
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficient Framework for Genetic-Algorithm-Based
Correlation Power Analysis

An Wang, Yuan Li, Yaoling Ding*, Liehuang Zhu, and Yongjuan Wang

Abstract—Various Artificial Intelligence (AI) techniques are
combined with classic side-channel methods to improve the
efficiency of attacks. Among them, Genetic Algorithms based
Correlation Power Analysis (GA-CPA) is proposed to launch
attacks on hardware cryptosystems to extract the secret key
efficiently. However, the convergence rate is unsatisfactory due to
two problems: individuals of the initial population generally have
low fitnesses, and the mutation operation is hard to generate high-
quality components. In this paper, we give an analysis framework
to solve them. Firstly, we employ lists of sorted candidate key
bytes obtained with CPA to initialize the population with high
quality candidates. Secondly, we guide the mutation operation
with lists of candidate keys sorted according to fitnesses, which
are obtained by exhausting the values of a certain key byte
and calculating the corresponding correlation coefficients with
the whole key. Thirdly, key enumeration algorithms are utilized
to deal with ranked candidates obtained by the last generation
of GA-CPA to improve the success rate further. Simulation
experimental results show that our method reduces the number
of traces by 33.3% and 43.9% compared to CPA with key
enumeration and GA-CPA respectively when the success rate
is fixed to 90%. Real experiments performed on SAKURA-G
confirm that the number of traces required in our method is
much less than the numbers of traces required in CPA and GA-
CPA. Besides, we adjust our method to deal with DPA contest
v1 dataset, and achieve a better result of 40.76 traces than the
winning proposal of 42.42 traces. The computation cost of our
proposal is nearly 16.7% of the winner.

Index Terms—Side-channel analysis, Correlation power anal-
ysis, Genetic algorithm, Key enumeration, Mutation.

I. INTRODUCTION

IN 1996, Kocher proposed side-channel attacks [1] which
showed great threats on cryptosystems. From 1999 to 2004,

several side-channel attack models were put forward, such as
template attacks [2], collision attacks [3], mutual information
analysis [4], and so on. In the past ten years, Correlation
Power Analysis (CPA) [5] was widely used in side-channel
attacks and physical security evaluations on cryptographic
devices. With the development of hardware technology, the
parallel implementation of S-box is more used as a way to
improve the performance of cryptographic devices. Besides,
high frequency clock will also cause power consumption traces
of the S-box to be superimposed. However, when CPA is
applied in the analysis of these devices, the attack efficiency

An Wang, Yuan Li, Yaoling Ding and Liehuang Zhu are with School of
Computer Science, Beijing Institute of Technology, Beijing 100081, China
(email: wanganl, ly18, dyl19, liehuangz@bit.edu.cn).

Yongjuan Wang is with Institute of Cyberspace Security, Information Engi-
neering University, Zhengzhou 450001, China (email: pinkywyj@163.com).

* Corresponding author.
Manuscript received April 19, 2005; revised August 26, 2015.

will be greatly reduced. This is because identical modules of a
cryptographic primitive, such as S-box operation on each bytes
of intermediate states, are executed simultaneously. When we
focus on one module, the power consumption produced by the
other modules is treated as noise and consequently improve
calculation complexity. Key enumeration algorithms [6], [7],
[8], [9] and rank evaluation methods [10], [11], [12], [13]
were proposed to enumerate candidate keys in decreasing order
of likelihood or estimate the rank of the correct key based
on partial information obtained by classic CPA or template
attacks. These methods reduced required number of power
traces in attacks, while improve memory and/or calculation
complexity a lot.

In recent years, Artificial Intelligence (AI) techniques are
increasingly combined with side-channel attacks to improve
the efficiency of key recovery. They are roughly divided into
two categories. One is classification using machine learning
methods, and generally requires profiling, such as support
vector machine [14], [15], [16], neural network [17], [18],
[19], decision tree [20], [21], rotation forest [20], [21], [22],
self-organizing maps [16], [23], naive Bayes [16], [20], [24],
and so on. The other category is key recovery using heuristic
evolutionary algorithms, and generally doesn’t require profil-
ing, such as genetic algorithms [25], [26] and hill climbing
[27].

Genetic algorithms [28] are a powerful category of AI
techniques in solving optimization problems. In 2015, Zhang
et al. presented a Genetic-Algorithm-based CPA (GA-CPA)
[25], which took full use of information in the power con-
sumption traces generated by multiple S-boxes. Ding et al.
also proposed a method using genetic algorithms to conduct
attacks on bitwise linear leakages in 2020 [26]. In these
approaches, candidate keys were regarded as individuals, and a
group of individuals constructed a population. The correlation
coefficients are defined as fitnesses in order to assess the
qualities of individuals. With the evolution of a population, the
average fitness of individuals becomes higher and higher, and
accordingly candidate keys approximate to the target one grad-
ually. Consequently, the target key is recovered. The authors
claimed that GA-CPA improved the success rate significantly.
However, its convergence rate and result are unsatisfactory due
to following problems:
• Genes in the initial population are not so desirable

because their fitnesses are generally very low.
• Since the mutation operation usually generates good

individuals randomly, the evolution procedure always
encounters local optimal problems, and new high-quality
individuals appear coincidentally with low probability

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

during evolution.
• When the number of power traces is insufficient, the key

with the highest fitness is usually not the correct one, and
genetic algorithms are prone to fall into local optimum,
which makes it more difficult to recover the target key.

A. Our contributions

In this paper, we propose a framework for GA-CPA, which
consists of three stages. It solves the three problems mentioned
above respectively, and improves the efficiency. AES-128 is
taken for example to illustrate the new framework. we list our
contributions as follows.
• Classic CPA is employed to rank candidates of each key

byte according to their correlation coefficients. Individ-
uals (candidate keys) in the initial population of GA-
CPA are generated by combining 16 key bytes which are
selected randomly from a set of candidates, whose cor-
relation coefficients is larger than the others. Therefore,
average fitness of individuals in the initial population is
inherent high.

• The correlation coefficient optimization problem dis-
cussed in this paper is affected by S-box (high-order
Boolean function). The variation of the key byte has
a complex and discontinuous effect on the correlation
coefficient. Therefore, we propose a mutation scheme,
which is to sort the candidate values of key bytes ac-
cording to their fitness, and then select the byte with
the largest fitness as the mutation direction. Our scheme
aims to improve the quality of the mutation results,
which improves the mutation efficiency and speeds up
the algorithm convergence.

• Due to the ranking procedure of each key byte, key
enumeration algorithms can be combined easily. If the
best individual of the last generation is not the target key,
candidates of each key bytes will be ranked according to
fitnesses, which are calculated with other key bytes fixed
to the best individual. Key enumeration algorithms are
employed to search for the correct key with these ranking
lists.

Simulation and real experiments are conducted to compare
the efficiency among our method, GA-CPA and CPA with
key enumeration. Experimental results show that convergence
rate of genetic algorithms is improved by the new framework.
Besides, our method requires only 66.70% and 56.14% traces
of CPA with key enumeration and GA-CPA respectively to
achieve 90% success rate. In addition, we launch attacks on
DPA contest v1 dataset, and compare required numbers of
traces and computation costs between our method and the
winning proposal. The results show that our method performs
better than the winning one both in the required number of
traces (1.66 less) and the computation cost (83.30% less).

B. Organization

The rest parts of this paper are organized as follows.
Section II gives a brief description of classic CPA and GA-
CPA. Some imperfections of GA-CPA are exposed in this

section. In Section III, our new framework and is proposed,
and advantages of the key enumeration scheme used in it are
analyzed. Section IV addresses the process of determining
parameters and operators employed in our method by experi-
ments. Comparisons of CPA (with/without key enumeration),
GA-CPA and our proposal based on simulation and real
experiments are shown in Section V. The detail of adjustments
that make our method applicable to DES are introduced in the
same section. After that, our proposal is compared with hill-
climbing-based method by launching attacks on DPA contest
v1 dataset. We conclude this paper in Section VI.

II. PRELIMINARIES

A. Correlation Power Analysis

Correlation power analysis proposed by Brier et al. [5]
is based on the dependence between power consumption
and Hamming distances of handled data of an cryptographic
devices. A linear model W = a×HW(D⊕R)+b is presented
to define the relationship between the power consumption
W and the Hamming distance from current state D to last
state R, denoted as H . In the formula, a stands for a scalar
gain depending on the circuit, and b encloses offsets, time
dependent components and noise of the cryptographic device.
The correlation coefficient between W and H ,

ρW,H =
cov(W,H)

σWσH
,

is used to achieve CPA attacks on cryptographic devices, in
which candidate values of a key byte is scanned exhaustively
and ranked according to correlation coefficients that they
produced with W . As a result, the target key is recognized
as the one that corresponds to the maximized |ρW,H |.

B. Genetic Algorithm

Genetic algorithm [28] is a probabilistic optimization
method, which is inspired by the model of natural evolution.
Potential solutions are defined as individuals, and the fitness
of a certain individual is evaluated by an objective function.
For each individual, the higher its fitness is, the more likely it
is the optimal solution.

The basic procedure of genetic algorithm is that a popula-
tion constructed by npop individuals and initialized randomly
evolves by three operations, namely selection, crossover and
mutation. These operations are executed in a loop, called
a generation, and terminated when there is little changes
between two generations. At the end of genetic algorithms,
the individual that has the highest fitness is outputted as the
optimal solution. The major functions of the three operations
are as follows:
• Selection is an operation that improves the average fitness

of a population by selecting individuals with higher
fitnesses. There are various schemes designed to handle
different problems, such as tournament selection [29],
roulette wheel selection [30], truncation selection [31],
and so on.

• Crossover is an operation that intends to assemble high-
quality components in one individual by exchange bit

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

strings between two selected individuals (called parents).
This operation is generally executed by a certain proba-
bility pc.

• Mutation is an operation that generates new bit strings by
altering one or a few bits in an individual. This operation
provides local searching for most problems. However, it
is executed by a very low probability pm, in order not to
influence the convergence.

C. Genetic-Algorithm-based Correlation Power Analysis

Zhang et al. [25] presented a GA-CPA method which com-
bined CPA with genetic algorithms to improve the efficiency
of power analysis in 2015. Genetic algorithm was employed to
obtain the optimal correlation coefficient produced by a whole
key but avoid exhausting all candidates.

In GA-CPA, candidate keys are defined as individuals,
and the correlation coefficient produced by the
intermediate states (encrypted by the candidate key)
is the fitness, formally defined as Fitness :=
Corr(Trace, Intermediate(Plaintext, Candidate Key)).
At the beginning of the algorithm, A group of individuals
is generated randomly, called a population. The fitnesses
of individuals are calculated and sorted. Then, GA-CPA
performs selection, crossover and mutation operations
in sequence on this population to obtain a population
composed of new individuals. In this process, high-quality
individuals are retained and the population fitness improves.
Finally, calculate fitnesses of the new individuals. If the
optimal solution (correct key) is found, the algorithm ends.
Otherwise, the above three basic operations are repeated until
the upper limit of iteration is reached. Algorithm 1 describes
GA-CPA with pseudo code.

InitPopulation(npop) initializes population P with npop
individuals. ComputeFitness(P , T) computes fitnesses of
individuals in P with a set of power traces generated
by target cryptographic device. Selection(P) selects high-
quality individuals child1 and child2 from P randomly.
Crossover(child1, child2, pc) recombines child1 and child2
with probability pc, and Mutation(child1/2, pm) mutates
child1/2 with pm. Pchild acts as an intermediate population
that holds individuals among iterations. MaxFitness(P) out-
puts an individual Kbest which produces the largest fitness in
P . Verify(Kbest) tests whether Kbest is the correct key.

D. The Problem of Genetic-Algorithm-based CPA

Firstly, GA-CPA is supposed to converge to the correct key
gradually. However, it is infeasible for the mutation operation
to generate a correct key byte gradually by altering one (even
a few) bit randomly, because the outputs of S-box operations
are changed largely and irregularly along with a little altering
in the input. Therefore, in a certain attack, GA-CPA is almost
reduced to a random search for some key bytes. That is to
say the evolution procedure always encounters local optimal
problems. Consequently, the convergence rate is unsatisfactory.

Secondly, since the population is initialized randomly, av-
erage fitness of individuals are usually very low. It requires
quite a lot generations to obtain individuals with high-quality

Algorithm 1 Genetic-Algorithm-based Correlation Coefficient
Analysis.
Input: threshold of generation th, size of population npop,

probability of crossover pc, probability of mutation pm, a
set of power traces T .

Output: the optimal key Kbest.
1: P :=InitPopulation(npop);
2: ComputeFitness(P , T);
3: found :=false;
4: generation := 0;
5: while !found and generation < th do
6: Pchild := Φ;
7: for j := 1 to npop/2 do
8: child1 :=Selection(P);
9: child2 :=Selection(P);

10: Crossover(child1, child2, pc);
11: Mutation(child1, pm);
12: Mutation(child2, pm);
13: Pchild:=Pchild ∪ {child1, child2};
14: end for
15: P := Pchild;
16: ComputeFitness(P , T);
17: Kbest :=MaxFitness(P);
18: if Verify(Kbest) = true then
19: found :=true;
20: end if
21: generation := generation+ 1;
22: end while
23: return Kbest;

components (i.e. correct key values). What’s more, there might
be even no correct value for some key bytes in the initial
population, which will increase the requirements for the ability
of the mutation operation to generate them.

Thirdly, in many practical attacks, it is hard to acquire
sufficient power traces, which leads to a high signal to noise
ratio. As a consequent, the fitness produced by the target key
may be very close to wrong guesses, may even not be the
highest. At this condition, GA-CPA fall into local optimum
easily, i.e. converge to a wrong or an immature solution.

In our approach, we aim at solving these three problems.

III. A FRAMEWORK FOR GENETIC-ALGORITHM-BASED
CORRELATION POWER ANALYSIS

A. Description of New Framework

Similar to GA-CPA, we regard candidate keys as indi-
viduals, and initial a population with a group of randomly
generated candidates. On the whole, our new framework of
GA-CPA consists of three stages, which is illustrated in Figure
1.

At the first stage, random plaintexts are encrypted by AES-
128 and the corresponding power traces are acquired. A
classical CPA is conducted on these power traces, in order
to obtain a preliminary ranking of the candidate values for
each key bytes. These rankings are based on the correlation
coefficients produced by the power traces and intermediate

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

16 Key Byte
Ranks

Current
Generation

Population Initialize

Compute
Fitness

Select and
Crossover

Find Correct Key or
Exceed Iteration Limit

No

Yes

Success

1000
Plaintexts

1000
Traces

Encrypt

1000
Intermediate

Values

Correlation
Coefficient

Fitness

Power Trace Acquisition

1000 Key
Points

Leakage
Analyze

For Each
Key

CPA

Mutation?

Compute Rank

Yes

For Each
Individual

No

Mutate

Find the
Correct Key

NoYes
Enumerate

Rank Candidates
of Each Key Byte
based on Fitness

Stage3：Key Enumeration

Stage1：Initialization

Stage2：Evaluation

Fig. 1. The flow chart of our new framework for genetic-algorithm-based correlation power analysis.

values corresponding to each key byte, respectively. Then, 16
key byte rankings are obtained. Key bytes are chosen randomly
from a set of candidates whose correlation coefficients are
larger than the others (according to the ordered list). The
size of the set is denoted as ninit, implying that these
candidates are the Top ninit items of each rankings lists.
16 key bytes from 16 sets are combined to constitute the
initial population. We give the outline of initialization stage
based on rankings of candidates in Algorithm 2, denoted as
InitPopulationBR(npop, ninit, T).

Algorithm 2 Initialization function InitPopulationBR(npop,
ninit, T) based on CPA.
Input: size of population npop, selection range in the key

ranking ninit, a set of power traces T .
Output: the initial population P .

1: for i := 1 to 16 do
2: for j := 0 to 255 do
3: Klist[j].value := j;
4: Klist[j].cor := ComputeCor(j, T);
5: end for
6: Sort(Klist);
7: for s := 1 to npop do
8: P[s][i] := RandomChoose(Klist, ninit);
9: end for

10: end for
11: return P;

P is defined as a two-dimensional array, in which P[s][i]
represents the i-th byte of the s-th individual. Klist indicates
a list of 256 candidates of one key byte. Each element in
Klist stores a candidate value Klist[j].value and its corre-
lation coefficient Klist[j].cor, which is calculated by Com-
puteCor(j, T) using the Hamming weight of j and the set
of power traces T . Sort(Klist) arranges all elements of Klist

from largest to smallest according to correlation coefficients.
RandomChoose(Klist, ninit) selects a candidate value from
the top ninit elements in Klist and initializes P[s][i].

The second stage implements the evolutionary process.
Compared with Zhang et al.’s method, our new framework
mutates individuals based on ranking lists of candidates de-
pending on fitnesses. The specific steps are as follows.
• Compute all fitnesses of individuals in the population.

Verify correctness of the key that has the highest fitness in
current generation with a pair of plaintext and ciphertext.
If it is the target one, attack is successfully done, else
perform the following steps.

• Execute traditional selection and crossover operations,
and obtain an intermediate population.

• In mutation operation, for each key byte of an individual
decide whether to mutate according to a randomly gen-
erated decimal in [0, 1] by comparing it to the mutation
probability pm.

• For each mutation key byte, rank 256 candidates accord-
ing to their corresponding fitnesses, which are calculated
with power traces and intermediate states produced by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

keys with 1 byte traversing 256 values and the other 15
key bytes fixed to the original individual. Choose the top
one as the mutation result of this byte.

• Repeat the steps above until the correct 16-byte key is
found, or the number of generations reaches a threshold.

Zhang et al. gave experiments when they proposed GA-
CPA, which show that the more correct key bytes, the higher
the fitness of the individual. It can also be seen from Figure
3 that the more correct key bytes, the lower the guess entropy
of a single key byte, and the easier it is for the correct key
to become the direction of mutation operations. Therefore, we
propose a mutation scheme, which is to traverse all possible
values locally and select the optimal direction for mutation.
Pseudo code of the ranking-based mutation is shown in Algo-
rithm 3, denoted as MutationBR(K, pm, T). K stands for an
individual, and K[i] is its i-th byte. Klist indicates a list of
256 candidates of K. Each element in Klist stores a candidate
value Klist[j].value and its fitness Klist[j].fit, which is
calculated by setting K[i] to Klist[j].value and maintaining
the values of other key bytes. Unlike ComputeCor(Klist[j],
T), ComputeFit(Ctemp, T) outputs the correlation coefficient
produced by a 16-byte key and the set of power traces T (i.e.
fitness), rather than the correlation coefficient produced by a
1-byte candidate and power traces.

Algorithm 3 Mutation Function MutationBR(K, pm, T)
based on Ranking.
Input: individual about to mutate K, probability of mutation

pm, a set of power traces T .
Output: updated individual K.

MutationBR(K, pm)
1: for i := 1 to 16 do
2: p := Random(0, 1);
3: if p < pm then
4: for s := 1 to 16 do
5: Ktemp[s] := K[s];
6: end for
7: for j := 0 to 255 do
8: Klist[j].value := j;
9: Ktemp[i] := j;

10: Klist[j].fit := ComputeFit(Ktemp, T);
11: end for
12: Sort(Klist);
13: K[i] := Klist[0].value;
14: end if
15: end for
16: return K;

For the third stage, ranked candidates of all key bytes with
their fitnesses are feed into key enumeration algorithms if
the optimal key recovered by the genetic algorithm is not
the correct one. The difference between our proposal and the
classic key enumeration algorithms is that candidates of a key
byte are ranked according to the fitnesses which are calculated
with the Hamming weight of a 128-bit intermediate state,
instead of the correlation coefficient of a single byte.

We replace InitPopulation() and Mutation() in Algorithm
1 with InitPopulationBR() and MutationBR() respectively,

and obtain our framework of genetic-algorithm-based correla-
tion power analysis.

B. Advantage of the Key Enumeration Scheme in New Frame-
work

In this section, we use guessing entropy [32] to illustrate
the advantage of the key enumeration scheme in the new
framework. The guessing entropy is a common measurement
of side-channel attacks. In particular, an attack outputs a key
guessing list g = {g1, g2, ..., g|K|} in decreasing order of
probability with |K| being the size of the keyspace. So, g1
is the most likely and g|K| the least likely key candidate.
The guessing entropy is defined as the average position of the
correct key in g. Obviously, the lower the guessing entropy, the
higher the performance of the attack. In addition, we introduce
a concept of average guessing entropy in this paper, which
refers to the average of guessing entropies of all key bytes to
be recovered.

Since the classic key enumeration algorithms focus on one
key byte at a time, the power consumption of other key bytes
contained in the power traces is regarded as noise, which
has a great influence on the ranking of candidate values,
especially when the number of traces is small. In our method,
the Hamming weight of the other 15 key bytes is considered,
which offsets the noise interference to a certain extent and
makes the ranking of candidate value closer to the correct
one. Taking AES-128 implemented in parallel for example, we
show the advantage of our proposal compared with previous
applications of key enumeration algorithms in CPA when
processing on the same group of power traces in Figure 2.
Solid lines indicate average guessing entropies and dotted
lines stand for guessing entropies of the worst cases (the one
that ranks the last in all key bytes). Red lines with circles
indicate our method, and blue ones with triangles stand for
CPA. Guessing entropies of our method are calculated by
ranking the candidates of each key byte according to corre-
lation coefficients between power consumption and Hamming
weights of the whole intermediate states with the other 15 key
bytes fixed to the correct ones. Guessing entropies of CPA
are calculated by ranking the candidates of each key byte ac-
cording to correlation coefficients between power consumption
and Hamming weights of the corresponding intermediate bytes
with the other 15 key bytes regardless. It is obvious that when
the number of power traces exceeds a certain threshold, the
guessing entropies of our method are lower than classic ones
which implies that the key enumeration algorithm will achieve
better efficiency.

In order to further illustrate how our method works, we
give Figure 3 which shows that the average guessing entropies
of key bytes reduce along with the number of correct key
bytes increasing. These lines stand for the guessing entropies
of a key byte, whose candidate values are ranked according
to correlation coefficients between power consumption and
Hamming weights of 128-bit intermediate states with x key
bytes (random location) being correct and the other bytes
being random wrong values. The optimal individual of the
last generation of genetic algorithms is supposed as the one

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

0 50 100 150 200 250 300
 Number of Traces

0

25

50

75

100

125

150

175

200

225

250
 G

ue
ss

in
g

E
nt

ro
py

Distribution of Correct Candidates in CPA
Guessing Entropy of Worst Case in CPA
Average Guessing Entropy in CPA
Distribution of Correct Candidates in Our Proposal
Guessing Entropy of Worst Case in Our Proposal
Average Guessing Entropy in Our Proposal

Fig. 2. Comparison of guessing entropy between our proposal and CPA.

that has the most number of correct key bytes, so we feed it
with its ranking lists to key enumeration algorithms in order
to improve the enumeration efficiency.

0 50 100 150 200 250 300 350 400 450 500
 Number of Traces

0

20

40

60

80

100

120

 G
ue

ss
in

g
E

nt
ro

py
 o

f
O

ne
 B

yt
e

0 Correct Byte
1 Correct Byte
2 Correct Bytes
3 Correct Bytes
4 Correct Bytes
5 Correct Bytes
6 Correct Bytes
7 Correct Bytes
8 Correct Bytes
9 Correct Bytes
10 Correct Bytes
11 Correct Bytes
12 Correct Bytes
13 Correct Bytes
14 Correct Bytes
15 Correct Bytes

Fig. 3. The relation between the number of traces and the guessing entropy
of one key byte calculated with different numbers of correct values for the
other 15 key bytes.

IV. OPERATORS AND PARAMETERS SELECTION

A. Operators Employed in the Genetic Algorithm

The mutation scheme used in our method is described in
section III-A, so we omit here. For the truncation selection
scheme, we test tournament selection, roulette wheel selection
and truncation selection. Since the performance of the three
schemes is similar, we adopt a relatively simple truncation
option. The truncation selection randomly selects individuals
from the top npop∗pt individuals in fitness, where npop stands
for the size of population and pt is called truncation prob-
ability. Byte-wise crossover [33] is employed to recombine
individuals, as shown in Algorithm 4. Key bytes with corre-
sponding positions in the two parent individuals are exchanged
with probability pc, which is called crossover probability.
Since our method generates relatively high-quality key bytes

Algorithm 4 Byte-wise Crossover Scheme.
Input: two individuals about to be recombined K1, K2,

crossover probability pc.
Output: two updated individuals K1, K2.

1: for i := 1 to nword do
2: p := Random(0, 1);
3: if p < pc then
4: temp := K1[i]; K1[i] := K2[i]; K2[i] := temp;
5: end if
6: end for
7: Return K1,K2;

by means of initialization and mutation operations, the Byte-
wise crossover scheme is used to ensures that the internal
structure of key bytes is not destroyed while generating new
individuals. Therefore, parameters we need to determine are
the size of initialization set for each key byte ninit, the size
of population npop, the truncation probability pt,the crossover
probability pc and the mutation probability pm.

B. Parameters Used in Initialization Stage

Noting that the mutation operation on a single byte needs
to traverse and calculate the fitness of 256 candidate values,
which is a huge amount of calculation, we empirically set npop
to be 6. Experimental results given later confirms that this
value ensures the effective execution of the algorithm while
having reasonable computational complexity.

Before determining ninit, we prefer to give a threat model
where the attacker can obtain only a limited number of
traces, which is enough for generating a high-quality initial
population but not enough for normal CPA. First, We conduct
simulation experiments, in which power consumption of S-
box operations is simulated by adding Gaussian noises with
standard deviation being σ = 3.0. Normal CPA is applied on
different group of traces. The number of traces ranges from
10 to 1000 by a step of 10, and the experiments is conducted
for 100 times. The rankings of correct values for all the key
bytes are collected during each execution. Figure 4 shows
the relation between the number of traces and the guessing
entropies of all key bytes. The green dots stand for the rankings
of the correct value of one key byte. The red line denotes the
average guessing entropy of all the 16 key bytes. The blue line
denotes the guessing entropy of the worst case, i.e. the average
location of the correct value that ranks lowest among all the
16 guessing lists. In fact, the guessing entropy of the worst
case determines whether normal CPA will recover all the 16
key bytes. The blue line in Figure 4 indicates that when the
number of power traces reaches 500, normal CPA still cannot
guarantee the ranking of each correct value to be No. 1, i.e.
the attack fails.

Then, based on the data shown in 4, we get Figure 5,
which shows the ratio of correct values ranking in top i
(i ∈ {1, 5, 10, 20, 40, 60}). Lines in blue, red, green, cyan,
magenta and yellow stand for i = 1/5/10/20/40/60, respec-
tively. From Figure 5, we know that when the number of
power traces is greater than 500, the probability that the correct

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0 50 100 150 200 250 300 350 400 450 500
 Number of Traces

0

25

50

75

100

125

150

175

200

225

250
 G

ue
ss

in
g

E
nt

ro
py

Distribution of Correct Keys
Average Guessing Entropy
Guessing Entropy of Worst Case

Fig. 4. The relation between the number of traces and guessing entropy.

value ranks in top 5/10/20/40/60 is 100%. Furthermore, we
derive and calculate the probability that each correct value
to be selected into the initial population when using our ini-
tialization stage with ninit = 1/5/10/20/40/60, respectively,
and show them in Figure 6. The probability of a correct
value to be in the initial population by randomly generation is
1− (1− 1/256)npop ≈ 0.023. The initialization stage aims at
covering correct values of key bytes as many as possible in the
initial population, in order to generate high-fitness individuals
in the subsequent generations. The experimental results in
Figure 6 confirm that our method improve the probability that
initialize the population with correct values of key bytes, even
when the number of traces is 10 (20 for ninit = 1).

0 100 200 300 400 500 600 700 800 900 1000
 Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 R
at

io

Ranked First
Ranked in Top 5
Ranked in Top 10
Ranked in Top 20
Ranked in Top 40
Ranked in Top 60

Fig. 5. The relation between the number of traces and the ratio of correct
key byte in top 1/5/10/20/40/60.

Finally, we calculate the probability of a correct value in the
initial population pinit when ninit = 1/5/10/20/40/60 and
npop = 2/4/6/.../20, respectively. The number of traces is set
to 220, which is the boundary value between initializing with
Top 1 and Top 5 according to Figure 6. From the results shown
in Figure 7, we know that when npop ≥ 6, pinit with ninit = 5
is the largest (highlight in red). Therefore, we determine the
value of ninit to be 5. It is an appropriate value for ninit to
cover the correct values as many as possible and not too much

0 100 200 300 400 500 600 700
 Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
ro

ba
bi

lit
y

of
 c

or
re

ct
 v

al
ue

s
in

 t
he

 in
it

ia
l p

op
ul

at
io

n

Initialize with Top 1
Initialize with Top 5
Initialize with Top 10
Initialize with Top 20
Initialize with Top 40
Initialize with Top 60

Fig. 6. The relation between the number of traces and the probability of the
correct value in the initial population.

to reduce the probability of the correct values to be chosen in
the initial population.

 Size of Population Size of Candidate Space

0
20

0.2

18

0.4

16 1

 P
ro

ba
bi

lit
y

14

0.6

512

0.8

10 10

1

8 206 404
2 60

Fig. 7. The probability of the correct value in the initial population with
different ninit and npop.

C. Parameters Used in Genetic Algorithm

Since there are only 6 individuals in a population, we
determine the truncation probability pt = 50% to ensure
the choice space while abandoning weaker individuals. The
crossover probability pc and the mutation probability pm
influence the function of genetic algorithms together, so we
discuss them at the same time. We test each value of (pc, pm)
by performing our new framework of GA-CPA on different
group of traces for 100 times respectively. Considering that
the recombination of two individuals are the same for pc and
1− pc in our new framework, we have pc ranging from 0.05
to 0.5 by a step of 0.05. pm is generally less than 0.1, so we
have pm ranging from 0.01 to 0.1 by a step of 0.01. 220 traces
are simulated with Gaussian noise whose standard deviation
is σ = 3.0. The number of recovered key bytes are collected

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

when the algorithm converge (generally after 50 generations),
and averaged for each value of (pc, pm). Figure 8 shows the
relation between (pc, pm) and the number of recovered key
bytes. Obviously, pm is the main factor that influences the
function of the new framework. Since the number of recovered
key bytes is nearly the same for pm ∈ [0.05, 0.1] and a
larger pm means a higher computation complexity, we chose
(pc, pm) = (0.5, 0.05).

11
0.5

12

13

0.4 0.1

14

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

0.09

15

0.3 0.08

 p
c

0.07

16

 p
m

0.060.2

17

0.050.040.1 0.030.020 0.01

Fig. 8. The relation between the number of recovered key bytes and (pc, pm)
at the 50th generation.

In practice, parameters mainly depend on cryptographic
algorithms and the framework of attacks, so the parameters de-
termined in this section are applicable to the attacks mounted
in the following section.

V. EXPERIMENTS AND EFFICIENCY

A. Comparison of Convergence Speed

The convergence rate directly determines the maximal
threshold number of generations, and then affects the computa-
tion complexity. Therefore, we perform GA-CPA and our new
framework on the same group of simulated traces (standard
deviation of noise σ = 3.0) to compare their convergence
rates. The experiment is repeated for 100 times, and power
traces are randomly generated in each time. Since the average
number of evaluation times is npop × 16× pm × 28 + npop =
6 × 16 × 0.05 × 256 + 6 = 1234.8, we set the number of
individuals in comparison experiments based on normal GA-
CPA to 1300. Thus, the convergence rate can be compared
based on the number of generations. Numbers of recovered
key bytes are collected and averaged for every ten generations
(≤ 140). Figure 9 shows the relationship between the number
of generations and the number of recovered key bytes for both
methods. The red line indicates our proposal, and the blue one
stands for the traditional GA-CPA.

From the figure, we know that our proposal converges
after 50 generations, while the traditional one’s convergence
generation is nearly 100. Apparently, our method has a higher
convergence rate, and consequently a lower computation com-
plexity.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
 Number of Generations

0

2

4

6

8

10

12

14

16

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

GA-CPA
Our Proposal

Fig. 9. The comparison of convergence rate.

B. Efficiency Comparison with CPA and GA-CPA in Simula-
tion Experiment

Furthermore, we conduct experiments to compare the effi-
ciency of our proposal with CPA (with/without key enumer-
ation) and GA-CPA by mounting attacks on the same group
of traces, whose size ranges from 10 to 1000. We employ
success rate to measure the performance of the two methods
in this section. The success rate is defined as the average
empirical probability that an attack recovered the target key.
Each experiment is repeated for 400 times with different group
of randomly simulated traces (standard deviation of noise
σ = 3.0). We apply the key enumeration algorithm proposed
by Veyrat-Charvillon et al. [6], and set the maximum number
of enumerations to be 220. The parameters of our proposal are
described in section IV, and we chose appropriate parameters
for the traditional GA-CPA with similar experiments. The
size of populations chosen for the GA-CPA is 1000, and the
crossover probability and mutation probability are (pc, pm) =
(0.5, 0.12). According to Figure 9, the maximal threshold
numbers of generations of the two methods are 50 and 100
respectively. Their success rates and computation costs are
displayed in Figure 10(a), Figure 11(a) and Figure 12(a).
The computation cost is estimated as the average number of
calculations for correlation coefficients taken by our proposal,
CPA and GA-CPA (shown in Figure 11(a)), and enumeration
times taken by our proposal and CPA with key enumeration
algorithms (shown in Figure 12(a)). In addition, experiments
on traces with σ = 5.0 are also conducted, and the results are
displayed in Figure 10(b), Figure 11(b) and Figure 12(b).

The experimental results show that:
• For σ = 3.0, it requires 210 traces for our proposal

to achieve 90% success rate, and the corresponding
computation costs are about 4.30 × 104 calculations of
correlation coefficients and 0.68×105 enumerations. With
the same number of traces, the success rates of CPA with
key enumeration and GA-CPA are about 14% and 10%,
and the corresponding correlation coefficient calculation
times are about 0.41× 104 and 9.81× 104, respectively.
The enumeration times of CPA are 9.28 × 105. The
average timing overhead of successful attacks (with 210
traces and σ = 3.0) based on our method is less than 1
minutes on a PC (Intel Core E7500@2.93GHz 2.00GB).

• For σ = 5.0, it requires 310 traces for our proposal to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

50 100 150 200 250 300 350 400 450 500
 Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 S

uc
ce

ss
 R

at
e

Our Proposal
CPA with Key Enumeration
GA-CPA
CPA

(a) σ = 3.0.

100 150 200 250 300 350 400 450 500 550 600
 Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 S
uc

ce
ss

 R
at

e

Our Proposal
CPA with Key Enumeration
GA-CPA
CPA

(b) σ = 5.0.
Fig. 10. The comparison of success rates among our proposal, CPA
(with/without key enumeration) and GA-CPA.

achieve 90% success rate, and the corresponding compu-
tation cost is about 5.30×104 calculations of correlation
coefficients and 1.16× 105 enumerations. With the same
number of traces, the success rates of CPA with key
enumeration and GA-CPA are about 30% and 6%, and the
corresponding computation costs are about 1.04× 0.414

and 9.85 × 104, respectively. The enumeration times of
CPA are 7.88× 105.

From the experimental results we know that:
• With the same number of traces, the success rate of our

method is much more than the others, calculations of
correlation coefficients are less than GA-CPA.

• Our method performs much better than the CPA when
combined with key enumeration algorithms.

• Our method has trade off between number of traces
and offline computation time. Although its computation
costs are larger than CPA, it is still affordable for a key
recovery attack.

C. Efficiency Comparison with CPA and GA-CPA in Real
Experiments

For real experiments, we encrypt random plaintexts with
a fixed key using AES-128 implemented on SAKURA-G
provided officially. 2000 power traces are acquired and stored
with corresponding plaintexts and ciphertexts. Since registers

50 100 150 200 250 300 350 400 450 500
 Number of Traces

0

1

2

3

4

5

6

7

8

9

10

11

 C
or

re
la

ti
on

 C
eo

ff
ic

ie
nt

 C
al

ca
la

ti
on

 T
im

es

#104

GA-CPA
Our Proposal
CPA

(a) σ = 3.0.

100 150 200 250 300 350 400 450 500 550 600
 Number of Traces

0

1

2

3

4

5

6

7

8

9

10

11

 C
or

re
la

ti
on

 C
eo

ff
ic

ie
nt

 C
al

ca
la

ti
on

 T
im

es

#104

GA-CPA
Our Proposal
CPA

(b) σ = 5.0.
Fig. 11. The comparison of correlation coefficient calculation times among
our proposal, CPA and GA-CPA.

are embedded before the S-box operations in this hardware
implementation, our attacks are focused on the intermediate
states before S-box operations of the last round and the
ciphertexts. A time window that contains information of the
target intermediate state is preselected and the points in it are
averaged to obtain one value.

We mount attacks based on the three methods with the same
group of traces respectively. The number of traces ranges from
20 to 1000 with a step of 20. Since we take AES-128 as an
example to discuss parameter selection in the previous section,
we will continue to use these parameters to do real experiments
on the same algorithm in this section.

For CPA, we calculate the correlation coefficients corre-
sponding to all the values of each key byte. Figure 13 shows
the experimental results of the one that requires the largest
number of traces to identify the correct value. The blue lines
stand for wrong guesses of this key byte and the red one stands
for the correct candidate. Obviously, the minimal threshold for
attacks based on correlation coefficients of single key byte is
500.

For GA-CPA, we collect fitnesses of the best individual in
each generation. Figure 14 shows the results of experiments
with randomly initialized populations. The red line stands for
the fitness of the correct key. The blue one stands for the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

50 100 150 200 250 300 350 400 450 500
 Number of Traces

0

1

2

3

4

5

6

7

8

9

10

11

 E
nu

m
er

at
io

n
T

im
es

#105

Our Proposal
CPA with Key Enumeration

(a) σ = 3.0.

100 150 200 250 300 350 400 450 500 550 600
 Number of Traces

0

1

2

3

4

5

6

7

8

9

10

11

 E
nu

m
er

at
io

n
T

im
es

#105

Our Proposal
CPA with Key Enumeration

(b) σ = 5.0.
Fig. 12. The comparison of enumeration times between our proposal and
CPA with key enumeration.

100 200 300 400 500 600 700 800 900 1000
 Number of Traces

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 C
or

re
la

ti
on

 C
oe

ff
ic

ie
nt

Correct Candidate
Wrong Candidates

Fig. 13. The relation between correlation coefficients and the number of
traces for a single key word in classic CPA.

fitness of the best individual obtained by GA-CPA. The green
ones stand for the best fitnesses of each generations. From this
figure, we know that even if there are enough traces for GA-
CPA to achieve a high success rate, premature convergence
will still occur due to poor initial populations.

For our method, we also collect the fitness of the best
individual in each generation. Figure 15 shows the experi-
mental results with randomly initialized populations. The red

100 200 300 400 500 600 700 800 900 1000
 Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 F
it

ne
ss

Correct Key
Best Candidate in the Last Generation
Best Candidate in Each Generation

Fig. 14. The relation between the number of traces and fitnesses of the best
individuals in the first 100 generations in existing GA-CPA.

line indicates the fitness of the correct key. The blue one
indicates the fitness of the best individual obtained in the last
generation, and the cyan one stands for fitness of the outputs
after key enumeration algorithms. The green ones indicate the
best fitnesses of each generations. The cyan line coincides with
the red one at 180, telling that our proposal is compatible with
enumeration algorithms, and is significantly improved.

100 200 300 400 500 600 700 800 900 1000
 Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 F
it

ne
ss

Correct Key
Best Candidate in the Last Generation
Our Proposal with Key Enumeration
Best Candidate in Each Generation

Fig. 15. The relation between the number of traces and fitnesses of the best
individuals in the first 50 generations in our proposal.

From these figures, we know that the minimal number of
traces required for CPA is 500, for GA-CPA is at least 380
and for our method is only 180. Ratios between our method
and the other two are 16.00% and 47.36%, respectively. Note
that, at the point Num traces = 420, the fitness of the best
key obtained by GA-CPA is lower than the correct one. In
fact, similar phenomenons occur almost in each experiment of
GA-CPA at different points. The major reason is that GA-CPA
converges before recovering all the key words, and the random
local search based on word-wise mutation is not effective
enough to generate the correct one after the convergence.

D. Efficiency Comparison with Hill-Climbing-based Method
on DPA Contest v1 Dataset

DPA contest [34] is the first international benchmark refer-
ence for side-channel attacks, which provides power consump-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

tion traces of hardware implementation of DES [35]. The DPA
contest v1 dataset was built with parallel implementation of
DES, which is suitable for heuristic algorithms. This dataset
comprises 81089 power traces of 20003 samples, which were
collected during encryptions with random plaintexts and a
fixed key.

The hill-climbing-based approach proposed by Clavier et
al. [27] is a classic application of heuristic algorithms in
side-channel analysis, and is the winning proposal to the first
edition of the DPA contest. The authors considered full 56-
bit guesses of the main key to optimally exploit the side-
channel leakage. They used a maximum likelihood based
distinguisher as the objective function, and considered the
subkeys (K1,K16) of the first and the last round in order to
cover all bits in the main key.

To compare our proposal with the hill-climbing-based
method and GA-CPA, we apply our framework to the DPA
contest v1 dataset. We change the fitness function to the
maximum likelihood based distinguisher, and adjust basic
definitions and operations to handle DES:
• An individual is defined as the 16 6-bit key words in K1

and K16.
• For the initial process, rankings of candidates for each

key words is calculated by the maximum likelihood based
distinguisher instead of classic CPA. The one with the
lowest value ranks first.

• For mutation operations, candidates of each key word
are ranked according to fitnesses produced by fixing the
other key words in the individual. The one with the lowest
fitness is the mutation result. After all key words in K1

finish mutation, 40 corresponding bits in K16 are set
according to K1. Then, K16 are processed in the same
way.

• For key enumeration, ranked candidates with fitnesses of
all key words in both K1 and K16 are feed into key
enumeration algorithms. Notice that the related 40 bits
of K1 and K16 in each enumeration are not always the
same. But if K1 and K16 are correct, the related 40 bits
must be the same.

We conduct experiments with the source code provided by
the author of [27]. The parameters of our method are set as
pc = 0.5, pm = 0.3, ninit = 5. We set the maximal threshold
number of generation to be 200, and the maximum number of
enumerations to be 220. 100 runs of each method are carried
out to get min, average and max number of traces required to
recover the main key. According to the evaluation method of
the competition, for each run, a random set of n = 30 traces
is built to launch the first attack. Then, attacks are conducted
by adding an extra random trace to the set continuously until
all attacks are successful with the number of traces being n ∈
{n, n + 1, ..., n + 99}. n is considered to be the number of
traces needed to recover the key (according to the requirements
of DPA contest). Table I shows the comparison of n between
our proposal and the hill-climbing-based method.

As for the computation cost, we run both methods 100 times
with numbers of random traces ranging from 30 to 190 by
a step of 2, and record the time used. The experiments are
carried out on a PC with Intel(R) Core(TM) i7-9750H @2.59

TABLE I
COMPARISON OF OUR PROPOSAL AND THE HILL-CLIMBING-BASED

METHOD

Method Min Average Max
GA-CPA 35 61.12 116

Our Framework of GA-CPA 30 40.76 71
Hill-Climbing-based Approach [27] 30 42.42 94

GHz 32GB RAM. Figure 16 shows the comparison of running
time. The blue line stands for the hill-climbing-based method,
the green line stands for normal GA-CPA and the red one
stands for our proposal. The time is calculated by seconds.

30 50 70 90 110 130 150 170 190
 Number of Traces

0

100

200

300

400

500

600

700

800

900

 R
un

ni
ng

 T
im

e
(s

)

Normal GA-CPA
Climbing Hill
Our Proposal

Fig. 16. The comparison of computation cost between our proposal and the
hill-climbing-based method.

Compared with the hill-climbing-based method, our frame-
work benefits from selection and crossover operations, making
it easier for correct key values to be aggregated in a single
individual. The convergence rate of the algorithm is accel-
erated, which reduces the computation complexity by more
than 50%. In addition, the combined effect of crossover and
mutation improves the flexibility of individual evolution, and
to a certain extent avoids the loss of the correct key due to
the fixed route in the hill-climbing algorithm. Therefore, our
method requires nearly 2 less power traces, especially with the
function of key enumeration algorithms.

VI. CONCLUSION

In this approach, we discuss the imperfections of using
genetic algorithm to solve the correlation coefficient opti-
mization problem, and put forward a GA-CPA framework
which not only improves the convergence rate of genetic
algorithm, but also reduces the number of traces required in the
power analysis on cryptographic algorithms implemented with
parallel S-boxes and large noise. Besides, a key enumeration
algorithm is involved in the framework to improve the success
rate. Experimental results show that our method performs
better than CPA with key enumeration algorithm, the classic
GA-CPA and the hill-climbing-based method. We expect that
in addition to climbing hill and genetic algorithms, more
heuristic approaches will be integrated into SCA, especially
with fault attacks to improve its efficiency further.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[2] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2002, pp. 13–28.

[3] K. Schramm, T. Wollinger, and C. Paar, “A new class of collision attacks
and its application to DES,” in International Workshop on Fast Software
Encryption. Springer, 2003, pp. 206–222.

[4] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual information
analysis,” in Cryptographic Hardware and Embedded Systems - CHES
2008, E. Oswald and P. Rohatgi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 426–442.

[5] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2004, pp. 16–29.

[6] N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert, “An
optimal key enumeration algorithm and its application to side-channel
attacks,” in International Conference on Selected Areas in Cryptography.
Springer, 2012, pp. 390–406.

[7] D. P. Martin, J. F. O’Connell, E. Oswald, and M. Stam, “Counting keys
in parallel after a side channel attack,” in Advances in Cryptology –
ASIACRYPT 2015, T. Iwata and J. H. Cheon, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 313–337.

[8] R. Poussier, F.-X. Standaert, and V. Grosso, “Simple key enumeration
(and rank estimation) using histograms: an integrated approach,” in
International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 2016, pp. 61–81.

[9] L. David and A. Wool, “A bounded-space near-optimal key enumeration
algorithm for multi-subkey side-channel attacks,” in Cryptographers
Track at the RSA Conference. Springer, 2017, pp. 311–327.

[10] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert, “Security evalua-
tions beyond computing power,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2013, pp. 126–141.

[11] A. Duc, S. Faust, and F.-X. Standaert, “Making masking security
proofs concrete,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2015, pp. 401–
429.

[12] C. Glowacz, V. Grosso, R. Poussier, J. Schüth, and F.-X. Standaert,
“Simpler and more efficient rank estimation for side-channel security
assessment,” in International Workshop on Fast Software Encryption.
Springer, 2015, pp. 117–129.

[13] R. Poussier, V. Grosso, and F.-X. Standaert, “Comparing approaches
to rank estimation for side-channel security evaluations,” in Interna-
tional Conference on Smart Card Research and Advanced Applications.
Springer, 2015, pp. 125–142.

[14] G. Hospodar, E. Mulder, B. Gierlichs, I. Verbauwhede, and J. Vande-
walle, “Least squares support vector machines for side-channel analysis,”
Center for Advanced Security Research Darmstadt, pp. 99–104, 2011.

[15] T. Bartkewitz, “Leakage prototype learning for profiled differential side-
channel cryptanalysis,” IEEE Transactions on Computers, vol. 65, no. 6,
pp. 1761–1774, 2016.

[16] H. D. Tsague and B. Twala, “Reverse engineering smart card malware
using side channel analysis with machine learning techniques,” in Big
Data, 2016 IEEE International Conference on. IEEE, 2016, pp. 3713–
3721.

[17] Z. Martinasek and V. Zeman, “Innovative method of the power analysis,”
Radioengineering, vol. 22, no. 2, pp. 586–594, 2013.

[18] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks with
data augmentation against jitter-based countermeasures,” in International
Conference on Cryptographic Hardware and Embedded Systems-CHES
2017. Springer, 2017, pp. 45–68.

[19] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some
noise. unleashing the power of convolutional neural networks for profiled
side-channel analysis,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol.
2019, no. 3, pp. 148–179, 2019.

[20] S. Picek, A. Heuser, A. Jovic, and A. Legay, “Climbing down the
hierarchy: hierarchical classification for machine learning side-channel
attacks,” in International Conference on Cryptology in Africa. Springer,
2017, pp. 61–78.

[21] A. Heuser, S. Picek, S. Guilley, and N. Mentens, “Lightweight ciphers
and their side-channel resilience,” IEEE Transactions on Computers,
2017.

[22] L. Lerman, S. F. Medeiros, G. Bontempi, and O. Markowitch, “A ma-
chine learning approach against a masked AES,” in Smart Card Research
and Advanced Applications - 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers,
ser. Lecture Notes in Computer Science, A. Francillon and P. Rohatgi,
Eds., vol. 8419. Springer, 2013, pp. 61–75.

[23] L. Lerman, G. Bontempi, and O. Markowitch, “Side channel attack:
an approach based on machine learning,” Center for Advanced Security
Research Darmstadt, pp. 29–41, 2011.

[24] S. Picek, A. Heuser, and S. Guilley, “Template attack versus bayes
classifier,” J. Cryptographic Engineering, vol. 7, no. 4, pp. 343–351,
2017.

[25] Z. Zhang, L. Wu, A. Wang, Z. Mu, and X. Zhang, “A novel bit
scalable leakage model based on genetic algorithm,” Security and
Communication Networks, vol. 8, no. 18, pp. 3896–3905, 2015.

[26] Y. Ding, Y. Shi, A. Wang, Y. Wang, and G. Zhang, “Block-oriented
correlation power analysis with bitwise linear leakage: An artificial
intelligence approach based on genetic algorithms,” Future Generation
Computer Systems, vol. 106, pp. 34–42, 2020.

[27] C. Clavier and D. Rebaine, “A heuristic approach to assist side channel
analysis of the data encryption standard,” in The New Codebreakers -
Essays Dedicated to David Kahn on the Occasion of His 85th Birthday,
ser. Lecture Notes in Computer Science, P. Y. A. Ryan, D. Naccache,
and J. Quisquater, Eds., vol. 9100. Springer, 2016, pp. 355–373.

[28] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1975.

[29] J. Sampson and A. Brindle, “Genetic algorithms for function optimiza-
tion,” 1981.

[30] K. De Jong, “An analysis of the behavior of a class of genetic
algorithms,” Dissertation Abstracts International, vol. 36, 01 1975.

[31] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive models for
the breeder genetic algorithm i. continuous parameter optimization,”
Evolutionary computation, vol. 1, no. 1, pp. 25–49, 1993.

[32] J. L. Massey, “Guessing and entropy,” in Proceedings of 1994 IEEE
International Symposium on Information Theory. IEEE, 1994, p. 204.

[33] Y. Ding, A. Wang, and S. M. YIU, “An intelligent multiple sieve method
based on genetic algorithm and correlation power analysis,” Cryptology
ePrint Archive, Report 2019/189, 2019, https://eprint.iacr.org/2019/189.

[34] T. P. S. R. Group, “DPA contest (1st edition) (2008-2009),” 2008,
http://www.dpacontest.org/.

[35] National Bureau of Standards, “Data sncryption standard,” Federal
Information Processing Standards Publications, 1977.

An Wang was born in 1983. He received the Ph.D.
degree from Shandong University in 2011. From
2011 to 2015, he held a postdoctoral position at
Tsinghua University. He is currently with the Beijing
Institute of Technology. His main research interests
include side-channel analysis, embedded systems,
and cryptographic implementation.

Yuan Li was born in 1997. She is currently in the
third year of a master’s degree at Beijing Institute
of Technology. Her research interest is side-channel
attack.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Yaoling Ding was born in 1987. She received her
PH.D. degree from Tsinghua University in 2019. She
currently holds a postdoctoral position at Beijing
Institute of Technology. Her research interests in-
clude side-channel attack and cryptanalysis of block
cipher.

Liehuang Zhu is a professor in the Department of
Computer Science at Beijing Institute of Technology.
He is selected into the Program for New Century
Excellent Talents in University from Ministry of
Education, P.R. China. His research interests include
internet of things, cloud computing security, internet
and mobile security.

Yongjuan Wang was born in 1982. She received her
PH.D. degree in Information Engineering University
in 2009. From 2013 to 2015, she worked as a
post doctor in 58th Research Institute of general
staff. She currently works in Strategic Support Force
Information Engineering University. Her main re-
search interests include cryptographic analysis, side-
channel analysis and cyberspace security.

