod2 protocol follows from the following observations: consider c = 2γ−1+a+2s′′+s′,
which implies that c0 = c mod 2 = (a+ s′) mod 2. Now, clearly, d = c0 + s′ − 2c0s

′ = a mod 2 (recall
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Input: No input taken.
Protocol:

1. [r]← RandomFn,t(1).
2. Compute [u]← MultFn,t([r], [r]).
3. u← Revealn,t([u]). If u = 0, discard u and repeat step 1. Else, P1 sends u to all parties.
4. For each i ∈ [n], Pi sets: v = u−(p+1)/4 mod p.
5. For each i ∈ [n], Pi sets: [b]i = (v[r]i + 1)2−1 mod p.

Output: For each i ∈ [n], Pi gets the output [b]i.

Fig. 13: RandBit SUB-PROTOCOL

that s′ is a single bit).
Security Proof. Let C ⊂ [n] be the set of corrupted parties (|C| = t < n/2). We show how to simulate
the view of C in the ideal world, given the input shares {[a]i}i∈C and the output shares {[d]}i∈C (for
d = a mod 2). But note that the output is something the simulator can set on its own (by the security
of secret sharing). We consider two cases based on party P1 being corrupt or not.

– Case 1 (P1 6∈ C): In the pre-processing step, to simulate the view of the corrupted parties in the
RandBit sub-protocol, the simulator does the following: it picks the t shares of r as shares of a
random value. It picks a random u and sends its t shares to the corrupted parties. Further, it does
local computations to get v and the t shares of b. Then, the simulator does local computations to get
the t shares of s′ and s′′. For step 2, the simulator does local computations to get the t shares of c.
Finally, it picks c0 at random (this is because of the following reason: for a random r, r(1−p)/2 = ±1
mod p, with equal probability and hence, b is a random bit. Thus, s′ looks random to the corrupted
parties, by the security of secret sharing, which implies that c0 = a+ s′ mod 2 looks random to the
corrupted parties) and sets the t shares of [d] by doing the local computation.

– Case 2 (P1 ∈ C): The simulation of the pre-processing step and step 2 is exactly as in Case 1. The
simulator picks both c and c0 at random (this is because of the following reason: c = 2γ−1+a+2r′′+r′

and c0 = c mod 2. (2s′′ + s′) mod p is a random field element (corresponding to a random integer
of length κ+ γ) and hence, c looks random in the field Fp, which implies that c0 also looks random).
Finally, the simulator does the local computation to set the t shares of [d].

Complexity. The Mod2 protocol has an expected communication complexity of 19.3n(dlog pe)2 and an
expected round complexity of 10.

E Instantiation of the DoubleRandom functionality

From [20], we have an instantion of DoubleRandomFn,t, which gives (n, t)− and (n, 2t)− shares of random
strings. We modify this protocol appropriately to get (n, t)− shares and additive shares of random strings.
In Figure 14, we give the protocol to generate (n, t)− and additive shares of ` random values r1, · · · , r`.

In Figure 14, step (2) denotes that, for each i ∈ [n], Pi computes ([r1]i, · · · , [rj ]i) = M([s(1)]i · · · [s(n)]i)T
and (〈r1〉i, · · · , 〈r`〉i) = M(〈s(1)〉i, · · · , 〈s(n)〉i)T . We refer the reader to [20] for a proof of security of the
protocol.
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Parameters: P1, · · · , Pn are n parties. t is the corruption threshold. All additions and multiplications are
considered in F. Let M = (mij)

T
i∈[n],j∈{0}∪[`−1], where mij = αji for each i ∈ [n], j ∈ {0} ∪ [` − 1], and

α1, · · · , αn ∈ F are distinct, be the Van der Monde matrix.
Protocol:

1. For each i ∈ [n], Pi picks a uniformly random s(i) ∈ F and deals a t-sharing [s(i)] and an additive sharing
〈s(i)〉.

2. Compute:

([r1], · · · , [r`]) = M([s(1)], · · · , [s(n)])T

(〈r1〉, · · · , 〈r`〉) = M(〈s(1)〉, · · · , 〈s(n)〉)T

Fig. 14: DoubleRandomFn,t(`) Protocol


