
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.13154/tosc.v0.i0.0-0

On the Relationships between Different Methods
for Degree Evaluation (Full Version)

Siwei Chen, Zejun Xiang �, Xiangyong Zeng and Shasha Zhang

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics,
Hubei University, Wuhan, China,

chensiwei@stu.hubu.edu.cn,{xiangzejun,xzeng}@hubu.edu.cn,amushasha@163.com

Abstract. In this paper, we compare several non-tight degree evaluation methods i.e.,
Boura and Canteaut’s formula, Carlet’s formula as well as Liu’s numeric mapping and
division property proposed by Todo, and hope to find the best one from these methods
for practical applications. Specifically, for the substitution-permutation-network
(SPN) ciphers, we first deeply explore the relationships between division property
of an Sbox and its algebraic properties (e.g., the algebraic degree of its inverse).
Based on these findings, we can prove theoretically that division property is never
worse than Boura and Canteaut’s and Carlet’s formulas, and we also experimentally
verified that the division property can indeed give a better bound than the latter
two methods. In addition, for the nonlinear feedback shift registers (NFSR) based
ciphers, according to the propagation of division property and the core idea of numeric
mapping, we give a strict proof that the estimated degree using division property is
never greater than that of numeric mapping. Moreover, our experimental results on
Trivium and Kreyvium indicate the division property actually derives a much better
bound than the numeric mapping. To the best of our knowledge, this is the first time
to give a formal discussion on the relationships between division property and other
degree evaluation methods, and we present the first theoretical proof and give the
experimental verification to illustrate that division property is the optimal one among
these methods in terms of the accuracy of the upper bounds on algebraic degree.
Keywords: Degree Evaluation · Division Property · Numeric Mapping · SPN ·
NFSR

1 Introduction
The outputs (e.g., keystreams, ciphertexts or message digests) of symmetric ciphers can
be regarded as Boolean functions over public variables (e.g., plaintext bits or IV bits)
and/or secret variables (e.g., key bits). Distinguishing attacks or key-recovery attacks
can be achieved if the targeting cipher exhibits low algebraic degrees, such as integral
attacks [19], higher-order differential attacks [18, 20], cube attacks [13] and some algebraic
attacks [10, 11]. Thus, the algebraic degree of a cipher is one of the necessary criterions
for security analysis, and it is always of great significance to get a tighter bound.

For the degree evaluation of block ciphers, the first improvement of the trivial bound
(deg(G ◦ F ) ≤ deg(G) · deg(F )) of the composition G ◦ F was proposed by Canteaut and
Videau [8]. Later, Boura et al. [5] gave a new bound on the degree of iterated SPN block
ciphers with nonlinear layer composed of parallel bijective Sboxes. As an application, they
found a zero-sum partition of size 21590 for the full Keccak-f [2] permutation. Afterwards,
Duan et al. [14] improved the bound for the inverse Keccak-f permutation focusing on
the inverse Sbox based on [5], which lowered the size of the full-round zero-sum partition
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of Keccak-f permutation from 21590 to 21579. Almost at the same time, Boura and
Canteaut [3] also studied the influence of the algebraic degree of F−1 on the algebraic
degree of G ◦ F and proposed a tighter bound than [5]. Recently, Carlet [9] obtained
a set of formulas to estimate the upper bound on the degree of composite functions
by studying the graph indicators of vectorial Boolean functions, one of which is most
applicable for the degree evaluation of SPN ciphers. At CRYPTO 2017, Liu [21] presented
a general framework to iteratively estimate the algebraic degree for NFSR-based ciphers, by
exploiting the technique called numeric mapping. It was the first formalized and systematic
method for finding upper bounds on the algebraic degree of NFSR-based stream ciphers.
Based on the framework, a concrete and efficient algorithm to find an upper bound on the
algebraic degree for Trivium-like ciphers was proposed. This algorithm has linear time
complexity and needs a negligible amount of memory. Due to the high efficiency of the
algorithm, a large set of cubes with large size can be exhausted. As an illustration, [21]
obtained the best distinguishing attacks on all Trivium-like ciphers at that time.

Besides aforementioned methods, division property is also an effective technique to
estimate the upper bound. Division property [31], proposed by Todo at EUROCRYPT 2015,
is a generalized integral property which is aimed to construct longer integral distinguishers
of block ciphers. Since its proposal, there were a lot researches focusing on this topic [30,
4, 38, 26, 32, 25]. Later, Todo and Morri [33] introduced the bit-based division property
to achieve a more accurate structural evaluation. Therefore, the experimental 15-round
integral distinguisher of Simon-32 [35] can be verified using three-subset bit-based division
property (3SBDP). Then the Mixed Integer Linear Programming (MILP), which has been
widely used in cryptanalysis [23, 28, 29, 12], was first adopted by Xiang et al. [38] to
automatically search integral distinguishers based on bit-based division property. The
MILP-aided technique was extended to cube attacks by Todo et al. [32], which is the first
application of division property to steam ciphers. Then Wang et al. [34] introduced the
flag technique and term enumeration to describe the propagation of division property more
accurately and decrease the time complexity of recovering superpolys. At ASIACRYPT
2019, Wang et al. [36] proposed the MILP method based on 3SBDP for searching integral
distinguishers. As applications to several lightweight block ciphers, more balanced bits or
longer integral distinguishers can be found compared with [38]. Recently, applying 3SBDP
to cube attacks [37, 15] were presented, where the exact superpolys can be recovered. Based
on [33, 38, 32], the MILP-aided division property could be used to effectively estimate
the upper bound on the degree of not only block ciphers [1] but also stream ciphers [34].
Moreover, it breaks the structural limitation of ciphers and only needs to construct a
corresponding MILP model which can be solved by off-and-shelf solvers like Gurobi1. In
the following content, the (bit-based) division property generally represents the two-subset
(bit-based) division property if there is no special statement.

In the applications of Boura and Canteaut’s [3] and Carlet’s [9] methods to SPN
ciphers, the only parameter involved in their formulas is the algebraic degree of Sboxes
used in the ciphers. Thus the advantages of the two methods are high efficiency and
less manual work. However, both of them ignored the influence of linear layers between
two rounds, and this may result in a less accurate upper bound, especially for weak
linear layers. As for stream ciphers, Liu’s [21] numeric mapping is an efficient technique,
especially for searching cubes with large size. It is required to analyze not only the ANF
of the update function used in a particular cipher but also the algebraic expression of the
state computed backward for several rounds. Moreover, the numeric mapping method
frequently utilizes the trivial bound on the degree of the product of two functions i.e.,
deg(g · f) ≤ deg(g) + deg(f). Therefore, the precision will be inevitably lost in a long
iteration. In [32], some experimental results indicate that using division property can
derive longer zero-sum distinguishers than [21] for Trivium and Kreyvium. However, the

1https://www.gurobi.com/

https://www.gurobi.com/
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reason why division property is superior to numeric mapping is still unclear until now.

1.1 Our Contributions
Which is the best one among these methods in terms of the accuracy of degree evaluations?
In order to seek this answer, in this paper, we attempt to establish the relationships
between division property and other methods.

We first present an iterative method based on division property to get upper bounds on
the degree of SPN ciphers in this paper. To be specific, for the composite function G ◦ F ,
if we obtain an integer d as the minimal weight of the input division property of function
F such that the weight of the corresponding output division property is always greater
than deg(G), then we can regard d− 1 as the upper bound on deg(G ◦F ). The framework
corresponding to this method is described in Algorithm 1. In addition, we introduce
the concept of word-based division trail and according to the propagation of word-based
division property of a public Sbox, which is discussed in [30], we deeply explore some
relationships between the word-based division trail of an Sbox and its algebraic properties
as indicated in Lemma 1 and 2. Moreover, these observations are closely related to Boura
and Canteaut’s and Carlet’s formulas. Based on these observations, we theoretically prove
from the point of view of word-based division property that our new method is never worse
than Boura and Canteaut’s and Carlet’s formulas. Furthermore, we used small-PRESENT
as a toy example to make this conclusion seem more intuitive. Note that bit-based division
property is more accurate than word-based division property, thus our new method when
implemented by bit-based division property can further improve the upper bounds. Based
on this fact, we conclude that bit-based division property will never be worse than both of the
two formulas for degree evaluations of SPN ciphers. As an illustration, we apply bit-based
division property, Boura and Canteaut’s and Carlet’s formulas, to estimate degrees of
Keccak and KNOT ciphers. The best bounds are obtained actually by division property
in these experiments and these results provide strong evidences for our final conclusion.

For the degree evaluation of NFSR-based ciphers, Liu’s numeric mapping [21] can derive
an upper bound quite efficiently. As an application, an algorithm was proposed in [21]
to estimate the algebraic degree of Trivium-like ciphers. For a more intuitive comparison
with bit-based division property, we formalized Liu’s algorithm in this paper. In order to
establish a relationship between numeric mapping and division property, we present some
observations on the degree evaluation by division property. Based on these observations
and the core idea of numeric mapping, we provide comparisons of the two methods on not
only generalized stream ciphers but also the particular Trivium-like ciphers, and strictly
prove the division property is never worse than the numeric mapping for degree evaluations
of NFSR-based ciphers. In addition, we introduce a divide-and-conquer approach and
a new notion called maximal polynomial to improve the efficiency of the MILP-aided
degree evaluation based on division property, which is described in Algorithm 2. As an
application, we apply Algorithm 2 to Trivium and Kreyvium. The comparison of our
experimental results with [21] shows that the gap between the estimated degree derived
by division property and numeric mapping becomes more and more significant with the
round increasing.

Very recently, two works about computing the exact algebraic degree by Hu et al. [17] and
Hebborn et al. [16] appear, both of which have been accepted to ASIACRYPT 2020. The
methods used in [16] and [17] are 3SBDP and monomial prediction, respectively. Generally,
when computing the exact degree, 3SBDP (monomial prediction) requires to enumerate all
the division trails (monomial trails). But their applications in practice may be limited, e.g.,
for block ciphers with large block size or stream ciphers with complex update functions.
In these cases, evaluating the exact algebraic degree will be quite difficult and it would
be better to use some simple but non-tight methods to evaluate the upper bound. Our
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paper exactly devotes attention to the question that which non-tight method is the most
accurate.

1.2 Organization
The rest of this paper is organized as follows: In Sect.2, we revisit division property and
some previous work on degree evaluations. In Sect.3, we give the comparison between
division property and Boura and Canteaut’s formula as well as Carlet’s formula for degree
evaluations of SPN ciphers. The comparison of degree evaluations of NFSR-based ciphers
between division property and numeric mapping is given in Sect.4. We conclude our paper
and discuss in Sect.5.

2 Preliminaries
We first introduce some notations used throughout this paper. Let F2 denote the finite
field with two elements (0 and 1) and a ∈ Fn2 be an n-bit vector where ai denotes the ith
bit of a. A unit vector where the ith element is 1 and the others are 0 is denoted by ei.
Especially, a vector whose all elements are 0 (or 1) is denoted by 0 (or 1). The Hamming
weight of a ∈ Fn2 is denoted by wt(a) = #{i : ai = 1, 1 ≤ i ≤ n}. Denote ~a an element
in (Fn2 )m where the ith element of ~a, denoted by ai, belongs to Fn2 . Let k and k∗ be two
vectors in Fn2 , define k � k∗ if ki ≥ k∗i holds for all i ∈ {1, 2, ..., n}, otherwise we write
k � k∗.

Bit Product Function πu(x) and π~u(~x) [31]. For any u ∈ Fn2 , let πu(x) be a
function from Fn2 to F2. For any x ∈ Fn2 , πu(x) is defined as

πu(x) :=
n∏
i=1

xuii .

For any ~u ∈ (Fn2 )m, let π~u(~x) be a function from (Fn2 )m to F2. For any ~x ∈ (Fn2 )m, π~u(~x)
is defined as

π~u(~x) :=
m∏
i=1

πui(xi).

Algebraic Normal Form. For any Boolean function f on n variables, it can be
uniquely represented by its Algebraic Normal Form (ANF) as

f(x) =
⊕

u∈Fn2

afu

(
n∏
i=1

xuii

)
=
⊕

u∈Fn2

afuπu(x),

where afu ∈ F2 is a constant depending on f and u. The algebraic degree of f , denoted
by deg(f), is defined as max{wt(u)|u ∈ Fn2 , afu = 1}. Let u and u∗ be two vectors in
Fn2 , define πu(x) � πu∗(x) if u � u∗ 6= 0 holds and there exists i ∈ {1, ..., n} such that
ui > u∗i , otherwise we write πu(x) � πu∗(x).

Algebraic Degree of Vectorial Boolean Function. For a vectorial Boolean func-
tion F from Fn2 into Fm2 . Denote the algebraic degree of F by deg(F ), which is defined
as:

deg(F ) = max
i∈{1,2,...,m}

deg(Fi),

where Fi denotes the ith coordinate of F .
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2.1 Division Property
Division property [31] is a generalized integral property, which was proposed by Todo at
EUROCRYPT 2015. It has shown its great power [30] since its proposal as it is a more
accurate description of integral property. At FSE 2016, Todo and Morii [33] extended this
technique to two-subset and three-subset bit-based division property, both of which are
much more accurate since bit is the smallest unit in cryptography. We now briefly revisit
division property and related theories as follows.

Definition 1 (Division Property [31]). Let X be a multiset whose elements take values
from Fn2 and k takes a value between 0 and n. When the multiset X has division property
Dnk , it fulls the following conditions:

⊕
x∈X

πu(x) =
{
unknown if wt(u) ≥ k,
0 otherwise.

Definition 2 (Vectorial Division Property [31]). Let X be a multiset whose elements take
values from (Fn2 )m, and k is an m-dimensional vector where ki denotes the ith element
of k and 0 ≤ ki ≤ n for all i ∈ {1, 2, ...,m}. When the multiset X has division property
Dn,mk , it fulls the following conditions:

⊕
~x∈X

π~u(~x) =
{
unknown if wt(ui) ≥ ki for any i ∈ {1, ...,m},
0 otherwise.

Definition 3 (Bit-based Division Property [33]). Let X be a multiset whose elements
take values from Fn2 and K denote a set of n-dimensional bit vectors whose elements take
the value 0 or 1. When the multiset X has the division property D1,n

K , it fulls the following
conditions: ⊕

x∈X
πu(x) =

{
unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

Proposition 1 (Propagation Characteristic of Sbox [31]). Let S be a function (Sbox)
from Fn2 into Fn2 with degree d. Assuming that an input multiset X has division property
Dnk , then the output multiset Y has division property Dnd kd e. In addition, if the Sbox is a
permutation, the output multiset Y has division property Dnn when the input multiset has
division property Dnn.

Proposition 1 is applicable for the case where the only available information of an Sbox
is its algebraic degree. When the Sbox is a public function, which means the ANF of
the Sbox is known, Todo et al. [30] used the 7-bit Sbox of MISTY [22] as an example to
illustrate how to accurately describe the propagation characteristic. Based on [30] and
with the help of the following definition in [3], we formalize the propagation rule of division
property of a public Sbox as Property 1 for brevity.

Definition 4 ([3]). Let F be a function from Fn2 into Fm2 . For any integer k, 0 ≤ k ≤ m,
δk(F ) denotes the maximal degree of the product of any k (or fewer) coordinates of F :

δk(F ) = max
K⊂{1,2,...,m},|K|≤k

deg
(∏
i∈K

Fi

)
.

In particular, δ0(F ) = 0 and δ1(F ) = deg(F ).

Property 1. Let S be an n × n public Sbox. Assuming that an input multiset X has
division property Dnk , then the output multiset Y has division property Dnk′ where

k′ = min
0≤i≤n

{i|δi(S) ≥ k}.
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2.2 The MILP Technique Used in Division Property
Mixed Integer Linear Programming. MILP was first introduced by Mouha et al. [23] to
evaluate the number of differentially and linearly active Sboxes of AES and Enocoro-128v2.
Since then, MILP method has been widely applied to cryptography [28, 29, 12, 38, 26, 24].
The propagations of cryptographic properties (such as differential characteristics, linear
approximations or division property) are converted into a system of linear inequalities
in MILP-aided cryptanalysis, and these linear inequalities are sent to an MILP solver
with an appropriate objective function. In general, an MILP model M is composed of
variablesM.var, constraintsM.con and an objective functionM.obj. IfM is feasible,
then an optimized solution, denoted by OBJ(M), will be returned. In addition, ifM has
no objective function, the MILP solver only evaluate the feasibility ofM.

Searching Integral Distinguishers Based on MILP-aided Division Property. The ap-
plication of bit-based division property is limited because of its high time and memory
complexity. At ASIACRYPT 2016, Xiang et al. [38] applied MILP to division property to
overcome this drawback.

Definition 5 (Division trail [38]). Consider the propagation of division property {k}def=
K0 → K1 → · · · → Kr where D1,n

Ki is the division property after i rounds. Moreover, for
any vector k∗i+1 ∈ Ki+1, there must exist a vector k∗i ∈ Ki such that k∗i can propagate
to k∗i+1 by the propagation rules of division property. Furthermore, for (k0,k1, ...,kr) ∈
(K0 × K1 × · · · × Kr), if ki can propagate to ki+1 for all i ∈ {0, 1, ..., r − 1}, we call
(k0 → k1 → · · · → kr) an r-round division trail.

When we consider an r-round iterated cipher E and give the input division property
D1,n

k0
, if there is no division trail k0

E−→ ei, the ith bit of r-round output is balanced. The
details of converting propagations of division property into linear inequalities in an MILP
model can be referred to [38, 27]. With the MILP-aided technique to search division trails,
we can easily verify whether each bit of r-round output is balanced or not. Later, Todo
et al. [32] extended the MILP-aided division property to cube attacks at CRYPTO 2017,
which can recover the superpolys of cubes beyond practical size.

The Flag Technique. At CRYPTO 2018, Wang et al. [34] proposed an improved division
property based cube attack. The flag technique was introduced to enhance the precision of
propagations of division property. Specifically, for all variables in the MILP v ∈M, they
added a flag variable v.F ∈ {0c, 1c, δ}, where 0c or 1c means the state bit is constant 0 or
1, δ means this state bit is a variable. Moreover, they redefined the constraints for several
basic operations i.e., XOR, COPY, AND, which can be used to construct a more accurate
MILP model to describe the propagations of division property. As a result, they achieved
improved cube attacks on Trivium, Kreyvium, Ascon and Grain-128a.

2.3 The Known Methods for Degree Evaluation
In this subsection, we briefly revisit several known methods for estimating the upper
bounds on the degree of ciphers.

Two Formulas for SPN Ciphers. There are several formulas in [8, 5, 3] and [9] for the
degree evaluation of SPN ciphers. The following two formulas, proposed in [3] and [9], can
derive more tighter bounds than [8, 5].

Theorem 1 ([3]). Let F be a permutation from Fn2 into Fn2 corresponding to the concate-
nation of s bijective Sboxes, S1, ..., Ss, defined over Fn0

2 . Then, for any function G from



6 On the Relationships between Different Methods for Degree Evaluation

Fn2 into Fm2 , we have

deg(G ◦ F ) ≤ n− n− deg(G)
γ

, (1)

where

γ = max
1≤i≤n0−1

n0 − i
n0 −max1≤j≤s δi(Sj)

.

Note that deg(G ◦ F ) must be an integer, thus (1) is equivalent to

deg(G ◦ F ) ≤
⌊
n− n− deg(G)

γ

⌋
.

Besides, the authors in [3] proposed another bound deg(G ◦ F ) < n −
⌊
n−1−deg(G)

deg(F−1)

⌋
to

show the influence of deg(F−1) on deg(G ◦ F ), which is derived from (1). Recently, Carlet
proposed a new bound (see (2)) in [9] by exploiting the graph indicators of vectorial
Boolean functions. In the earlier version of [9], the author claimed that (2) improves by one
unit the bound deg(G ◦ F ) < n−

⌊
n−1−deg(G)

deg(F−1)

⌋
, but later was fixed as the two bounds are

actually fully equivalent. Both of the two bounds are related to the degree of F−1, but they
are constructed from different aspects. Thus, in order to facilitate the following discussion
and be consistent with (1), we will focus on (2) instead of deg(G ◦ F ) < n−

⌊
n−1−deg(G)

deg(F−1)

⌋
and present the bound in Theorem 2. Then we will compare division property with (1)
and (2) respectively in Sect.3.

Theorem 2 ([9]). Let F be a permutation of Fn2 and let G be a function from Fn2 to Fm2 .
Then we have

deg(G ◦ F ) ≤ n−
⌈
n− deg(G)
deg(F−1)

⌉
. (2)

Numeric Mapping for NFSR-Based Ciphers. Let f(x) =
⊕

u∈Fm2
afu
∏m
i=1 x

ui
i be a

Boolean function on m variables. Denoted by Bm and Z the set of all m-variable Boolean
functions and the integer ring. Moreover, Zm denotes the set of all m-dimensional vectors
whose elements belong to Z. The numeric mapping [21], denoted by DEG, is defined as

DEG : Bm × Zm → Z,

(f,D) 7→ max
afu 6=0
{
m∑
i=1

uidi},

where D = (d1, d2, ..., dm), and afu’s are coefficients of the ANF of f as defined previously.
Let g1, g2, ..., gm be Boolean functions on n variables, G = (g1, g2, ..., gm) and deg(G) =
(deg(g1),deg(g2), ...,deg(gm)). The numeric degree of the composite function h = f ◦G is
defined as DEG(f, deg(G)), denoted by DEG(h) for short. We call DEG(f,D) a super numeric
degree of h if di ≥ deg(gi) for all 1 ≤ i ≤ m. We can check that the algebraic degree of h
is always less than or equal to the numeric degree of h, i.e.,

deg(h) = deg(f(g1, g2, ..., gm)) ≤ DEG(h) = max
afu 6=0
{
m∑
i=1

ui · deg(gi)}.

The numeric mapping can be generally applied to the algebraic degree evaluation of NFSR-
based ciphers. In fact, the core idea of numeric mapping is to estimate the degree of the
monomial by computing the sum of degrees of all the variables contained in this monomial.
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In order to obtain a tighter bound on the algebraic degree for a particular cipher as Liu
did in [21] for Trivium and Kreyvium, we can iteratively compute the algebraic expression
backward for several rounds, and use the degree of the previous states to estimate the
degree of the current state.

Division Property. Another effective and accepted application of division property is
the degree evaluation. It is a reverse use of the division property for searching balanced
bits. Assuming that the MILP modelM in which the propagation rules of the division
property for a given block cipher with n-bit block size are described, and two n-bit vectors
x and y denote MILP variables corresponding to the input and output division property,
respectively. Moreover we constrain

∑n
i=1 yi = 1 and maximize

∑n
i=1 xi by MILP. Suppose

the optimized solution is d of an r-round cipher, then it indicates that the algebraic degree
of the r-round cipher is upper bounded by d. Furthermore, if we focus on a specific bit in
the r-round output, e.g., the jth bit, we constrain y = ej and maximize

∑n
i=1 xi. The

optimized solution being d means the algebraic degree of the jth bit of the r-round output
is at most d. Similarly, for a given stream cipher with n-bit internal state and m-bit
IV, let iv, u(r) and ks denote MILP variables corresponding to division property of IV,
the r-round internal state and the r-round keystream bit, respectively. We constrain∑n
i=1 s

(r)
i = 0, ks = 1 and maximize

∑m
i=1 ivi. In addition, we need to set the division

property of the initial states except IVs to 0. If the optimized solution returned by solvers
is d, then we ensure that the upper bound on algebraic degree of r-round keystream bit
defined over IV is d. These applications have been discussed in [1] and [34], respectively.

3 Degree Evaluation of SPN Ciphers
In this section, we establish relationships between word-based division property and Boura
et al.’s and Carlet’s formulas. Then we use word-based division property as a link to
illustrate that bit-based division property can always derive a bound never worse than
both of the two formulas. Finally, we show applications to Keccak and KNOT to provide
evidences for our conclusion.

3.1 An Iterative Method for Degree Evaluation
Proposition 2. Let F be a function from Fn2 into Fn2 . Denote WF

w the minimal weight of
the corresponding output division property when the weight of the input division property
of F is equal to w. For any function G from Fn2 into Fm2 , we have

deg(G ◦ F ) ≤ min
0≤w≤n

{w − 1|WF
w > deg(G)}.

Proof. Let W be the set {w − 1|WF
w > deg(G), 0 ≤ w ≤ n}. Suppose that the input

multiset X of F has division property Dnk and the corresponding output multiset Y has
division property Dnk′ , where k ∈ {0, 1, ..., n}. Then we have⊕

x∈X
(G ◦ F )(x) =

⊕
x∈X

G(F (x)) =
⊕
y∈Y

G(y). (3)

Assuming that k − 1 ∈W, thus k′ is great than deg(G) according to the definition of W,
which follows that (3) is always equal to 0 due to Proposition 1. This implies that the
output multiset of G ◦ F has a balanced property. In other words, the algebraic degree
of G ◦ F is bounded by k − 1. Therefore, for an arbitrary X with division property Dnk ,
deg(G ◦ F ) ≤ k − 1 always holds if k − 1 ∈W, thus deg(G ◦ F ) ≤ minW.
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Based on Proposition 2, we introduce Algorithm 1 to evaluate the upper bound on
deg(G ◦ F ). LetMF

w be an MILP model, which describes the propagation from the input
division property of F to the output division property of F . Moreover, its objective is to get
the minimal weight of the output division property of F , and it contains an extra constraint
that the weight of the input division property of F is fixed to w. Denoted by OBJ(MF

w)
the optimized solution ofMF

w , thus WF
w is equal to OBJ(MF

w). In Algorithm 1, in and
out respectively denote the weight of the input division property of F and the minimal
weight of the corresponding output division property. Note that we can initialize in to be
deg(G), since the weight of the corresponding output division property of F is clearly less
than or equal to that of the input due to Proposition 1.

Algorithm 1 Calculate the upper bound on the degree of G ◦ F based on Proposition 2
Input: The function F and the degree of G.
Output: The upper bound on deg(G ◦ F ).
1: in← deg(G);
2: Construct the modelMF

in;
3: out← OBJ(MF

in);
4: while out ≤ deg(G) do
5: in← in+ 1;
6: Construct the modelMF

in;
7: out← OBJ(MF

in);
8: end while
9: return in− 1.

Additional, our target is to get the minimal in such that the corresponding out is
always greater than deg(G), thus if a current objective value being equal to deg(G) occurs
in the searching process of optimized solutions of Gurobi, we can always terminate the
current searching process in order to save time. Note that this can be easily achieved
using the terminate() function of Gurobi. In our experiments, this approach can provide
a great improvement on the efficiency of Algorithm 1.

3.2 Comparisons between Division Property and Two Formulas
In this subsection, we will clarify the relationships between word-based division property,
bit-based division property and other two formulas for the degree evaluation of SPN
ciphers.

Definition 6 (Word-based Division Trail). Let S be an n0 × n0 Sbox. Assuming that the
input multiset X and the corresponding output multiset Y of S respectively have division
property Dn0

k and Dn0
k′ , where k, k′ ∈ {0, 1, ..., n0}, then we call (k 7−→ k′) a word-based

division trail of S. Similarly, let F be a function from Fn2 into Fn2 composed of s Sboxes
(S1, ..., Ss defined over Fn0

2 ), assuming that the input multiset X and the output multiset Y of
F respectively have division propertyDn0,s

k andDn0,s
k′ where k = (k1, ..., ks),k′ = (k′1, ..., k′s)

and kj , k′j ∈ {0, 1, ..., n0}, we call (k 7−→ k′) a word-based division trail of F .

Lemma 1. Let S be an n0 × n0 bijective Sbox. Assuming that (k 7−→ k′) is an arbitrary
word-based division trail of S, then we have

k′ ≥ n0 − (n0 − k) · η (4)

where η = max1≤i≤n0−1
n0−i

n0−δi(S) and δi is the same as in Definition 4.

Proof. It is obvious that if k = 0, then k′ = 0. Apparently, the conclusion holds since
η ≥ n0−1

n0−δ1(S) = n0−1
n0−deg(S) > 1, where deg(S) denotes the algebraic degree of S. Similarly, if
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k = n0 then k′ = n0, thus (4) holds when k equals to 0 and n0, we will prove that (4) holds
when 0 < k < n0. Because S is bijective, which indicates that δ0(S) = 0 and δn0(S) = n0.
Thus 0 /∈ {i|δi(S) ≥ k} when 1 ≤ k ≤ n0−1. In this case, for any x ∈ {i|δi(S) ≥ k}\{n0},
we have

n0 − (n0 − k) · η ≤ n0 − (n0 − δx(S)) · η ≤ n0 − (n0 − δx(S)) · n0 − x
n0 − δx(S) = x.

Therefore, combining with the previous two cases k = 0 and k = n0, for any k satisfying
0 ≤ k ≤ n0, we have x ≥ n0 − (n0 − k) · η for all x ∈ {i|δi(S) ≥ k}, and due to Property 1

k′ ≥ n0 − (n0 − k) · η

holds.

According to the Lemma 1, we give a comparison between word-based division property
and Boura and Canteaut’s formula on degree evaluations as in the following proposition.

Proposition 3. Let F be a function from Fn2 into Fn2 , which is the concatenation of s
bijective Sboxes (S1, ..., Ss defined over Fn0

2 , sn0 = n). Denote WF
w the minimal weight of

the corresponding output division property when the weight of the input division property
of F is equal to w. For any function G from Fn2 into Fm2 , we have

deg(G ◦ F ) ≤ min
0≤w≤n

{w − 1|WF
w > deg(G)} ≤

⌊
n− n− deg(G)

γ

⌋
,

where γ is the same as in Theorem 1.

Proof. It is equivalent to prove that
⌊
n− n−deg(G)

γ

⌋
always belongs to {w − 1|WF

w >

deg(G), 0 ≤ w ≤ n}. Let (k 7−→ k′) be an arbitrary word-based division trail of F , where
k = (k1, ..., ks), k′ = (k′1, ..., k′s) and kj , k′j ∈ {0, 1, ..., n0} for j ∈ {1, 2, ..., s}. Assuming
that the weight of the input division property of F is equal to

⌊
n− n−deg(G)

γ

⌋
+ 1, thus

s∑
j=1

kj =
⌊
n− n− deg(G)

γ

⌋
+ 1 > n− n− deg(G)

γ
.

Note that (kj 7−→ k′j) is the word-based division trail of jth Sbox Sj . Thus according to
Lemma 1, we have

s∑
j=1

k′j ≥
s∑
j=1

[n0 − (n0 − kj) · ηj ]

where ηj = max1≤i≤n0−1
n0−i

n0−δi(Sj) . In addition, it is clear that ηj ≤ γ always holds for
any j ∈ {1, 2, ..., s}. Thus we have

s∑
j=1

k′j ≥
s∑
j=1

[n0 − (n0 − kj) · ηj ]

≥
s∑
j=1

[n0 − (n0 − kj) · γ]

≥ n− (n−
s∑
j=1

kj) · γ

> n− [n− (n− n− deg(G)
γ

)] · γ = deg(G).
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It indicates that for any word-based division trail of F , if the weight of input division
property of F is fixed to

⌊
n− n−deg(G)

γ

⌋
+ 1, then the weight of the corresponding output

division property is always greater than deg(G). In other words, WF
w > deg(G) always

holds if w =
⌊
n− n−deg(G)

γ

⌋
+ 1, i.e.,

⌊
n− n−deg(G)

γ

⌋
∈ {w − 1|WF

w > deg(G)}. Thus

min
0≤w≤n

{w − 1|WF
w > deg(G)} ≤

⌊
n− n− deg(G)

γ

⌋
holds.

For an r-round SPN cipher E = (RL ◦RN )r, where RL and RN are the linear layer and
non-linear layer of the round function. Let Ei denote the i-round reduced cipher. Boura
and Conteaut’s formula first decomposes E1 = RL ◦RN

M= G ◦ F , and computes its degree
according to Theorem 1. Then the degree of Ei (i = 2, ..., r) is iteratively computed by
decomposing Ei as (Ei−1 ◦RL) ◦RN

M= G ◦ F . In addition, there are four models based
on division property to estimate the degree of E. We list them as follows:

Model 1. Let the function F in Proposition 2 always equal to RN and the function G is
varying, i.e. F M= RN and G M= Ei−1 ◦ RL, and the MILP model in Algorithm 1 is
constructed based on the word-based division property (WDP).

Model 2. Let G be an identical function and F equal to E in Proposition 2, i.e. G M= I

and F M= E. We still use WDP to construct the MILP model in Algorithm 1.

Model 3. Let G be an identical function and F equal to E in Proposition 2, i.e. G M= I

and F M= E. But different from Model 2, we now use the bit-based division property
(BDP) to construct the MILP model in Algorithm 1.

Model 4. The traditional degree evaluation method based on BDP, which has been
discussed in Sect.2.

The relationship of these four models and Boura and Canteaut’s formula is illustrated as
in Figure 1. First, Proposition 3 indicates that the value of the upper bound obtained by
Model 1 is less than or equal to that of Boura and Canteaut’s formula. Next, Model 2
is more precise than Model 1, since Model 2 takes the influence of linear layers on the
division property propagation into consideration. In addition, Model 3 is more precise
than Model 2, because Model 3 is based on BDP and BDP is more accurate than WDP.
Note that Model 4 returns the maximal weight of the input division property of E when
the weight of the output division property is fixed to 1. Assuming that the result obtained
by Model 4 is d, in other words, if we set the weight of the input division property of E
to d+ 1, then the minimal weight of the corresponding output division property is exactly
equal to 2. Thus Model 3 is actually equivalent to Model 4. Finally, we deduce that
the value of the upper bound obtained by Model 4 is less than or equal to that of Boura
and Canteaut’s formula.

As a conclusion, the bit-based division property will never be worse than Boura and
Canteaut’s formula for degree evaluations of SPN ciphers. We can also obtian a similar
conclusion for Carlet’s formula, which will be discussed as follows.

Theorem 3 ([3]). Let F be a permutation on Fn2 . Then, for any integers k and l,
δl(F−1) < n− k if and only if δk(F ) < n− l.

The contraposition of Theorem 3 can greatly help us to link the word-based division trail
of an Sbox with the algebraic degree of its inverse as indicated in the following lemma.
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Add linear layer

≤

BDP is more accurate 
than WDP

≤

≤

Final conclusion

Model l:  
G = Ei-1  RL

F = RN

WDP

Model 2:  
G = I
F = E
WDP

Model 3: 
G = I
F = E
BDP

Model 4:  
Traditional method based on 

BDP

Formula: 
G = Ei-1  RL

F = RN

Figure 1: The relationship of these four models and Boura and Canteaut’s formula. In
this diagram, A ≤ B means the value of the upper bound derived by B is less than or
equal to that of B.

Lemma 2. Let S be an n0 × n0 bijective Sbox. Assuming that (k 7−→ k′) is a word-based
division trail of S, then we have

k′ ≥ n0 − (n0 − k) · deg(S−1),

where S−1 is the inverse of S.

Proof. Due to Property 1, we have

δk′(S) ≥ k = n0 − (n0 − k). (5)

Note that S is bijective, thus it is a permutation. According to the contraposition of
Theorem 3 and (5), we can deduce

δn0−k(S−1) ≥ n0 − k′.

Then, based on the trivial bound δn0−k(S−1) ≤ (n0 − k) · δ1(S−1), we have

n0 − k′ ≤ (n0 − k) · δ1(S−1) = (n0 − k) · deg(S−1).

Proposition 4. Let F be a function from Fn2 into Fn2 , which is the concatenation of s
bijective Sboxes (S1, ..., Ss defined over Fn0

2 , sn0 = n). Denote WF
w the minimal weight of

the corresponding output division property when the weight of the input division property
of F is equal to w. For any function G from Fn2 into Fm2 , we have

deg(G ◦ F ) ≤ min
0≤w≤n

{w − 1|WF
w > deg(G)} ≤ n−

⌈
n− deg(G)
deg(F−1)

⌉
,

where F−1 denotes the inverse of F .

Proof. We reuse some notations in the proof of Proposition 3. Similarly, we only need to
prove that n−

⌈
n−deg(G)
deg(F−1)

⌉
belongs to the set {w−1|WF

w > deg(G), 0 ≤ w ≤ n}. Assuming

that the weight of the input division property of F is equal to n−
⌈
n−deg(G)
deg(F−1)

⌉
+ 1, thus

we have
s∑
j=1

kj = n−
⌈
n− deg(G)
deg(F−1)

⌉
+ 1 > n− n− deg(G)

deg(F−1) .
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According to Lemma 2, the weight of the corresponding output division property can be
calculated as

s∑
j=1

k′j ≥
s∑
j=1

[n0 − (n0 − kj) · deg(S−1
j )]

≥
s∑
j=1

[n0 − (n0 − kj) · deg(F−1)] (6)

≥ n− (n−
s∑
j=1

kj) · deg(F−1)

> n− [n− (n− n− deg(G)
deg(F−1) )] · deg(F−1) = deg(G).

The inequality (6) comes from the fact that deg(F−1) ≥ deg(S−1
j ) for any j ∈ {1, 2, ..., s} .

It implies that the weight of the corresponding output division property is always greater
than deg(G) if the weight of the input division property of F is equal to n−

⌈
n−deg(G)
deg(F−1)

⌉
+1.

Thus WF
w > deg(G) holds for w = n−

⌈
n−deg(G)
deg(F−1)

⌉
+1, i.e., n−

⌈
n−deg(G)
deg(F−1)

⌉
∈ {w−1|WF

w >

deg(G)}. Thus, we have

min
0≤w≤n

{w − 1|WF
w > deg(G)} ≤ n−

⌈
n− deg(G)
deg(F−1)

⌉
.

Similarly, we can conclude that bit-based division property will never be worse than
Carlet’s formula for degree evalautions of SPN ciphers.

Example 1. Small-PRESENT is a simplified version of PRESENT block cipher, and its
round function is shown as in Figure 2. When implementing Algorithm 1 to calculate

Figure 2: One round SP structure of small-PRESENT

the bound, we directly construct the 4-round MILP model. With the help of solvers, we
obtain the estimated degree as well as a word-based division trail as follows.

Round 1: (4, 4, 3, 4) S−→ (4, 4, 1, 4) P−→ (3, 3, 3, 4)

Round 2: (3, 3, 3, 4) S−→ (1, 1, 1, 4) P−→ (1, 1, 3, 2)

Round 3: (1, 1, 3, 2) S−→ (1, 1, 1, 1) P−→ (1, 0, 3, 0)

Round 4: (1, 0, 3, 0) S−→ (1, 0, 1, 0) P−→ (1, 0, 1, 0)

A four-dimensional vector, whose elements belong to {0, 1, 2, 3, 4}, denotes the word-based
division property of the state, and the substitution layer and the permutation layer are
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denoted by S and P, respectively. According to Proposition 2, the algebraic degree of
4-round small-PRESENT is upper bounded by 15− 1 = 14.

In addition, [3] and [9] give the same iterative formula to compute the upper bound as

deg(G ◦ F ) ≤ min{3 · deg(G),
⌊

16− 16− deg(G)
3

⌋
}.

In this case, the function F always represents the nonlinear layer, i.e. F M= S, and in order
to avoid confusion, the function G M= (P ◦ S)i−1 ◦ P is represented by Gi in the i-round
iterative computation. The computation is listed as follows, where di denotes the upper
bound of i-round small-PRESENT.

Round 1: deg(G1) = 1,deg(F ) = 3, d1 = 3
Round 2: deg(G2) = 3,deg(F ) = 3, d2 = 9
Round 3: deg(G3) = 9,deg(F ) = 3, d3 = 13
Round 4: deg(G4) = 13,deg(F ) = 3, d4 = 15

The 4-round degree is finally obtained as 15 by the two formulas, which is one more greater
than the bound estimated by division property. The reason why this gap exists is that
the former method does not consider the influence of P. If we set the weight of the input
division property to 15 and implement Algorithm 1 with an ideal linear layer, which means
that any input division property can propagate to any output division property with
the only restriction that they have the same weight. In this case, we enumerate all the
word-based division trails of the 4-round cipher as

15 S−→ 13 S−→



7 S−→


3 S−→ 1 and 2,
4 S−→ 2 and 3,
5 S−→ 2, 3 and 4,
6 S−→ 2, 3, 4 and 5,

10 S−→


4 S−→ 2 and 3,
6 S−→ 2, 3, 4 and 5,
7 S−→ 3, 4, 5 and 6,
9 S−→ 3, 4, 5, 6 and 7.

There exists a trail 15 S−→ 13 S−→ 7 S−→ 3 S−→ 1, which indicates the estimated degree of
4-round small-PRESENT is lower bounded by 15. Combining with Proposition 3 and 4, the
estimated degree of the 4-round cipher is 15. However, this trail 15 S−→ 13 S−→ 7 S−→ 3 S−→ 1
is infeasible when taking P into consideration.

3.3 Experiments on Keccak and KNOT
In this subsection, we use the bit-based division property and two formulas in [3] and [9] to
evaluate the algebraic degree of two SPN ciphers: Keccak [2] and KNOT [39]. Moreover,
we list the comparisons to support our conclusions of Sect.3.2.

Degree Evaluation of Keccak. The Keccak sponge family, designed by Bertoni et
al. [2] in 2007, was selected as SHA-3 cryptographic hash function in 2012. The core
component of Keccak sponge family is the Keccak-f permutation, which is a 1600-bit
SPN permutation with 24 rounds. One can refer to [2] for more details. The best known
bound on the algebraic degree of Keccak-f was given in [5], which led to a full-round
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zero-sum distinguisher. Later, focusing on the inverse Sbox, Duan et al. [14] improved
the bound for the inverse Keccak-f , which decreased the size of the full-round zero-sum
partition from 21590 to 21579 compared with [5].

Algebraic degrees of the Keccak Sbox and its inverse are 2 and 3, respectively.
Therefore, for the forward degree evaluation, the upper bounds on deg(G ◦ F ) can be
obtained according to [3] and [9] as:

deg(G ◦ F ) ≤
⌊

1600− 1600− deg(G)
3

⌋
and deg(G ◦ F ) ≤ 1600−

⌈
1600− deg(G)

3

⌉
.

It is clear that
⌊
1600− 1600−deg(G)

3

⌋
is identical to 1600−

⌈
1600−deg(G)

3

⌉
. Similarly, for the

backward degree evaluation of Keccak-f , the corresponding upper bounds on deg(G ◦ F )
are

⌊
1600− 1600−deg(G)

2

⌋
and 1600−

⌈
1600−deg(G)

2

⌉
.

Note that all the three linear transformations in Keccak-f are implemented on lanes,
thus the whole linear layer is translation-invariant in the direction of each lane, which
indicates that all the 64 bits within a lane have the same algebraic degree. When we use
division property to estimate algebraic degrees, this provides us a tip that we need to focus
only one bit in each lane of the output. This tip can largely reduce a lot of redundant
computations. As a result, the shortest rounds where the degree is bounded by 1599
for forward and backward Keccak-f are both extended from 16 to 17. The details and
comparisons are listed in Table 1.

Table 1: The upper bounds on degree of Keccak-f and its inverse.

Forward Backward

#Round #Bound #Round #Bound
[5, 3, 9] Sect.3.3 [5] [14, 3, 9] Sect.3.3

1 2 2 1 3 3 3
2 4 4 2 9 9 9
3 8 8 3 27 27 27
4 16 16 4 81 81 81
5 32 32 5 243 243 229
6 64 64 6 729 729 557
7 128 128 7 1309 1309 1079
8 256 252 8 1503 1454 1339
9 512 474 9 1567 1532 1469
10 1024 809 10 1589 1566 1534
11 1408 1336 11 1596 1583 1567
12 1536 1512 12 1598 1591 1583
13 1578 1570 13 1599 1595 1591
14 1592 1590 14 1597 1595
15 1597 1596 15 1598 1597
16 1599 1598 16 1599 1598
17 1599 17 1599

Degree Evaluation of KNOT. KNOT [39] is a family of authenticated encryption schemes
and hash functions, which is one of the Round 2 candidates of NIST Lightweight Cryptog-
raphy Standardization process2. KNOT contains two specific algorithms: KNOT-AEAD
and KNOT-Hash. Both of them use the same underlying primitive: KNOT permutation,
which is an SPN structure permutation with 256-, 384-, 512-bit internal state.

Note that the algebraic degrees of KNOT’s Sbox and its inverse are both 3. Thus in
the degree evaluations of forward and backward KNOT-n (n = 256, 384, 512), [3] and [9]

2https://csrc.nist.gov/Projects/Lightweight-Cryptography

https://csrc.nist.gov/Projects/Lightweight-Cryptography
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provide formulas as
⌊
n− n−deg(G)

3

⌋
and n−

⌈
n−deg(G)

3

⌉
to calculate deg(G◦F ). Similar to

Keccak-f , the linear layer in KNOT is translation-invariant in the direction of the word,
thus we can utilize this property to save redundant computations. As a result, division
property extends the shortest rounds where the degree is bounded by n− 1 from 9 to 13,
10 to 14, 11 to 15 for KNOT-256, 384, 512 respectively compared with [3] and [9]. More
details are listed in Table 2, 3 and 4.

Table 2: The upper bounds on degree of KNOT-256 and its inverse.

Forward Backward

#Round #Bound #Round #Bound
[3, 9] Sect.3.3 [3, 9] Sect.3.3

1 3 3 1 3 3
2 9 8 2 9 8
3 27 17 3 27 17
4 81 35 4 81 36
5 197 65 5 197 66
6 236 104 6 236 101
7 249 150 7 249 141
8 253 197 8 253 183
9 255 229 9 255 222
10 245 10 243
11 251 11 250
12 254 12 254
13 255 13 255

Table 3: The upper bounds on degree of KNOT-384 and its inverse.

Forward Backward

#Round #Bound #Round #Bound
[3, 9] Sect.3.3 [3, 9] Sect.3.3

1 3 3 1 3 3
2 9 8 2 9 8
3 27 17 3 27 17
4 81 35 4 81 36
5 243 68 5 243 68
6 337 112 6 337 116
7 368 173 7 368 183
8 378 247 8 378 263
9 382 317 9 382 326
10 383 358 10 383 361
11 377 11 375
12 379 12 380
13 382 13 382
14 383 14 383

4 Degree Evaluation of NFSR-based Ciphers
As an important cryptographic component, NSFR can be used to construct not only stream
ciphers but also block ciphers. In this section, we mainly focus on the degree evaluation of
stream ciphers based on NFSR.
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Table 4: The upper bounds on degree of KNOT-512 and its inverse.

Forward Backward

#Round #Bound #Round #Bound
[3, 9] Sect.3.3 [3, 9] Sect.3.3

1 3 3 1 3 3
2 9 8 2 9 8
3 27 17 3 27 17
4 81 35 4 81 36
5 243 68 5 243 68
6 422 113 6 422 115
7 482 179 7 482 182
8 502 264 8 502 262
9 508 359 9 508 350
10 510 441 10 510 428
11 511 485 11 511 479
12 503 12 501
13 509 13 508
14 510 14 510
15 511 15 511

4.1 Comparison between Division Property and Numeric Mapping
For a generalized stream cipher based on an n-bit NFSR, assuming that the register at
clock t is updated as

s
(t)
i =

{
s

(t−1)
i+1 if 1 ≤ i < n,

g(s(t−1)) if i = n,

where s(t) = (s(t)
1 , s

(t)
2 , ..., s

(t)
n ) denotes the internal state at clock t and g denotes the update

function. The output key stream bit at clock t, denoted by KS(t), can be represented as
KS(t) = f(s(t)), where f is the output function. Assuming that the ANFs of the update
function and output function are

g(x) =
⊕

u∈Fn2

aguπu(x) and f(x) =
⊕

u∈Fn2

afuπu(x).

When evaluating the algebraic degree of the output KS(t), the numeric mapping first
utilizes trivial bound to iteratively compute degrees of the state s(t) as

deg(s(1)
n ) = max

u∈Fn2 ,a
g
u 6=0
{deg(πu(s(0)))} ≤ max

u∈Fn2 ,a
g
u 6=0
{
n∑
i=1

ui · d(s(0)
i )} = d(s(1)

n )

deg(s(2)
n ) = max

u∈Fn2 ,a
g
u 6=0
{deg(πu(s(1)))} ≤ max

u∈Fn2 ,a
g
u 6=0
{
n∑
i=1

ui · d(s(1)
i )} = d(s(2)

n )

...

deg(s(t)
n ) = max

u∈Fn2 ,a
g
u 6=0
{deg(πu(s(t−1)))} ≤ max

u∈Fn2 ,a
g
u 6=0
{
n∑
i=1

ui · d(s(t−1)
i )} = d(s(t)

n )

where d(s(j)
i ) denotes the degree of the state s(j)

i estimated by numeric mapping. Note
that d(s(0)

i ) is initialized to the exact algebraic degree of the state s(0)
i . Thus the degree
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of the output bit KS(t), denoted by d(KS(t)), can be similarly calculated using numeric
mapping as

deg(KS(t)) = max
u∈Fn2 ,a

f
u 6=0
{deg(πu(s(t)))} ≤ max

u∈Fn2 ,a
f
u 6=0
{
n∑
i=1

ui · d(s(t)
i )} = d(KS(t)).

When applying bit-based division property to estimate the degree of KS(t), we convert
the division property propagations from the initial state to the t-clock state into a system
of inequalities of an MILP model, and constrain the division property of s(t)

i (for all
1 ≤ i ≤ n) to 0 and the division property of KS(t) to 1. Then the maximal weight of
division property of the initial state, which will be taken as the degree of KS(t), can be
computed by solvers. This is a whole process but we can also interpret this process in an
iterative way in order to compare it with numeric mapping intuitively. Before presenting a
high-level comparison, we first introduce some important conclusions.

Proposition 5. For the aforementioned generalized stream cipher, let h be an arbitrary
function on the internal state at clock t as h(s(t)) =

⊕
u∈Fn2

ahuπu(s(t)). Assuming that
d̂(h) and d̂(πu(s(t))) are the degrees of h and πu(s(t)) estimated by division property, then
we have d̂(h) = maxu∈Fn2 ,ahu 6=0{d̂(πu(s(t)))}.

Proof. Obviously, the conclusion holds when h(s(t)) contains only one monomial. Besides,
it is equivalent to prove that it still holds for the case when h(s(t)) contains two monomials.
Suppose that h(s(t)) = πu1(s(t)) ⊕ πu2(s(t)), where u1 6= u2, u1 6= 0 and u2 6= 0.
On the one hand, we know that d̂(h) is the maximal weight of division property of
the initial state when division property of h is 1. On the other hand, according to
the propagation rule of division property on XOR operation, there are two cases for
division property of (πu1(s(t)), πu2(s(t))): (1, 0) and (0, 1). The maximal weight of division
property of the initial state are d̂(πu1(s(t))) and d̂(πu2(s(t))) for (1, 0) and (0, 1) respectively.
Thus d̂(h) is naturally equal to the greater one among d̂(πu1(s(t))) and d̂(πu2(s(t))), i.e.
d̂(h) = max{d̂(πu1(s(t))), d̂(πu2(s(t)))}.

Proposition 6. For the aforementioned generalized stream cipher, let h be a function
on the internal state at clock t as h(s(t)) =

∏
i∈I,I⊆{1,2,...,n} s

(t)
i . Assuming that d̂(h)

and d̂(s(t)
i ) are the degrees of h and s

(t)
i estimated by division property, then we have

d̂(h) ≤
∑
i∈I d̂(s(t)

i ).

Before proving Proposition 6, we first introduce a helpful lemma.

Lemma 3. Assuming that k
f−→ l is a valid division trail. Then for any pair (l1, l2)

satisfying l1 ∨ l2 = l, there must exist a pair (k1,k2) satisfying k1 ∨ k2 = k such that
k1

f−→ l1 and k2
f−→ l2 are two valid division trails, where f denotes a Boolean function

and ∨ denotes the bitwise OR operation.

Proof. With a slight abuse of notation, we will use ∨ in the following to denote the bitwise
OR operation of both two vectors and two bits. Since f is a combination of the bitwise
XOR, AND and COPY operations, we give the proof for each operation respectively.

1. Let f be the XOR operation as (∗, ..., ∗, x, y) f−→ (∗, ..., ∗, x ⊕ y). Assuming that
k = (∗, ..., ∗, k1, k2), l = (∗, ..., ∗, l) and k

f−→ l is a valid division trail, where
k1, k2, l ∈ {0, 1}. Then we have the relation k1 + k2 = l from the propagation rule
of division property on XOR operation. First, if k1 = k2 = 0, then l = 0. In this
case, the conclusion holds apparently. If k1 = 1 and k2 = 0, then we have l = 1,
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and there are three pairs (l1, l2) satisfying l1 ∨ l2 = l. When l1 = (∗, ..., ∗, 1) and
l2 = (∗, ..., ∗, 0), let k1 = (∗, ..., ∗, 1, 0) and k2 = (∗, ..., ∗, 0, 0), then k1

f−→ l1 and
k2

f−→ l2 can be two valid division trails. When l1 = (∗, ..., ∗, 0) and l2 = (∗, ..., ∗, 1),
let k1 = (∗, ..., ∗, 0, 0) and k2 = (∗, ..., ∗, 1, 0), then k1

f−→ l1 and k2
f−→ l2 can be two

valid division trails. When l1 = (∗, ..., ∗, 1) and l2 = (∗, ..., ∗, 1), let k1 = (∗, ..., ∗, 1, 0)
and k2 = (∗, ..., ∗, 1, 0), then k1

f−→ l1 and k2
f−→ l2 can be two valid division trails.

In addition, if k1 = 0 and k2 = 1, which is similar to the case k1 = 1 and k2 = 0,
we can always find a pair (k1,k2) satisfying k1 ∨ k2 = l such that k1

f−→ l1 and
k2

f−→ l2 are two valid division trails for any pair (l1, l2) satisfying l1 ∨ l2 = l. Thus
the conclusion holds for XOR operation.

2. Let f be the AND operation as (∗, ..., ∗, x, y) f−→ (∗, ..., ∗, x&y). Assuming that
k = (∗, ..., ∗, k1, k2), l = (∗, ..., ∗, l) and k

f−→ l is a valid division trail, where
k1, k2, l ∈ {0, 1}. Then we have the relation k1 ∨ k2 = l from the propagation rule
of division property on AND operation. First, if k1 = k2 = 0, then l = 0. In this
case, the conclusion holds apparently. If k1 = 1, k2 = 0 or k1 = 0, k2 = 1, we have
l = 1, this is completely similar to the proof when f represents the XOR operation.
Thus we only focus on the case that k1 = k2 = 1. Because l = 1, there are three
pairs (l1, l2) satisfying l1 ∨ l2 = l. When l1 = (∗, ..., ∗, 1) and l2 = (∗, ..., ∗, 0), let
k1 = (∗, ..., ∗, 1, 1) and k2 = (∗, ..., ∗, 0, 0), then k1

f−→ l1 and k2
f−→ l2 can be two valid

division trails. When l1 = (∗, ..., ∗, 0) and l2 = (∗, ..., ∗, 1), let k1 = (∗, ..., ∗, 0, 0) and
k2 = (∗, ..., ∗, 1, 1), then k1

f−→ l1 and k2
f−→ l2 can be two valid division trails. When

l1 = (∗, ..., ∗, 1) and l2 = (∗, ..., ∗, 1), let k1 = (∗, ..., ∗, 1, 1) and k2 = (∗, ..., ∗, 1, 1),
then k1

f−→ l1 and k2
f−→ l2 can be two valid division trails. Thus the conclusion

holds for AND operation.

3. Let f be the COPY operation as (∗, ..., ∗, x) f−→ (∗, ..., ∗, x, x). Assuming that
k = (∗, ..., ∗, k), l = (∗, ..., ∗, l1, l2) and k

f−→ l is a valid division trail, where
k, l1, l2 ∈ {0, 1}. Then we have the relation l1 + l2 = k from the propagation rule of
division property on COPY operation. First, if k = 0, then l1 = l2 = 0. In this case,
the conclusion holds apparently. For the case of k being 1, if l1 = 1 and l2 = 0, then
there are three pairs (l1, l2) satisfying l1 ∨ l2 = l. When l1 = (∗, ..., ∗, 1, 0) and l2 =
(∗, ..., ∗, 0, 0), let k1 = (∗, ..., ∗, 1) and k2 = (∗, ..., ∗, 0), then k1

f−→ l1 and k2
f−→ l2

can be two valid division trails. When l1 = (∗, ..., ∗, 0, 0) and l2 = (∗, ..., ∗, 1, 0), let
k1 = (∗, ..., ∗, 0) and k2 = (∗, ..., ∗, 1), then k1

f−→ l1 and k2
f−→ l2 can be two valid

division trails. When l1 = (∗, ..., ∗, 1, 0) and l2 = (∗, ..., ∗, 1, 0), let k1 = (∗, ..., ∗, 1)
and k2 = (∗, ..., ∗, 1), k1

f−→ l1 and k2
f−→ l2 can be two valid division trails. In

addition, if l1 = 0 and l2 = 1, which is similar to the case l1 = 1 and l2 = 0, we can
always find a pair (k1,k2) satisfying k1 ∨ k2 = l such that k1

f−→ l1 and k2
f−→ l2 are

two valid division trails for any pair (l1, l2) satisfying l1∨ l2 = l. Thus the conclusion
holds for COPY operation.

In summary, the conclusion holds.

Now we are ready to prove Proposition 6.

Proof. It is clearly true for |I| = 1. Thus it is significant to prove that it also holds
for |I| = 2. Now we will prove it by contradiction. Assume I = {p, q} ⊆ {1, 2, ..., n},
h(s(t)) = s

(t)
p ·s(t)

q and d̂(h) > d̂(s(t)
p )+d̂(s(t)

q ). According to the propagation rules of division
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property, when the division property of h(st) is 1, there are three cases for the division
property of (s(t)

p , s
(t)
q ): (1, 0), (0, 1), (1, 1). Denoted by d̂ the maximal weight of the initial

division property corresponding to the third case, thus d̂(h) = max{d̂(s(t)
p ), d̂(s(t)

q ), d̂}.

Assume k
t−round−−−−−→ l be a division trail, where wt(k) = d̂ and l = ep ∨ eq. Then

according to Lemma 3, there exists a pair denoted by (kp,kq) satisfying kp ∨ kq = k

such that kp
t−round−−−−−→ ep and kq

t−round−−−−−→ eq are two valid division trails. Note that
wt(kp)+wt(kq) ≥ wt(k) clearly holds and we have d̂ > d̂(s(t)

p )+d̂(s(t)
q ) from the assumption

d̂(h) > d̂(s(t)
p ) + d̂(s(t)

q ), thus at least one of the two inequalities wt(kp) > d̂(s(t)
p ) and

wt(kq) > d̂(s(t)
q ) holds. This contradicts with the fact that there exists no initial division

property with weight greater than d̂(s(t)
p ) or d̂(s(t)

q ) that can propagate to ep or eq, since
d̂(s(t)

p ) and d̂(s(t)
q ) are the estimated degrees of s(t)

p and s(t)
q by division property. Thus the

assumption d̂(h) > d̂(s(t)
p ) + d̂(s(t)

q ) is negative, and our conclusion holds.

Proposition 6 indicates a "trivial" bound for the degree of the product of several
functions estimated by division property. Based on this property, we now can interpret
the division property method in an iterative way and easily compare it with the numeric
mapping, and finally obtain the following conclusion.

Proposition 7. For the aforementioned generalized stream cipher, denoted by d(s(t)
i ) and

d̂(s(t)
i ) the degree of the ith state bit estimated by numeric mapping and division property at

clock t, respectively. Then for any 1 ≤ i ≤ n, we have d̂(s(t)
i ) ≤ d(s(t)

i ). Moreover, denoted
by d(KS(t)) and d̂(KS(t)) the degree of the output bit estimated by numeric mapping and
division property at clock t, then we have d̂(KS(t)) ≤ d(KS(t)).

Proof. We only need to prove that d̂(s(t)
n ) ≤ d(s(t)

n ) holds since s(t)
n is the updated state

bit at clock t. Note that when t = 0, both of d̂(s(t)
i ) and d(s(t)

i ) are initialized to the exact
algebraic degree of the state bit s(0)

i . Thus for all 1 ≤ i ≤ n, d̂(s(0)
i ) = d(s(0)

i ). For t > 0,
we have

deg(s(1)
n ) ≤ d̂(s(1)

n ) = d̂(g(s(0))) = max
u∈Fn2 ,a

g
u 6=0
{d̂(πu(s(0)))}

due to Proposition 5, where d̂(πu(s(0))) denotes the computed degree of the monomial
πu(s(0)) by division property. According to Proposition 6, we know

d̂(πu(s(0))) = d̂(
n∏
i=1

(s(0)
i )ui) ≤

n∑
i=1

ui · d̂(s(0)
i ).

Thus we have

d̂(s(1)
n ) ≤ max

u∈Fn2 ,a
g
u 6=0
{
n∑
i=1

ui · d̂(s(0)
i )} = max

u∈Fn2 ,a
g
u 6=0
{
n∑
i=1

ui · d(s(0)
i )} = d(s(1)

n ).
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Similarly,

d̂(s(2)
n ) = max

u∈Fn2 ,a
g
u 6=0
{d̂(πu(s(1)))} ≤ max

u∈Fn2 ,a
g
u 6=0
{
n∑
i=1

ui · d̂(s(1)
i )}

≤ max
u∈Fn2 ,a

g
u 6=0
{
n∑
i=1

ui · d(s(1)
i )} = d(s(2)

n )

...

d̂(s(t)
n ) = max

u∈Fn2 ,a
g
u 6=0
{d̂(πu(s(t−1)))} ≤ max

u∈Fn2 ,a
g
u 6=0
{
n∑
i=1

ui · d̂(s(t−1)
i )}

≤ max
u∈Fn2 ,a

g
u 6=0
{
n∑
i=1

ui · d(s(t−1)
i )} = d(s(t)

n ).

From the above iteration, it is clear that d̂(s(t)
i ) ≤ d(s(t)

i ) always holds for all 1 ≤ i ≤ n at
any clock t. Thus we have

d̂(KS(t)) = max
u∈Fn2 ,a

f
u 6=0
{d̂(πu(s(t)))} ≤ max

u∈Fn2 ,a
f
u 6=0
{
n∑
i=1

ui · d̂(s(t)
i )}

≤ max
u∈Fn2 ,a

f
u 6=0
{
n∑
i=1

ui · d(s(t)
i )} = d(KS(t)).

Proposition 7 indicates that the division property is never worse than the numeric
mapping for degree evaluations of NFSR-based stream ciphers. In a particular stream
cipher, there may be more than one registers and update functions, and the output function
may be more complex, but these factors will not affect our final conclusion. In this case,
the numeric mapping may compute a tighter bound by exploiting the algebraic properties
of the update functions and output function. Liu specially introduced an algorithm to
estimate the algebraic degree for Trivium-like ciphers in [21], and we will give a more
detailed comparison on degree evaluations of Trivium-like ciphers in the next subsections.

4.2 Applications of Numeric Mapping to Trivium-like Ciphers

In order to compare the applications of division property and numeric mapping to Trivium-
like ciphers intuitively, we first introduce some special notations in this subsection.

4.2.1 Trivium-like Stream Ciphers

Let X, Y and Z be three feedback shift registers with size nX , nY and nZ respectively.
Denoted by x(t), y(t) and z(t) their corresponding states at clock t,

x(t) = (x(t)
1 , x

(t)
2 , ..., x(t)

nX ),

y(t) = (y(t)
1 , y

(t)
2 , ..., y(t)

nY ),

z(t) = (z(t)
1 , z

(t)
2 , ..., z(t)

nZ ),
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and the states are updated as follows,

x
(t)
i =

{
x

(t−1)
i+1 if 1 ≤ i ≤ nX − 1,
z

(t−1)
rZ · z(t−1)

rZ+1 + `X(s(t−1)) otherwise,

y
(t)
i =

{
y

(t−1)
i+1 if 1 ≤ i ≤ nY − 1,
x

(t−1)
rX · x(t−1)

rX+1 + `Y (s(t−1)) otherwise,

z
(t)
i =

{
z

(t−1)
i+1 if 1 ≤ i ≤ nZ − 1,
y

(t−1)
rY · y(t−1)

rY +1 + `Z(s(t−1)) otherwise,

where 1 ≤ rλ < nλ and `λ is a linear function for λ ∈ {X,Y, Z}. The internal state at
clock t denoted by s(t) is composed of the three registers, i.e.,

s(t) = (s(t)
1 , s

(t)
2 , ..., s(t)

n ) = (x(t)
1 , ..., x(t)

nX , y
(t)
1 , ..., y(t)

nY , z
(t)
1 , ..., z(t)

nZ )

where n denotes the size of internal states, i.e. n = nX + nY + nZ . Let f be the output
function, after an initialization of N rounds, the cipher generates a keystream bit KS(t)

by f(s(t)) for each t ≥ N .
Trivium-like stream ciphers can be represented as above roughly, additional details

depend on the specific cipher. Trivium exactly falls into this kind of ciphers. Kreyvium
is a variant of Trivium with 128-bit security. Moreover, two extra registers K∗ and IV ∗
without updating but shifting, which only involve the key bits and IV bits respectively,
are used in Kreyvium to provide single bit to each of `X and `Y . Trivium uses an 80-bit
IV and key, while Kreyvium uses a 128-bit IV and key. Both ciphers have 1152-round
initialization. One can refer to [6, 7] for more details of this two ciphers.

4.2.2 Formalizing the Applications of Numeric Mapping to Trivium-like Ciphers

In [21], an efficient algorithm is proposed to estimate degrees of updated states and
the output keystream bit for Trivium-like ciphers. It takes advantage of the property
that the only nonlinear term of the update functions is the product of two neighboring
state bits. Thus, it can obtain a more accurate degree based on numeric mapping by
iteratively computing the algebraic expression backward for one round. We give a formalized
description of this algorithm for intuition as follows. Denote d(x(t)

i ), d(y(t)
i ) and d(z(t)

i )
the degrees of the states x(t)

i , y
(t)
i and z

(t)
i computed by numeric mapping at clock t,

respectively. The degree of the internal state at clock t (0 ≤ t ≤ N) is represented as

D(t) = (d(s(t)
1 ), d(s(t)

2 ), ..., d(s(t)
n ))

= (d(x(t)
1 ), ..., d(x(t)

nX ), d(y(t)
1 ), ..., d(y(t)

nY ), d(z(t)
1 ), ..., d(z(t)

nZ ))

where n = nX + nY + nZ . Particularly, D(0) denotes the degree of the initial state and
is equal to the exact algebraic degree. The degree of the linear function `λ(s(t)) for λ ∈
{X,Y, Z}, denoted by DEG(`λ, D(t)), is computed as DEG(`λ, D(t)) = max1≤i≤n{a`λei ·d(s(t)

i )}
(see in Sect.2). If D(j) for j ≤ t − 1 is known, then we can compute the degree of the
updated state of the register X due to numeric mapping as follows:

d(x(t)
nX ) =

{
max{d(z(0)

nZ+t1) + d(z(t−1)
rZ ), DEG(`X , D(t−1))} if t1 ≤ 0,

max{d1, d2, d3, DEG(`X , D(t−1))} otherwises.
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where

t1 = t+ rZ − nZ − 1,

d1 = min{d(z(t1)
nZ ) + d(y(t1)

rY +1), d(z(t1+1)
nZ ) + d(y(t1−1)

rY ), d(y(t1−1)
rY ) + d(y(t1)

rY ) + d(y(t1)
rY +1)},

d2 = DEG(`Z , D(t1)) + d(z(t1)
nZ ),

d3 = DEG(`Z , D(t1−1)) + d(z(t1+1)
nZ ).

The processes to compute degrees of the updated states of registers Y and Z are similar
to the above. Finally, the degree of the key stream KS(t) is easy to be computed as
d(KS(t)) = DEG(f,Dt) after we get D(t).

4.3 A Detailed Comparison on the Degree Evaluation of Trivium-like
Ciphers between Division Property and Numeric Mapping

When applying division property to the degree evaluation of Trivium-like ciphers, we
denote d̂(x(t)

i ), d̂(y(t)
i ) and d̂(z(t)

i ) the estimated degrees of the states x(t)
i , y

(t)
i and z(t)

i at
clock t, respectively. The degree of the internal state at clock t (0 ≤ t ≤ N) is denoted as

D̂(t) = (d̂(s(t)
1 ), d̂(s(t)

2 ), ..., d̂(s(t)
n ))

= (d̂(x(t)
1 ), ..., d̂(x(t)

nX ), d̂(y(t)
1 ), ..., d̂(y(t)

nY ), d̂(z(t)
1 ), ..., d̂(z(t)

nZ )).

Especially, D̂(0) denotes the degree of the initial state and is equal to the exact algebraic
degree. According to Proposition 5, the estimated degree of the linear function `λ(s(t)) for
λ ∈ {X,Y, Z}, denoted by d̂(`λ(s(t))), can be represented as

d̂(`λ(s(t))) = max
1≤i≤n

{a`λei · d̂(s(t)
i )}

Proposition 8. For Trivium-like ciphers, denoted by d̂(s(t)
i ) and d(s(t)

i ) the degree of the
ith state bit s(t)

i estimated by division property and numeric mapping at clock t respectively,
where d(s(t)

i ) is computed as in the last subsection. Then we have d̂(s(t)
i ) ≤ d(s(t)

i ) for
all 1 ≤ i ≤ n and t ≥ 0. Moreover, denoted by d̂(KS(t)) and d(KS(t)) the degree of the
output bit estimated by division property and numeric mapping at clock t, then we have
d̂(KS(t)) ≤ d(KS(t)).
Proof. We know both D(0) and D̂(0) are initialized by the exact algebraic degree, thus
this conclusion apparently holds for t = 0. In fact, we only need to pay attention to the
updated state bits instead of every state bit. Here we just illustrate the details of the proof
for register X due to the similarity of these three registers. Assuming that d̂(s(j)

i ) ≤ d(s(j)
i )

always holds for all 1 ≤ i ≤ n and 1 ≤ j ≤ t− 1, then we need to prove d̂(x(t)
nX ) ≤ d(x(t)

nX )
holds.

When estimating the value of d̂(x(t)
nX ), the division property of state x(t)

nX is 1. Thus,
according to the update function and Proposition 5, we have

d̂(x(t)
nX ) = max{d̂(z(t−1)

rZ · z(t−1)
rZ+1), d̂(`X(s(t−1)))}

where d̂(z(t−1)
rZ · z(t−1)

rZ+1) denotes the degree of the monomial z(t−1)
rZ · z(t−1)

rZ+1) by division
property. It is clear that d̂(`X(s(t−1))) ≤ DEG(`X , D(t−1)) holds because of the assumption
that d̂(s(j)

i ) ≤ d(s(j)
i ) for any 1 ≤ i ≤ n and 1 ≤ j ≤ t− 1. Thus we have

d̂(x(t)
nX ) ≤ max{d̂(z(t−1)

rZ · z(t−1)
rZ+1), DEG(`X , D(t−1))}.

Now we focus on the degree of the monomial z(t−1)
rZ · z(t−1)

rZ+1 . Let t1 = t + rZ − nZ − 1,
similar to the numeric mapping, there are two cases as the following discussion.
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1. t1 ≤ 0. In this case, the state z(t−1)
rZ can be computed as

z(t−1)
rZ = z

(t−2)
rZ+1 = · · · = z

(t−1−m)
rZ+m = · · · = z

(0)
rZ+t−1 = z

(0)
nZ+t1

due to the update function. Note that z(0)
nZ+t1 is the initial state because nZ+t1 ≤ nZ .

Thus we can rewrite z(t−1)
rZ · z(t−1)

rZ+1 as z(0)
nZ+t1 · z

(t−1)
rZ+1 and according to Proposition 6

we have d̂(z(t−1)
rZ · z(t−1)

rZ+1) ≤ d̂(z(0)
nZ+t1) + d̂(z(t−1)

rZ+1). Thus,

d̂(x(t)
nX ) ≤ max{d̂(z(0)

nZ+t1) + d̂(z(t−1)
rZ+1), DEG(`X , D(t−1))}

≤ max{d(z(0)
nZ+t1) + d(z(t−1)

rZ+1), DEG(`X , D(t−1))} = d(x(t)
nX ).

2. t1 ≥ 1. In this case, both of z(t−1)
rZ and z(t−1)

rZ+1 are generated by state bits of other
registers. From the update function of Z, we have

z(t−1)
rZ = z(t−1−nZ+rZ)

nZ = z(t1)
nZ = y(t1−1)

rY · y(t1−1)
rY +1 + `Z(s(t1−1)),

z
(t−1)
rZ+1 = z(t−nZ+rZ)

nZ = z(t1+1)
nZ = y(t1)

rY · y
(t1)
rY +1 + `Z(s(t1)).

Thus,

z(t−1)
rZ · z(t−1)

rZ+1

= (y(t1−1)
rY · y(t1−1)

rY +1 + `Z(s(t1−1))) · z(t−1)
rZ+1

= y(t1−1)
rY · y(t1−1)

rY +1 · z
(t−1)
rZ+1 + `Z(s(t1−1)) · z(t−1)

rZ+1

= y(t1−1)
rY · y(t1−1)

rY +1 · (y(t1)
rY · y

(t1)
rY +1 + `Z(s(t1))) + `Z(s(t1−1)) · z(t−1)

rZ+1

= y(t1−1)
rY · y(t1−1)

rY +1 · y(t1)
rY · y

(t1)
rY +1 + y(t1−1)

rY · y(t1−1)
rY +1 · `Z(s(t1)) + `Z(s(t1−1)) · z(t−1)

rZ+1 .

Note that y(t1−1)
rY +1 = y

(t1)
rY , therefore we have

z(t−1)
rZ · z(t−1)

rZ+1 = y(t1−1)
rY · y(t1)

rY · y
(t1)
rY +1 + y(t1−1)

rY · y(t1−1)
rY +1 · `Z(s(t1)) + `Z(s(t1−1)) · z(t1+1)

nZ .

We replace the three parts in the above equation by M1,M2 and M3 for short, i.e.,
z

(t−1)
rZ · z(t−1)

rZ+1 = M1 +M2 +M3. Naturally, we have

d̂(z(t−1)
rZ · z(t−1)

rZ+1) = max{d̂(M1), d̂(M2), d̂(M3)}

from Proposition 5. For the first part M1, according to Proposition 6, we have

d̂(M1) ≤ d̂(y(t1−1)
rY ) + d̂(y(t1)

rY ) + d̂(y(t1)
rY +1),

d̂(M1) ≤ d̂(y(t1−1)
rY ) + d̂(y(t1)

rY · y
(t1)
rY +1),

d̂(M1) ≤ d̂(y(t1−1)
rY · y(t1)

rY ) + d̂(y(t1)
rY +1).

Note that y(t1−1)
rY · y(t1)

rY and y(t1)
rY · y

(t1)
rY +1 are monomials contained in z(t1)

nZ and z(t1+1)
nZ ,

respectively. Therefore, d̂(y(t1−1)
rY · y(t1)

rY ) ≤ d̂(z(t1)
nZ ) and d̂(y(t1)

rY · y
(t1)
rY +1) ≤ d̂(z(t1+1)

nZ )
hold from Proposition 5. We can furthermore deduce that

d̂(M1) ≤ min{d̂(z(t1)
nZ ) + d̂(y(t1)

rY +1), d̂(z(t1+1)
nZ ) + d̂(y(t1−1)

rY ),

d̂(y(t1−1)
rY ) + d̂(y(t1)

rY ) + d̂(y(t1)
rY +1)}

≤ min{d(z(t1)
nZ ) + d(y(t1)

rY +1), d(z(t1+1)
nZ ) + d(y(t1−1)

rY ),

d(y(t1−1)
rY ) + d(y(t1)

rY ) + d(y(t1)
rY +1)} = d1,
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where d1 is the estimated degree by numeric mapping as shown in the last subsection.
Similarly, for the second and third parts, M2 and M3, we have

d̂(M2) ≤ d̂(y(t1−1)
rY · y(t1−1)

rY +1 ) + d̂(`Z(s(t1)) ≤ d̂(zt1nZ ) + d̂(`Z(s(t1)))
≤ d(zt1nZ ) + DEG(`Z , D(t1)) = d2,

and

d̂(M3) ≤ d̂(z(t1+1)
nZ ) + d̂(`Z(s(t1−1))) ≤ d(z(t1+1)

nZ ) + DEG(`Z , D(t1−1)) = d3.

Thus, d̂(z(t−1)
rZ · z(t−1)

rZ+1) ≤ max{d1, d2, d3} holds. Finally, for the degree of x(t)
nX , we

have

d̂(x(t)
nX ) ≤ max{d1, d2, d3, DEG(`X , D(t−1))} = d(x(t)

nX ).

In conclusion, d̂(x(t)
nX ) ≤ d(x(t)

nX ) always holds for any t ≥ 0. Additional, d̂(KS(t)) ≤
d(KS(t)) naturally holds because d̂(s(t)

i ) ≤ d(s(t)
i ) holds for all 1 ≤ i ≤ n at clock t.

4.4 Improving the Efficiency of the MILP-aided Degree Evaluation
In this subsection, we introduce a divide-and-conquer strategy and the maximal polynomial
technique to improve the efficiency of the MILP-aided degree evaluation.

Definition 7 (Maximal Polynomial and Maximal Term). Given a polynomial on n
variables as

f(x) =
⊕

u∈Fn2

afuπu(x) =
⊕

u∈M,M⊆Fn2

πu(x)

where the set M contains all u in Fn2 such that afu = 1. For any u ∈ M, if there is
no u′ ∈ M such that πu′(x) � πu(x), then we call πu(x) is a maximal term of f(x).
Moreover, we define another polynomial as

f(x) =
⊕
u∈M

πu(x)

where M = {u|u ∈M and πu(x) is a maximal term of f(x)} ⊆M. Then we call f(x) is
the maximal polynomial of f(x).

According to Proposition 5 and 6, it is not difficult to deduce the following property.

Property 2 (Degree Equivalence). Assuming that f is the maximal polynomial of a
polynomial f . Then the degree of f estimated by division property is equal to that of f .

When we use division property to estimate the degree of a composite function, Property 2
can help us partly save time. For example, assuming that a polynomial p(q0, q1, q2, q3) =
q0q1q3 + q0q2 + q1q3 + q2q3 + q1 + q2, where qi is a function on m variables. Thus we have
M ={(1,1,0,1), (1,0,1,0), (0,1,0,1), (0,0,1,1), (0,1,0,0), (0,0,1,0)}, which means we have to
construct five MILP models to estimate the degree of p. However, according to Property 2,
it is equivalent to estimate the degree of p’s maximal polynomial p(q0, q1, q2, q3) = q0q1q3 +
q0q2 + q2q3. Note that M = {(1, 1, 0, 1), (1, 0, 1, 0), (0, 0, 1, 1)}, thus estimating the degree
of p instead of p can decrease the number of MILP models from five to three.

Before proposing our improved MILP-aided degree evaluation, we first introduce some
notations. For an NFSR-based stream cipher with n-bit internal state, g and f denote the
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update function and output function, and s(t) denotes the internal state at clock t. Denoted
by Md

u(t) an MILP model constructed using flag technique [34] where d is a positive
integer and u ∈ Fn2 . It covers t rounds and maximizes

∑m
i=1 ivi, where iv = (iv1, ..., ivm)

represents the division property of IV. Moreover, we constrain
∑m
i=1 ivi > d and u � u(t)

inMd
u(t) where u(t) represents the division property of s(t). Denoted by OBJ(Md

u(t))
the optimized solution of Md

u(t) obtained by MILP solvers. If Md
u(t) is infeasible, we

assign 0 to OBJ(Md
u(t)). In addition, we define fi(x) = f(g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

i

(x)).

Now we introduce a divide-and-conquer strategy based on maximal polynomial technique
to further speed up the MILP-aided degree evaluation, which is described as follows:

1. For an r-round initialization, split r to the former part t1 and the latter part t2
as r = t1 + t2, and compute the maximal polynomial of ft2(s(t1)) as ft2(s(t1)) =⊕

u∈Mπu(s(t1)). In addition, initialize d to be 0.

2. Choose a u from M and construct modelMd
u(t1). If OBJ(Md

u(t1)) is greater than
d then we update d by OBJ(Md

u(t1)). Remove u from M.

3. Repeat step 2 until M is empty. Then we regard d as the upper bound on the
algebraic degree of fr(IV).

The scale of MILP model is decreased from r to t1 = r − t2 by the divide-and-conquer
strategy, meanwhile the number of MILP model is pruned from |M| to |M| by the maximal
polynomial technique. In our experiments, this strategy can greatly improve the efficiency
of the MILP-aided degree evaluation, especially for large rounds. For example, in a laptop
with 8GB RAM and i7-8550U CPU, the traditional method based on division property
cannot return a result in 2.5 hours for 788-round Trivium. However, it takes no more than
20 minutes to return the degree by the divide-and-conquer strategy. The framework of
estimating the degree for a stream cipher up to r rounds is described in Algorithm 2. Note
that the number of models is |M| in step 2, which is entirely depends on the selection of
t2. We will illustrate how to achieve a trade-off on determining t2 in the next subsection.

4.5 Experiments on Trivium and Kreyvium
In this subsection, we apply Algorithm 2 to evaluate the upper bound on the degree of
Trivium and Kreyvium, and compare the results with [21] to illustrate the advantage of
degree evaluations using division property. We will omit the details of the two ciphers,
and one can refer to [6, 7] for more details.

First of all, we need to choose an appropriate split on the round. In our experiments,
we calculate the precise ANFs of fr(s(0)) when r ≤ 250 both for Trivium and Kreyvium.
Table 5 lists the number of monomials for several rounds, where |M| and |M| respectively
denote the number of monomials of fr(s(0)) and fr(s(0)) for 215 ≤ r ≤ 235. Comparing
the number of monomials for different rounds, we set t2 = 225 in the divide-and-conquer
strategy for Trivium and Kreyvium. Hence, we can use Algorithm 2 to estimate the
algebraic degree of the two ciphers, where the degree of rounds from 1 to 225 are obtained
by precisely computing corresponding ANFs and remaining rounds are obtained by division
property.

Table 5: The number of monomials in the output bit and its maximal polynomial of
Trivium and Kreyvium with round from 215 to 235.

#Round 215 216-218 219-221 222-224 225 226 227-228 229 230-234 235

Trivium |M| 192 195 195 196 197 233 294 315 345 348
|M| 182 183 183 185 185 220 278 299 328 331

Kreyvium |M| 277 282 283 285 287 342 436 468 516 520
|M| 225 227 227 229 231 277 353 374 403 407
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Algorithm 2 Estimate the upper bound on algebraic degree of a stream cipher up to r
rounds

1: procedure FastDegEvaForNFSR(round r, round t2)
2: D← an empty list; /* This list is used to store degrees */
3: M← an empty set;
4: t1 ← n− t2;
5: (D,M)← CalExaDegAndMaxPoly(D, t2);
6: for i from 1 to t1 do
7: /* Calculate degrees of the remianing rounds by division property */
8: d← 0;
9: while M 6= ∅ do

10: Choose an u from M and construct modelMd
u(i);

11: if OBJ(Md
u(i)) > d then

12: d← OBJ(Md
u(i));

13: end if
14: Remove u from M;
15: end while
16: D.append(d);
17: end for
18: return D;
19: end procedure
20: procedure CalExaDegAndMaxPoly(list D, round t2)
21: /* Calculate the exact algebraic degree of the cipher up to t2 and M of ft2 (s(0)) */
22: for i from 1 to t2 do
23: Calculate the ANF of fi(IV);
24: D.append(deg(fi(IV)));
25: end for
26: Calculate the maximal polynomial ft2 (s(0)) and the corresponding set M;
27: return (D,M)
28: end procedure

By calling Algorithm 2, the results show that the longest round, where the bound
cannot reach the full degree, is 839 for Trivium and 897 for Kreyvium. Whereas, the
corresponding rounds obtained in [21] are 793 and 862, meanwhile the estimated degrees
of 793-round Trivium and 862-round Kreyvium using division property are bounded by 65
and 108, respectively. In addition, our results are consistent with the longest zero-sum
distinguishers where cubes contain full IV bits in [32]. Hence, compared with [21], division
property can get more accurate bounds. Moreover, this gap becomes more and more
distinct with the round increasing. The comparisons of the estimated degrees of the
two ciphers using division property and numeric mapping are illustrated in Figure 3.
Additional, the specific upper bounds on degree of Trivium and Kreyvium estimated by
numeric mapping and division property are listed in Table 6, 7, 8 and 9.

5 Conclusion and Discussion
There are several researches on algebraic degree evaluations of symmetric ciphers. Specif-
ically, Boura and Canteaut [3] and Carlet [9] proposed formulas to calculate the upper
bounds on the degree of SPN ciphers. Liu [21] proposed numeric mapping technique to
estimate the algebraic degree of NFSR-based ciphers. Besides, division property can also
be utilized to estimate the upper bounds on the degree of all kinds of symmetric ciphers.
However, there is no related work to illustrate the relationships of these methods. In this
paper, we focused on the relationships between division property based degree evaluation
and other methods and concluded for the first time that division property is actually the
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Figure 3: Estimated degrees of Trivium and Kreyvium derived by division property and
numeric mapping.

optimal one among these methods in terms of the accuracy.
Besides, we need state that 3SBDP as well as monomial prediction can be used to

compute the exact degree of ciphers. In order to avoid enumerating all division trails, the
authors in [16] provide an idea to explore the exact algebraic degree by evaluating both
the lower and upper bounds on the degree, i.e., the exact degree is determined if the two
bounds are equal. Meanwhile, they gave the concept of inconsistent sub-trails and proposed
the trail extension technique to avoid inconsistent sub-trails to improve the searching
efficiency. Thanks to this idea, the exact algebraic degree evaluation can be achieved
using 3SBDP for some block ciphers (PRESENT, GIFT, SKINNY-64 and AES in [16]).
In addition, the authors in [17] used the H-representation of convex hull to describe the
monomial trail propagation of the update function of Trivium cipher instead of modeling
the specific AND, COPY and XOR operations. This tip was used to improve the searching
efficiency and they could obtain the exact degree of Trivium up to 834 rounds. It is worth
noticing that the gap between the upper bounds estimated by two-subset bit-based division
property and the exact degrees given by [17] is no more than 1 and the upper bounds are
actually equal to the exact degrees for most cases. Thus, if we only require an overview
of the degree with limited effort, two-subset division property would be a better choice
than Boura and Canteaut’s formula, Carlet’s formula and the numeric mapping method.
However, 3SBDP or monomial prediction combined with a more carefully analysis like
in [16] or [17] would be preferable when we want to explore the exact algebraic degree.
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Table 6: The upper bound on degree of Trivium up to 793 rounds evaluated by numeric
mapping.

#Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
120 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
140 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
160 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
180 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
200 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
220 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4
240 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
260 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
280 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
300 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6
320 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
340 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8
360 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
380 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
400 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10
420 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12
440 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
460 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
480 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 15
500 15 15 15 15 15 15 15 15 15 15 15 16 18 18 18 18 18 18 18 18
520 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19
540 19 20 20 20 20 20 20 21 21 21 21 21 21 21 22 22 22 22 22 22
560 22 22 22 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 25 25
580 25 25 25 26 26 26 26 26 26 26 27 29 29 29 29 30 30 30 30 30
600 30 30 30 30 30 30 30 30 31 32 32 32 32 32 32 32 32 32 32 32
620 33 33 33 33 33 33 34 34 34 34 34 34 34 35 35 35 35 35 35 35
640 35 35 35 35 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 38
660 38 38 38 38 38 38 38 38 39 42 43 43 43 43 43 43 43 44 45 45
680 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 47 48 48 48 48
700 48 48 49 50 51 51 51 51 51 51 51 52 53 53 53 53 53 53 53 53
720 54 55 55 55 55 55 55 55 55 55 55 55 55 55 55 56 56 56 57 57
740 57 57 57 57 57 57 58 59 60 60 60 60 60 60 60 61 63 64 64 64
760 64 64 64 64 64 64 64 64 65 69 71 71 71 71 71 71 71 71 71 71
780 72 75 76 76 76 76 77 78 78 78 78 78 78 79
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Table 7: The upper bound on degree of Trivium up to 839 rounds evaluated by division
property.

#Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
120 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
140 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
160 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
180 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
200 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
220 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
240 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
260 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
280 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
300 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
320 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
340 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8
360 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
380 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
400 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9
420 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12
440 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
460 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
480 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
500 13 13 13 13 13 13 13 13 14 14 13 14 14 15 16 16 16 16 16 16
520 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 18 18
540 18 19 19 19 19 19 19 19 19 20 20 20 20 20 21 21 21 21 21 21
560 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22
580 23 23 23 23 23 23 23 23 23 24 24 24 24 24 25 26 26 27 27 27
600 27 27 27 27 27 27 27 27 28 29 29 30 30 30 30 30 30 30 31 31
620 32 32 32 32 32 32 32 32 32 32 32 33 33 34 34 34 34 34 34 34
640 34 34 34 34 34 34 34 34 34 34 34 34 35 35 35 35 35 35 35 36
660 36 36 36 36 37 37 37 37 38 38 38 39 39 39 39 39 39 40 40 40
680 41 41 41 42 42 42 43 43 43 43 44 44 44 44 44 45 45 46 46 46
700 47 47 46 47 47 47 48 48 48 49 49 50 50 51 51 51 51 52 51 52
720 52 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 55 55
740 56 56 56 56 56 56 56 56 56 57 57 56 56 56 56 56 57 58 57 58
760 58 58 58 58 58 59 59 59 59 59 60 59 59 60 60 60 60 61 61 62
780 62 62 62 63 62 62 63 63 63 64 64 64 64 65 66 66 66 67 67 67
800 67 67 68 68 68 69 69 71 70 71 72 71 71 71 71 72 73 73 73 74
820 75 75 75 76 76 76 76 76 77 78 78 79 79 79 78 78 79 79 79 79
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Table 8: The upper bound on degree of Kreyvium up to 862 rounds evaluated by numeric
mapping.

#Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
120 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
140 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
160 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
180 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
200 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
220 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
240 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
260 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5
280 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
300 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
320 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
340 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8
360 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
380 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
400 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10
420 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12 12 12 12
440 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13
460 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
480 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15
500 15 15 15 15 15 15 15 15 16 18 18 18 18 18 18 18 18 18 18 18
520 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 20 20
540 20 20 20 20 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22
560 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25
580 26 26 26 26 26 26 26 27 29 29 29 29 30 30 30 30 30 30 30 30
600 30 30 30 30 30 31 32 32 32 32 32 32 32 32 32 32 32 33 33 33
620 33 33 33 34 34 34 34 34 34 34 35 35 35 35 35 35 35 35 35 35
640 35 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 38 38 38 38
660 38 38 38 38 38 39 42 43 43 43 43 43 43 43 44 45 45 45 45 45
680 45 45 45 46 46 46 46 46 46 46 46 46 47 48 48 48 48 48 48 49
700 50 51 51 51 51 51 51 51 52 53 53 53 53 53 53 53 53 54 55 55
720 55 55 55 55 55 55 55 55 55 55 55 55 56 56 56 57 57 57 57 57
740 57 57 57 58 59 60 60 60 60 60 60 60 61 63 64 64 64 64 64 64
760 64 64 64 64 64 65 69 71 71 71 71 71 71 71 71 71 71 72 75 76
780 76 76 76 77 78 78 78 78 78 78 79 82 82 82 82 83 84 84 84 84
800 84 85 85 85 85 85 85 86 87 88 89 89 89 90 90 90 91 91 91 91
820 92 93 93 93 93 94 97 99 99 99 99 100 103 106 107 107 107 108 108 108
840 108 108 108 108 109 114 118 118 118 119 120 120 120 120 120 120 121 124 125 125
860 125 126 127
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Table 9: The upper bound on degree of Kreyvium up to 897 rounds evaluated by division
property.

#Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
120 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
140 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
160 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3
180 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
200 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
220 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
240 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
260 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5
280 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
300 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
320 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
340 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8
360 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
380 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
400 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10
420 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12 12 12 12
440 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13
460 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
480 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 15 15 15 15
500 15 15 15 15 15 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18
520 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 20 20
540 20 20 20 20 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22
560 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 24 25 25 25 25
580 25 26 26 26 26 26 26 27 28 29 29 29 30 30 30 30 30 30 30 30
600 30 30 30 30 30 31 31 32 32 32 32 32 32 32 32 32 32 33 33 33
620 33 33 33 34 34 34 34 34 34 34 35 35 35 35 35 35 35 35 35 35
640 35 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 69 38 38 38
660 38 38 38 38 38 38 39 40 41 41 42 42 42 42 42 43 43 44 44 44
680 44 44 44 44 45 45 45 45 46 46 46 46 46 47 47 47 47 48 48 48
700 49 49 50 50 50 51 51 51 51 52 52 52 53 53 53 53 53 53 53 54
720 54 55 55 55 55 55 55 55 55 55 55 55 55 55 55 56 56 57 57 57
740 57 57 57 57 58 58 59 59 60 60 60 60 60 60 60 61 62 62 62 63
760 63 63 63 63 63 63 64 64 64 64 64 65 65 66 66 66 67 67 68 68
780 68 68 69 69 70 71 71 72 72 72 72 73 74 75 75 76 76 77 77 78
800 78 78 78 79 79 79 80 80 81 81 81 82 82 83 84 84 85 85 86 86
820 87 87 88 88 89 89 90 91 91 93 93 93 93 93 94 95 95 96 96 96
840 97 97 98 98 98 99 99 100 101 102 102 102 102 103 103 104 104 105 106 107
860 108 108 108 109 110 111 111 111 112 112 113 114 114 115 115 115 116 117 117 117
880 118 118 119 120 120 121 121 122 122 123 123 123 124 125 125 126 127 127
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