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Abstract. The notion of functional encryption (FE) was proposed as a
generalization of plain public-key encryption to enable a much more fine-
grained handling of encrypted data, with advanced applications such as
cloud computing, multi-party computations, obfuscating circuits or Tur-
ing machines. While FE for general circuits or Turing machines gives a
natural instantiation of the many cryptographic primitives, existing FE
schemes are based on indistinguishability obfuscation or multilinear maps
which either rely on new computational hardness assumptions or heuris-
tically claimed to be secure. In this work, we present new techniques
directly yielding FE for inner product functionality where secret-keys
provide access control via polynomial-size bounded-depth circuits. More
specifically, we encrypt messages with respect to attributes and embed
policy circuits into secret-keys so that a restricted class of receivers would
be able to learn certain property about the messages. Recently, many in-
ner product FE schemes were proposed. However, none of them uses a
general circuit as an access structure. Our main contribution is design-
ing the first construction for an attribute-based FE scheme in key-policy
setting for inner products from well-studied Learning With Errors (LWE)
assumption. Our construction takes inspiration from the attribute-based
encryption of Boneh et al. from Eurocrypt 2014 and the inner product
functional encryption of Agrawal et al. from Crypto 2016. The scheme
is proved in a stronger setting where the adversary is allowed to ask
secret-keys that can decrypt the challenge ciphertext. Doing so requires
a careful setting of parameters for handling the noise in ciphertexts to
enable correct decryption. Another main advantage of our scheme is that
the size of ciphertexts and secret-keys depends on the depth of the cir-
cuits rather than its size. Additionally, we extend our construction in a
much desirable multi-input variant where secret-keys are associated with
multiple policies subject to different encryption slots. This enhances the
applicability of the scheme with finer access control.

Keywords: functional encryption, attribute-based encryption, inner product
functional encryptions.



1 Introduction

Controlling access to encrypted data is an essential requirement in today’s world
of cloud computing and data privacy. Plain public-key encryption either hides
the entire data or reveals nothing depending on the availability of the secret-key.
In many applications of cloud computing, such all-or-nothing type encryption
is insufficient. For example, we often need to embed a decryption policy into
the secret-key so that only users who satisfy the policy can decrypt the cipher-
text. In another scenario, we may want to issue a secret-key that can only let a
user learn a specific statistical property of the encrypted data such as average
or weighted sum. The notion of (key-policy) attribute-based encryption (ABE),
introduced by [34,26], is a solution to the former example and the latter can be
resolved using inner product functional encryption (IPFE) [1] which is a particu-
lar class of functional encryption [15]. We consider more general situation where
a decryption key requires to serve the functionality of both ABE and IPFE.

To illustrate the potential of the proposed scheme we consider the follow-
ing example. Suppose in a pandemic, a vaccine developing company stores some
characteristics in an encrypted form of the patients who are undergoing trials of
a newly created vaccine. The authority wants to issue a decryption key that can
be used by selected members of the company (e.g. a specific group of scientists
and the members in the board of directors). The key only decrypts a specific
statistical computation on the characteristics of patients that may help to de-
termine the usability of the vaccine in a larger scale. However, such statistics
should not be revealed to all the members and the secret-key should not be able
to decrypt the whole data-set due to the welfare of the company. Therefore, we
need to embed a policy (indicating the members who are eligible to learn) and
a specific vector (which will be operated on the data-set to compute a specific
statistic) into a single key that can be given to the selected members. In other
words, we need to have attribute-based access control in IPFE scheme.

A natural solution to the above problem is given by the notion of func-
tional encryption (FE) [15,32] which allows us to compute a secret-key skF cor-
responding to a function F that consists of a policy f1 and a vector y. Given
an encryption of message m = (att,x), one learns F (m) = 〈x,y〉 if f(att) = 0,
using the secret-key skF . The indistinguishability security requires that an adver-
sary should be unable to distinguish between encryptions of m0 = (att,x0) and
m1 = (att,x1) even if it possesses many secret-keys for the functions F1, . . . , Fn
satisfying Fi(m0) = Fi(m1), for all i. However, candidate FEs supporting the
required function class exist from indistinguishable obfuscation (IO) or multilin-
ear maps (Mmaps) [22,11] the security of which is not well-understood. While
some candidate Mmaps (with degree ≥ 2) based constructions [23,10] are still
conjectured to be secure, the other FE constructions relying on IO are currently
going through a break-and-repair cycle [30,12]. Therefore, the security of exist-
ing FEs for general functions cannot be guaranteed from well-known standard
assumptions. Looking into the current state of the art, it is more preferable to

1 A policy is a boolean function and we say an input a satisfies the policy f if f(a) = 0.
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construct FE for the needed functionality instead of focusing on FE for general
function class. Our goal is to build an efficient FE scheme from standard as-
sumption for a class containing only functions like F as described above. This
motivation leads us to the following question.

Is it possible to construct a public-key FE scheme where we can embed any boolean
function along with a predicate vector into the secret-keys and encrypt a message
vector with respect to an attribute so that decryption outputs the inner product
between the predicate and message vectors only when the attribute satisfies the
boolean function?

Our contribution. To address the above concern, we present a primitive called
attribute-based IPFE (ABIPFE) where policies are associated with the secret-
keys and attributes are taken while encrypting messages. Our main contribution
is a construction of such ABIPFE from Learning With Errors (LWE) assumption
in the standard model. The policies can be represented by any polynomial-size
bounded-depth boolean circuits and the size of secret-keys or ciphertext relies
on the depth of the circuits. Our work takes inspiration from the framework of
Abdalla et al. [3]. To obtain an ABIPFE supporting general class of policies, we
device a technique to combine the LWE-based ABE scheme of Boneh et al. [14]
(which we call BGG+-ABE) and the LWE-based IPFE scheme of Agrawal et al.
[6] (which is abbreviated as ALS-IPFE).

In an ABIPFE scheme, using a master secret-key msk, a central authority
generates secret-keys of the form skf,y for a tuple (f,y) where f is a depth-d
circuit and y is a predicate vector that belongs to Z`q for an integer (possibly
prime) q. The sender uses the master public-key mpk to encrypt a message vec-
tor x ∈ Z`q with respect to an attribute a which is a binary string of length k
and produces a ciphertext ct. A receiver having skf,y, can recover 〈x,y〉 from
ct if f(a) = 0. We prove the co-selective indistinguishability (coSel-IND) of the
ABIPFE where the adversary A submits a challenge attribute a∗ and a function
f∗ such that f∗(a∗) = 0 before seeing mpk. However, A can adaptively choose a
polynomial number of predicate vectors y and gets secret-keys of the form skf∗,y.
So, A is given access to many secret-keys that can decrypt the challenge cipher-
text. The adversary can also query a secret-key for (f,y) such that f(a∗) = 1. If
x0,x1 are the challenge messages (which can be picked adaptively), we require
that 〈x0,y〉 = 〈x1,y〉 for all y for which a secret-key skf∗,y is released during
key query phase. Note that using a standard complexity leveraging argument as
in [13], we can also allow A to choose the challenge attribute adaptively.

Theorem 1 (Informal) Assuming subexponential LWE, there exists a coSel-IND
secure ABIPFE scheme with short secret-keys, the size of which depends on the
maximum depth of the functions supported by the scheme.

We show that our single input ABIPFE can be extended to a multi-input variant
of ABIPFE which we call attribute-based multi-input IPFE (ABMIPFE) scheme.
Suppose there are n encryption slots and each slot is associated with a single
attribute ai which is linked to a party that belongs to the system. The i-th party
can encrypt a vector xi with respect to ai to produce a ciphertext cti. The secret-
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keys are associated to tuples of form ({fi,yi}ni=1) which can be used to learn∑n
i=1〈xi,yi〉 if fi(ai) = 0 for all i = 1, . . . , n. For security, we define a co-adaptive

indistinguishability (coAdp-IND) notion where the adversary is forced to submit
n functions f1, . . . , fn before setup whereas it can choose the predicate vectors
({yi}ni=1) adaptively for key queries. If {x0

i ,x
1
i }ni=1 are the challenge messages

then all the secret-key queries should satisfy
∑n
i=1〈x0

i ,yi〉 =
∑n
i=1〈x1

i ,yi〉.
Theorem 2 (Informal) Assuming subexponential LWE, there exists a coAdp-
IND secure ABMIPFE scheme with short secret-keys, the size of which depends
on the maximum depth of the functions supported by the scheme and linear to
the number of parties in the scheme.

Comparison to existing approaches. We briefly compare our resulting IPFE
schemes in reference to existing approaches. The notion of attribute-based func-
tional encryption (ABFE) was formalized by Chen, Zang and Yiu [18] where
they proposed a ciphertext-policy ABIPFE (CP-ABIPFE) scheme for limited
functionality based on three decisional assumptions in bilinear groups of com-
posite order. They prove the adaptive security in a comparatively weaker set-
ting where the adversary is not allowed to query any secret-key that can de-
crypt the challenge ciphertext. Improving the security and efficiency, Abdalla
et al. [3] gave constructions of CP-ABIPFE based on Decisional Deffie-Hellman
(DDH) assumption in bilinear groups of prime order. They utilized the DDH-
based IPFE of [6] and any ABE schemes that support dual-system encryption
methodology [36] to achieve access control in IPFE setting that can mainly
handle policies of equality testing, orthogonality testing, read-once monotone
span programs whereas one of the appealing feature of our construction com-
pared to these schemes is that we can embed any general policy represented by
a boolean function into the secret-keys of our ABIPFE. The first construction
of [3] is selectively secure in simulation setting and the other is adaptively se-
cure in indistinguishability setting. Both of these schemes allow the adversary
to have many secret-keys for different attributes that can decrypt the challenge
ciphertext, but the advantage of the adversary grows linearly with the number
of secret-key queries. In the same work, they also present a natural extension
of their pairing-based CP-ABIPFEs to MIPFEs using a generic transformation
originally presented in the work of [2]. In this context, it is worth mentioning
that our ABIPFE and ABMIPFE are based on standard LWE assumption and
hence they are post-quantum secure.

The second main contribution of [3] is the constructions of two adaptively
secure identity-based IPFE (IBIPFE) schemes based on the hardness of LWE
problem. They combined the ALS-IPFE with two existing LWE-based IBEs.
The first one uses the IBE from [25] to get a scheme secure in the random oracle
model and the second one relies on the IBE from [5] to obtain a scheme secure in
the standard model. In another work [21], Dufour-Sans and Pointcheval built a
selectively secure identity-based FE scheme for unbounded inner product func-
tionality in the random-oracle model under Bilinear Decisional Diffie-Hellman
assumption. The main advantage of their scheme is the constant size master
public-key and secret-keys, in particular, each of them consists of only one group
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element. Compared to all these IPFE schemes, our IPFE undoubtedly provides
a much finer access control that covers almost all practical applications.

In the context of constructing indistinguishability obfuscation, the authors
of [9,27,28] built a primitive called restricted FE (latterly renamed as partially-
hiding FE or PHFE) where the supported function class can execute degree-2
computation on its private input and offers a variety of computations on the
public input such as degree-2 functions, NC0 or NC1 circuits. While all these
PHFEs are described in secret-key setting, recently in [24], the authors proposed
a public-key PHFE scheme supporting degree-2 functions in the private input
and arithmetic NC1 functions over the public attribute. The PHFEs are proven
secure relying on pairing-based assumptions. On the other hand, our ABIPFE
is the first to support any polynomial-size boolean functions over the attributes
in public-key setting with security based on standard LWE assumption.

Technical overview. The starting point is the IBIPFE construction of Ab-
dalla et al. [3] where secret-keys and ciphertexts need to be associated with
the same identity for a successful decryption. We use BGG+-ABE and ALS-
IPFE to build our ABIPFE and its multi-input variant. The challenge comes
in controlling the noise in the ciphertexts for correct decryption and handling
secret-key queries that decrypts the challenge ciphertext. We briefly describe
the technical road towards achieving this goal. Our core approach utilizes the
homomorphic evaluation procedure of [14] which can handle any polynomial-size
bounded-depth (unbounded fan-in) boolean circuits of the form f : {0, 1}k →
{0, 1}. Given matrices

−→
B = (B1, . . . ,Bk), there are encoding mechanisms such

that for any a ∈ {0, 1}k and function f we have Ba ← Encodea(
−→
B ,a) and

Bf ← Encodef (
−→
B , f). When a dual Regev encryption (as described in [33,25])

ca = B>a s+noise with respect to the public matrix Ba is available, one can apply
a conversion algorithm Convertct to compute Convertct(ca,a, f) = B>f s + noise′

whenever f(a) = 0. The master public-key mpk of our ABIPFE consists of ma-

trices A ∈ Zn×mq ,
−→
B ∈ (Zn×mq )k,D ∈ Zn×`q and the master secret-key is a short

basis TA of the lattice Λ⊥q (A). To generate a secret-key skf,y for a tuple (f,y),

the authority first computes Bf ← Encodef (
−→
B , f) and generates a low-norm

matrix Rf using TA such that (A|Bf ) ·Rf = D. Finally, it sets skf,y = Rf · y.
An encryption of a message vector x ∈ Z`q with respect to an attribute a ∈

{0, 1}k proceeds to compute Ba ← Encodea(
−→
B ,a) and a Dual-Regev encryption

(c0 = A>s+e0, ca = B>a s+e1). It encrypts the message as c = D>s+e2 +x.
Here, e0, e1, e2 denote the noise vectors. The ciphertext ct consists of (c0, ca, c).

A receiver holding a secret-key skf,y such that f(a) = 0 first obtains cf =
Convertct(ca,a, f) and then computes the inner product as

y>c− sk>f,y(c0|cf ) ≈ (Dy)>s+ y>x− (Rf · y)>(A|Bf )>s

= (Dy)>s+ 〈x,y〉 − y>((A|Bf ) ·Rf )>s = 〈x,y〉

We prove coSel-IND security for our ABIPFE scheme using the proof techniques
of BGG+-ABE and IBIPFE scheme of [3]. The main technical difference is to
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program the public matrix D in such a way that we can generate secret-keys for
a fixed function f while varying the associated predicate vectors without using
msk. In other words, we need to generate a matrix Z satisfying (A|Bf )Z = D
such that each row of Z follows the same distribution D as that of Rf . For that,
we first pick a matrix Z1 whose rows are coming from D and define a matrix
D1 = AZ1. Then, we choose another matrix Z2 following the same distribution
as of Z1 and set D = D1 + BfZ2. Since Z1 is a low-norm matrix, D1 = AZ1

is uniformly distributed over Zn×`q by a left-over hash lemma [5]. This ensures

that D is also uniform over Zn×`q and we can set Z =

(
Z1

Z2

)
which is distributed

according to Rf . We can now generate a secret-key skf,y for any vector y as
Z ·y. The secret matrix Z1 plays the role of master secret-key in the ALS-IPFE
scheme when we finally depend on the hardness of LWE problem to conclude the
security of our scheme.

We convert any single-input ABIPFE into an ABMIPFE via a generic trans-
formation inspired from the works of Abdalla et al. [2,3] where they generically
convert an IPFE into a multi-input IPFE (MIPFE) without using any additional
primitive. The fact that our ABIPFE satisfies certain additional structural prop-
erties, namely two-step decryption and linear encryption [2], helps us to build
the first ABMIPFE based on LWE assumption.

2 Preliminaries

Notations. For n ∈ N, we denote by [n] the set {1, . . . , n}. We denote by x← D
the process of sampling a value x according to the distribution of D. We consider
x← S as the process of random sampling of a value x according to the uniform
distribution over a finite set S. We denote by A⊗B the tensor product between
the matrices A and B. The inner product between two vectors x,y ∈ Z` is
written as 〈x,y〉 =

∑`
i=1 xiyi = yTx. For any λ > λ0, if a non-negative function

negl satisfies negl(λ) < 1/λc, c is a constant, then negl is called a negligible
function over the positive integers.

2.1 Attribute-Based Inner Product Functional Encryption

An attribute-based inner product functional encryption (ABIPFE) scheme for a
class of functions Fλ = {f : Sλ → {0, 1}}, a predicate space Yλ and a mes-
sage space Xλ consists of four probabilistic polynomial time (PPT) algorithms
ABIPFE = (Setup,KeyGen, Enc, Dec) satisfying the following requirement:
– (mpk,msk) ← Setup(1λ, 1`,Fλ): The setup algorithm on input a security

parameter λ, a vector length parameter ` and a function class Fλ, outputs
a master public-key mpk and a master secret-key msk.

– skf,y ← KeyGen(mpk,msk, f,y): The key generation algorithm takes as input
the key pairs (mpk, msk), a function f ∈ Fλ and a vector y ∈ Yλ of length
`. It outputs a secret-key skf,y which also includes the description of f and
the vector y.
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– ct← Enc(mpk, a,x): The encryption algorithm takes input the master public-
key mpk, an attribute a ∈ Sλ and a message vector x ∈ Xλ. It outputs a
ciphertext ct which contains the attribute a.

– ⊥ or ζ ← Dec(mpk, skf,y, ct): The decryption algorithm is deterministic. It
takes as input the master public-key mpk, a secret-key skf,y and a ciphertext
ct. It outputs either a message ζ ∈ Z or a symbol ⊥ indicating failure.

Definition 1 (Correctness) An ABIPFE is said to be correct if for all λ ∈
N, f ∈ Fλ,y ∈ Yλ, a ∈ Sλ,x ∈ Xλ we have

Pr

[
〈x,y〉 = Dec(mpk, skf,y, ct)

∧ f(a) = 0
:

(mpk,msk)← Setup(1λ, 1`,Fλ),
skf,y ← KeyGen(mpk,msk, f,y),

ct← Enc(mpk, a,x)

]
= 1− negl(λ)

where the probability is taken over the random coins of Setup, KeyGen and Enc.

We define Q-bounded coSel-IND security for ABIPFE. Let a∗ ∈ Sλ be the target
attribute. We call f a target accepting function if f(a∗) = 0. In Q-bounded
coSel-IND game, the adversary A submits the target attribute a∗ and Q target
accepting functions before seeing mpk. Note that, A is allowed to adaptively
choose associated predicate vectors and functions which output 1 on input a∗.

Definition 2 (Q-bounded coSel-IND security for ABIPFE) For an ABIPFE
scheme ABIPFE = (Setup,Keygen,Enc,Dec) for a function family Fλ, a predicate
space Yλ, an attribute space Sλ, a message space Xλ and for any PPT adver-
sary A, we define Q-bounded coSel-IND security experiment ExptcoSel-INDA,ABIPFE(1λ) as
follows.

1. Pre-Setup Phase. The adversary A on input 1λ, outputs a target attribute
a∗ ∈ Sλ and a set {f1, . . . , fQ} of Q target accepting functions.

2. Setup Phase. On input 1λ, 1` and Fλ, the challenger samples (mpk,msk)←
Setup(1λ, 1`,Fλ). It gives mpk to A.

3. Query Phase. During the experiment A can make the following queries in
any arbitrary order. A can make unbounded many key queries, however, it
is allowed to make only one challenge query.
(a) Key Queries. A sends (f,y) ∈ Fλ × Yλ and the challenger returns

skf,y ← KeyGen(mpk,msk, f,y).
(b) Challenge Query. A submits a pair of messages (x0,x1) ∈ X 2

λ . The
challenger samples a bit b← {0, 1} and returns ct← Enc(mpk, a∗,xb).

We require that any secret-key query (fj ,yj) should satisfy (j ∈ [Q] ∧
〈x0,yj〉 = 〈x1,yj〉) or fj(a

∗) = 1.
4. Guess Phase. A outputs a guess bit b′. The experiment outputs 1 if b = b′.

The ABIPFE is said to satisfy Q-bounded coSel-IND security (or simply co-
selective security when Q is clear from the context) if the advantage

AdvcoSel-INDA,ABIPFE(λ) =

∣∣∣∣Pr[ExptcoSel-INDA,ABIPFE(1λ) = 1]− 1
2

∣∣∣∣
of A in the above game is negligible in λ.
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We can also define stronger versions of the security such as selective and adap-
tive experiments. In Sel-IND security game the adversary A submits the target
attribute a∗ in the pre-setup phase and it is allowed to choose the target ac-
cepting functions adaptively. We give more power to A in the Adp-IND security
experiment. In particular, A has the freedom to choose the target attribute a∗

in the challenge phase and target accepting functions in the key query phase.
Accordingly, we can define the advantages by the functions AdvSel-INDA,ABIPFE(λ) and

AdvAdp-INDA,ABIPFE(λ) in the selective and adaptive security experiments respectively.

2.2 Lattice Preliminaries [14,3]

We recall basics of lattices and some important results related to our construction
of ABIPFE. Let n,m, q be positive integers such that n = poly(λ) and m ≥
ndlog qe. For a matrix A ∈ Zn×mq , we let Λ⊥q (A) denotes the lattice {x ∈ Zm :
Ax = 0 in Zq}. More generally for u ∈ Znq , we let Λu

q (A) denote the lattice
{x ∈ Zm : Ax = u in Zq}. For a lattice Λ of dimension n, we denote Λ∗ = {u ∈
Rn : 〈u,v〉 ∈ Z for all v ∈ Λ} by the dual lattice.
Matrix norms. For a vector u, we let ||u|| denote its `2 norm. For a matrix

R ∈ Zk×m, let R̃ be the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R. We define the following norms.

– ||R|| denotes the `2 norm of the longest column of R.
– ||R||2 denotes the operator norm of R defined as ||R||2 = sup||x||=1||Rx||.
– s1(R) denotes the spectral norm of R (largest singular value of R).

In addition, we know that ||R̃|| ≤ ||R|| ≤ ||R||2 ≤
√
kR. The spectral norm

of concatenating matrices are bounded as s1(R|S) ≤
√
s1(R)2 + s1(S)2. The

following lemma provides a bound on spectral norm.

Lemma 1 [20] Let X ∈ Rn×m be a sub-Gaussian random matrix with parameter
s. There exists a universal constant C ≈ 1√

2π
such that for any t ≥ 0, we have

s1(X) ≤ C · s · (
√
m+

√
n+ t) except with probability at most 2 · exp(−πt2).

Lemma 2 (Gram-Schmidt minimum [16]) For any arbitrary n-dimensional
integer lattice Λ, it holds that:

1 ≤ λ1(Λ∗) ·minB||B̃|| ≤ γ2n,

where the minimum is over all (ordered) bases B of lattice Λ and γ is a constant.

Gaussian distribution. For any n-dimensional lattice Λ, the discrete Gaussian
distribution over Λ with center c ∈ Rn and parameter σ > 0 is defined as
DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ), ∀x ∈ Rn where ρσ,c(x) = exp(−π‖x − c‖22/σ2)
and ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). When c = 0, we use Dσ(Λu

q (A)) for a parameter
σ > 0 to denote a discrete Gaussian distribution over the lattice Λu

q (A). For a

random matrix A ∈ Zn×mq and σ = Ω̃(
√
n), a vector x sampled from Dσ(Λu

q (A))
has `2 norm less than σ

√
m with probability at least 1− negl(m). For a matrix

U = (u1| · · · |uk) ∈ Zn×kq , we let Dσ(ΛU
q (A)) be a distribution on matrices in
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Zm×k where the i-th column is sampled from Dσ(Λui
q (A)) independently for

i = 1, . . . , k. Clearly if R, is sampled from Dσ(ΛU
q (A)) then AR = U in Zq.

Learning with errors(LWE) [33]. Fix integers n,m, a prime integer q and a
noise distribution χ over Z. The LWEq,χ,n problem is to distinguish between the

distributions (A,A>s + e) and (A,u) where A ∈ Zn×mq , s ∈ Znq ,u ∈ Zmq are
independently sampled.

Proposition 1 [33] Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that
α · q > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves

LWEq,Ψα , then there exists an efficient quantum algorithm for approximating

SIVP and GapSVP in the `2 norm, in the worst case, to within Õ(n/α) factors.

Here Ψα is distributed as dqXc mod q where X is a normal random variable with
mean 0 and standard deviation α/

√
2π.

Solving AZ = U. We review algorithms for finding a low-norm matrix Z ∈
Zm×kq such that AZ = U.

Theorem 3 [25] There is a PPT SampleD that, given a basis B of an n-

dimensional lattice Λ = L(B), a parameter σ ≥ ||B̃|| · ω(
√

log n) and a center
c ∈ Rn, outputs a sample from a distribution that is statistically close to Dσ,c(Λ).

Proposition 2 [7] For any prime q = poly(n) and any m ≥ 5n lg q, there is a
probabilistic polynomial-time algorithm SampleMat that, on input 1n, outputs a
matrix A ∈ Zn×mq and a full-rank set S ⊂ Λ⊥q (A), where the distribution of A
is statistically close to uniform over Zn×mq and the length ||S|| ≤ L = m2.5.

Also, S can be converted efficiently to a “good” basis T of Λ⊥q (A) such that

||T̃|| ≤ ||S̃|| ≤ L.

Lemma 3 (Preimage samplable functions [25]) For any prime q = poly(n),
any m ≥ 6n log q, and any σ ≥ L · ω(

√
logm), it holds that there exists PPT

algorithms TrapGen, SampleD, SamplePre such that:

1. TrapGen computes (A,TA) ← TrapGen(1n, 1m, q), where A is statistically

close to uniform over Zn×mq and TA ⊂ Λ⊥q (A) is a good basis with ||T̃A|| ≤
L. The matrix A is public and TA is the trapdoor.

2. SampleD is used to sample vectors from Dσ(Zm×k).
3. The trapdoor inversion algorithm SamplePre(A,TA,U, σ) outputs a matrix

Z ∈ Zm×k such that AZ = U.

In addition, it holds that the following distributions are statistically close:

Dist1 := (A,Z,U) s.t. (A,TA)← TrapGen(1n, 1m, q), U← Zn×k,
Z← SamplePre(A,TA,U, σ)

Dist2 := (A,Z,AZ) s.t. A← Zn×mq , Z← Dσ(Zm×k) : ||zi|| ≤ σ
√
m, i ∈ [k],

where zi is the i-th column of Z
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Trapdoor generators. The following Lemma states properties of algorithms
for generating short basis of lattices.

Lemma 4 [14] Let n,m, q > 0 be integers with q prime. There are polynomial-
time algorithms with the properties below:

1. (A,TA)← TrapGen(1n, 1m, q) ([7,8,31]): a randomized algorithm that, when
m = Θ(n log q), outputs a full-rank matrix A ∈ Zn×mq and basis TA ∈ Zm×m

for Λ⊥q (A) such that A is negl(n)-close to uniform and ||T̃A|| = O(
√
n log q),

with all but negligible probability in n.
2. TA|B ← ExtendRight(A,TA,B) ([17]): a deterministic algorithm that given

full-rank matrices A,B ∈ Zn×mq and a basis TA of Λ⊥q (A) outputs a basis

TA|B of Λ⊥q (A|B) such that ||T̃A|| = ||T̃A|B||.
3. TH ← ExtendLeft(A,G,TG,S) where H = (A|G+AS) ([5]): a determinis-

tic algorithm that given full-rank matrices A,G ∈ Zn×mq and a basis TG of

Λ⊥q (G) outputs a basis TH of Λ⊥q (H) such that ||T̃H|| = ||T̃G|| · (1 + ||S||2)
4. For m = ndlog qe there is a fixed full-rank matrix G ∈ Zn×mq such that the

lattice Λ⊥q (G) has a publicly known basis TG ∈ Zm×m with ||T̃G|| ≤
√

5.

Lemma 5 [5,17] Let n,m, `, q > 0 be integers with q prime. There exist the
following polynomial-time algorithms.

1. Z ← SampleRight(A,TA,B,U, σ): a randomized algorithm that given full-
rank matrices A,B ∈ Zn×mq , matrix U ∈ Zn×`q , a basis TA of Λ⊥q (A) and

σ ≥ ||T̃A|| · ω(
√

logm), outputs a random sample Z ∈ Z2m×`
q from a dis-

tribution that is statistically close to Dσ(ΛU
q (A|B)). This algorithm is the

composition of two algorithms: TA|B ← ExtendRight(A,TA,B) and Z ←
SamplePre((A|B),TA|B,U, σ).

2. Z ← SampleLeft(A,S, y,U, σ): a randomized algorithm that given full-rank
matrix A ∈ Zn×mq , matrices S ∈ Zm×mq ,U ∈ Zn×`q , y 6= 0 ∈ Zq and σ ≥√

5 · (1+ ||S||2) ·ω(
√

logm), outputs a random sample Z ∈ Z2m×`
q from a dis-

tribution that is statistically close to Dσ(ΛU
q (A|yG+AS)). This algorithm is

the composition of two algorithms: T(A|yG+AS) ← ExtendLeft(A, yG,TG,S)
and Z← SamplePre((A|yG + AS),T(A|yG+AS),U, σ).

Randomness extraction. We consider a version of left-over hash lemma.

Lemma 6 [5] Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2 is a
prime. Let S be an m × k matrix chosen uniformly in {±1}m×k mod q where
k = k(n) is a polynomial in n. Let A and B be matrices chosen uniformly
in Zn×mq and Zn×kq respectively. Then, for all vectors e ∈ Zmq , the distribution

(A,AS,S>e) is statistically close to the distribution (A,B,S>e).

Note that the Lemma holds for every vector e in Zmq including low norm vectors.

Noise rerandomization. We describe the algorithm NoiseGen(R, s) from [29].
On input a matrix R ∈ Zm×t and s ∈ R+ such that s > s1(RR>), it first
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samples e1 := Re + (s2Im −RR>)
1
2 e′, where Im denotes the identity matrix of

order m, and e← Dtσ, e′ ← Dm√2σ
are independent spherical continuous Gaussian

noises. Then, it samples e2 ← Ds√2σ(Zm − e1), and returns e1 + e2. We have
the following Lemma:

Lemma 7 (Noise distribution [29]) . Let R← Zm×t and s > s1(R). Then,
for all vectors e← Dσ(Zt), the distribution of Re+NoiseGen(R, s) is statistically
close to D2sσ(Zm).

2.3 Homomorphic Evaluation Procedures.

We follow the abstraction of evaluation procedure in the LWE-based ABE scheme
of [14]. Let n,m, k, q = q(n) be positive integers such that m = Θ(n log q) and
G ∈ Zn×mq be a fixed matrix obtained by padding In ⊗ (1, 2, 4, 8, . . . , 2dlog qe)
with zero columns.

Theorem 4 There exist efficient deterministic algorithms Evalpk,Evalct,Evalsim
such that for any sequence of matrices (B1, . . . ,Bk) ∈ (Zn×mq )k, for any family

of boolean functions F = {f : {0, 1}k → {0, 1}} with maximum depth d and for
every a = (a1, . . . , ak) ∈ {0, 1}k, the following properties hold:

1. Bf ← Evalpk(f, (B1, . . . ,Bk)) : On input a function f ∈ F and matrices
{Bi}i∈[k], it outputs a matrix Bf ∈ Zn×mq .

2. cf ← Evalct(f, ((ai,Bi, ci))
k
i=1) : On input a function f ∈ F , ai ∈ {0, 1},

Bi ∈ Zn×mq and ci ∈ Zmq for i ∈ [k], it outputs a vector cf ∈ Zmq such that

if {ci = (aiG + Bi)
>s+ ei}i∈[k] then cf = (f(a)G + Bf )>s+ ef

where a = (a1, . . . ,ak) ∈ {0, 1}k and Bf = Evalpk(f, (B1, . . . ,Bk)). Further-
more, we require that ||ef || < γF ·maxi∈[k]||ei||.

3. Sf ← Evalsim(f, ((ai,Si))
k
i=1,A) : On input a function f ∈ F , ai ∈ {0, 1},Si ∈

{±1}m×m for i ∈ [k] and A ∈ Zn×mq , it outputs a matrix Sf ∈ Zm×mq that
satisfies

ASf + f(a)G = Bf where Bf = Evalpk(f, (AS1 + a1G, . . . ,ASk + akG)).

Furthermore, we require that ||Sf ||2 ≤ γF .

For any family F of depth-d boolean functions the noise γF (in worst case) is
upper bounded by O(

√
mmd).

3 Inner Product Functional Encryption Scheme of [6]

Before going to describe our ABIPFE construction in the next section, here we
recall the ALS-IPFE construction of Agrawal et al. [6]. We describe a modi-
fied version of ALS-IPFE that was used in [3] to achieve identity-based IPFE.
However, the modified version was developed in [4,35] where they simplifies se-
curity parameter via a noise rerandomization technique of [29]. In the original
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IPFE of [6], the secret matrix Z was chosen from a distribution having a com-
plex parameter setting whereas the security proof of [4,35] allows us to choose
Z from a simple discrete Gaussian distribution. We describe the modified ALS-
IPFE for a predicate space Yλ = {0, 1, . . . , V (λ) − 1}` and a message space
Xλ = {0, 1, . . . ,M(λ) − 1}`. Let us assume that inner product of any vector
y ∈ Yλ and any vector x ∈ Xλ is bounded by K = `V M .

Setup(1λ, 1`): On input 1λ and 1`, the setup algorithm samples A← Zm×nq ,Z←
Dρ(Z`×m) and sets D = ZA. It returns the master public-key as mpk =
(A,D) and the master secret-key as msk = Z.

KeyGen(msk, y): On input msk and a vector y ∈ Yλ, the algorithm returns a
secret-key sky = y>Z ∈ Z.

Enc(mpk, x): To encrypt a message x ∈ Xλ using mpk the encryption algorithm
first samples s← Znq , e1 ← Dσ(Zm), e2 ← Dσ(Z`). Then, it computes ct1 =
As + e1 and ct2 = Ds + e2 + b qK c · x. Finally, it returns the ciphertext as
ct = (ct1, ct2) ∈ Zm+`

q .

Dec(sky, ct): The decryption algorithm parse the ciphertext ct = (ct1, ct2) and
compute ζ ′ = y>ct2− sky · ct1 mod q. It outputs ζ ∈ {0, 1, . . . ,K− 1} which
minimizes |b qK c · ζ − ζ

′|.

IPFE can be treated as a particular case of ABIPFE when we assume that a
secret-key is generated for a tuple (f,y) such that f(a) = 0 for all a ∈ Sλ.
The Adp-IND security of IPFE allows an adversary A to learn unbounded many
secret-keys sky for adaptively chosen predicate vectors y. The secret-keys should
satisfy 〈x0,y〉 = 〈x1,y〉 where x0,x1 are the (adaptively chosen) challenge mes-
sages. For correctness and security, we collect the following Lemma and Theorem
developed in a series of work [6,4,35,3].

Lemma 8 (Correctness of ALS-IPFE) [6,4,35,3] For σ, ρ > ω(
√

log n) and
q > 2K`

√
`V ω(log2 n), the ALS-IPFE scheme is correct.

The adaptive security of ALS-IPFE is based on LWEq,α,n where the standard
deviation of the noise distribution is αq. The ALS-IPFE parameter setting of [3]
is given by

q > 2K`
√
`V ω(log2 n), m = 2n log q

σ = 2C ′αq(
√
m+

√
n+
√
`), ρ ≥ ω(

√
log n)

where C ′ is a constant. When αq > 2
√
n, with such parameter setting the

LWEq,α,n is reducible to SIVP or GapSVP problem (Proposition 1).

Theorem 5 (Security of ALS-IPFE) [6,4,35,3] Let n be the security param-
eter, m > 2n log q and q, σ, ρ, α ≤ σ

2C′q(
√
m+
√
n+
√
`)

are as described above. Then,

the ALS-IPFE scheme is Adp-IND secure, assuming LWEq,α,n is hard.
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4 Our Construction of ABIPFE from LWE

In this section, we describe our construction of an ABIPFE scheme based on
the hardness of LWE problem in standard model. In particular, we use the ABE
scheme of [14] and the ALS-IPFE scheme [6] as described in Sec. 3. We present
our ABIPFE for a class of functions Fλ = {f : {0, 1}k → {0, 1}}, a predicate
space Yλ = {0, . . . , V (λ)− 1}` and a message space Xλ = {0, . . . , X(λ)− 1}`. In
addition, we assume that |〈x,y〉| < K where K = `V X and Fλ is the class of
all circuits having input length k = k(λ) and depth at most d = d(λ). We use
the matrix G, defined in Sec. 2.3, in our construction and security proof.

Setup(1λ, 1`,Fλ): On input 1λ, 1` and Fλ, the setup algorithm defines the
parameters n = n(λ),m = m(λ), q = q(λ). It then proceeds as follows.

1. Sample (A,TA)← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .

2. Sample random matrices (B1, . . . ,Bk)← (Zn×mq )k,D← Zn×`q .
3. Output the master public-key mpk = (A,B1, . . . ,Bk,D) and the master

secret-key msk = TA. We assume that mpk also contains a set of public
parameters param = {n,m, q, `,X, V,K, ρ, σ, τ}.

KeyGen(mpk,msk, f,y) : The key generation algorithm takes as input mpk, msk,
a function f ∈ Fλ and a vector y ∈ Yλ, and works as follows.

1. Compute Bf = Evalpk(f, (B1, . . . ,Bk)) where Bf ∈ Zn×mq .
2. Compute Rf ← SampleRight(A,TA,Bf ,D, ρ) so that (A|Bf ) ·Rf = D.
3. Output the secret-key as skf,y = Rf · y. We assume that the secret-key

trivially includes f and y.

Enc(mpk,a,x) : The encryption algorithm takes as input mpk, an attribute
a = (a1, . . . , ak) ∈ {0, 1}k and a message x ∈ X . It proceeds as follows.

1. Compute Ha = (A|a1G + B1| · · · |akG + Bk) ∈ Zn×m(k+1)
q .

2. Sample s ← Znq and e1 ← Dσ(Zm), e2 ← Dσ(Z`), e3 ← Dτ (Z`), and
matrices Si ← {±1}m×m for i ∈ [k].

3. Set υ = (Im|S1| · · · |Sk)> · e1 ∈ Zm(k+1)
q .

4. Compute ct1 = H>a s+υ ∈ Zm(k+1)
q , ct2 = D>s+e2+e3+b qK c·x ∈ Z`q.

5. Output the ciphertext ct = (ct1, ct2). We assume that the ciphertext
includes the attribute a.

Dec(mpk, skf,y, ct) : The decryption algorithm takes as input mpk, a secret-key
skf,y corresponding to a function f and a predicate vector y and a ciphertext
ct associated with an attribute a. It proceeds as follows.

1. Parse ct = (ct1, ct2) where ct1 = (c0, c1, . . . , ck) ∈ (Zmq )k+1, ct2 ∈ Z`q
and skf,y ∈ Z2m.

2. Compute cf = Evalct(f, ((ai,Bi, ci))
k
i=1) where a = (a1, . . . , ak).

3. Compute ζ ′ = y>ct2 − sk>f,y · (c0|cf ).
4. Output ζ ∈ {0, . . . ,K} which minimizes |b qK c · ζ − ζ

′|.

Correctness. For correctness we first observe that ci = (aiG + Bi)
>s+ S>i e1

with ||S>i e1|| < σ
√
m for all i ∈ [k]. Therefore, using Theorem 4, we have

cf = (f(a)G + Bf )>s+ ef ∈ Zmq where ||ef || < σ
√
m · γF . Consequently,

13



(c0|cf ) = (A|f(a)G + Bf )>s+ (e1|ef ) ∈ Z2m
q .

Now, the secret-key skf,y = Rf · y where Rf is sampled from Dσ(ΛD
q (A|Bf )).

Thus, (A|Bf ) ·Rf = D and ||Rf || < ρ
√

2m`. Since e2 ← Dσ(Z`), e3 ← Dτ (Z`),
with overwhelming probability we have ||e2|| < σ

√
` and ||e3|| < τ

√
`. Finally,

if f(a) = 0 then the element ζ ′ can be viewed as

ζ ′ = y>ct2 − sk>f,y · (c0|cf )

= y>(D>s+ e2 + e3 +

⌊
q

K

⌋
· x)− (Rf · y)> · ((A|Bf )>s+ (e1|ef ))

=

⌊
q

K

⌋
· 〈x,y〉+ y>(e2 + e3)− (Rfy)>(e1|ef ) =

⌊
q

K

⌋
· 〈x,y〉+ error

and |error| < V `(σ + τ) + 2ρσV `m(1 + γF ) with overwhelming probability. To
ensure the correct decryption we need to set q > 4KV `(σ+ τ) + 8ρσKV `m(1 +
γF ) so that ζ = 〈x,y〉 minimizes |b qK c · ζ − ζ

′|.

Theorem 6 (1-bounded coSel-IND security) Assuming the modified vari-
ant of ALS-IPFE scheme of Sec. 3 with parameters n, q,m, σ, ρ, α is secure under
LWEq,α,n and the parameters additionally satisfy m ≥ 6n log q, q > 4KV `(σ +

τ)+8ρσKV `m(1+γF ), the above ABIPFE scheme with τ > 2Cρσ(2
√
m+
√
`)γF

for a constant C is 1-bounded coSel-IND secure under the LWEq,α,n assumption.

Proof. The proof is done by considering the sequence of games used in the se-
lectively secure ABE of [14]. We also incorporate the idea of [3] to simulate the
secret-key queries correspond to the target accepting function. However, we make
crucial changes along the way to let proof go through. As in Def. 2 with Q = 1, we
assume that the adversaryA submits a target attribute a∗ and a target accepting
function f∗ (i.e. f∗(a∗) = 0) before seeing the master public-key. A secret-key
query (f,y) should satisfy either f(a∗) = 1 or (f = f∗∧〈x0,y〉 = 〈x1,y〉) where
x0,x1 are the challenge messages chosen adaptively from Xλ.

Game 0: The is the standard ABIPFE experiment as defined in Def. 2.

Game 1: We modify the setup algorithm. The challenger selects a random
matrix A distributed uniformly over Zn×mq , instead of sampling (A,TA) ←
TrapGen(1n, 1m, q). However, a short basis of Λ⊥q (A) is required to answer A’s

secret-key queries. For that, we may enumerate all short bases of Λ⊥q (A) and

select one of these bases as TA. Note that, from Lemma 2, we have min||B̃|| <
O(m) where minimum is taken over all ordered bases of Λ⊥q (A). To apply Sam-

pleD with the input basis B (Theorem 3), we need to set ρ > ||B̃|| · ω(
√

logm).
Since m = Θ(n log q), this suggests to set ρ > n · ω(

√
n).

The challenger is inefficient in this game, but this should not be a problem
as long as we establish statistical indistinguishability between the games. The
matrix A used in game 0 is generated by TrapGen(1n, 1m, q) and Lemma 3 states
that the distribution of A is statistically close to uniform over Zn×mq . Therefore,
game 0 and game 1 are statistically indistinguishable as required. Such basis
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selection process followed by a statistical argument has been used in [3] to sim-
ulate the key queries for an adversary.

Game 2: In this game the public matrix D ∈ Zn×`q is programmed by the

challenger as follows. First, it samples Z1,Z2 ← Dρ(Zm×`) and set D1 = AZ1.
Since A submits the target accepting function f∗ before setup, the challenger
computes Bf∗ ← Evalpk(f∗, (B1, . . . ,Bk)) and set D = D1 + Bf∗Z2. In partic-

ular, if we take Z =

(
Z1

Z2

)
∈ Z2m×`, then D = (A|Bf∗)Z. Instead of computing

Rf∗ ← SampleRight(A,TA,Bf∗ ,D, ρ), the challenger uses Z and answers secret-
key queries for (f∗,y) as skf∗,y = Z · y. Note that, both Rf∗ and Z follow the
same distribution Dρ(Z2m×`), as given in Lemma 5. However, the challenger still
computes Rf ← SampleRight(A,TA,Bf ,D, ρ) and outputs Rf · y as a reply to
a secret-key query corresponding to (f,y) if f(a∗) = 1.

We show that D is uniformly distributed over Zn×`q . Specifically, we observe
that for a matrix A uniform over Zn×mq and a short basis TA the distributions

Dist1 := (A,Z1,D1) s.t. D1 ← Zn×`, Z1 ← SamplePre(A,TA,D1, ρ),

Dist2 := (A,Z1,AZ1) s.t. Z1 ← Dρ(Zm×`)

are statistically close by Lemma 3. Therefore, D1 = AZ1 is statistically close to
uniform over Zn×`q and hence the matrix D = D1 + Bf∗Z2 of game 2 is also sta-

tistically close to uniform over Zn×`q . Thus, game 1 and game 2 are statistically
indistinguishable.

Game 3: Instead of selecting (B1, . . . ,Bk) uniformly from (Zn×mq )k, the chal-
lenger first chooses random matrices S∗i ← {±1}m×m in advance and uses the
challenge attribute a∗ = (a∗1, . . . , a

∗
k) to set Bi = AS∗i + a∗iG for all i ∈ [k].

Note that, the matrices S∗1, . . . ,S
∗
k will be utilized to create the challenge ci-

phertext ct∗ = (ct∗1, ct
∗
2). In particular, a fixed e1 ← Dσ(Zm) and low-norm

vectors S∗i · e1 ∈ Zm for all i ∈ [k] are used to create ct∗1.
Observe that the distribution (A,AS∗i ,S

∗
i e1) is statistically close to the dis-

tribution (A,B′,S∗i e1) by lest-over hash lemma (Lemma 6) where B′ is uniform
over Zn×mq . This holds for all i ∈ [k] and hence all matrices AS∗i are statistically
close to uniform over Zn×mq . In other words, given (S∗1| · · · |S

∗
k) · e1, all matrices

Bi = AS∗i +a∗iG of game 3 are statistically close to uniform as in game 2. Thus,
game 2 and game 3 are statistically indistinguishable.

Game 4: In this game, we make the challenger efficient, that is the short ba-
sis TA is not required in the key query phase. Recall that a secret-key query
(f,y) of A should satisfy either f(a∗) = 1 or (f = f∗ ∧ 〈x0,y〉 = 〈x1,y〉).
If f = f∗, the challenger uses the secret matrix Z to send the secret-key as
skf∗,y = Z · y as in the previous game. When f(a∗) = 1, instead of sampling
Rf ← SampleRight(A,TA,Bf ,D, ρ) satisfying, (A|Bf )Rf = D the challenger
does the following.

1. Compute Sf = Evalsim(f, ((a∗i ,Si))
k
i=1,A) which satisfies ASf + G = Bf

and ||Sf ||2 < γF by Theorem 4.
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2. Sample Rf ← SampleLeft(A,Sf , 1,D, ρ) which is distributed according to
Dρ(ΛD

q (A|ASf + G)) by Lemma 5.
3. Finally, the challenger outputs skf,y = Rf · y

Observe that Rf satisfies (A|ASf + G)Rf = (A|Bf )Rf = D as required. To
apply SampleLeft, we need to set ρ ≥

√
5 · (1 + ||Sf ||2) · ω(

√
logm). We also re-

quire ρ > n ·ω(
√
n) as suggested in game 2. Combining, we set ρ > nγF ·ω(

√
n).

The public parameters and secret-key queries in this game are statistically close
to that of game 3. Hence, A’s advantage in distinguishing between game 3 and
game 4 is at most negligible in λ.

Game 5: In this game, we rely on the security of ALS-IPFE described in
Sec. 3 to establish the indistinguishability of the challenge ciphertext encrypt-
ing xb for b ← {0, 1}. We consider an intermediate adversary B that interacts
with the ALS-IPFE challenger. Let B receives the master public-key mpkALS =
(AALS,DALS) from the ALS-IPFE challenger and a pair of attribute and target
accepting function (a∗, f∗) from A. Now, B simulates A as follows.

B(1λ,mpkALS,a
∗, f∗):

Setup. Pick Z2 ← Dρ(Zm×`) and S∗i ← {±1}m×m for i ∈ [k], and set

A = A>ALS, Bi = AS∗i − a∗iG ∀ i ∈ [k], D = D>ALS + Bf∗Z2,

where a∗ = (a∗1, . . . , a
∗
k) and Bf∗ = Evalpk(f∗, (B1, . . . ,Bk)). It sends the

master public-key as mpk = (A,B1, . . . ,Bk,D).
Secret-key queries. Suppose A asks a secret-key for a tuple (f,y).

(a) If f = f∗ then B requests a secret-key for y from the ALS-IPFE chal-

lenger. Let skALS
y be the secret-key. Then B sends skf∗,y =

(
(skALS

y )>

Z2y

)
as the secret-key for (f∗,y).

(b) If f(a∗) = 1 then B uses Evalsim and SampleLeft to obtain a matrix
Rf ∈ Z2m×` and outputs Rf · y as in the previous game.

Challenge ciphertext. Let (x0,x1) be the challenge messages submitted by
A. Then, B submits the same to the ALS-IPFE challenger and receives
ctALS
b = (ctALS

1 , ctALS
2 ). Now, B computes and sends the challenge ciphertext

ct∗ = (ct∗1, ct
∗
2) for A as

ct∗1 = ctALS
1 + (S∗)> · ctALS

1 and ct∗2 = ctALS
2 + Z>2 · cf∗ + NoiseGen(Z>2 , s)

where we take S∗ = (S∗1| · · · |S
∗
k) ∈ {±1}m×km, ct∗1 = (c0, c1, . . . , ck) ∈

(Zmq )k+1, cf∗ = Evalct(f
∗, ((a∗i ,Bi, ci))

k
i=1) and NoiseGen is the randomized

algorithm with s > s1(Z>2 ) from Lemma 7.

We show that the distribution of the master public-key, secret-key queries and
the challenge ciphertext are statistically close to that of in game 4. Let DALS =
ZALSAALS for some matrix ZALS ← Dρ(Z`×m). Therefore, we have

D = (ZALSAALS)> + Bf∗Z2 = AZ>ALS + Bf∗Z2 = (A|Bf∗)Z
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where Z =

(
Z>ALS

Z2

)
is distributed according to Dρ(Z2m×`). Note that, ZALS

plays the role of master secret-key of ALS-IPFE and the secret-keys of the form

skf∗,y =

(
Z>ALSy

Z2y

)
= Z · y are distributed similar to the previous game. Thus,

the master public-key mpk and the secret-keys skf∗,y for (f∗,y) are distributed
according to game 4. Moreover, secret-keys for (f,y) satisfying f(a∗) = 1 are
identically distributed as in game 4.

Now, let ctALS
1 = AALSs+ e1 and ctALS

2 = DALSs+ e2 + b qK c · xb for some
e1 ← Dσ(Zm) and e2 ← Dσ(Z`). Hence, we can write the challenge ciphertext

ct∗1 = ctALS
1 + (S∗)> · ctALS

1 = A>s+ e1 + (S∗)> · (A>s+ e1)

= (A|AS∗)>s+ (Im|S∗)> · e1 = H>a∗s+ υ

where Ha∗ = (A|a∗1G + B1| · · · |a∗kG + Bk) = (A|AS∗) and υ = (Im|S∗)> · e1.
Observe that, by Theorem 4, Evalct(f

∗, ((a∗i ,Bi, ci))
k
i=1) = (f∗(a∗)G+Bf∗)

>s+

ef∗ = B>f∗s+ ef∗ = cf∗ with ||ef∗ || < σ
√
m · γF which implies

ct∗2 = ctALS
2 + Z>2 · cf∗ + NoiseGen(Z>2 , s)

= (D−Bf∗Z2)>s+ e2 +
⌊ q
K

⌋
· xb + Z>2 · (B

>
f∗s+ ef∗) + NoiseGen(Z>2 , s)

= D>s+ e2 + Z>2 ef∗ + NoiseGen(Z>2 , s) +
⌊ q
K

⌋
· xb

From Lemma 1, we have s1(Z>2 ) ≤ Cρ(2
√
m +

√
`) and Lemma 7 implies that

Z>2 ef∗ + NoiseGen(Z>2 , s) is distributed statistically close to Dτ (Z`) where τ >

2Cρσ(2
√
m +

√
`)γF . Therefore, we can write ct∗2 = D>s + e2 + e3 + b qK c · xb

where e2, e3 are distributed as Dσ(Z`) and Dτ (Z`) respectively. This proves that
the challenge ciphertext is distributed statistically close to that of in the previous
game. Also, the advantage of A in guessing the challenge bit is upper bounded
by the advantage of B in breaking the security of ALS-IPFE scheme.

Parameter Setting. First we choose n,m, q, σ, ρ as in ALS-IPFE of Sec. 3.
We modify them step by step according to our requirement for correctness and
security of our ABIPFE scheme. The modifications are made without violating
the security of ALS-IPFE.

1. For TrapGen algorithm we set m ≥ 6n log q.
2. To obtain a short basis TA for a uniformly chosen matrix A as required in

game 1, we set ρ > n · ω(
√
n).

3. The parameters already satisfy the constrain in the left-over hash lemma
(game 3 of the security proof).

4. For SampleRight and SampleLeft we need to set ρ > max{||T̃A|| ·ω(
√

logm),√
5(1 + ||Sf ||2)ω(

√
logm)} where ||Sf ||2 < γF . This is due to correctness

and game 4 of the security proof. Thus, combining with step 2, we can set
ρ > nγF · ω(

√
n).
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5. To apply NoiseGen in game 5, we need to keep τ > 2Cρσ(2
√
m+

√
`)γF .

6. For the hardness of LWEq,α,n we want the standard deviation to satisfy
αq > 2

√
n.

Finally, the parameters of our ABIPFE can be set as

q > 4KV `(σ + τ) + 8ρσKV `m(1 + γF ), σ = 2C ′αq(
√
m+

√
n+
√
`)

m ≥ 6n log q, ρ > nγF · ω(
√
n), τ > 2Cρσ(2

√
m+

√
`)γF

where C (as in game 5), C ′ (as in ALS-IPFE) are constants.

5 Attribute-based Multi-input IPFE from LWE

We define an ABMIPFEn,m scheme with access control given by a class of poly-
nomial size circuits where n denotes the number of encryption slots and m de-
notes the number of attributes supported by each slot. Consider a class of at-

tributes Att = {((a(j)
1 , . . . ,a

(j)
n ))mj=1} where i-th encryption slot is associated to

the attribute set Atti = {a(1)
i , . . . ,a

(m)
i } and a

(j)
i ∈ {0, 1}k for all i ∈ [n], j ∈ [m].

We represent the attribute class as Att = [Att1| · · · |Attn]. The i-th encryption

slot encrypts a vector x ∈ Z`q with respect to an attribute a
(j)
i for j ∈ [m]. We

denote Fd,kλ by the set of all polynomial size circuits with input space {0, 1}k and
depth bounded by d. A secret-key is generated for a tuple (S ⊆ [n], (fi,yi)i∈S)

where fi ∈ Fd,kλ , yi ∈ Z`q for all i ∈ S. The secret-key allows a receiver to

learn
∑
i∈S〈xi,yi〉 if fi(a

(j)
i ) = 0 for all i ∈ S where xi is encrypted for the

i-th slot with an attribute a
(j)
i ∈ Atti. For security, we first consider adap-

tive indistinguishability (Adp-IND) where the adversary A has the freedom to
choose secret-key queries and encryption queries depending on the mpk. We also
define a weaker security notion called Q-bounded co-adaptive indistinguishabil-
ity (coAdp-IND) where A is restricted to submit all functions f1, . . . , fQ to be
queried along with the predicate vectors in the key query phase before seeing
the mpk. This is similar to the coSel-IND notion of ABIPFE. We now formally
define ABMIPFEn,m and its security notions.

An ABMIPFEn,m for a class of functions Fd,kλ , a class of attributes Att,
a predicate space Yλ and message space Xλ consists of four PPT algorithms
ABMIPFEn,m = (Setup, KeyGen, Enc, Dec) working as follows:

– (mpk,msk, {eki}ni=1) ← Setup(1λ, 1`,Fd,kλ ,Att) : The setup on inputs a se-

curity parameter λ, a vector length `, a function class Fd,kλ and a class of
attributes Att, outputs a master public-key mpk, a master secret-key msk
and n encryption keys ek1, . . . , ekn.

– skf,y ← KeyGen(msk,S, (fi,yi)i∈S) : The key generation algorithm on input
the master secret-key msk, a set S ⊆ [n] and function-predicate pairs (fi ∈
Fd,kλ ,yi ∈ Yλ) for i ∈ S, outputs a secret-key (S, skf,y).
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– ct ← Enc(mpk, eki,a,x) : The encryption algorithm on input the master
public-key mpk, an encryption key eki, an attribute a ∈ Atti and a message
vector x ∈ Xλ, outputs a ciphertext ct.

– ⊥ or ζ ← Dec(mpk,S, skf,y, {cti}ni=1) : The decryption algorithm takes as in-
put the master public-key mpk, a decryption key (S, skf,y) and n ciphertexts
ct1, . . . , ctn, and outputs a message ζ or ⊥ indicating failure.

Definition 3 (Correctness) An ABMIPFEn,m scheme for a class of functions

Fd,kλ and a class of attributes Att = [Att1| · · · |Attn] is said to be correct if for

any λ ∈ N, S ⊆ [n], (fi ∈ Fd,kλ ,yi ∈ Yλ) for i ∈ S and (ai ∈ Atti,xi ∈ Xλ) for
i ∈ [n], the following

Pr

ζ =
∑
i∈S

〈xi,yi〉 ∧

fi(ai) = 0 ∀i ∈ S
:

(mpk,msk, {eki}ni=1)← Setup(1λ, 1`,Fd,kλ ,Att),
skf,y ← KeyGen(msk,S, (fi,yi)i∈S),
cti ← Enc(mpk, eki,ai,xi) ∀i ∈ [n],
ζ ← Dec(mpk,S, skf,y, ct1, . . . , ctn)


is 1− negl(λ) for some negligible function negl.

Definition 4 (Adp-IND security for ABMIPFEn,m) For a ABMIPFEn,m
scheme for class of functions Fd,kλ , a class of attributes Att = [Att1| · · · |Attn] , a
predicate space Yλ, message space Xλ and for any PPT adversary A, we define
Adp-IND security experiment ExptAdp-INDABMIPFEn,m,A(1λ, β) as follows.

1. Setup Phase. The challenger computes (mpk,msk, {eki}ni=1)← Setup(1λ, 1`,

Fd,kλ ,Att) and sends mpk to A.
2. Query Phase. During the experiment A can adaptively make the following

queries in any arbitrary order.
(a) Corrupt Queries. A is given access to an oracle OCorr(·) which on input

i ∈ [n] returns eki. Let SCorr be the set of i ∈ [n] queried by A.
(b) Key Queries. A is given access to a key generation oracle OKG(·, ·)

which on input (S ⊆ [n], (fi ∈ Fd,kλ ,yi ∈ Yλ)i∈S) outputs skf,y ←
KeyGen(msk,S, (fi,yi)i∈S).

(c) Encryption Queries. A can query (i ∈ [n],a
(j)
i ∈ Atti, (x

j,0
i ,xj,1i ) ∈

X 2
λ ) to an encryption oracle OEnc(·, ·, ·) which returns ctj,βi ← Enc(mpk,

eki,a
(j)
i ,xj,βi ). When m = 1 and Att = (a1, . . . ,an), then ai is fixed in

the i-th slot and A only submits (i, (xj,0i ,xj,1i )) to the oracle. Let Qi
denote the set of queries made by A for each i ∈ [n].

Without loss of generality, we assume that A queries to OEnc(·, ·, ·) for all i ∈
[n]. Moreover, all queries (i,a

(j)
i , (xj,0i ,xj,1i )) should satisfy that xj,0i = xj,1i

if i ∈ SCorr and
∑
i∈S〈x

j,0
i ,yi〉 =

∑
i∈S〈x

j,1
i ,yi〉 for all queries (S, (fi,yi)i∈S)

made to OKG(·, ·). To avoid trivial leakage due to the inner product func-
tionality, we also require all the queries to satisfy

∑
i∈S〈x

j,0
i − x

1,0
i ,yi〉 =∑

i∈S〈x
j,1
i − x

1,1
i ,yi〉 for all j associated to Qi.

3. Guess Phase. Finally, A outputs a bit β′. The experiment outputs 1 if
β = β′.
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The ABMIPFEn,m is said to satisfy Adp-IND security (or simple adaptive secu-
rity) if the advantage

AdvAdp-INDABMIPFEn,m,A(λ) =
∣∣Pr[ExptAdp-INDABMIPFEn,m,A(1λ, 0) = 1]−

Pr[ExptAdp-INDABMIPFEn,m,A(1λ, 1) = 1]
∣∣

of A in the above game is negligible in λ.

We consider the following weaker version of the security for ABMIPFEn,m.

Definition 5 (Q-bounded coAdp-IND security for ABMIPFEn,m) We de-
fine Q-bounded coAdp-IND security game similarly to the Adp-IND security game
except that the adversary submits all the functions f1, f2, . . . , fQ to be queried
in the key query phase along with adaptively chosen predicate vectors before re-
ceiving the master public-key mpk. We define the advantage AdvcoAdp-INDABMIPFEn,m,A(λ)
accordingly and the ABIPFEn,m is said to satisfy Q-bounded coAdp-IND security
(or simply Q-bounded co-adaptive security) if the advantage is negligible in λ.

5.1 Generic Construction of ABMIPFE from ABIPFE

We utilize the transformation of [2,3] to convert a single input ABIPFE into an

ABMIPFEn,1. Let us consider an ABIPFE for the function class Fk,dλ along with
the predicates space {0, . . . , V (λ) − 1}` and message space {0, . . . , X(λ) − 1}`.
Combining we say that the ABIPFE is associated with a class (Fk,dλ ,F`,V,Xλ ).

We construct an ABMIPFEn,1 for a class (Fk,dλ ,F`,V,Xλ ) using an ABIPFE as-

sociated with a class (Fk,dλ ,F`,V,3Xλ ). The ABIPFE should satisfy the structural
properties namely two step decryption and linear encryption as required for the
transformation of [2,3]. We describe the properties as follows:

1. Two step decryption. An ABIPFE scheme (Setup, KeyGen, Enc, Dec) admits
additional PPT algorithms Setup∗,Dec1,Dec2 and an encoding function E
such that
(a) For all λ, `, n, V,X, Setup∗(1λ,F`,V,Xλ ,Fk,dλ , 1n) uses Setup(1λ, 1`,Fk,dλ )

to outputs (mpk, msk) where mpk includes a bound B ∈ N, a group de-
scription (G, ◦) of order L > n`V X, which defines an encoding function
E : ZL × Z→ G.

(b) For all x ∈ Z`,a ∈ {0, 1}k, ct ← Enc(mpk,a,x) and y ∈ Z`, f ∈
Fk,dλ , skf,y ← KeyGen(sk, f,y), we have

Dec1(mpk, skf,y, ct) = E(〈x,y〉 mod L, noise)

for some noise ∈ N. Furthermore, for all x,y ∈ Z` we have Pr[noise <
B] = 1 − negl(λ). We also require that E(γ, 0) is efficiently computable
for any γ ∈ ZL. Moreover, the encoding is linear, that is for γ, γ′ ∈
ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′)

(c) For all γ < n`V X and noise < nB, Dec2(E(γ, noise)) = γ.

20



2. Linear encryption. There exists a deterministic algorithm Add such that
for all a ∈ {0, 1}k,x,x′ ∈ Z`, the distributions Add(Enc(mpk,a,x),x′) and
Enc(mpk,a,x+x′ mod L) are identically distributed. This property will be
used in the security proof.

We present the transformation of ABMIPFEn,1 from ABIPFE = (Setup′,KeyGen′,
Enc′,Dec′) which satisfies the above properties.

Setup(1λ, 1`,Fd,kλ ,Att) : It computes (mpki,mski)← Setup∗(1λ,F`,V,3Xλ ,Fk,dλ , 1n)
and samples ui ← Z`L for i ∈ [n]. Then it outputs (mpk = {mpki}i∈[n],msk =

({mski,ui}i∈[n]), {eki = ui}i∈[n]). We take Att = (a1, . . . ,an) ∈ {0, 1}kn as
each party has a single attribute.

KeyGen(msk,S, (fi,yi)i∈S) : If fi(ai) = 1 for some i ∈ S then returns ⊥. Oth-
erwise, it computes skfi,yi ← KeyGen′(mski, fi,yi) for i ∈ S and outputs
(S, skf,y = ({skfi,yi}i∈S, z =

∑
i∈S〈ui,yi〉)). We assume that the secret-key

includes a description of (fi,yi)i∈S.
Enc(mpk, eki,ai,xi) : It returns cti ← Enc′(mpki,ai,xi + eki mod L).
Dec(mpk,S, skf,y, {cti}ni=1) : It parses skf,y = ({skfi,yi}i∈S, z) and computes
ζi ← Dec1(mpki, skfi,yi , cti) for i ∈ S. Then it returns Dec2(◦i∈S ζi ◦
E(−z, 0)).

Correctness. Let us assume that fi(ai) = 0 for all i ∈ S. By the correctness of
Dec1 and Dec2 of ABIPFE, we see ζi = E(〈xi+ui,yi〉 mod L, noisei) for all i ∈ S
where |noisei| < B with high probability. Since z =

∑
i∈S〈ui,yi〉, by the linearity

of E , we have ◦i∈S ζi ◦ E(−z, 0) = E(
∑
i∈S〈xi + ui,yi〉 − z mod L, noise) =

E(
∑
i∈S〈xi,yi〉 mod L, noise) where |noise| < nB. Finally, |

∑
i∈S〈xi,yi〉| < L

implies Dec2(◦i∈S ζi ◦ E(−z, 0)) returns
∑
i∈S〈xi,yi〉.

Theorem 7 Assuming the single input ABIPFE is Sel-IND secure (respectively,

Q-bounded coSel-IND secure) for a class (Fk,dλ ,F`,V,3Xλ ), then the above con-

struction of ABMIPFEn,1 for the class (Fk,dλ ,F`,V,Xλ ) is Adp-IND secure (respec-
tively, Q-bounded coAdp-IND secure). More specifically, for any PPT adversary
A, there exists a PPT adversary B such that

Advxx-INDABMIPFEn,1,A(λ) ≤ n · Advyy-INDABIPFE,B(λ) + negl(λ)

where (xx, yy) ∈ {(Adp,Sel), (coAdp, coSel)}.

We prove this Theorem in App. A. Our 1-bounded coSel-IND secure ABIPFE of
Sec. 4 can be fit into the above transformation. Formally, we state the result in
the following corollary.

Corollary 1 Assuming LWEq,α,n is hard with q, α, n are as defined at the end
of Sec. 4, there exists a κ-bounded coAdp-IND secure ABMIPFEκ,1 scheme.

Proof. We instantiate the generic construction of the ABMIPFEκ,1 with our
single input ABIPFE of Sec. 4. Since the ABIPFE is 1-bounded coSel-IND secure,
the instantiation yields κ-bounded coAdp-IND secure ABMIPFEκ,1 where the
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adversary is allowed to submit a single function for each encryption slot before
the setup phase. Let f1, . . . , fκ be the functions. Then the oracle OKG(·, ·) takes
input (S, {y}i∈S) and outputs (S, {KeyGen′(mski, fi,yi)}i∈S,

∑
i∈S〈ui,yi〉)). We

show that our ABIPFE satisfies the properties namely two step decryption and
linear encryption as needed for the transformation. Then, the Corollary will
follow by combining Theorems 6 and 7.

1. Two step decryption. For the scheme ABIPFE = (Setup, KeyGen, Enc, Dec),
we modify the algorithms as follows:
(a) The algorithm Setup∗(1λ,F`,V,Xλ ,Fk,dλ , 1κ) works in the same way as

Setup except that it sets K = κ`V X and the master public-key mpk
includes the bound B = b qK c, L = q, the group (G, ◦) = (Z,+) which
defines the encoding function E : ZL × Z→ Z as

E(γ mod q, noise) = γ · b qK c+ noise mod q
for all γ ∈ Zq, noise ∈ Z.

(b) For all x,y ∈ Z`, f ∈ Fk,dλ , ct← Enc(mpk,a,x) and skf,y ← KeyGen(sk, f,y)
we have

Dec1(mpk, skf,y, ct) = y>ct2 − sk>f,y · (c0|cf )

=

⌊
q

K

⌋
· 〈x,y〉+ y>(e2 + e3)− (Rfy)>(e1|ef )

= E(〈x,y〉 mod q, noise)

where ct1 = (c0, c1, . . . , ck) ∈ (Zmq )k+1, ct2 ∈ Z`q and cf = Evalct(f, ((ai,

Bi, ci))
k
i=1). That is, Dec1 follows step 1 to 3 as in the Dec algorithm.

We note that, by the correctness of ABIPFE we have Pr[noise < B] =
1− negl(λ). Furthermore, one can easily verify that E(γ, 0) is efficiently
computable for any γ ∈ Zq and the encoding E is linear.

(c) From the correctness of decryption, for all γ < κ`V X and noise < κB
we have Dec2(E(γ mod q, noise)) = γ.

2. Linear encryption. For all x′ ∈ Z` and (ct1, ct2) ∈ (Zq)m(k+1) × Z`q, we
define Add((ct1, ct2),x′) = (ct1, ct2 + x′ · b qK c mod q). Then, for all a ∈
{0, 1}k,x,x′ ∈ Z` and (ct1, ct2) = (H>a s + υ,D>s + e2 + e3 + b qK c · x) =
Enc(mpk,a,x) we observe that

Add((ct1, ct2),x′) = (ct1,D
>s+ e2 + e3 + b q

K
c · (x+ x′) mod q)

= Enc(mpk,a,x+ x′ mod q)

This proves that Add(Enc(mpk,a,x),x′) and Enc(mpk,a,x+ x′ mod q) are
identically distributed.

6 Conclusion

We have shown the way of embedding any polynomial-size boolean circuit into
the secret-keys of the existing IPFE scheme [6] and its multi-input variants
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[2]. The secret-keys are short and both the secret-keys and ciphertexts of our
ABIPFEs depend on the depth of the circuits. Moreover, the security is based on
LWE assumption which makes our ABIPFEs post-quantum secure. The notion of
1-bounded coSel-IND security permits the adversary to query many secret-keys
that can decrypt the challenge ciphertexts. This delivers a partial solution to
the open problem in the key-policy setting given by Abdalla et al. [3]. We have
seen that 1-bounded coSel-IND secure single input ABIPFE is sufficient to build
a κ-bounded coAdp-IND (κ > 1) secure attribute-based multi-input IPFE which
delivers more finer access control.

However, the secret-keys of our ABIPFE that decrypt challenge messages
are all corresponding to a single function. Achieving Q-bounded coSel-IND se-
curity with Q > 1 or (stronger) Sel-IND security for ABIPFE is a challenging
open problem. Other than strengthening the security of ABIPFE, we can also
investigate decentralized ABIPFE [35], attribute-based access control in case of
unbounded IPFE [21] or traceable ABIPFE [19] for a specific class of policies.
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A Security Proof of Theorem 7

We use the two step technique of [2,3] to prove the theorem. We will prove the adaptive
security for ABMIPFEn,1, as the co-adaptive part can be proved similarly. Since we
are in the public-key setting there is a standard reduction from one-challenge to many-
challenge security. Therefore, any single input (public-key) ABIPFE which is proved
secure in one-challenge setting can be used as a many-challenge secure ABIPFE.

First, we show that the advantage of the adversary A in one-time security with
its associated game ExptONE-Adp-IND

ABMIPFEn,1,A(1λ, b) is zero where by one-time security we mean

that A can make at most one query to OEnc(·, ·, ·) of the form (i,x0
i ,x

1
i ) for each slot

i ∈ [n]. Let G0 be the experiment ExptONE-Adp-IND
ABMIPFEn,1,A(1λ, b) with b← {0, 1} except that the

challenger guesses all the queries to OEnc(·, ·, ·) of the form (i,w0
i ,w

1
i ) for each i ∈ [n]

in advance, where (w0
i ,w

1
i ) ← {0, . . . , 3X − 1}`. Then, we have AdvG0

ABMIPFEn,1,A(λ) =

(3X)2n` · AdvONE-Adp-IND
ABMIPFEn,1,A(λ).

Let (i,x0
i ,x

1
i ) be the actual query made by A for each i ∈ [n]. In G0 we have

w0
i = x0

i and w1
i = x1

i for each i ∈ [n]. We show that AdvG0
ABMIPFEn,1,A(λ) = 0 by

utilizing the fact that the distributions {ui}i∈[n] and {ui + w1
i −w0

i } are identically
distributed for ui ← Z`L. If b = 0, then the first distribution corresponds to the chal-
lenge messages of the form {Enc′(mpki,ai,x

0
i +ui mod L)}i∈[n] and the secret-keys are

of the form {(S, {KeyGen′(mski, fi,yi)}i∈[n],
∑
i∈[n]〈ui,yi〉)}. When b = 1, the second

distribution corresponds to the challenge messages of the form {Enc′(mpki,ai,x
0
i +

ui + x1
i − x0

i mod L) = Enc′(mpki,ai,x
1
i + ui mod L)}i∈[n] and the secret-keys are of

the form {(S, {KeyGen′(mski, fi,yi)}i∈[n],
∑
i∈[n]〈ui + x1

i − x0
i ,yi〉 =

∑
i∈[n]〈ui,yi〉)}.

Note that, the key queries of A should satisfy that
∑
i∈[n]〈x

0
i ,yi〉 =

∑
i∈[n]〈x

1
i ,yi〉.

This proves the statistical indistinguishability between these two distributions. Hence,
AdvG0

ABMIPFEn,1,A(λ) = 0 and hence AdvONE-Adp-IND
ABMIPFEn,1,A(λ) = 0.

We now prove the above theorem using the following two games.

Game 1. This game is the same as the standard experiment ExptAdp-IND
ABMIPFEn,1,A(1λ,

0) except that the encryption oracle OEnc(i, (x
j,0
i ,xj,1i )) now returns Enc(mpk,

eki,ai,x
j,0
i + x1,1

i − x1,0
i ) for all i ∈ [n]. We show that there exists a PPT adver-

sary B1 such that the advantage of A in distinguishing between ExptAdp-INDABMIPFEn,1,A(1λ, 0)

and game 1 is upper bounded by AdvONE-Adp-IND
ABMIPFEn,1,B1(λ). Let mpk be the master public-key

that B1 receives from its challenger. Then B1 simulates the game for A as follows.

B1(1λ,mpk):

1. B1 sends mpk to A.
2. Whenever A queries to Ocorr and OKG, B1 uses its own oracles to answer.
3. For each slot i ∈ [n], let (i, (x1,0

i ,x1,1
i )) be the first query to OEnc. Then B1 forwards

it to its own encryption oracle and receives a ciphertext ct∗i ← Enc(mpk, eki,ai,x
1,b
i )

for some b ← {0, 1}. From the next query (i, (xj,0i ,xj,1i )) with j > 1 to the i-th
slot B1 sends Add(ct∗i ,x

j,0
i − x1,0

i ) to A.
4. Finally, B1 returns the bit b which it receives from A.

Observe that, Add(ct∗i ,x
j,0
i − x1,0

i ) = Enc′(mpki,ai,x
1,b
i + ui + xj,0i − x1,0

i mod L) =
Enc(mpk, eki,x

1,b
i + xj,0i − x1,0

i mod L). Therefore, when b = 0, the adversary B1 sim-
ulates ExptAdp-INDABMIPFEn,1,A(1λ, 0) and if b = 1, then B1 simulates game 1. This proves
that
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∣∣∣∣Pr[ExptAdp-INDABMIPFEn,1,A(1λ, 0) = 1]− Pr[ExptGame 1
A (1λ) = 1]

∣∣∣∣ < AdvONE-Adp-IND
ABMIPFEn,1,B1(λ)

Game 2. This is the standard experiment ExptAdp-INDABMIPFEn,1,A(1λ, 1). We show that there
exists a PPT adversary B such that∣∣∣∣Pr[ExptGame 1

A (1λ) = 1]− Pr[ExptAdp-IND
ABMIPFEn,1,A(1λ, 1) = 1]

∣∣∣∣
< n · AdvSel-INDABIPFE,B(λ) + negl(λ)

We switch the distribution of the ciphertext one slot at a time depending on the security
of ABIPFE scheme. Let v ∈ [n] and Bv be the adversary against the ABIPFE employed
for the v-th slot. After receiving the master public-key mpkv, Bv simulates the game
for A as follows.

Bv(1λ, 1`,Fd,kλ ,Att,mpkv):

1. It computes (mpki,mski)← Setup∗(1λ,F`,V,Xλ ,Fk,dλ , 1n) for i ∈ [n] \ {v} and sam-
ples ui ← Z`L for i ∈ [n]. Then it sets {eki = ui}i∈[n] and sends mpk = {mpki}i∈[n]
to A.

2. Bv uses {ui}i∈[n] to answer all queries to OCorr(·).
3. When Bv receives a secret-key query for (S, (fi,yi)i∈S), it first sends (fv,yv) to its

challenger if v ∈ S and gets a secret-key skfv,yv . For all i ∈ S \ {v}, Bv computes
skfi,yi ← KeyGen′(mski, fi,yi) and sends (skf,y = ({skfi,yi}i∈S, z =

∑
i∈S〈ui,yi〉)

to A.
4. For each query (i, (xj,0i ,xj,1i )) to OEnc(·, ·, ·), Bv generates the challenge ciphertext

as follows:
(a) If i < v, Bv sends Enc(mpk, eki,ai,x

j,1
i ).

(b) If i > v, Bv sends Enc(mpk, eki,ai,x
j,0
i + x1,1

i − x1,0
i ).

(c) If i = v, Bv sends the challenge messages (xj,0v + x1,1
v − x1,0

v mod L,xj,1v
mod L) to its own challenger and gets back a ciphertext ct∗v. Finally, it sends
Add(ct∗v,uv) to A.

To rely on the Sel-IND security of ABIPFE we need to show 〈xj,0v + x1,1
v − x1,0

v ,yv〉 =
〈xj,1v ,yv〉 mod L or 〈xj,0v −x1,0

v ,yv〉 = 〈xj,1v −x1,1
v ,yv〉 mod L for all j queried by A. In

fact, this holds due to the restriction on the queries made by A as given in the security
definition 4 of ABMIPFE.

Therefore, the advantage of A in distinguishing between the intermediate games is
upper bounded by the advantage of Bv in the Sel-IND security experiment of ABIPFE
scheme. By combining all the n intermediate advantages we get a PPT adversary B
such that∣∣∣∣Pr[ExptGame 1

A (1λ) = 1]− Pr[ExptAdp-IND
ABMIPFEn,1,A(1λ, 1) = 1]

∣∣∣∣
< n · AdvSel-INDABIPFE,B(λ) + negl(λ)

This proves the theorem.
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