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Abstract. Group signatures allow users to create signatures on behalf
of a group while remaining anonymous. Such signatures are a power-
ful tool to realize privacy-preserving data collections, where e.g., sen-
sors, wearables or vehicles can upload authenticated measurements into
a data lake. The anonymity protects the user’s privacy yet enables ba-
sic data processing of the uploaded unlinkable information. For many
applications, full anonymity is often neither desired nor useful though,
and selected parts of the data must eventually be correlated after be-
ing uploaded. Current solutions of group signatures do not provide such
functionality in a satisfactory way: they either rely on a trusted party
to perform opening or linking of signatures, which clearly conflicts with
the core privacy goal of group signatures; or require the user to decide
upon the linkability of signatures before they are generated.
In this paper we propose a new variant of group signatures that provides
linkability in a flexible and user-centric manner. Users – and only they
– can decide before and after signature creation whether they should
remain linkable or be correlated. To prevent attacks where a user omits
certain signatures when a sequence of events in a certain section (e.g.,
time frame), should be linked, we further extend this new primitive to
allow for sequential link proofs. Such proofs guarantee that the provided
sequence of data is not only originating from the same signer, but also
occurred in that exact order and contains all of the user’s signatures
within the time frame. We formally define the desired security and pri-
vacy properties, propose a provably secure construction based on DL-
related assumptions and report on a prototypical implementation of our
scheme.

1 Introduction

Group signatures [17,5] extend conventional signatures to protect the signers’
identity. Signers remain anonymous within the anonymity set defined by the
members of a group formed by users who request to join and are accepted by
the manager. Anyone with the group public key can verify signatures. To avoid
abusing anonymity, an opener can usually re-identify the signer of any signature.
This enables accountability and further processing if data needs to be more
identifiable or linked, but requires full trust on the opener to ensure privacy.



Schemes with trusted openers. To reduce this dependency, alternatives quickly
sprouted. In group signatures with Verifier Local Revocation, verifiers can keep
local lists of revoked signers, not requiring them to open incoming signatures
[10]. Traceable signatures [23,18] add an extra trusted entity who, after opening a
signature by any given member, can produce member-specific trapdoors that can
be used to link signatures originating by them. Convertably linkable signatures
remove the opener, but incorporate a party who can (non-transitively) blindly
link signatures within sets of queried signatures [22]. Recently, also blind variants
for central opening have been proposed [25]. Still, all these alternatives use some
sort of central entity for opening or linking, which needs to be fully trusted to
ensure privacy. While this trust can be distributed [13], this still gives control to
a set of central entities rather than users.

Schemes with user-controlled linkability. Instead of relying on trusted parties,
it may suffice to let signers control which signatures will be linkable, and when.
This is also ideal from a privacy perspective, as users retain full control. In
this vein, Direct Anonymous Attestation (DAA) [6,12] and anonymous creden-
tial systems [15], also aimed at preserving signer/holder privacy, follow this ap-
proach. They enable user-controlled linkability through deterministically com-
puted pseudonyms (from a scope and the user’s key) within each signature. This
makes all signatures for the same scope automatically linkable. Otherwise, they
remain unlinkable. Such implicit linking has the drawback of being static: a sig-
nature that was decided to be unlinkable to some or all other signatures, will
remain unlinkable forever. Thus, use cases with even a remote probability of
needing to link signatures a posteriori would require to make them all linkable
by default, eliminating all privacy.

Further, relying on the more privacy-friendly option of user-controlled and
implicit linkability instead of having an almighty opener, makes formally defining
the desired security and privacy properties of such group signatures much more
challenging. In fact, to date no satisfactory security model for DAA in the form of
accessible game-based security notions is known; we refer to [12,6] for a summary
of the long line of failed security notions in that respect.

Alternatively, some existing group signatures offer user-controlled a posteriori
linking or opening of previously anonymous signatures: In [28] users can claim
signatures by outputting their secret key which allows to test whether a signature
stemmed from that user. But this is an all-or-nothing approach, immediately
destroying privacy of all the user’s signatures and thus is unsuitable for most
realistic scenarios. The recent work by Krenn et al. [25] implement a more flexible
explicit linking by enabling users to issue link proofs for two (or, in theory, more)
signatures. However, their model still crucially relies on the presence of a trusted
opener to model and prove the desired security properties. Thus, even if only
explicit linking would be needed, the scheme must allow full opening through
a central entity in order to fit their model and hope for any provable security
guarantees.
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Ideally, one would hope for group signatures supporting both implicit and
explicit linking to increase utility and, for scenarios handling sensitive data,
without trusted parties that can unilaterally remove privacy.

1.1 Our Contributions

In this paper we provide the first provably secure group signatures that are purely
user-centric, i.e., where only the user can control the linkage of her signatures.
To allow for the necessary flexibility, our solution supports both implicit and
explicit linkability. That is, the user can make signatures linkable with respect
to pseudonyms when she generates them, and also link signatures with different
pseudonyms afterwards through explicit link proofs.

Security model without opener, and for implicit and explicit linking. Our first
challenge was to provide meaningful security notions when no opener is avail-
able that can be leveraged, e.g., to express who is a valid member of the group.
Instead, we take inspiration from security models for DAA [6,12] to express
membership of groups through linking. We define anonymity by requiring that
it must not be possible to link signatures by the same user, except when she
decides to make them linkable by default, or when she explicitly links them. For
traceability, (1) it must not be possible to create signatures that are not traceable
to any valid member of the group, and (2) it must not be possible to explicitly
link signatures originating from different (possibly corrupt) users. Finally, for
non-frameability we require that (1) no signature can be implicitly linkable to
another honest signature unless it was honestly generated by the same user –
who also made both signatures linkable by default, and (2) no adversary can
explicitly link honest and dishonest signatures, or honest signatures that have
not been explicitly linked by their signer. Note that we give two variants for
both traceability and non-frameability. This is needed due to the possibility to
implicitly and explicitly link signatures, and is a direct consequence of leveraging
linkability to replace the opener. We emphasize that, to the best of our knowl-
edge, implicit linking has not been modelled previously for group signatures –
let alone in combination with explicit linking.

Sequential link proofs. When the pseudonymous signatures are over data with
inherent order properties – e.g., time series – just re-establishing linkage is not
enough. Therein, it may be needed to attest that the linked messages are given
in the same order in which they were produced, and without omitting (pos-
sibly relevant) ones. For instance, smart vehicles in Intelligent Transportation
Systems (ITSs) are required to send measurements to a data lake. There, the
order of a sequence of events may be useful to detect anomalies: e.g., a vehicle
reporting 35-45-30-40 litres of fuel in a short timespan is probably an anomaly,
while one reporting 45-40-35-30 is probably not. Or, again, in contact tracing
systems, where pseudonyms are reused during a limited time, after which new
ones are derived. Users may eventually be required to reveal their pseudonymous
data spanning several of those pseudonyms, and omitting specific chunks of this
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data (or altering the order) may preclude effective contact tracing. In these use
cases, the number of pseudonymously signed messages that may be required to
be linked can be expected to be of at least many tens (and possibly a few hun-
dreds) of signatures, in short time spans. Additionally, order may be relevant in
less throughput-demanding scenarios. For instance, it may have very different
implications when a person fails to pay X mortgage fees in a row, than the case
when the X defaults correspond to months very distant in time.

This motivates our next contribution. We extend our previous model and
construction to enable sequential link proofs: signers can prove that a sequence
of signatures was produced in the specified order, and no signature is being
omitted. To model this, we introduce a new unforgeability property, sequential-
ity, ensuring that honest-then-corrupt users cannot create sequential proofs for
wrongly ordered sequences, nor omitting signatures. Our extended construction
builds on efficient hash-chain ideas from anonymous payment systems [26].

Efficient construction with batch proofs for linking. We give an efficient con-
struction realizing our model. Pseudonymous signatures are computed using the
scope-exclusive nym approach from DAA and anonymous credentials, where the
pseudonym is deterministically derived from a scope and the same secret key in
the user’s credential. This gives implicit linkage. For explicitly linking signatures,
we propose a new way to batch the signatures being linked, leveraging the fact
that pseudonyms are group elements that can be “aggregated”. This leads to an
efficient mechanism for linking large sets of signatures.

Implementation and comparison. To further assess efficiency of our construc-
tions, we implement them and report on the obtained experimental results (check
Appendix A for notes on the implementation and a demo). Both the basic scheme
and sequential extension outperform the most related previous work [25]: we link
sets of ∼100 signatures in ∼40ms, while [25] requires ∼300ms for linking only 2
signatures (besides requiring a trusted opener.)

2 Preliminaries

Notation. G = 〈g〉 denotes a cyclic group G generated by g, a ← A(·) denotes
a obtained by applying algorithm A, a ←$ S means a is picked uniformly from
set S, and [n] denotes the closed interval [1, n]. H and H′ are cryptographic hash
functions. Signed messages are represented as a tuple of elements. When arguing
about sets of such tuples, ΣΣΣ denotes a set, and Σi the i-th element in ΣΣΣ. ΣΣΣo is
an ordered set, and Ao ∈o So denotes that Ao appears in So, respecting order.

Bilinear maps. Let G1 = 〈g1〉,G2 = 〈g2〉,GT be three cyclic groups of prime
order p, where an efficient mapping e : G1 × G2 → GT exists. e satisfies bi-
linearity, i.e., e(gx1 , g

y
2 ) = e(g1, g2)xy; non-degeneracy, i.e., e(g1, g2) generates

GT ; and efficiency, i.e., there exists PG(1τ ) efficiently generating bilinear groups
(p,G1,G2,GT , g1, g2, e) as above, and computing e(a, b) is efficient for any a ∈
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G1, b ∈ G2. Moreover, we use Type-III bilinear maps [21], i.e., G1 6= G2 and
there are no efficiently computable homomorphisms between them.

Hardness assumptions. We base the security of our scheme in the well known
Discrete Logarithm and DDH assumptions [16] and in the q-SDH assumption
for Type-III pairings [9], which we informally recall next.

q-SDH assumption (for Type-III pairings [9].) Given g1 ∈ G1, g2 ∈ G2, χ ∈
Zp, and a (Gq+1

1 ,G2
2) tuple (g1, g

χ
1 , g

(χ2)
1 , ..., g

(χq)
1 , g2, g

χ
2 ), it is computationally

unfeasible for any polynomial-time machine to output a tuple (g
1

x+χ

1 , x) ∈ G1 ×
Zp \ {−χ}.

BBS+ signatures and Pseudonyms. We rely on the BBS+ signature scheme
proposed in [1] for Type-II pairings, and Type-III pairings in [11].

We use the following convention for BBS+ operations, for some previously
generated Type-III pairing group (p,G1,G2,GT , g1, g2, e):

– Key Generation. Compute (h1, h2) ←$ G2
1, y ←$ Z∗p, W ←$ gy2 . Set

sk ← y and pk ← (W,h1, h2).

– Signing. Given a message m (assumed to be in Zp, pick x, s ←$ Z∗p and

compute A← (g1h
s
1h
m
2 )

1
x+y . The signature is the tuple (A, x, s).

– Verification. Given a signature (A, x, s) over a message m, supposedly from
pk = (W,h1, h2), check that e(A,Wgx2 ) = e(g1h

s
1h
m
2 , g2).

We extend the proof of knowledge in BBS+ signatures to prove correctness
of the pseudonyms that signers generate.

For pseudonyms, we follow [14]. Roughly, with the help of a hash function,
pseudonyms are deterministically generated from a scope scp and a private key
sk as H(scp)sk.

Proof protocols. We use non-interactive proofs of knowledge obtained through
the Fiat-Shamir transform [20]. SPK{(x, r) : h = hx1h

r
2}(ctx,m), denotes a sig-

nature of knowledge of (x, r) meeting the condition to the right of the colon, for
public message m, and parameters ctx to prevent malleability attacks [7]. For
verification, we write SPKVerify(π, ctx,m), returning 1 (correct) or 0 (incorrect).

Additional building blocks. We rely on an append-only bulletin board BB and
pseudo random functions (PRFs). PRFs generate pseudorandom output from a
secret key and arbitrary inputs. PRF.KeyGen(1τ ) → k generates the keys, and
PRF.Eval(k,m)→ r pseudorandomness r from key k and message m. The BB is
assumed to verify the data before writing, and written data cannot be erased.
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3 Scheme with User-Controlled Linkability (UCL)

In this section we present our basic group signature scheme with user-controlled
and selective linkability. We start by presenting the general syntax, then describe
how the desired security properties can be formulated without the presence of
an opening entity, and finally present our secure instantiation.

The core contribution of this section is the new security model that captures
the desired security and privacy properties without a central (trusted) entity and
allows for selective, user-centric linkability. The proposed scheme follows in most
parts the standard approach of group signatures, integrates the pseudonym idea
from DAA, and provides a new way to prove linkage of a batch of signatures.

3.1 Syntax

In group signatures, an issuer interacts with users who want to join the group
and become group members. Members create anonymous signatures on behalf
of the group, which verifiers can check without learning the signers’ identity. In
our setting, the anonymity of the signer is steered via pseudonyms, generated
with every signature, as well as explicit link proofs. More precisely, a UCL scheme
supports two types of linkability (see Fig. 1 for a pictorial representation):

Implicit Linkability: Every signature is accompanied with a pseudonym, gen-
erated by the user for a particular scope. Re-using the same scope leads to
the same pseudonym, making all signatures generated for the same scope
immediately linkable for the verifier. Pseudonymous signatures for different
scopes cannot be linked, except via explicit link proofs generated by the user.

Explicit Linkability: After the signatures have been generated, they can be
claimed and linked by the user: given a set of signatures, the user proves
that she created all of them, i.e., links the signatures in the set.

(m1, scp, σ1, nym)

(m2, scp, σ2, nym)

...
(mn, scp, σn, nym)

Implicitly
linked

(same scp
and nym)

. . .

(m′1, scp
′, σ′1, nym

′)

(m′2, scp
′, σ′2, nym

′)

...
(m′n, scp

′, σ′n, nym
′)

Implicitly
linked

(same scp
and nym)

Explicitly linkable via link proofs

Fig. 1: Implicit vs explicit linkability on signatures by a same user, controlled by
the user via scopes, pseudonyms and link proofs.

We emphasize that users have full control on the scopes, which can be any ar-
bitrary (bit)string. For instance, in the contact tracing example given in Section
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1, where identifiers are reused during 15 minutes, the scope could be derived
from publicly available information, such as the current epoch. Alternatively,
using randomly chosen scopes would lead to unlinkable signatures.

A UCL group signature scheme consists of the following algorithms:

Setup(1τ )→ param: Generates the public parameters for the scheme.
IKGen(param)→ (isk, ipk): Generates the issuer’s keypair (isk,ipk).
〈Join(ipk), Issue(ipk, isk)〉 → (usk,⊥): To become a member of the group, the

user runs the interactive join protocol with the issuer. If successful, the user
obtains a user secret key usk.

Sign(ipk, usk,m, scp)→ (σ, nym): Signs a message m w.r.t. scope scp via user
secret key usk. The output is a pseudonym nym and group signature σ.

Verify(ipk,Σ)→ 0/1: On input a group public key ipk and tupleΣ = (m, scp, σ, nym),
containing a group signature σ and a pseudonym nym, purportedly corre-
sponding to m and scp, returns 1 when the tuple is valid and 0 otherwise.

Link(ipk, usk, lm,ΣΣΣ)→ πl/⊥: On input a set of signature tuples ΣΣΣ = {Σi}i∈[n]

and user secret key usk, produces a proof πl of these signatures being linked
or ⊥ indicating failure. The link proof is also done for a specific message lm,
which can be used e.g., to ensure freshness of the proof.

VerifyLink(ipk, lm,ΣΣΣ, πl)→ 0/1: Returns 1 if πl is a valid proof for the statement
that ΣΣΣ = {Σi}i∈[n] were produced by the same signer and for link message
lm, or 0 otherwise.

We delay the definition of the correctness properties for a UCL scheme after
introducing some extra notation in the next section.

3.2 Security Model

A UCL group signature scheme should provide the following privacy and security
properties: For privacy, signatures should not leak anything about the signer’s
identity beyond what is exposed by the user through implicit and explicit linka-
bility (anonymity). Security is expressed through a number of properties cov-
ering the desired unforgeability guarantees: signatures should only be created by
users that have correctly joined the group (traceability), and even a corrupt
issuer should not be able to impersonate honest users (non-frameability).

Oracles and State. Our definitional framework closely follows the existing work
of group signatures, and in particular the work by [5] for security of dynamic
schemes. They make use of a number of oracles and global variables that allow
the adversary to engage with honest parties, and which we adjust to our setting.

ADDU: Runs 〈Join, Issue〉 between an honest user and an honest issuer, allowing
the adversary to enroll honest users. The new user key is stored as USK[uid].

SNDU: (The SeND to User oracle.) Runs the Join process on behalf of an honest
user, against an adversarially controlled issuer. The new user key is stored
as USK[uid].
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SNDI: (The SeND to Issuer oracle.) Runs the Issue process on behalf of an
honest issuer, allowing the adversary to join in the role of corrupt users in
games with an honest issuer. Updates transcript[uid] with a transcript of the
exchanged messages.

SIGN/LINK: Allow the adversary to obtain honest users’ signatures/link proofs
for messages/signatures of his choice (with restrictions in anonymity game).

CH-SIGNb/CH-LINKb: Challenge oracles in the anonymity game that allow the
adversary to get signatures and link proofs for a challenge user uidb.

Fig. 2 presents the details of the oracles used in our games: the standard
ADDU, SNDU, and SNDI oracles as defined in [5], and SIGN and CH-SIGNb,
which we modify from [5], and LINK and CH-LINKb, which are specific to our
model.

Variable Content

uid∗b Challenge user in anon-b. Ignored in the other games.
HUL uids of honest users that have joined
CUL uids of corrupt users that have joined (only needed when issuer is honest)
SIG[uid] signature tuples (m, scp, σ, nym) produced by SIGN for user uid
CSIG signatures tuples (m, scp, σ, nym) by uid∗b produced via CH-SIGNb
LNK[uid] link queries (lm,ΣΣΣ) sent to LINK for uid
CLNK link queries (lm,ΣΣΣ) made to CH-LINKb
USK[uid] signing key of honest user uid
transcript[uid] messages from join protocol between corrupt user uid & honest issuer

Table 1: Information stored by the global state variables.

Helper Function Identify. In some security games we need to determine if a
certain user secret key was used to create a given signature. For this we follow
DAA work [6,12] and assume the availability of a function Identify(ipk, usk,Σ)→
0/1, returning 1 when Σ = (m, scp, σ, nym) was produced by usk, or 0 otherwise.

We assume the following behaviour of Identify: for all (isk, ipk)← IKGen(param),
and all Σ = (m, scp, σ, nym) where Verify(ipk,Σ) = 1 there must exist exactly
one usk (from the user secret key space induced by 〈Join(ipk), Issue(ipk, isk)〉)
such that Identify(ipk, usk,Σ) = 1.

We use the function for keys of both honest and corrupt users. Abusing
notation, we write Identify(uid, Σ) to indicate that Identify is run for the secret
key usk of user uid (where ipk is clear from the context). For honest users, Identify
simply uses USK[uid]; while keys of corrupt users can be extracted from the join
transcript. For the latter, note that Identify is only used in games where the issuer
is honest, i.e., such a transcript is available. In our concrete scheme we exploit
the random oracle to extract a user’s keys via rewinding. If online-extractable
proofs are used, then Identify will also receive the trapdoor information as input.

We now formally capture the expected security properties.
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ADDU (uid) // From [5]

if uid ∈ HUL ∪ CUL : return ⊥
HUL← HUL ∪ {uid}

decuid ← cont, stuidJoin ← ipk, stuidIssue ← (isk, ipk)

(stuidJoin,MIssue, dec
uid)← Join(stuidJoin,⊥)

while decuid = cont :

(stuidIssue,MJoin, dec
uid)← Issue(stuidIssue,MIssue)

if decuid = accept : transcript[uid]← stuidIssue

(stuidJoin,MIssue, dec
uid)← Join(stuidJoin,MJoin)

if decuid = accept : USK[uid]← stuidJoin

return accept

SIGN(uid,m, scp) // Modified from [5]

if uid /∈ HUL ∨ USK[uid] = ⊥ : return ⊥
(σ, nym)← Sign(ipk,USK[uid],m, scp)

Σ ← (m, scp, σ, nym), SIG[uid]← SIG[uid] ∪ {Σ}
return (σ, nym)

CH-SIGNb(m, scp) // Modified from [5]

// Initialized with uid∗b , uid
∗
1−b by the experiment

(σ, nym)← Sign(ipk,USK[uid∗b ],m, scp)

Σ ← (m, scp, σ, nym),CSIG← CSIG ∪ {Σ}
return (σ, nym)

CH-LINKb(lm,ΣΣΣ) // New w.r.t. [5]

// Initialized with uid∗b by the experiment

CLNK← CLNK ∪ (lm,ΣΣΣ)

πl ← Link(ipk,USK[uid∗b ], lm,ΣΣΣ)

return πl

SNDU(uid,Min) // From [5]

if uid /∈ HUL :

HUL← HUL ∪ {uid}

Min ← ⊥, decuid ← cont

if decuid 6= cont : return ⊥

if stuidJoin = ⊥ : stuidJoin ← ipk

(stuidJoin,Mout, dec
uid)← Join(stuidJoin,Min)

if decuid = accept : USK[uid]← stuidJoin

return (Mout, dec
uid)

SNDI (uid,Min) // From [5]

if uid ∈ HUL : return ⊥
if uid /∈ CUL :

CUL← CUL ∪ {uid}, decuid ← cont

if decuid 6= cont : return ⊥

if stuidIssue = ⊥ : stuidIssue ← (isk, ipk)

(stuidIssue,Mout, dec
uid)← Issue(stuidIssue,Min)

if decuid = accept :

transcript[uid]← stuidIssue

return (Mout, dec
uid)

LINK(uid, lm,ΣΣΣ) // New w.r.t. [5]

if uid /∈ HUL ∨ USK[uid] = ⊥ : return ⊥
LNK[uid]← LNK[uid] ∪ (lm,ΣΣΣ)

πl ← Link(ipk,USK[uid], lm,ΣΣΣ)

return πl

Fig. 2: Detailed oracles available in our model.
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Correctness. We formalize the correctness of Sign and correctness of Link prop-
erties in Appendix B.1.

Anonymity. We adapt the classic privacy notion to our setting. It expresses that
signatures must not reveal anything about the signer’s identity beyond what was
intended by her, even when the issuer is corrupt. The adversary plays the role
of the issuer and can trigger honest users to join, sign and link. Eventually, he
chooses two honest users uid∗0 and uid∗1, and one becomes the challenge user uid∗b .
The adversary can receive signatures and link proofs of uid∗b (via CH-SIGNb and
CH-LINKb) and must determine b better than by random guessing.

As our signatures support user-controlled linkability, we must be careful to
exclude trivial wins leveraging it. There are two ways in which the adversary can
trivially win. First, by leveraging implicit linkability: signatures by the same user
and with the same scope are directly linkable. The adversary could exploit this
by calling CH-SIGNb and SIGN (the latter, for uid∗0 or uid∗1) with the same scope.
Second, the adversary can leverage explicit linkability by obtaining link proofs
via LINK or CH-LINKb for a set of signatures that contains challenge signatures,
obtained though CH-SIGNb, and non-challenge signatures (for a challenge user),
obtained from SIGN.

Definition 1. (Anonymity). A group signature scheme UCL with user-controlled
linkability is anonymous if for all ppt adversaries A, the following is negligible
in τ : |Pr[Expanon-1

A,UCL(τ) = 1]− Pr[Expanon-0
A,UCL(τ) = 1]|.

Experiment: Expanon-b
A,UCL(τ)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(uid∗0, uid
∗
1, state)← ASNDU,SIGN,LINK(choose, ipk, isk)

if USK[uid∗d] 6= ⊥ for d = 0, 1 :

Initialize CH-SIGNb and CH-LINKb with uid∗b

else :

return ⊥
b′ ← ASNDU,SIGN,LINK,CH-SIGNb,CH-LINKb(guess, state)

// Trivial wins via implicit linking:

// A used the same scope in CH-SIGNb and SIGN for one of the challenge user

if ∃(∗, scp, ∗) ∈ CSIG ∧ ∃(∗, scp, ∗) ∈ SIG[uid∗d] for d ∈ {0, 1} :

return ⊥
// Trivial wins via explicit linking:

// A queried LINK or CH-LINKb with both challenge and non-challenge sigs.

if ∃ΣΣΣ s.t. (ΣΣΣ ∩ CSIG 6= ∅ ∧ (∗,ΣΣΣ) ∈ LNK[∗]) ∨
(ΣΣΣ ∩ SIG[uid∗d] 6= ∅ ∧ (∗,ΣΣΣ) ∈ CLNK for d ∈ {0, 1}) :

return ⊥
return b′
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Traceability. This property covers the desired unforgeability guarantees for cor-
rupt users of groups with an honest issuer. Intuitively, it guarantees that only
legitimate members of the group are able to generate valid signatures on behalf
of that group. The traditional approach in group signature models [5,25] is to
ask the adversary for a forgery and leverage the trusted opener to check whether
the forged signature opens to any user that has joined the group.

As our setting does not have such an opening entity, we cannot follow this
approach and instead take inspiration from the DAA security models [6,12].
Therein, one uses the implicit availability of an Identify function (introduced
above) which allows to check whether a given signature belongs to a certain
user secret key (which we know from honest users, and can extract from corrupt
ones). The adversary wins if he can produce valid signatures (or link proofs)
that cannot be traced back via Identify to any member of the group. This alone
would not be sufficient though, as our signatures also carry some information
in their implicit and explicit linkability, which an adversary should not be able
to manipulate either. That is, the adversary also wins if he can produce more
standalone signatures that are unlinkable (for the same scope) than he controls
corrupt users, or if he manages to produce a valid link proof for signatures of
different corrupt users.

We have grouped these properties along the statement that the adversary has
to forge, i.e., we have signature traceability for forgeries of standalone signatures,
and link traceability that works analogously for the link proofs.

Definition 2. (Signature Traceability). A group signature scheme UCL with
user-controlled linkability provides signature traceability if for all ppt adversaries
A, |Pr[Expsign-trace

A,UCL (τ) = 1]| is negligible in τ .

Definition 3. (Link Traceability). A group signature scheme UCL with user-
controlled linkability provides link traceability if for all ppt adversaries A, the
following is negligible in τ : |Pr[Explink-trace

A,UCL (τ) = 1]|.

Experiment: Expsign-trace
A,UCL (τ)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(Σ1, . . . , Σn)← AADDU,SNDI,SIGN,LINK(ipk)

return 1 if :

∀i : Verify(ipk,Σi) = 1 ∧ Σi = (mi, scp, σi, nymi) // the scope is the same in all sigs

and one of the following conditions holds:

// Signature of non-member

1) ∃Σi s.t. ∀uid ∈ HUL ∪ CUL : Identify(uid, Σi) = 0

// More unlinkable sigs than corrupt users

2) ∀i, j : nymi 6= nymj ∧ Σi /∈ SIG[∗] ∧ |CUL| < n
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Experiment: Explink-trace
A,UCL (τ)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(lm,ΣΣΣ, πl)← AADDU,SNDI,SIGN,LINK(ipk)

return 1 if :

VerifyLink(ipk, lm,ΣΣΣ, πl) = 1

and one of the two conditions holds:

// Contains signature of non-member

1)∃Σ ∈ ΣΣΣ s.t.∀uid ∈ HUL ∪ CUL : Identify(uid, Σ) = 0

// sigs by different users

2)∃uid 6= uid′, Σ 6= Σ′ ∈ ΣΣΣ s.t. Identify(uid, Σ) = 1 ∧ Identify(uid′, Σ′) = 1

Non-Frameability. This property guarantees that an honest user cannot be
framed by the adversary, even when the issuer is corrupt. In our setting such
framing can be done when signatures of an honest user are linkable to signatures
that she has not generated. As we support two different types of linkability, we
again need a dedicated variant of that property for each of them. The first cap-
tures non-frameability from standalone signatures, i.e., via implicit linking. In
this case, the adversary can only frame an honest user by producing a signature
that holds for the same pseudonym that an honest signature generated for that
scope. Linkability (and thus framing attacks) across scopes is not possible and
thus does not have to be considered here. Such linkage for different scopes is
only possible via explicit link proofs. The second property we define captures
non-frameability for these proofs, which the adversary can leverage to frame an
honest user in two ways: producing a proof that (1) links honestly generated
signatures with adversarial ones; or (2) producing a proof that links honestly
generated signatures by the same user, but the honest user did not create that
proof – i.e., it is the proof itself that is forged and aims to impersonate the honest
user.

Definition 4. (Signature Non-frameability). A group signature scheme UCL with
user-controlled linkability is secure against signature framing if for all ppt ad-
versaries A, the following is negligible in τ : |Pr[Expsign-frame

A,UCL (τ) = 1]|.

Definition 5. (Link Non-frameability). A group signature scheme UCL with
user-controlled linkability is secure against link framing if for all ppt adversaries
A, the following is negligible in τ : |Pr[Explink-frame

A,UCL (τ) = 1]|.

Experiment: Expsign-frame
A,UCL (τ)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(Σ = (m, scp, σ, nym))← ASNDU,SIGN,LINK(ipk, isk)

return 1 if :

Verify(ipk,Σ) = 1 and :

∃uid s.t. Σ /∈ SIG[uid] ∧ (∗, scp, ∗, nym) ∈ SIG[uid]
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Experiment: Explink-frame
A,UCL (τ)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(lm,ΣΣΣ, πl)← ASNDU,SIGN,LINK(ipk, isk)

return 1 if :

VerifyLink(ipk, lm,ΣΣΣ, πl) = 1

and one of the following conditions hold:

// Contains honest and adversarial sigs.

1) ∃uid s.t.∃Σ,Σ′ ∈ ΣΣΣ : Σ ∈ SIG[uid] ∧Σ′ /∈ SIG[uid]

// Honestly created sigs., but πl was forged

2) ∃uid s.t.∀Σ ∈ ΣΣΣ,Σ ∈ SIG[uid] ∧ (lm,ΣΣΣ) /∈ LNK[uid]

Definition 6. (Security of UCL). A group signature scheme UCL with user-
controlled linkability is secure if it ensures the previous anonymity, traceability
and non-frameability properties.

3.3 Construction

We now present our scheme satisfying the desired security and privacy properties.
The core of our constructions follows the standard approach of group signatures
(see, e.g., [8]): during join, users receive from the issuer a membership credential,
and signing essentially is a proof of knowledge of such a credential. We use BBS+
signatures for such blindly issued membership credentials.

Adding implicit linkability: Whereas standard group signatures usually
include an encryption of the user’s identity (for opening) in her signature, we
use the pseudonym idea of DAA and anonymous credentials instead [6,12,14]
and, specifically, of [11]. That is, when creating a signature, the user also reveals
a pseudonym nym← H(scp)y for her key y and a particular scope scp. Clearly,
these pseudonyms are scope-exclusive, i.e., there is only one valid pseudonym
per scope and user key [14]. The user also proves that she has computed the
pseudonym from her key.

Adding explicit linkability: The existing solution for link proofs [25,14] of
signatures with different pseudonyms is to let the user provide a fresh proof that
all pseudonyms are all based on the same user key. So far, this approach has
been proposed for linking only two signatures, and will grow linearly when being
used for many signatures. For our proofs, we instead use the observation that all
individual pseudonyms the signatures are associated to can form a “meta-nym”
nym =

∏
i∈[n] nymi =

∏
i∈[n] H(scpi)

y. That is, the user can simply prove that

she knows the secret key y such that nym ← hscp
y
, where nym and hscp =∏

i∈[n] H(scpi) are uniquely determined by the signatures.

We stress that we do not claim novelty of the main parts of the group sig-
natures. The core contribution here is (1) the simple trick for making efficient
batched link proofs, and (2) making the pseudonym idea of credentials and DAA
also formally available for group signatures.
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Our Construction ΠUCL. Our concrete construction works as follows:

Setup(1τ ) → param. Generates a bilinear group (p,G1,G2,GT , g1, g2, e) ←
PG(1τ ) and two further generators h1, h2 ∈ G1 (for the BBS+ credentials).

IKGen(param)→ (isk, ipk). Outputs isk ←$ Z∗p and ipk ← gisk2 .

〈Join(ipk), Issue(ipk, isk)〉 → (usk,⊥). This interactive protocol lets the user
blindly obtain a BBS+ signature by the issuer on her secret key y:

– Issuer: sends a random nonce n← Z∗p to the user.

– User: y ←$ Z∗p, Y ← hy1 , πY ← SPK{(y) : Y ← hy1}((param, h1, Y ), n).
Sends (Y, πY ) back to the issuer.

– Issuer: Only proceeds if πY is valid. Computes BBS+ signature on y as
x, s←$ Z∗p, A← (Y hs2g1)1/(isk+x). Sends (A, x, s) to user.

– User: IfA 6= 1G1
, e(A, g2)xe(A, ipk) = e(g1Y h

s
2, g2) outputs usk ← (A, x, y, s).

Sign(ipk, usk,m, scp) → (σ, nym). To sign a message m for scope scp, the
user generates the pseudonym nym ← H(scp)y and computes a proof that the
pseudonym was computed for a key that she has a BBS+ credential on, including
the message m in the Fiat-Shamir hash of the proof.

– Parse usk as (A, x, y, s).

– Compute the pseudonym as: nym← H(scp)y.

– Re-randomize the BBS+ credential as r1, r2 ←$ Z∗p, r3 ← r−1
1 and s′ ←

s− r2r3, A′ ← Ar1 , Â← (A′)−x(g1h
y
1h
s
2)r1 , d← (g1h

y
1h
s
2)r1h−r22 .

– Compute πσ ← SPK{(x, y, r2, r3, s
′) : nym = H(scp)y∧
Â/d = (A′)−xhr22 g1h

y
1 = dr3h−s

′

2 }(ctx,m)

for ctx← (param,A′, Â, d, nym).

– σ ← (A′, Â, d, πσ). Return (σ, nym).

Verify(ipk,Σ). Parses σ in Σ as (A′, Â, d, πσ), checks that A′ 6= 1G1 , e(A′, ipk) =
e(Â, g2),and outputs 1 if the SPK in Σ is valid for message m and scope scp.

Link(ipk, lm,ΣΣΣ) → πl/⊥. Linking signatures is done by batching all nyms and
scopes into nym and hscp, and proving knowledge of the discrete logarithm of
nym w.r.t. hscp. The link message lm is included in the hash of the proof.

– Parse usk as (A, x, y, s), and ΣΣΣ as {Σi = (mi, scpi, σi, nymi)}i∈[n].

– If ∃i ∈ [n] s.t. H(scpi)
y 6= nymi, or Verify(ipk,Σi) = 0, return ⊥.

– Set ctx← (param, {scpi}i∈[n], {nymi}i∈[n]).

– Compute hscp←
∏
i∈[n] H(scpi) and nym← hscp

y
.

– Output πl ← SPK{(y) : nym = hscp
y}(ctx, lm).
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VerifyLink(ipk, lm,ΣΣΣ, πl) → 0/1. The verifier recomputes the meta-scope hscp
and meta-nym nym from the individual signatures, verifies all signatures and
πl:

– Parse ΣΣΣ as {Σi = (mi, scpi, σi, nymi)}i∈[n].
– If ∃i ∈ [n] s.t. Verify(ipk,Σi) = 0, return 0.
– If ∃i 6= j ∈ [n] s.t. scpi = scpj ∧ nymi 6= nymj , return 0.
– hscp =

∏
i∈[n] H(scpi), nym =

∏
i∈[n] nymi.

– Output result of verifying πl for hscp and nym.

3.3.1 Security of our Construction

Theorem 1. Assuming SPK is zero-knowledge and simulation-sound, our con-
struction is secure under the discrete logarithm, DDH, and q-SDH assumptions,
in the random oracle model for H and SPK.

Proof sketch. Under the DDH assumption [27], anonymity follows from zero-
knowledgeness and simulation-soundness of the SPKs, and the fact that pseudonyms
are indistinguishable from random when different scopes are used.

We realize Identify with the help of the pseudonyms. Given a signature
(m, scp, σ, nym), Identify fetches y from the usk of the specified uid and, if
H(scp)y = nym, returns 1; else, returns 0. Scope-exclusiveness of pseudonyms
ensures the required uniqueness [14]. Then, signature traceability follows from
unforgeability of the BBS+ credentials, and zero-knowledgeness and soundness
of SPK: if the adversary produces, for the same scope, more unlinkable signa-
tures than corrupt users, or a signature from a non-member, we extract a forged
BBS+ credential and can break the q-SDH assumption [11]. Winning condition 1
of link traceability is shown similarly. For condition 2, soundness of SPK ensures
the individual signatures and the link proof are valid discrete logarithm proofs.
Also, after the uniqueness property of pseudonyms, no two nyms in the same
link proof can have different values if derived from the same scp. This prevents
malleability attacks: e.g., corrupt users joining with y = a and y = b − a and
using nyms derived from those keys and the same scp in the same link proof.
Thus, an adversary can only try to subvert the proof with nyms derived from
different scopes. But this requires to find non-trivial roots in an equation of the
form gα1y1 ...gαnyn = 1, where the yi’s are controlled by the adversary, but the
αi’s are not, as the gαi ’s are produced by H (a random oracle). We show that a
successful adversary can be used to break the discrete logarithm assumption.

For signature non-frameability, we rely on the uniqueness property of the
pseudonyms and zero-knowledgeness and soundness of SPK. We break the dis-
crete logarithm assumption from an adversary forging a signature with the same
scope and nym that a signature of an honest user. For link non-frameability, we
rely on the zero-knowledgeness and soundness of SPK. First, a similar argument
as in traceability ensures that the link proof must be over the same exponents.
We leverage this to embed a DL challenge into the nyms and link proofs of an
honest user. If the adversary forges a signature (for winning condition 1) or a
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link proof (winning condition 2) for this user, we can extract a solution to the
challenge.

The full proofs are given in Appendix B.

3.3.2 Leveraging a Trusted Bulletin Board. Our UCL group signatures
target a setting where signatures are generated and collected in a pseudonymous
manner, and where linkability can still be refined later on by the users. Such a
setting implicitly assumes the storage and availability of the originally exposed
group signatures, e.g., in form of a central data lake that collects all individual
signatures. In applications where the data lake is trusted by the verifiers (or
even maintained by them), we can leverage this to improve the efficiency of
our scheme. For clarity, we refer to such a trusted data lake and the additional
functionality it must provide as bulletin board (BB), which can be used as follows:

– All signatures Σi are sent to the BB, who verifies and appends them, if valid.
– Link and VerifyLink no longer check the validity of all Σi in ΣΣΣ, but simply

check whether all signatures are in the BB.

By using such a trusted BB we can improve the efficiency of Link and VerifyLink
significantly – of course for the price of trusting a central entity again. This trust
assumption would be necessary for the anonymity, link traceability and link non-
frameability properties. However, the functionality of the BB can easily be dis-
tributed, e.g., using a blockchain; or the trust enforced and verified via regular
audits where verifiers randomly pick signatures in the BB and check their valid-
ity. Thus, we believe that such a trust assumption is much more relaxed than
trusting an entity that can single-handedly revoke the anonymity of all users.

Requirements on long-term storage capacity of the bulletin board depend on
the use case. However, it seems reasonable to assume that, for most real world
settings, a maximum timespan for storing past signatures can be established.

4 Scheme with Sequential Linkability (sUCL)

We extend our basic UCL scheme to allow for sequential link proofs. These se-
quential proofs target a setting where the originally signed (and unlinkable) data
has an inherent order, e.g., time series data when sensors or vehicles continu-
ously upload their measurements into a data lake. While the data is collected in
unlinkable form, the eventual subsequent link proof must re-establish not only
the correlation but also the order of a selected subset in an immutable manner.

We start by describing the minor syntax changes needed for our sequential
group signatures (sUCL), and then discuss the additional security property we
want such a sUCL scheme to achieve. Roughly, when making a sequential link
proof, a corrupt user should not be able to swap, omit or insert signatures within
the selected interval – and yet, this proves, nor reveals, nothing about signatures
outside the proven interval. For this sequentiality property, we consider security
against honest-then-corrupt users. While this may seem too lenient, note that
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it fits many real world applications where signing is an automatic process per-
formed in the background by some device or application. In those cases, the need
to alter sequences will only arise after the signatures have been created and sent.
But, as described, the produced signatures – which contain extra information to
enable proving order – are assumed to be stored in a data lake. Then, eventu-
ally, users have to make some claim that involves proving order with respect to
those previously stored signatures. But this limits the options of malicious users.
E.g., assume signatures Σ1, Σ2 and Σ3 are produced in that order (i.e., first Σ1,
then Σ2 and finally Σ3), but a malicious user A wants to prove the reverse or-
der. Then, A needs to commit to that strategy before sending the signatures
by consequently altering the order information embedded in the signatures. Our
argument is that, in many real world cases, A will not know which order he will
be interested to prove in the future. For instance, in a contact tracing scenario
(for a pandemic), malicious users will not know what order they are interested
to prove until after learning which has been the risky contact.

Moreover, which specific alteration might be needed would also depend on
the originally produced (and signed) data, and uninformed/random alterations
may very well be useless or even counterproductive for the purposes of a mali-
cious user. Nevertheless, even modeling this weak property requires a non-trivial
approach. In Section 6, we give some insight about what seems to be possible
beyond the honest-then-corrupt approach.

Finally, we present a simple extension to our ΠUCL scheme that uses the
trusted bulletin board sketched in Section 3.3.2 and includes a hidden hash-chain
into the group signatures, which allows to re-establish the order of signatures.

Syntax of sUCL. The signatures — despite being unlinkable per se — must now
have an implicit order that can be recovered and verified through SLink and
VerifySLink respectively. Abusing notation, we consider the set of signatures ΣΣΣo

to be given as an ordered set, and the proof and verification is done with respect
to. this order. Further, to allow signatures to have an implicit order, we need to
turn SSign into a stateful algorithm. That is, in addition to the standard input, it
also receives a state st and outputs an updated state st′. We model that the state
is initially set together with usk during the Join protocol. In summary, a sUCL
scheme follows the UCL syntax from Section 3.1 with the following modifications:

〈Join(ipk), Issue(ipk, isk)〉 → ((usk, st),⊥): Initializes user state st.
SSign(ipk, usk, st,m, scp)→ ((σ̃, nym), st′): Stateful sign algorithm.
SLink(ipk, usk, lm,ΣΣΣo)→ πseq/⊥: Sequential link proof for the ordered set ΣΣΣo.
VerifySLink(ipk, lm,ΣΣΣo, πseq)→ 0/1: Verifies πseq w.r.t. the order in ΣΣΣo.

4.1 Security Model for sUCL

We want the sUCL scheme to have (essentially) the same traceability, non-
frameability and anonymity properties as in Section 3.2 — and additionally
guarantee the correctness and security of the re-established sequential order.
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Traceability and Non-frameability. These properties cover the security expected
through the controlled linkage (not order) and only need minor adjustments to
cater for the changed syntax: In the games, we use SSIGN/SLINK instead of
SIGN/LINK.

4.1.1 Sequentiality. This property captures the security we can expect from
proofs that reveal the sequential order of several signatures issued by a same
user. Namely, when a user makes a sequential link proof for an ordered set
ΣΣΣo = Σ1, . . . , Σn, we want to ensure that Σ1, . . . , Σn have occurred indeed in
that order and that no signature is omitted or inserted. The latter prevents
attacks where a corrupt user tries to “hide” or add certain signatures, e.g., when
a driver is asked to reveal the speed measurements from a certain time interval
and wants to omit the moment she was speeding.

We follow the classic unforgeability style of definition and ask the adversary
to output a forged link proof with an incorrect sequence. Clearly, such a definition
needs to be able to capture what the “right order” of signatures is, in order to
quantify whether a forgery violates that order or not. To do so, we opted for
a two-stage game where the adversary can engage with honest users and make
them sign (and link) messages of his choice. This ensures that we know the
correct order in which the signatures are generated. Eventually, the adversary
picks one of the honest users uid∗, upon which uid∗ becomes corrupted and the
adversary receives her secret key and current state. The adversary wins if he
outputs a valid sequential link proof that violates the sequence produced by the
originally honest user, e.g., re-orders, omits or inserts signatures.

Clearly we must allow the adversary to possibly include maliciously generated
signatures in his forgery, but must be careful to avoid trivial wins: as soon as we
give the adversary the secret key of uid∗ he can trivially (re-)generate signatures
on behalf of the honest user. Thus, we ask the adversary to commit to a set of
maliciously generated signatures ΣΣΣ′ before corrupting uid∗ and request that his
link forgery for alleged ordered signatures ΣΣΣ∗ must be a subset of ΣΣΣ′∪SIG[uid∗].

Definition 7. (Sequentiality). A group signature scheme sUCL with user-controlled
sequential linkability ensures sequentiality if for all ppt adversaries A, the fol-
lowing is negligible in τ : |Pr[Expsequential

A,sUCL (τ) = 1]|.
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Experiment: Expsequential
A,sUCL (τ)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(uid∗,ΣΣΣ′, state)← AADDU,SNDI,SSIGN,SLINK(choose, ipk)

if USK[uid∗] = ⊥ : return 0

else : HUL← HUL \ {uid∗},CUL← CUL ∪ {uid∗}
// USK[uid∗] contains (usk, st) of uid∗

(lm∗,ΣΣΣ∗, π∗seq)← AADDU,SNDI,SSIGN,SLINK(forge, state,USK[uid∗])

return 1 if :

VerifySLink(ipk, lm∗,ΣΣΣ∗, π∗seq) = 1 ∧
ΣΣΣ∗ ∩ SIG[uid∗] 6= ∅ ∧
ΣΣΣ∗ ⊆ ΣΣΣ′ ∪ SIG[uid∗] ∧
ΣΣΣ∗ /∈o SIG[uid∗] // ∈o means ordered check

4.1.2 Anonymity. In the basic scheme (UCL), we defined anonymity with the
typical approach: the adversary first picks two honest users and must then guess
which one is used to produce challenge signatures and link proofs. In UCL, we just
needed to prevent the adversary from leveraging implicit linkability and explicit
linkability. This boils down to not allowing the reuse of scopes between calls to
CH-SIGNb and SIGN (for challenge users), and not allowing to link signatures
produced by CH-SIGNb and SIGN (again, for challenge users).

In the sequential extension (sUCL), the idea is still the same, i.e., the adver-
sary has to guess which is the chosen challenge user out of the two he picked
up. However, the adversary has more ways to trivially learn the challenge user
by leveraging the order information unavoidably revealed by the sequential link
queries. Take, for instance, the scenario sketched in Fig. 3. There, the adversary
interleaves a call to CH-SSIGNb (the one producing Σ∗1 ) between calls to SSIGN
for the same challenge user (the call that produces Σ2 and the calls producing
Σ3–Σ5). If the adversary makes a call to SLINK with the signatures produced
before and after the call to CH-SSIGNb (e.g., including Σ2, Σ3 in Fig. 3) and
the call fails, then the challenge user is the same as the one used in the calls to
SSIGN. Indeed, the link call fails because one signature is missing in the sequence
(and, in Fig. 3 the correct sequence would be the dashed one). Similarly, if the
call succeeds, then the challenge user is not the one used in the calls to SSIGN
(and the correct sequence in Fig. 3 is the solid one). Note that this works even
when the scopes in all signatures are different: hence, it would not constitute
a disallowed action in the UCL model. A similar strategy interleaving a call to
SSIGN between calls to CH-SSIGNb also applies.

Oracles and state. In the previous example, we saw that calls to CH-SSIGNb
and SSIGN (the latter for uid∗0 or uid∗1) can later be used to (trivially) expose the
challenge user – by linking signatures produced before those calls, with signatures
produced after. However, linking signatures produced within the same interval of
such calls should not leak any information about the challenge user. To capture
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SIG∗[uid∗0 ,iSIG∗ ] CSIG[iCSIG] SIG∗[uid∗0 ,iSIG∗+1] CSIG[iCSIG+1]

SSIGN(uid∗0, . . . ):

CH-SSIGNb(. . . ):

Σ1 Σ2 Σ3 Σ4 Σ5

Σ∗1 Σ∗2 Σ∗3

Σi = (mi, scpi, σi, nymi)

Σ∗i = (m∗i , scp
∗
i , σ
∗
i , nym

∗
i )

Fig. 3: Sketch of a strategy leading to a trivial win by A leveraging order infor-
mation in sUCL, and the model to detect it.

those intervals, we assign every honestly generated signature to a cluster (set of
signatures). Since the calls to CH-SSIGNb and SSIGN are the events defining the
linkage of which signatures would lead to trivial wins, we use those calls to mark
when we need to start assigning signatures to a new cluster.

More specifically, to keep track of the cluster to which we need to assign
signatures by challenge users, we resort to two counters: iSIG∗ and iCSIG. Every
time the adversary makes a call to CH-SSIGNb, we dump all signatures pro-
duced by SSIGN(uid∗b , . . . ) since the last call to CH-SSIGNb to a new cluster
SIG∗[uid∗b , iSIG∗ ], and increment iSIG∗ . Similarly, when a call to SSIGN(uid∗b , . . . )
is made, we increment iCSIG so that all signatures produced by CH-SSIGNb from
that point onwards start being assigned to a new cluster CSIG[iCSIG].

In the example in Fig. 3, this restricts the adversary to making SLINK queries
containing signatures in either SIG∗[uid∗0, iSIG∗ ], CSIG[iCSIG], SIG∗[uid∗0, iSIG∗ + 1],
or CSIG[iCSIG + 1], but not of any combination of (subsets of) those clusters.

The oracles used to model sUCL are summarized next and fully defined in
Fig. 4. The state variables are summarized in Table 2. We emphasize that the
new modifications only affect the anonymity property, while the other properties
just need to adjust for the updated syntax.

– SSIGN/SLINK extend SIGN/LINK. SSIGN uses stuid, the state of user uid, to
call SSign, and updates it with the returned st′uid. SLINK gets an ordered set.

– CH-SSIGNb/CH-SLINKb. Challenge oracles for the anonymity game, allowing
the adversary to get signatures and link proofs for the challenge user.

Helper Function Adjacent. We rely on a helper function, Adjacent(LNK[uid],CLNK)→
0/1. It explores LNK to check link queries for honest signatures and CLNK to
check link queries for challenge signatures. It returns 1 if SLINK and CH-SLINKb
have been respectively queried with two sets of signatures that were sequentially
generated, or 0 otherwise. This is an artifact of our specific construction rather
than a general requirement, though. In ΠsUCL, given two adjacent signatures
Σn, Σn+1, if Σn is included in a link proof and Σn+1 in another link proof, it is
possible to determine that they were sequentially issued. Consequently, if one is
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Variable Content

SIG[uid] signature tuples (m, scp, σ̃, nym) produced by SSIGN for user uid.
SIG∗[uid∗b , i] i-th cluster of signature tuples for uid∗b produced by SSIGN.
CSIG[i] i-th cluster of challenge signature tuples (m, scp, σ̃, nym).
iSIG∗ Counter for SIG∗ clusters. Incremented when CH-SSIGNb is called.
iCSIG Counter for CSIG clusters. Incremented when SSIGN is called.

Table 2: New/modified global state variables in the sequential UCL scheme.

SSIGN(uid,m, scp)

if uid /∈ HUL ∨ USK[uid] = ⊥ : return ⊥
((σ̃, nym), st′uid)← SSign(ipk,USK[uid],

stuid,m, scp)

Σ ← (m, scp, σ̃, nym)

SIG[uid]← SIG[uid] ∪ {Σ}, stuid ← st′uid

// If anon game and challenge user,

// counter for challenge cluster gets incremented

if uid = uid∗d for d ∈ {0, 1} : iCSIG ← iCSIG + 1

return (σ̃, nym)

SLINK(uid, lm,ΣΣΣo)

if uid /∈ HUL ∨ USK[uid] = ⊥ : return ⊥
LNK[uid]← LNK[uid] ∪ (lm,ΣΣΣo)

πseq ← SLink(ipk,USK[uid], lm,ΣΣΣo)

return πseq

CH-SSIGNb(m, scp)

// Initialized with uid∗b by the experiment

((σ̃, nym), st′uid∗
b
)← SSign(ipk,USK[uid∗b ],

stuid∗
b
,m, scp)

Σ ← (m, scp, σ̃, nym)

CSIG[iCSIG]← CSIG[iCSIG] ∪ {Σ}, stuid∗
b
← st′uid∗

b

// Create new sigs. cluster for challenge users

for d = 0, 1 :

SIG∗[uid∗d, iSIG∗ ]← SIG[uid∗d], SIG[uid∗d]← ∅
iSIG∗ ← iSIG∗ + 1

return (σ̃, nym)

CH-SLINKb(lm,ΣΣΣo)

// Initialized with uid∗b by the experiment

CLNK← CLNK ∪ (lm,ΣΣΣo)

πseq ← SLink(ipk,USK[uid∗b ], lm,ΣΣΣo)

return πseq

Fig. 4: Modified versions of the SIGN, SLINK, CH-SIGNb and CH-LINKb oracles.

a challenge signature and the other is not, it would be possible to trivially guess
the bit b in the anonymity game. The Adjacent function is defined in Fig. 5.

Adjacent(LNK[uid],CLNK)

if uid /∈ {uid∗0, uid∗1} : return 0

return 1 if ∃(lm,ΣΣΣ = {Σi}i∈[n]) ∈ LNK[uid], (lm′,ΣΣΣ′ = {Σ′i}i∈[n′]) ∈ CLNK

and one of the following conditions holds:

1) Σ0 was produced by SSIGN immediately after Σ′n′ being produced by CH-SSIGNb

2) Σ′0 was produced by CH-SSIGNb inmmediately after Σn being produced by SSIGN

Fig. 5: Definition of the helper function Adjacent.
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Anonymity definition. Beyond the cumbersome changes required to prevent the
new trivial wins, and the extra Adjacent check required by our specific con-
struction, we capture anonymity in sUCL as in UCL. Specifically, the adversary
controls the issuer and allows users to join, sign and link signatures. He chooses
a pair of honest users, one of which is randomly picked to initialize the challenge
oracles. Eventually, the adverary needs to guess which one of the users was cho-
sen, task for which he can query again the oracles, subject to the restrictions
described above. The formal definition is given next.

Definition 8. (Anonymity). A group signature scheme sUCL with user-controlled
sequential linkability ensures anonymity if for all ppt adversaries A, the following
is negligible in τ : |Pr[Expsanon-1

A,sUCL(τ) = 1]− Pr[Expsanon-0
A,sUCL(τ) = 1]|.

Experiment: Expsanon-b
A,sUCL(τ)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(uid∗0, uid
∗
1, state)← ASNDU,SSIGN,SLINK(choose, ipk, isk)

if USK[uid∗d] 6= ⊥ for d = 0, 1 : Initialize CH-SSIGNb and CH-SLINKb with uid∗b

else : return ⊥
b′ ← ASNDU,SSIGN,SLINK,CH-SSIGNb,CH-SLINKb(guess, state)

if Adjacent(LNK[uid∗d],CLNK) = 1 for d ∈ {0, 1} : return ⊥
// Trivial wins via implicit linking: A used same scp in calls to SIGN and CH-SSIGNb

if ∃(∗, scp, ∗) ∈
⋃
∀iCSIG

CSIG[iCSIG] ∧ ∃(∗, scp, ∗) ∈ SIG[uid∗d]
⋃
∀iSIG∗

SIG∗[uid∗d, iSIG∗ ] for d ∈ {0, 1} :

return ⊥
// Trivial win via explicit linking (1): A queried SLINK with challenge sigs, or sigs in different clusters

if ∃ΣΣΣo s.t. (∗,ΣΣΣo) ∈ LNK[uid∗d] ∧
(ΣΣΣo ∩ CSIG 6= ∅ ∨ΣΣΣo /∈ SIG[uid∗d] ∨ @iSIG∗ s.t. ΣΣΣo ∈ SIG∗[uid∗d, iSIG∗ ]) for d ∈ {0, 1} :

return ⊥
// Trivial win via explicit linking (2): A queried CH-SSIGNb with challenge sigs in different clusters

if ∃ΣΣΣo s.t. (∗,ΣΣΣo) ∈ CLNK ∧ @iCSIG s.t. ΣΣΣo ∈ CSIG[iCSIG] :

return ⊥
return b′

4.2 Sequential Construction

We describe how we add such sequential behaviour to ΠUCL while preserving the
desired anonymity. Recall that signatures must remain unlinkable and not reveal
user-specific order (such as being the 5-th signature of some user). The order is
only guaranteed and re-established for the subset of signatures linked via SLink.

Adding order information. Our construction leverages well known hash-chain
structures [26]. Roughly, every i-th signature is extended with information link-
ing it to the (i−1)-th signature by the same user. For this, we use pseudorandom
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numbers. First, xi is generated for the i-th signature, and combined with xi−1,
from the previous signature, by computing H(xi⊕xi−1). The result of this hash
and H(xi) are added to the signature. In sequential link proofs, besides the basic
link proof, the signer reveals the xi’s of all the signatures in the sequence.

Trusting an append-only bulletin board BB. In our sequential scheme construc-
tion, the BB is required. It now also checks that the commitments to the pseudo-
random numbers specified above are unique across all the uploaded signatures:
this is critical to prevent malleable sequences. Also, being append-only prevents
removing signatures once added, avoiding tampering with order.

Our construction ΠsUCL. For brevity, we only describe the modified functions.

〈Join(ipk), Issue(ipk, isk)〉 → ((usk, st),⊥). Operates as in ΠUCL, but the user
adds k ← PRF.KeyGen(τ) to her usk and sets st← 1.

SSign(ipk, usk, st,m, scp)→ ((σ̃, nym), st′). Computes (σ, nym) as in ΠUCL.Sign
and extends σ with the anonymous sequence seq using the key k and state st:

– Parse usk as (A, x, y, s, k) and compute (σ, nym) as in Sign.
– Compute nst ← PRF.Eval(k, 0||st), nst−1 ← PRF.Eval(k, 0||st− 1).
– Compute xst ← PRF.Eval(k, 1||nst), xst−1 ← PRF.Eval(k, 1||nst−1).
– Compute seq1 ← H′(xst), seq2 ← H′(xst ⊕ xst−1), seq3 ← nst.
– Set seq ← (seq1, seq2, seq3), st← st+ 1.
– Return (((σ, seq), nym), st).

The signatures in our construction are required to be uploaded to the bul-
letin board BB. The entity responsible to do so may depend on the use case.
BB verifies (m, scp, (σ, (seq1, seq2, seq3)), nym) and checks uniqueness of seq, re-
jecting the signature if either check fails. Uniqueness of seq ensures that no
Σ′ = (·, ·, (·, (seq′1, seq′2, ·)), ·) exists in BB, such that seq1 = seq′1 or seq2 = seq′2.

SLink(ipk, usk, lm,ΣΣΣo) → πseq/⊥. Sequential link proofs are computed as pre-
vious link proofs, but adding to the proof the commitment openings. Namely:

– Parse usk as (A, x, y, s, k) and ΣΣΣo as {Σi = (·, ·, (·, (·, ·, seqi,3)), ·)}i∈[n]

– If any Σi does not exist in BB, abort. Else, compute πl as in Link.
– For all Σi in ΣΣΣo, compute xi ← PRF.Eval(k, 1||seqi,3).
– Return πseq ← (πl, {xi}i∈[n]).

VerifySLink(ipk, lm,ΣΣΣo, πseq) → 0/1. Verifiers check the link proof as in the
basic scheme, and recompute and compare the hash-chain:

– Parse πseq as (πl, {xi}i∈[n]), andΣΣΣo as {Σi = (·, ·, (·, (seqi,1, seqi,2, ·)), ·)}i∈[n].
– If any Σi does not exist in BB, return 0. Else, verify πl as in VerifyLink.
– Check seq1,1 = H′(x1). If not, reject.
– For i ∈ [2, n], check seqi,1 = H′(xi) and seqi,2 = H′(xi⊕ xi−1). If not, reject.
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Efficiently fetching previously created signatures. Finally, note that users can
leverage the nst values to easily fetch signatures from the bulletin board BB. If
a user has a rough idea of the value of st when the signature was created, she
can use PRF to recompute nst for near st values. Otherwise, it is always possible
to iterate from the initial value until finding the desired signature (as opposed
to locally storing all signatures, or iterating through all signatures in BB).

4.2.1 Security of our Construction

Theorem 2. Assuming zero-knowledgeness and simulation-soundness of SPK,
collision resistance of H′, pseudorandomness of PRF, and a trusted BB verifying
signatures and checking uniqueness of seq (across all signatures in BB), our con-
struction is secure under the discrete logarithm, DDH, and q-SDH assumptions,
in the random oracle model for H, H′ and SPK.

Proof sketch. Proving anonymity essentially requires showing that the newly
added seq components can be simulated, which follows from pseudorandomness
of PRF and the modelling of H and H′ as random oracles.

For sequentiality, we show how to find collisions in H′, assuming a trusted BB
verifying signatures and checking uniqueness of their seq components, and pseu-
dorandomness of PRF. Since honest signatures must exist in ΣΣΣ∗, all the attacker
can do is to remove or swap honest signatures, or insert dishonest signatures
before or after honest ones. However, the adversary commits to the set ΣΣΣ′ of
dishonest signatures in the first stage of the game, and he can only use signa-
tures in this set and SIG[uid∗] to produce ΣΣΣ∗. First, the uniqueness checks by BB
prevent the adversary from creating multiple signatures with the same seq val-
ues and re-order them as desired. Then, we show that to remove or swap honest
signatures, or insert malicious ones, the adversary must find different openings
to the seq1 or seq2 values in the commited signatures that are consistent with
their hash chain, implying a collision in H′. This ensures that, before corrupting
the user, the probability of the adversary producing a dishonest signature that
can be “chained” with an honest one, is negligible.

Full proofs for the new and modified properties are given in Appendix C.
The rest of the properties are proven as in the basic scheme.

5 Evaluation and Measurements

Table 3 summarises the functionality provided by the UCL and sUCL variants
proposed in the present work, as well as that of the most related works [22,25].
The table focuses on the linkability aspects, and on which are the entities that
can perform such linking.

We now analyse the computational and space costs of our constructions, com-
paring with related work. In Table 4, we denote with eGX , p and h, respectively,
an exponentiation (in GX), a pairing and a computation of a hash function; and
with nG1, nZp, nh, n elements in G1, Zp and hashes, respectively (also, ele-
ments associated to the Paillier encryption used in [22] are denoted with Zn2).
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User-controlled Linking Authority-controlled Linking Sequential Proofs

UCL (Section 3) Yes No No
sUCL (Section 4) Yes No Yes

GL19 [22] No Yes No
KSS19 [25] Yes Yes No

Table 3: Functionality comparison between the schemes presented here and
[22,25].

For the SPKs, we use the Fiat-Shamir transform, and for the PRF an HMAC
construction [4]. The used curve is BLS12-381 [3,2]. The costs derived from ver-
ifying and storing the individual signatures involved in Link and VerifyLink are
omitted, i.e., we only account for the costs derived from storing/computing or
verifying the linkability proof itself. Note also that [22] does not include a linking
functionality per se. The (mostly) equivalent functionality is a combination of
their Blind, Convert and Unblind operations. Thus, in the table we show the
aggregate of their costs. In addition, other operations supported by [25], but not
compatible with our model, are also omitted. These include their Opn, Lnk and
LnkJdg functions (in Table 4, Link and VerifyLink refers to SLnk and SLnkJdg

in [25]).

Algorithm Our scheme KSS19 [25] GL19 [22]

Join 3p + 1eGT + 3eG1 + 1h 8p 3p + 1eGT + 3eG1 + 1h
Issue 4eG1 + 1h 6eG1 + 1eG2 4eG1 + 1h
SSign 14eG1 + 2h+10h 9p + 13eG1 + 6eGT + 2h 16eG1 + 15eZ

n2 + 1h
Verify 2p + 9eG1 + 2h 9p + 12eG1 + 7eGT + 2h 2p + 12eG1 + 11eZ

n2 + 1h
SLink (s sigs.) (s+ 1)h + (s+ 2)eG1+2sh 2seG1 + (s+ 1)h (7s+ 8)eG1

VerifySLink (s sigs.) (s+ 1)h + 2eG1+(2s− 1)h 2seG1 + 1h N/A

Our scheme KSS19 [25] GL19 [22]

Signature 4G1 + 1H + 5Zp+3H 6G1 + 1H + 5Zp 3G1 + 6Zp + 1H + 6Z∗n2

Linkability Proof (s sigs.) 1H + 1Zp+sZp 1H + sZp N/A

Table 4: Computational (top) and space (bottom) costs. In the “Our scheme”
column, we show in black font the costs of the UCL scheme (Section 3), and
the text in red corresponds to the added costs of the sUCL scheme (Section 4).
Since [25,22] only support explicit linkability, we only compare the linking costs
in those schemes against the explicit linking of our schemes. Link costs for [22]
aggregate their blinding, converting and unblinding costs. Operations from [25]
that are not compatible with our model are omitted.

Fig. 6 shows the results of experiments obtained with a C implementation
of both variants of our scheme (run on a MacBook Pro 2.5 GHz Quad-Core
Intel i7, 16 GB 2133 MHz LPDDR3 RAM), and iterating every trial 1000 times.
Setup, Join and Issue are omitted, as they will typically take place either rarely
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or in non time-critical contexts. Sign and Verify run in well below 5ms. For Link
and VerifyLink (and the sequential variants), we experiment with sets of 10, 50
and 100 signatures. As in Table 4, this does not include verification of individual
signatures. Note that even in the case of 100 signatures, we are still in the order of
40ms for linking and 20ms for verifying the proofs. For comparison, [25] reports
signing and signature verification times around 100-150 ms, and linking and link
verification times (for only two signatures) in the order of 330 ms.

Fig. 6: Costs for Sign, Verify and Link (with 10, 50 and 100 signatures).

6 Conclusion

We have presented a new variant of group signatures that allows users to explic-
itly link large sets of signatures, supports implicit signature linking, and does
not rely on a trusted opener. We have then extended this to allow proving or-
der within a sequence of linked signatures, including that no signature has been
omitted which was originally produced between the first and last signatures of
the sequence. We have also given a formal model capturing the extended un-
forgeability and privacy properties in this setting, and efficient constructions
realizing our model, which we have proved secure under discrete logarithm re-
lated assumptions. We have also reported on experimental evaluation obtained
from an implementation of our schemes.

Several lines of further work are possible. First, we give an unforgeability
property ensuring that order is maintained against honest-then-corrupt users,
but we do not consider the equivalent for initially corrupt ones. While we argue
that modelling honest-then-corrupt users is applicable to many real-world use
cases, it is interesting to consider the stronger variant. In that case, initially,
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it seems that we can only hope to detect inconsistent proofs. Otherwise, if we
only consider independent sequence proofs, a malicious signer may just “pre-
compute” the sequence in the order he intends to prove afterwards, even if he
publishes the signatures in a different order. Also, being able to prove non-linkage
of signatures may be an interesting functionality – which would also impact the
model. In practice, there may be use cases where proving not having issued a (set
of) signature(s) can be useful. For instance, as a basic mechanism for (privacy
respectful) blacklisting. Efficiency-wise, taking inspiration on [19,24], a great
improvement would be to study the incorporation of batch verification of signa-
tures (in addition to batch linking). On a more specific note, our construction
for proving linked sequences introduces an artifact that affects the anonymity
property. Namely, separately linking two adjacent sequences (i.e., where the last
signature of one sequence was created immediately before the first signature of
the other) makes both sequences linkable. Hence, removing this constraint would
be an obvious improvement.
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A Implementation Notes

We have implemented the basic and sequential instantiations of our scheme. The
efficiency analysis presented in Section 5 is based on that implementation, which
is available at https://github.com/IBM/libgroupsig. Additionally, we have
prepared a demo web application that leverages our implementation. It can be
accessed from any PC with access to the Internet and a local installation of
Docker3 via the following commands:

$ docker pull jdiazvico/sucl:latest

$ docker run -p 5000:5000 jdiazvico/sucl

Where the first command downloads a Docker image that has a local installa-
tion of the compiled code, and the second command runs the demo. After success-
fully running both commands, the demo – which contains explanatory instruc-
tions on how to use it – can be accessed by going to http://127.0.0.1:5000

on any web browser.

B Proofs of Security for ΠUCL

B.1 Correctness

– Correctness of Sign. We formalize this property with the game in Fig.
7. The adversary wins if it outputs an (m, scp) pair for which an honestly
generated signature does not verify.

Experiment: Expcorr-sign
A,UCL (τ)

param← Setup(1τ )

(ipk, isk)← IKGen(param)

(uid,m, scp)← AADDU(ipk)

(σ, nym)← Sign(ipk,USK[uid],m, scp)

if Verify(ipk,m, scp, σ, nym) = 0 : return 1

return 0

Fig. 7: Correctness of sign experiment.

3 https://www.docker.com/. Last access on October 10th, 2020.
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Proof. A signature produced by an honest user over a message m with scope
scp is a tuple (σ, nym), such that nym = H(scp)y and σ = (A′, Â, d, πσ),
where πσ = SPK{(x, y, r2, r3, s

′) : nym = H(scp)y ∧ Â/d = (A′)−xhr22 ∧
g1h

y
1 = dr3h−s

′

2 }(ctx,m). The proof πσ is correct due to the correctness of the

underlying SPK. Additionally, e(A′, ipk) = e(Â, g2), since Â = (A)−xr1(g1h
y
1h
s
2)r1 =

(g1h
y
1h
s
2)

r1isk
isk+x = (A′)isk and A′ 6= 1G1

with overwhelming probability be-
cause A 6= 1G1

. Therefore, honestly generated signatures verify correctly.

– Correctness of Link. This property is formalized in Fig. 8. The adversary
wins if it returns a set of (mi, scpi) pairs for which a matching set of honestly
generated signatures and an honestly generated proof of linking πl do not
verify.

Experiment: Expcorr-link
A,UCL (τ)

param← Setup(1τ )

(ipk, isk)← IKGen(param)

(uid, {mi, scpi}i∈[n], lm)← AADDU(ipk)

for i ∈ [n] : (σi, nymi)← Sign(ipk,USK[uid],mi, scpi)

πl ← Link(ipk,USK[uid],m, {(mi, scpi, σi, nymi)}i∈[n])
if VerifyLink(ipk,m, {(mi, scpi, σi, nymi)}i∈[n], πl) = 0 :

return 1

return 0

Fig. 8: Correctness of link experiment.

Proof. Let (A, x, y, s) be the secret key of user uid, and {(mi, scpi, σi, nymi)}i∈[n]

and πl respectively be a set of signed messages and proof of them being
linked, all created honestly by uid. By correctness of the SPK in each sig-
nature, we have that nymi = H(scpi)

y. Thus, we have at VerifyLink that
nym =

∏
i∈[n] nymi =

∏
i∈[n] H(scpi)

y = (
∏
i∈[n] H(scp))y = hscp

y
and by

the correctness of the SPK in the honestly generated πl, it verifies correctly.

B.2 Anonymity

Anonymity follows from the zero-knowledge and simulation-soundness properties
of the SPKs, and the fact that pseudonyms are indistinguishable from random
when different scopes are used, under the DDH assumption.

Proof (Anonymity). We build an adversary A′ who, given an adversary A that
wins the anonymity game, uses it to break the DDH assumption. Next, we argue
how does A′ simulate the inputs to A and show the reduction to DDH.
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Adversary A′. A′ leverages DDH’s random self-reducibility property to pro-

duce t DDH tuples of the shape (D̃0 = g, D̃i = gãi , D̃t+1 = gb̃, D̃t+i+1 = gãib̃)4. It
randomly picks a bit b and the honest user uid∗ in which to embed the challenge
among the q total honest users added by A, and answers A oracle queries (up to
t CH-SIGNb and SIGN queries for uid∗, where t can be made arbitrarily large).
If A guesses b correctly, it returns 1; otherwise, returns 0. If the uid∗ guessed at
random does not match uid∗b as returned by A, A′ exits early returning a random
bit b′. A′ is fully defined in Fig. 9. The oracles used by A′ are defined in Fig. 10.

A′(D0 = g,D1 = ga,D2 = gb,D3 = gc)

D̃0, ..., D̃2t+1 ← DDHRerandt(D0,D1,D2,D3)

b, b′ ←$ {0, 1},HL← ∅, iuid ← 0, iHL ← 0, kuid ←$ [q]

h1 ← D̃0,Generate remaining param with Setup(1τ )

(ipk, isk)← IKGen(param)

(uid∗0, uid
∗
1, state)← ASNDU,SIGN,LINK(choose, ipk, isk)

if uid∗b 6= uid∗ : return b′

if USK[uid∗d] 6= ⊥ for d = 0, 1 :

Initialize CH-SIGNb and CH-LINKb with uid∗b

else : return b′

b∗ ← ASNDU,SIGN,CH-SIGNb,LINK,CH-LINKb(guess, state)

if any oracle call returns ⊥ : return b′

if b∗ = b : return 1

return 0

DDHRerandt(p,D0,D1,D2,D3)

u1, ..., ut, v, w1, ..., wt ←$ Z∗p
D̃0 ← D0, D̃t+1 ← D2D

v
0

for i ∈ [1, t] :

D̃i ← Dui1 Dwi0

D̃t+i+1 ← Dui3 Dwi2 Duiv1 Dwiv0

return (D̃0, ..., D̃2t+1)

Fig. 9: Adversary A′ against DDH from A breaking anonymity.

Random Oracle (H function). The hash function, idealized as a random or-
acle, returns elements in G1. For newly queried values, the random oracle in-
crements the iHL counter and returns the DDH challenge element D̃iHL = gãiHL ,
updating HL with the used index. For already queried values, the random oracle
just browses HL and returns the corresponding element. Note that, in all cases,
the output of the random oracle is a new (or, rather, unused) uniformly random
value.

Simulating the SNDU oracle. The SNDU oracle used by A′ operates in the
exact same way than the default SNDU oracle except for the kuid-th query. In

that case, SNDU sets uid∗, assigns D̃t+1 = gb̃ to the new user’s Y value, and
simulates πY . Due to the zero knowledge property of the proof system, the
output produced by SNDU is indistinguishable from the output of the default
SNDU oracle.

4 To do it, we use the DDHRerandt algorithm, which is a simple extension of the
Expanded DDH Self-Reduction algorithm in [29]. See Appendix D for details. For
simplicity, we have A′ generate an arbitrary number t of such tuples. However, note
that they can also be generated on demand, e.g., when H is queried.

31



Simulating the SIGN oracle. The signing oracle is exactly the same as the
default SIGN oracle except for calls involving uid∗. For requests with uid = uid∗,
A′ fetches from HL the j value from the entry corresponding to scp and sets nym
to the D̃t+j+1 element from the DDH tuple. Then, simulates the signature and
πσ, updates SIG and returns. Lets assume that A′ receives a DDH tuple. Then,

nym = D̃t+j+1 = gãj b̃, which is consistent with SNDU, where we set Y = D̃t+1 =

gb̃, and with H, where we set H(scp) = D̃j+1 = gãj . The BBS+ signature can
be simulated, as well as πσ, due to the zero-knowledge property of SPK. If the

input received by A′ is not a DDH tuple, then nym = D̃t+j+1 = gc̃j , Y = gb̃ and
H(scp) = gãj . In this case, both the zero-knowledge and simulation soundness
properties of SPK ensure that the BBS+ signature and πσ can be simulated.
Since nyms in real executions are indistinguishable from random [27], simulated
nyms when the input is not a DDH tuple are indistinguishable from real nyms.
Consequently, in all cases, the output produced by SIGN in the simulation is
indistinguishable from the output of the default SIGN oracle. Moreover, when
the input is not a DDH tuple, the output is completely independent from the
bit b.

Simulating the LINK oracle. Queries of uid 6= uid∗ are handled as in the
default LINK oracle. When uid = uid∗, the hscp value is computed as usual,
but in order to compute the nym value, we fetch from HL the (scpi, j) entry
for each scope in the set of signatures, and let nym =

∏
j D̃t+j+1. If the input

to A′ is a DDH tuple, then nym = gb̃(
∑
j ãj), which is exactly the value of

nym in real executions, and πl can be simulated from hscp and nym due to
the zero-knowledge property of SPK. If the input to A′ is not an DDH tuple,
then nym = g

∑
j c̃j . In this case, the zero-knowledge and simulation soundness

properties of SPK ensure that πl can be simulated. Finally, note that in both
cases, the output of LINK is indistinguishable from the default LINK oracle and,
additionally, when a DDH tuple is given to A′, the behaviour of the oracle is the
same as with the default LINK oracle; while when a DDH tuple is not input, the
output is completely independent from the bit b.

Simulating the CH-SIGNb oracle. The argument made for the simulation of
the SIGN oracle holds for CH-SIGNb as well. Consequently, in all cases, the out-
put produced by CH-SIGNb is indistinguishable from the output of the default
CH-SIGNb oracle. Moreover, when the input is not a DDH tuple, the output of
the CH-SIGNb oracle is completely independent from the bit b.

Simulating the CH-LINKb oracle. The argument made for the simulation of
LINK when uid = uid∗ also holds for CH-LINKb. Thus, the output of simulations
of CH-LINKb is indistinguishable from real executions and, when the input of A′
is not a DDH tuple, the ouptut is completely independent from the bit b.

Reduction to DDH. From the oracles’ description, we can see that all infor-
mation A receives is exactly the same it receives in the default anonymity game
when a DDH tuple is given to A′; and it is independent from the challenge bit b
when the input to A′ is not a DDH tuple. However, we have to account for the
probability thatA′ returns early due to uid∗b 6= uid∗, case in whichA′ returns a bit
chosen uniformly and random, and which happens with probability 1− 1/q, as-
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Global variables (set by A′)

uid∗, iHL, iuid, kuid
(D̃0 = g, D̃1 = gã1 , D̃t+1 = gb̃, D̃t+2 = gc̃1)
...
(D̃0 = g, D̃t = gãt , D̃t+1 = gb̃, D̃2t+1 = gc̃t)

SNDU(uid,Min)

Check input as in default SNDU

Update HUL as in default SNDU

iuid ← iuid + 1, Parse Min as n

if iuid = kuid :

uid∗ ← uid, Y ← D̃t+1, Simulate πY with Y , n

return ((Y, πY ), cont)

Continue from line 6 of SNDU

SIGN(uid,m, scp)

Check input as in default SIGN

if uid = uid∗ :

Find (scp, j) ∈ HL;

nym← D̃t+j+1, A
′, d←$ Z∗p, Â← (A′)isk

Simulate πσ with A′, Â, d, scp, nym,m

σ ← (A′, Â, d, πσ), Σ ← (m, scp, σ, nym)

SIG← SIG ∪ {(uid, Σ)}
return (σ, nym)

else : Run SIGN as usual

CH-LINKb(lm,ΣΣΣ)

Check input as default CH-LINKb

LNK← LNK ∪ {(uid, lm,ΣΣΣ)

Parse ΣΣΣ as {(mi, scpi, σi, nymi)}i∈[n]
hscp←

∏
i∈[n]

H(scpi), nym← 1

for i ∈ [n] : Find (scpi, j) ∈ HL, nym← nym · D̃t+j+1

Simulate πl with hscp, nym

return πl

H(in)

if (in, i) ∈ HL : return D̃i

iHL ← iHL + 1

HL← HL ∪ {(in, iHL)}

return D̃iHL

CH-SIGNb(m, scp)

Check input as in default CH-SIGNb

Find (scp, j) ∈ HL

nym← D̃t+j+1, A
′, d←$ Z∗p, Â← (A′)isk

Simulate πσ with A′, Â, d, scp, nym,m

σ ← (A′, Â, d, πσ), Σ ← (m, scp, σ, nym)

CSIG← CSIG ∪ {Σ}
return (σ, nym)

LINK(uid, lm,ΣΣΣ)

Check input as default LINK

if uid = uid∗ :

LNK← LNK ∪ {(uid, lm,ΣΣΣ)

Parse ΣΣΣ as {(mi, scpi, σi, nymi)}i∈[n]
hscp←

∏
i∈[n]

H(scpi), nym← 1

for i ∈ [n] :

Find (scpi, j) ∈ HL, nym← nym · D̃t+j+1

Simulate πl with hscp, nym

return πl

else : Run default LINK oracle

Fig. 10: Oracles used by A′ against DDH in the anonymity game.

suming q executions of the SNDU oracle. Let S denote the event that A correctly
guesses the bit b in the anonymity game. Then, under the DDH assumption,
we have that AdvDDHA′ (τ) = |Pr[ExpDDH−1

A′ (τ) = 1] − Pr[ExpDDH−0
A′ (τ) =

0]| = |(1 − 1
q ) 1

2 + 1
q Pr[S] − (1 − 1

q ) 1
2 −

1
q

1
2 | =

1
q |Pr[S] − 1

2 | ≤ εDDH . Therefore,

|Pr[S]− 1
2 | ≤ qεDDH , which is negligible under the DDH assumption.
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B.3 Signature Traceability

Signature traceability follows from unforgeability of the BBS+ credentials (which
holds under the q-SDH assumption), and zero-knowledgeness and soundness of
SPK: the adversary cannot produce more signatures that corrupt users under
his control, given the uniqueness of pseudonyms per scope.

Proof (Signature Traceability). We build an adversary A′ who breaks the q-SDH
assumption from adversaries A1 and A2 winning the signature non-frameability
game through winning conditions 1 and 2, respectively.

First, we describe how does A′ (against q-SDH) simulate inputs and oracle
calls by adversaries A1 or A2. However, the core of the simulation is the same
for both, so we use Ax instead of A1 or A2 in the definition of A′. The difference
in the reduction is highlighted after describing the oracles. A′ is formally defined
in Fig. 12 and its oracles in Fig. 13.

For this property, we need to define the Identify helper function used in the
signature traceability game. We define it as in Fig. 11, which clearly meets the
uniquness requirement Section 3.2, for an honest issuer [14]

Identify(ipk, uid, Σ)

if uid /∈ HUL ∪ CUL : return ⊥
if uid ∈ HUL : usk ← USK[uid]

else : Extract usk from transcript[uid]

Parse usk as (A, x, y, s)

if Verify(ipk,Σ) = 0 : return 0

Parse Σ as (m, scp, σ), σ as (·, ·, ·, ·, nym)

if nym = H(scp)y : return 1

return 0

Fig. 11: Definition of Identify for the signature traceability reduction.

Adversary A′. We follow the strategy in [12] to simulate up to q BBS+ signa-
tures, which requires to randomly choose one (simulated) signature to be gener-
ated differently. For this, A′ picks kuid ←$ Zq. With these simulated signatures,
A′ will be able to answer up to q queries by Ax to SNDI. Besides generating
the simulated signatures, A′ prepares the param elements to pass to Ax in a
consistent manner. Note that g1 and g2 are random elements in G1 and G2; h2 is
also a random generator of G1, since x0, a, k are chosen uniformly at random; h1

is a different random generator of G2, as µ is also chosen uniformly at random;
and finally, ipk is also distributed as in the experiment, since ipk = W = gχ2 for
some unknown (random) χ ∈ Z∗p.

Random Oracle (H function). The random oracle just computes a new ran-
dom element in G1 and updates HL if the input was not queried before; or, if
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A′(p,G1,G2,GT ,D0 = gχ
0

1 , ...,Dq = gχ
q

1 , g2,W = gχ2 )

ipk ←W,kuid ←$ Zq, i← 0

(d′1, g
′
1, {Bi}i∈[q−1], {xi}i∈[0,q−1])

← GWeakBB(. . . )

a, k, µ←$ Z∗p
h2 ← ((d′1(g′1)x0)k(g′1)−1)1/a, h1 ← hµ2

(Σ1, . . . , Σn)← AADDU,SNDI,SIGN,LINK
x (ipk)

Let Σi = (mi, scp, σi, nymi) as in winning

condition 1 or winning condition 2

Extract x̃, ỹ, r2, r3, s
′ from πσ in σi

if r3 = 0 : Ã← 1, s∗ ← s′, s̃← s′ + µỹ

else :

Ã← (A′)r3 , s∗ ← s′ + r2r3s̃← s∗ + µỹ

return ((Ã(g′1)
−ks̃
a )

a
a−s̃−ks̃(x̃−x0) , x̃)

GWeakBB(p,G1,G2,GT ,D0,D1, ...,Dq, g2,W )

θ, x0 ←$ Z∗p
for i ∈ [q− 1] : xi ←$ Z∗p

Define f(X) =

q−1∏
i=1

(X + xi) =

q−1∑
i=0

αiX
i, fi(X) = f(X)/(X + xi) =

q−1∑
j=0

βjXj

g′1 ←
q−1∏
i=1

Dαiθi = g
θf(χ)
1 , d′1 ←

q−1∏
i=0

Dαiθi+1 = (g′1)χ

for i ∈ [q− 1] :

Bi ←
q−1∏
j=0

D
βjθ

j = g
θfi(χ)
1 = (g′1)1/(χ+xi)

return (d′1, g
′
1, {Bi}i∈[1,q−1], {xi}i∈[0,q−1])

Fig. 12: Adversary A′ against q-SDH from Ax breaking signature traceability
(x ∈ [1, 2] denotes the winning condition used by Ax).

the input was queried before, returns the previously computed value. Thus, the
outputs are uniformly random and consistent across queries.

Simulating the ADDU oracle. For queries to the ADDU oracle, A′ just updates
HUL and returns accept. The output of the ADDU oracle used by A′ is trivially
equally distributed to that of the ADDU oracle in the signature traceability
experiment.

Simulating the SNDI oracle. A′ first extracts y from πY . With the value
of y, it already can complete the simulated BBS+ signature with the help
of the previously computed weak BB08 signatures, accounting for the special
case (i = kuid). If i = kuid, the result is a valid BBS+ signature, since Auid =

(g′1)k = (g′1h
suid
2 hyuid1 )

1
xuid+χ ; also, xuid and suid are random, as x0 and a were

chosen independently and uniformly at random. For all other queries, A′ con-
sumes a weak BB08 signature to build (up to q − 1) BBS+ additional sig-
natures. Note also that in this case the signatures are correctly formed, since

Auid = Bi(B
(x0−xi)k−1

a
i (g′1)

k
a )suid+µyuid = (g′1h

suid
2 hyuid1 )

1
χ+xuid , and xuid and suid are

chosen independently and uniformly at random. Therefore, in all cases, the out-
put of SNDI, as implemented by A′, is indistinguishable to the output of the
SNDI oracle in the signature traceability experiment.

Simulating the SIGN oracle. The SIGN oracle used byA′ first computes a fresh
yuid if it was not already defined for the requested uid. Then, computes the nym
as usual and simulates the BBS+ signature. Note that Â = (A′)χ, as d′1 = (g′1)χ.
Since r and d are chosen uniformly at random and independently, the produced
signature is correctly formed and indistinguishable from signatures produced
by the default SIGN oracle. Additionally, the zero-knowledge property of the
underlying proof system ensures that πσ can be indistinguishably simulated with
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respect to real signatures. Thus, outputs of the SIGN oracle used by A′ are
indistinguishable to outputs of the default SIGN oracle.

Simulating the LINK oracle. A′ uses the same LINK oracle as in the signature
traceability experiment.

Global variables (set by A′)

a, k, µ, kuid, i
d′1, g

′
1, {Bi}i∈[q−1], {xi}i∈[0,q−1]

H(in)

if (in, R) ∈ HL : return R

R←$ G1,HL← HL ∪ {(in, R)}
return R

SNDI(uid,Min)

Check input as in default SNDI

Update transcript, decuid as in default SNDI

i← i+ 1; Extract y from πY

if i = kuid :

suid ← a− µy,Auid ← (g′1)k

xuid ← x0, yuid ← y

else :

xuid ← xi, suid ←$ Z∗p, yuid ← y

Auid ← Bi(B
(x0−xi)k−1

a
i (g′1)

k
a )suid+µyuid

return ((Auid, xuid, suid), cont)

ADDU(uid)

if uid ∈ HUL ∪ CUL : return ⊥
else :

HUL← HUL ∪ {uid}
return accept

SIGN(uid,m, scp)

Check input as in default SIGN

if yuid is undefined :

yuid ←$ Z∗p,USK[uid]← (·, ·, yuid, ·)
nym← H(scp)yuid , r ←$ Z∗p,

A′ ← (g′1)r, Â← (d′1)r, d←$ Z∗p
Simulate π using A′, Â, d, nym,m

σ ← (A′, Â, d, πσ), Σ ← (m, scp, σ, nym)

SIG← SIG ∪ {(uid, Σ)}
return (σ, nym)

Fig. 13: Oracles used by A′ against q-SDH to answer Ax against signature trace-
ability.

Reduction to the q-SDH problem. As stated before, A′ correctly simulates all
inputs to Ax. Assume that Ax interacts with the oracles exposed by A′ and,
after making at most n = q queries to the SNDI oracle, Ax outputs:

– A Σi tuple meeting condition 1 (i.e., Ax = A1). Note that Σi cannot be as-
sociated to an honest user nor to a corrupt user via Identify(uid, Σi), and yet,
Σi = (mi, scp, σi, nymi) is a valid signature, as Verify returns 1. Therefore,
from the first equation of πσ in σ, we know that nymi = H(scp)y

∗
for some

y∗. But from the fact that Identify returns 0 for all uid ∈ HUL ∪ CUL, we
know that y∗ 6= yuid for all yuids used to simulate the credentials for honest
and corrupt users. Specifically, the signature returned by Ax cannot have
been produced by SIGN, and we can extract a BBS+ signature from σ∗.

– A set of (Σ1, . . . , Σn) meeting condition 2 (i.e., Ax = A2). In this case, the
argument is exactly as in [22, Appendix B.6]. Since the returned set is larger
than the number of corrupt users, determinism of pseudonyms computation
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implies that at least one Σi = (mi, scp, σi, nymi) contains σi with a πσ for
nymi = H(scp)y

∗
, where y∗ 6= yuid for any uid ∈ CUL. Also, Σi has not been

produced by SIGN, so we can extract the witness used to produce πσ.

The details of the extraction are as in [12], which we reproduce here for
completeness. First, due to the soundness property of the proof system used to
generate πσ, A′ extracts (x̃, ỹ, r2, r3, s

′) from πσ in σ∗ = (A′, Â, d, πσ). Then, we
have two cases:

– If r3 = 0, from the third equation in the statement of πσ, we know that
g1h

ỹ
1h
s′

2 = 1G1 . Thus, (Ã = 1G1 , x̃, s
∗ = s′) is a valid BBS+ signature on ỹ.

– If r3 6= 0, we first observe that, since the group signature verifies correctly, we
know that e(A′, ipk) = e(Â, g2) which, combined with the second equation in
the statement of πσ, Â = (A′)−x̃hr22 d, gives (A′)χ+x̃ = dhr22 . Then, from r3 6=
0 and the third equation in the statement of πσ, (A′)χ+x̃ = (g1h

s′+r2r3
2 hỹ1)

1
r3 .

Therefore, (Ã = (A′)r3 , x̃, s∗ = s′ + r2r3) is a valid BBS+ signature on ỹ.

Now, with the extracted signature (Ã, x̃, s∗), there are three cases:

– If x̃ ∈ {xi}0<i<q ∪ {x0} and Ã = Auid. Since ỹ 6= yuid for all uid, then A′
can break the discrete logarithm assumption picking any uid′ and computing

logh2
(h1) = s∗−suid′

yuid′−ỹ
. Indeed, when x̃ = xi and ỹ 6= yuid′ :

Ã = Auid′

⇐⇒ g′1h
s∗

2 h
ỹ
1 = g′1h

suid′
2 h

yuid′
1

⇐⇒ h
s∗−suid′
2 = h

yuid′−ỹ
1

⇐⇒ h

s∗−suid′
y
uid′−ỹ

2 = h1

Since q-SDH implies the discrete logarithm assumption,A′ can break q-SDH.
– If x̃ ∈ {xi}0<i<q∪{x0}, but Ã 6= Auid. Assuming that x̃ = x0 and making s̃←
s∗ + µỹ, A′ can compute an extra SDH pair as ((Ã(g′1)

−ks̃
a )

a
a−s̃−ks̃(x̃−x0) , x̃):

(Ã(g′1)
−ks̃
a )

a
a−s̃

(1)
= (g′1h

s̃
2)

a
(χ+x̃)(a−s̃) (g′1)

−ks̃
a−s̃

(2)
= (g′1(g′1)

(χ+x̃)ks̃−s̃
a )

a
(χ+x̃)(a−s̃) (g′1)

−ks̃
a−s̃

= (g′1)
(χ+x̃)ks̃+a−s̃−(χ+x̃)ks̃

(χ+x̃)(a−s̃)

= (g′1)
1

χ+x̃

Where equality (1) derives from Ã = (g′1h
s̃
2h
y
1), h1 = hµ2 and s̃ = s∗ + µỹ,

and equality (2) holds since h2 = (d′1(g′1)x0)k(g′1)−1)
1
a .
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Therefore,A′ computes an additional q-SDH pair ((g′1)
1

χ+x̃ , x̃), which enables
it to break the q-SDH assumption as shown in [9]. However, in this case,
x̃ = x0 only with probability 1/q. Therefore, assuming that Ax succeeds
with probability ε, A′ breaks q-SDH with probability ε/q.

– If x̃ /∈ {xi}0<i<q ∪ {x0}, A′ can compute an extra SDH pair. Making s̃ ←
s∗ + µỹ, then ((Ã(g′1)

−ks̃
a )

a
a−s̃−ks̃(x̃−x0) , x̃) is an additional SDH pair, since:

(Ã(g′1)
−ks̃
a )

a
a−s̃−ks̃(x̃−x0)

(1)
= (g′1h

s̃
2)

a
(χ+x̃)(a−s̃−ks̃(x̃−x0)) (g′1)

−ks̃
a−s̃−ks̃(x̃−x0)

(2)
= (g′1(g′1)

(χ+x0)ks̃−s̃
a )

a
(χ+x̃)(a−s̃−ks̃(x̃−x0)) (g′1)

−ks̃
a−s̃−ks̃(x̃−x0)

= (g′1)
(χ+x0)ks̃+a−s̃−(χ+x̃)ks̃

(χ+x̃)(a−s̃−ks̃(x̃−x0))

= (g′1)
1

χ+x̃

Where equalities (1) and (2) hold for the same reason as in the previous case.

Therefore given the extra SDH pair ((g′1)
1

χ+x̃ , x̃), A′ can break the q-SDH
assumption as shown in [9].

Overall, we have that, in the worst case, A′ manages to break the q-SDH
assumption with probability ε/q (either using A1 or A2).

B.4 Link Traceability

Link traceability follows from unforgeability of the BBS+ credentials and zero-
knowledgeness and soundness of SPK, for winning condition 1. For winning con-
dition 2, it follows from the discrete logarithm assumption and soundness of
SPK.

Proof (Link Traceability). We describe two adversaries, A′1 and A′2, that leverage
adversaries A1 and A2 breaking link traceability through winning conditions 1
or 2, respectively. A′1 breaks the q-SDH assumption, and A′2 breaks the discrete
logarithm assumption.

In the following, the Identify function is defined exactly as in Appendix B.3.

Adversary A′1 against q-SDH. Since VerifyLink includes verification of indepen-
dent signatures, this is essentially as in the first winning condition of signature
traceability. Following the same strategy, A′1 breaks the q-SDH assumption with
probability ε/q

Adversary A′2 against discrete logarithm. A′2 receives an instance (D0,D1 = Da
0)

of the discrete logarithm problem. It just programs the random oracle H as
described next. The rest of the oracles are as in the link traceability game.

Random oracle H. For a newly queried input in, H uniformly chooses at
random r ←$ Zp, computes G ← D1D

r
0, adds (in, r) to its internal list HL and
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A′(D0 = g,D1 = ga)

param← Setup(1τ )

(ipk, isk)← IKGen(param)

(lm,ΣΣΣ, πl)← AADDU,SNDI,SIGN,LINK(ipk, isk)

if VerifyLink(ipk, lm,ΣΣΣ, πl) = 1 ∧
∃uid 6= uid′, Σ 6= Σ′ ∈ ΣΣΣ s.t.Identify(uid, Σ) = 1 ∧ Identify(uid′, Σ′) = 1 :

a =

∑
i∈[n](y − yi)ri

−ny +
∑
i∈[n] yi

return a

return ⊥

H(in)

if (in, r) ∈ HL : return D1D
r
0

r ← Zp,HL← HL ∪ {(in, r)}
return D1D

r
0

Fig. 14: Adversary A′2 against DL from A2 breaking link traceability through
winning condition 2.

returns G. For previously queried inputs, it responds consistently. The behaviour
of H is clearly indistinguishable from random.

Reduction to Discrete Logarithm. Since H behaves randomly, and the rest
of the oracles are the default ones, the simulation by A′2 is indistinguishable to
A2 from real executions. Eventually, A2 returns a (lm,ΣΣΣ, πl) tuple. Let ΣΣΣ =
{Σi = (mi, scpi, (A

′
i, Âi, di, πi), nymi)}i∈[n]. Since VerifyLink returns 1, we know

that (1) nymi = H(scpi)
yi for every Σi, for some yi. As none of the πi has been

simulated, we can extract all these yi. Again, since VerifyLink returns 1, we know
that (2)

∏
i∈[n] nymi = nym = hscp

y
= (

∏
i∈[n] H(scpi))

y, from which we can
also extract y, as πl has not been simulated either. Additionally, fetching the
corresponding queries from H, we can re-write H(scpi) as (D1D

ri
0 ) = Da+ri

0 (for
unkown a), where ri is the random value computed by H when queried with scpi.
Combining (1) and (2):

∏
i∈[n]

nymi = (
∏
i∈[n]

H(scpi))
y

⇐⇒
∏
i∈[n]

H(scpi)
yi =

∏
i∈[n]

H(scpi)
y

⇐⇒
∏
i∈[n]

D
(a+ri)yi
0 =

∏
i∈[n]

D
(a+ri)y
0

⇐⇒ D
∑
i∈[n](a+ri)yi−

∑
i∈[n](a+ri)y

0 = 1

The exponent in the left-hand side of the last equation is trivially 0 when for
all i, ri = −a, or yi = y. Since the ri values are chosen uniformly at random by
H, the probability of all of them being equal to −a is negligible (exactly, 1

pn ).

Suppose that A2 wins the link traceability game through winning condition
2. Due to the uniqueness property of Identify, this means that there exists i 6=
j ∈ [n] such that yi 6= yj . In that case, A′2 extracts a as follows:
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D
∑
i∈[n](a+ri)yi−

∑
i∈[n](a+ri)y

0 = 1

⇐⇒
∑
i∈[n]

(a + ri)yi −
∑
i∈[n]

(a + ri)y = 0

⇐⇒ a =

∑
i∈[n](y − yi)ri

−ny +
∑
i∈[n] yi

Where the denominator is non-zero. Otherwise, assume it is. Then, y =
1
n

∑
i∈[n] yi, and the second equation above becomes:

n
∑
i∈[n]

(a + ri)yi =
∑
i∈[n]

(a + ri)(
∑
i∈[n]

yi)

But then:

– Either all ri are equal which, by the check in the third step of VerifyLink and
the uniqueness property of Identify, implies that all yi are equal. Or,

– The ri’s are not all equal, but all yi are equal.

In both cases, contradicting the initial breaking assumption that the yi’s are
not all equal. Therefore, the denominator is non-zero, and a can be extracted.

Consequently, if A2 wins the link traceability game through winning condi-
tion 2, with non-negligible probability ε, thenA′2 can break the discrete logarithm
problem with non-negligible probability ε− 1/pn.

B.5 Signature Non-frameability

Signature non-frameability holds after the uniqueness property of the pseudonyms
and zero-knowledgness and soundness of SPK.

Proof (Signature non-frameability). We build an adversary A′ that breaks the
discrete logarithm assumption leveraging an adversary A against signature non-
frameability.

Adversary A′ against discrete logarithm. A′ randomly picks the user uid∗

among the up to q users A incorporates via SNDU, sets h1 to D0, and generates
the remaining values in param as usual. Note that h1 is uniformly random, as in
the signature non-frameability game. Then, A′ answers SNDU, SIGN and LINK
queries from A. When A gives a response, A′ finds a signature by uid∗ that has
not been queried to SIG, extracts y∗ and returns it as a response to the discrete
logarithm challenge. Next, we describe why the oracles exposed by A′ correctly
simulate the oracles in the real game. Their formal definition is given in Fig. 16.

Random Oracle (H function). For newly queried values in, the random oracle
used by A′ computes a random number r, updates HL with the pair (in, r) and
returns Dr0 as the hash value for the received input. For already queried in values,
it just fetches from HL the previously computed r value for in and returns Dr0.
Note that the outputs produced in this manner are random.
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A′(D0 = g,D1 = ga)

h1 ← D0,Generate remaining param with Setup(1τ )

iuid ← 0, kuid ← [q]

(ipk, isk)← IKGen(param)

(Σ = (m, scp, σ, nym))← ASNDU,SIGN,LINK(ipk, isk)

if Verify(ipk,Σ) = 1 ∧ ∃uid s.t. Σ /∈ SIG[uid] ∧ (∗, scp, ∗, nym) ∈ SIG[uid] :

if uid 6= uid∗ : return ⊥
Parse Σ′ as (·, ·, (·, ·, ·, π∗σ), ·)
Extract y∗ from π∗σ

return y∗

return ⊥

Fig. 15: Adversary A′ against DL from A breaking signature non-frameability.

Simulating the SNDU oracle. A′’s implementation of the SNDU oracle differs
from the default oracle just when adding the kuid-th user. For that case, the
SNDU oracle initializes uid∗, sets the Y value to D1 and simulates the proof πY .
The zero-knowledge property of the underlying proof system ensures that the
output is indistinguishable from normal executions. The private key of user uid∗

will then be a such that D1 = Da
0. Note that, even though it is unknown to A′,

it will be possible to simulate all computations in which it is involved.

Simulating the SIGN oracle. The SIGN oracle used by A′ works as usual
for all inputs except for queries for signatures by user uid∗. In this case, the
oracle fetches from HL the random number r used to compute the hash value
for scp and sets the nym to Dr1. This is consistent with SNDU, since Y = Da

0

and nym = Dr1 = Dar
0 for some unknown a. Also, nym is well formed, since

H(scp) = Dr0 and, due to the randomness of r, it is equally distributed to real
nyms. The zero-knowledge property of the proof system ensures that πσ can be
simulated, producing a signature that is indistinguishable from real signatures.

Simulating the LINK oracle. The LINK oracle used by A′ only differs from the
default LINK oracle in queries where the user identifier is uid∗. In this case, hscp
and nym are computed as usual, but πl is simulated. Note that hscp =

∏
iD

ri
0

and nym =
∏
iD

ri
1 = Dari

0 and, therefore, are well formed. The zero-knowledge
property of the proof system ensures that the output is indistinguishable from
real outputs.

Reduction to the discrete logarithm problem. The construction by A′ of the
oracles queried by A ensures that all inputs that A gets are indistinguishable
from real inputs. Assume that A wins the signature non-frameability game with
probability ε and that uid = uid∗. Then, with probability ε, A outputs a valid
signature Σ /∈ SIG[uid], but with a nym that matches the one in another signa-
ture in SIG[uid]. The scope-exclusiveness property ensured by our approach to
pseudonyms, ensures that there is only one y∗ such that nym = H(scp)y

∗
. Since

the signature verifies, soundness of the SPK in the signature (which is not a sim-
ulated proof) ensures that this y∗ must have been used to produce it. Therefore,
A′ can extract y∗ from the proof, and return it as the solution to the discrete
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Global variables (set by A′)

uid∗, iuid, kuid
D0 = g,D1 = ga

H(in)

if (in, r) ∈ HL : return Dr0

r ← Zp,HL← HL ∪ {(in, r)}
return Dr0

SIGN(uid,m, scp)

Check input as default SIGN

if uid = uid∗ :

Find (scp, r) ∈ HL

nym← Dr1, A
′, d← Z∗p, Â← (A′)isk

Simulate πσ with A′, Â, d, scp, nym,m

σ ← (A′, Â, d, πσ), Σ ← (m, scp, σ, nym)

SIG← SIG ∪ {(uid, Σ)}
return (σ, nym)

else : Run SIGN as usual

SNDU(uid,Min)

Check input as default SNDU

Update HUL as default SNDU

iuid ← iuid + 1, Parse Min as n

if iuid = kuid :

uid∗ ← uid, Y ← D1

Simulate πY with (Y, n)

return ((Y, πY ), cont)

Continue from line 6 of SNDU

LINK(uid, lm,ΣΣΣ)

Check input as default LINK

if uid = uid∗ :

LNK← LNK ∪ {(uid, lm,ΣΣΣ){
Parse ΣΣΣ as {(mi, scpi, σi, nymi)}i∈[n]
hscp←

∏
i∈[n]

H(scpi), nym←
∏
i∈[n]

nymi

Simulate πl with hscp, nym

return πl

else Run LINK as usual

Fig. 16: Oracles used by A′ to answer A against signature non-frameability.

logarithm challenge. Still, A′ exits early when uid 6= uid∗, returning ⊥. This
happens with probability 1 − 1/q, assuming q executions of SNDU. Therefore,
the probability that A′ computes the discrete logarithm from A winning the
non-frameability game with probability ε is given by: AdvDLA′ (τ) = ε/q, which
is non-negligible if ε is non-negiligible.

B.6 Link Non-frameability

Link non-frameability follows from the uniqueness property of pseudonyms, and
zero-knowledgeness and soundness of SPK, under the discrete logarithm assump-
tion.

Proof (Link Non-frameability). We describe the two adversaries A′1 and A′2 that
leverage adversaries A1 and A2 breaking link non-frameability using condition
1 or 2, respectively, to break the discrete logarithm problem.

Adversary A′1 against discrete logarithm. A′1 receives an instance (D0,D1 = Da
0)

of the discrete logarithm problem. It programs the random oracle H as described
next. The rest of the oracles are as in the link non-frameability game.

Random oracle H. For a newly queried input in, H uniformly chooses at
random r ←$ Zp, computes G ← D1D

r
0, adds (in, r) to its internal list HL and

returns G. For previously queried inputs, it responds consistently. The behaviour
of H is clearly indistinguishable from random.
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Reduction to Discrete Logarithm. Since H behaves randomly, and the rest
of the oracles are the default ones, the simulation by A′1 is indistinguishable to
A1 from real executions. Assume that A1 wins the link non-frameability game
through winning condition 1 with probability ε. Note that the link proof πl and
all signatures in ΣΣΣ have either been produced by the real oracle (specifically,
not simulated) or by the adversary. Therefore, after soundness of SPK, for every
(mi, scpi, σi, nymi) = Σi ∈ ΣΣΣ, nymi = H(scpi)

yi , for some yi which we can
extract. Furthermore, given the construction of H, H(scpi) = Da+ri

0 and nymi =

D
(a+ri)yi
0 , for some ri picked by H. Since πl verifies correctly, we also know

that D
y
∑
i∈[n](a+ri)

0 = hscp
y

= nym = D
∑
i∈[n](a+ri)yi

0 , for some y that can be
extracted – again, because SPK is sound. This is exactly the same as in the
second winning condition of the link traceability game. Therefore, arguing as
we did there, A′1 can compute the solution to the discrete logarithm problem as

a =
∑
i∈[n](y−yi)ri

−ny+
∑
i∈[n] yi

.

Adversary A′2 against discrete logarithm. A′2 prepares the environment and con-
figures the oracles as the adversary against signature non-frameability.

Reduction to the discrete logarithm problem. As described in the case of signa-
ture non-frameability, the outputs by the simulated oracles are indistinguishable
from the real oracles. Assume that A2 wins the link non-frameability game,
through winning condition 2, with probability ε. Since the produced link proof
πl is valid and has not been simulated, we can extract y from it such that
hscp

y
= nym. In addition, since all the signatures in ΣΣΣ = {Σi}i∈[n] have been

produced by the simulated SIGN oracle, we also know that hscp = D
∑
i∈[n] ri

0 ,

and nym = D
∑
i∈[n] ri

1 = D
a
∑
i∈[n] ri

0 , for some ri produced by H. Therefore,

hscp
y

= D
y
∑
i∈[n] ri

0 = D
a
∑
i∈[n] ri

0 , and y = a. Asuming q executions of the
SNDU oracle, the probability that A2 picks uid∗ is 1/q. Then, the probability
of A′2 breaking the discrete logarithm is given by AdvDLA′2 (τ) = ε/q, which is
non-negligible if ε is non-negligible.

C Proofs of Security for ΠsUCL

C.1 Correctness

Signature correctness follows from the equivalent in the basic setting as, for
verification of individual signatures, the sequence information is ignored. Next,
we prove correctness of sequential links.

Correctness of Sequential Link. This property is formalized in Fig. 17. The
adversary wins if it returns a set of {(mi, scpi)}i∈[n] pairs for which a matching
set of honestly generated signatures and an honestly generated proof of sequential
linking πseq do not verify.
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Experiment: Expcorr-slink
A,sUCL (τ)

param← Setup(1τ )

(ipk, isk)← IKGen(param)

(uid, {mi, scpi}i∈[n], lm)← AADDU(ipk)

for i ∈ [n] : (σ̃i, nymi, i+ 1)← SSign(ipk,USK[uid], i,mi, scpi)

πseq ← SLink(ipk,USK[uid], 1, lm, {(mi, scpi, σ̃i, nymi)}i∈[n])
if VerifySLink(ipk, lm, {(mi, scpi, σ̃i, nymi)}i∈[n], πseq) = 0 :

return 1

return 0

Fig. 17: Correctness of sequential link experiment.

Proof (Correctness of Sequential Link). Let (A, x, y, s, k) be the secret key of user
uid, and {(mi, scpi, (σi, (seqi,1, seqi,2, seqi,3)), nymi)}i∈[n] and πseq = {xi}i∈[n]

respectively be a set of signed messages and proof of them being sequentially
linked, all created honestly by uid. We focus on the seq component, correctness of
all the other parts following directly as in Expcorr-link

A,UCL . Since every (seqi,1, seqi,2, seqi,3, )
is generated honestly, we know that, for every i, ni = PRF.Eval(k, 0||i) and
xi = PRF.Eval(k, 1||i), and that seqi,1 = H′(xi), seqi,2 = H′(xi ⊕ xi−1) and, also
seqi,3 = ni. Therefore, πseq = (πl, {xi}i∈[n]) is correctly verified by VerifySLink.

C.2 Anonymity

Anonymity in ΠsUCL follows from zero-knowledgeness and simulation-soundness
of SPK, indistinguishability of the pseudonyms from random numbers, and the
pseudorandomness property of PRF, under the DDH assumption and in the
random oracle model.

Proof (Anonymity). We prove anonymity in ΠsUCL by building on the anonymity
reduction used in the ΠUCL through a hybrid approach. Basically, we define 3
games: Game 1 is the Expsanon-b

A,sUCL definition; Game 2 is as the anonymity reduction
for ΠUCL, but adding the new seq elements to the signatures; finally, Game
3 replaces the seq elements in signatures by the challenge user with random
numbers. We define them next.

Game 1. This is Expsanon-b
A,sUCL.

Game 2. This is the anonymity reduction for ΠUCL described in Fig. 9 of Ap-
pendix B.2, except that the oracles are extended to include the new elements.
Specifically:

– The SSIGN oracle, when called for uid∗, uses the PRF to compute the xi and
xi−1 values that are then hashed to produce seq = (seq1, seq2, seq3) as in
real calls to Sign. seq is added to the produced signature.

– The CH-SSIGNb oracle is extended similarly as SSIGN.
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– The SLINK and CH-SLINKb oracles now also return the xi values correspond-
ing to the signatures being linked.

Indistinguishability between Game 1 and Game 2 is, as in the anonymity
reduction in Appendix B.2, ensured by the DDH assumption.

Game 3. This is as Game 2, but the xi values produced by SSIGN for uid∗, and
by CH-SSIGNb, are replaced by random numbers.

Indistinguishability between Game 2 and Game 3 is ensured by the pseudo-
random property of the PRF.

Consequently, given an adversary that is able to distinguish, with probability
εPRF, pseudorandom numbers generated with PRF from truly random numbers,
the total advantage of an adversary against anonymity in ΠsUCL is εDDH + εPRF,
which is negligible under the DDH assumption and pseudorandomness of PRF.

C.3 Sequentiality

Sequentiality in our ΠsUCL follows from collision resistance and preimage resis-
tance of H′, and pseudorandomness of PRF.

Proof (Sequential Link Order). We directly describe how A′ uses the output
produced by A to find a collision depending on the winning condition. The
oracles exposed by A are all the default oracles.

Reduction to Collision Resistance. Assume A produces a (lm∗,ΣΣΣ∗, π∗seq) tuple
winning the sequential game. Then, it has found a sequence of signatures within
Σ = ΣΣΣ′ ∪ SIG[uid∗] that is incorrectly ordered with respect to SIG[uid∗], but for
which the produced proof is valid. We describe how to extract collisions for H′

in three basic cases, and then argue that (at least) one of these three cases must
arise if A wins the game. The corresponding adversary A′ finding collisions from
A breaking the sequential link order property is given in Fig. 18.

Herafter, we use Σi to denote honestly generated signatures appearing in
SIG[uid∗], which can be parsed as (·, ·, (·, (seqi,1, seqi,2, seqi,3), ·); Σ∗i to denote
signatures in ΣΣΣ∗, which can be parsed as (·, ·, (·, (seq∗i,1, seq∗i,2, seq∗i,3), ·); and Σ′i
to denote signatures inΣΣΣ′, which can be parsed as (·, ·, (·, (seq′i,1, seq′i,2, seq′i,3), ·).
The x values used to compute the seqi components of honest signatures are
denoted with xi, and the x values revealed by A in π∗seq are denoted with x∗i .
The sizes of each set will be denoted with n for SIG[uid∗], n∗ for ΣΣΣ∗, and n′ for
ΣΣΣ′.

– Skipped honest signatures. ΣΣΣ∗ contains (Σ∗i , Σ
∗
i+1), in that order, such that

in SIG[uid∗], Σj = Σ∗i and Σj+k = Σ∗i+1, for k > 1 (i.e., Σj+k is the k-th
signature in SIG[uid∗] after Σj .)
Note that, since π∗seq is a valid proof, seq∗i+1,1 = H′(x∗i+1), seq∗i+1,2 = H′(x∗i+1⊕
x∗i ), and x∗i+1 6= x∗i , because the corresponding signatures are accepted by
the Bulletin Board. Also, since Σj+k was honestly generated, seqj+k,1 =
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H′(xj+k) and seqj+k,2 = H′(xj+k⊕xj+k−1), where A′ can (re)compute xj+k
and xj+k−1. Then, if xj+k 6= x∗i+1, (xj+k, x

∗
i+1) is a collision for seqj+k,1 =

seq∗i+1,1. Otherwise, if xj+k = x∗i+1, A′ compares xj and x∗i . If xj 6= x∗i , then
(xj , x

∗
i ) is a collision for seqj,1 = seq∗i,1. But, if xj = x∗i , then xj+k−1 6= xj =

x∗i , because k > 1 and therefore j+ k− 1 > j, so xj+k⊕xj+k−1 6= x∗i+1⊕x∗i
and (xj+k ⊕ xj+k−1, x

∗
i+1 ⊕ x∗i ) is a collision for seqj+k,2 = seq∗i+1,2.

– Swapped honest signatures. ΣΣΣ∗ contains (Σ∗i , Σ
∗
i+1), in that order, such that

Σ∗i = Σj+k and Σ∗i+1 = Σj , for k ≥ 1, in SIG[uid∗] (i.e., Σj+k is the k-th
signature in SIG[uid∗] after Σj .)

Again, since π∗seq is a valid proof, and the signature is accepted by the Bul-
letin Board, seq∗i+1,1 = H′(x∗i+1), seq∗i+1,2 = H′(x∗i+1 ⊕ x∗i ), and x∗i+1 6= x∗i .
Also, since Σj+k was honestly generated, seqj+k,1 = H′(xj+k) and seqj+k,2 =
H′(xj+k⊕xj+k−1), where A′ can recompute xj+k, xj+k−1. If xj 6= x∗i+1, then
(xj , x

∗
i+1) is a collision for H′, since seqj,1 = H(xj) = H(x∗i+1) = seq∗i+1,1. If

xj = x∗i+1, A′ compares xj+k and x∗i . Suppose xj+k 6= x∗i . Then, (xj+k, x
∗
i )

is a collision for H′, since seqj+k,1 = H′(xj+k) = H′(x∗i ) = seq∗i,1. Otherwise,
if xj+k = x∗i , then xj−1 6= x∗i , because xj−1 and xj+k are both honestly
generated and therefore xj−1 6= xj+k = x∗i , since j + k > j − 1. Therefore,
xj ⊕ xj−1 6= x∗i+1 ⊕ x∗i = xj ⊕ xj+k, and (xj ⊕ xj−1, x

∗
i+1 ⊕ x∗i ) is a collision

for H′, since seqj,2 = H′(xj ⊕ xj−1) = H′(x∗i+1 ⊕ x∗i ) = seq∗i+1,2.

– Inserted signatures (fromΣΣΣ′.)ΣΣΣ∗, of size n∗, contains either (a) (Σ∗1 , Σ
∗
2 , . . . ),

(b) (. . . , Σ∗i−1, Σ
∗
i , Σ

∗
i+1 . . . ), or (c) (. . . , Σ∗n∗−1, Σ

∗
n∗) where, respectively,

Σ∗1 = Σ′j , Σ
∗
i = Σ′j and Σ∗n∗ = Σ′j , for some i ∈ [2, n∗ − 1] and j ∈ [n′].

For (a), we asume without loss of generality that Σ∗2 ∈ SIG[uid∗]. Otherwise,
we repeat the following argument, but setting Σ∗1 to Σ∗2 and Σ∗2 to Σ∗3 , until
Σ∗2 ∈ SIG[uid∗], which must happen, asΣΣΣ∗∩SIG[uid∗] 6= ∅. Since π∗seq is a valid
proof, seq∗2,1 = H′(x∗2) and seq∗2,2 = H′(x∗2 ⊕ x∗1), where x∗2 6= x∗1. If Σ∗2 = Σ`,
then if x` 6= x∗2, we have a collision in seq`,1 = H′(x`) = H′(x∗2) = seq∗2,1.
Otherwise, when x` = x∗2 observe that, when x`−1 is computed to produce
Σ`−1, uid∗ has not yet been corrupted and is therefore obtained through the
PRF. Also, when seq′j = seq∗1 is computed by A, uid∗ has not been corrupted
and A has no knowledge of x`−1 due to the pseudorandomness property of
PRF (and the preimage resistance property of H′, if A produces seq′j after
seq`−1.) Additionally, after the preimage resistance property of H′, we can
assume that A computes seq′j,1 by first arbitrarily computing x′j and making
seq′j,1 ← H′(x′j) as, otherwise, A will not be able to produce a preimage
for π∗seq. Therefore, with overwhelming probability, x∗1 = x′j and, under the
pseudorandomness property of the PRF in our construction, the probability
that x∗1 = x`−1 when A computes it is negligible, making the probability
that A finds a matching sequence also negligible.

Assuming that at least one signature in SIG[uid∗] follows Σ∗i = Σ′j , the anal-
ysis for case (b) is analogous to that of case (a), but ignoring the signatures
preceeding Σ∗i in ΣΣΣ∗. Otherwise, assuming that at least one signature in
SIG[uid∗] preceeds Σ∗i = Σ′j , we can proceed as in case (c), analysed next.
Note that, since SIG[uid∗] ∩ΣΣΣ∗ 6= ∅, at least one of them must occur.
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For case (c), since π∗seq is a valid proof, then seq∗n∗,1 = H′(x∗n∗) and seq∗n∗,2 =
H′(x∗n∗⊕x∗n∗−1), for x∗n∗ 6= x∗n∗−1. Following a similar argument as in (a), we
assume without loss of generality that Σ∗n∗−1 = Σ` ∈ SIG[uid∗]. Otherwise,
ignore Σ∗n∗ and take Σ∗n∗−1 to be “the new” Σ∗n∗ , until Σ∗n∗−1 ∈ SIG[uid∗],
which must eventually occur. Since Σ` ∈ SIG[uid∗], then seq`,1 = H′(x`), for
some x` value that A′ can recompute as needed. Suppose then that the x∗n∗−1

value used by A in π∗seq is different than x` (which A can only reproduce
after corrupting uid∗). Then, (x`, x

∗
n∗−1) is a collision for seq`,1 = H′(x`) =

H′(x∗n∗−1) = seq∗n∗−1,1. Otherwise, assume that x∗n∗−1 = x`. Then, under
the preimage resistance property of H′, x∗n∗ must actually be the value used
to compute seq∗n∗,1 = seq′j,1, i.e., seq′j,1 = H′(x∗n∗), and seq′j,2 = H′(x∗n∗ ⊕
x∗n∗−1) = H′(x∗n∗ ⊕ x`). However, note that, when A computes seq′j , under
the pseudorandomness property of the used PRF (and preimage resistance
of H′, if seq′j is computed after Σ`), A has no knowledge about xj , except
with negligible probability, and therefore this only happens with negligible
probability.

To complete the argument recall first that, in our construction, all signatures
are uploaded to an append-only bulletin board. At this point, signatures are
independently verified and, moreover, the bulletin board checks that no seq info
is repeated across signatures. Then, observe that A is restricted to produce ΣΣΣ∗

using signatures from ΣΣΣ′ and SIG[uid∗]. Therefore, all A can do is remove signa-
tures from SIG[uid∗], and then, we can apply the analysis in the Skipped honest
signatures case; permute signatures in SIG[uid∗], and we can apply the analysis in
Swapped honest signatures or Skipped honest signatures; or, finally, insert in any
arbitrary location and as many times as it wants, dishonest signatures from ΣΣΣ′,
and we can apply the argument in Inserted signatures from ΣΣΣ′, as at least one
signature from SIG[uid∗] must be present in ΣΣΣ∗. Consequently, as shown in the
analysis of the individual cases, except for cases that only occur with negligible
probability, A′ finds a collision for H′.

D Generalized Expanded DDH Self-Reduction

Next, we generalize in a trivial manner the Expanded DDH Self-Reduction given
in [29], providing an algorithm that allows us to obtain any arbitrary number of
DDH challenges from a single DDH challenge. This is used in the reduction of
the anonymity property in our scheme. The algorithm, DDHRerandt, is given in
Fig. 9.

We extend the proof in [29] to our generic case. Note the variable renaming
with respect to [29] (to ensure consistency with the naming conventions used in
this paper.)

Theorem 3 (Generalized Expanded DDH Self-Reduction [29]). Let (p,D0 =
g,D1 = ga,D2 = gb,D3 = gc) define a DDH problem instance. If (D0,D1,D2,D3)
is a DDH tuple, DDHRerandt produces t DDH tuples of the form (D̃0 = g, D̃1 =
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A′(H′)

param← Setup(1τ ), (ipk, isk)← IKGen(param)

(uid∗,ΣΣΣ′, state)← AADDU,SNDI,SSIGN,SLINK(choose, ipk)

if uid∗ /∈ HUL ∨ USK[uid∗] = ⊥ : return 0

HUL← HUL \ {uid∗},CUL← CUL ∪ {uid∗}

(lm∗,ΣΣΣ∗, π∗seq)← AADDU,SNDI,SSIGN,SLINK(forge, state,USK[uid∗], stuid∗)

ΣΣΣ ←ΣΣΣ′ ∪ SIG[uid∗]

// Skipped honest signatures

if ∃Σj , Σj+k ∈ SIG[uid∗], k > 1, (Σ∗i , Σ
∗
i+1) ∈ ΣΣΣ∗ s.t. Σ∗i = Σj ∧Σ∗i+1 = Σj+k :

if xj+k 6= x∗i+1 : return (xj+k, x
∗
i+1)

else :

if xj 6= x∗i : return (xj , x
∗
i )

else : return (xj+k ⊕ xj+k−1, x
∗
i+1 ⊕ x∗i )

// Swapped honest signatures

if ∃Σj , Σj+k ∈ SIG[uid∗], k ≥ 1, (Σ∗i , Σ
∗
i+1) ∈ ΣΣΣ∗ s.t. Σ∗i = Σj+k ∧Σ∗i+1 = Σj :

if xj 6= x∗i+1 : return (xj , x
∗
i+1)

else :

if xj+k 6= x∗i : return (xj+k, x
∗
i )

else : return (xj ⊕ xj−1, x
∗
i+1 ⊕ x∗i )

// Inserted signatures (case (a))

if ∃Σ` ∈ SIG[uid∗], Σ′j ∈ ΣΣΣ′, (Σ∗1 , Σ∗2 ) ∈ ΣΣΣ∗ s.t. Σ∗1 = Σ′j ∧Σ∗2 = Σ` ∈ SIG[uid∗] :

if x` 6= x∗2 : return (x`, x
∗
2)

// Inserted signatures (case (c))

if ∃Σ` ∈ SIG[uid∗], Σ′j ∈ ΣΣΣ′, (Σ∗n∗−1, Σ
∗
n∗) ∈ ΣΣΣ∗ s.t. Σ∗n∗−1 = Σ` ∧Σ∗n∗ = Σ′j :

if x` 6= x∗n∗−1 : return (x`, x
∗
n∗−1)

return ⊥

Fig. 18: Adversary A′ against collision resistance of H′ from A breaking the
sequential link order property.

gãi , D̃2 = gb̃, D̃3 = gc̃i); or a random (2t + 2)-tuple if (D0,D1,D2,D3) is not a
DDH tuple.

Proof. (Generalized Expanded DDH Self-Reduction [29]). We distinguish two
cases, depending on whether the input is a DDH tuple or not.

Case 1. Suppose (D0,D1,D2,D3) is a DDH tuple, i.e., (D0 = g,D1 = ga,D2 =
gb,D3 = gab). Then, for every i ∈ [1, t], D̃t+i+1 = guiab+wib+uiva+wiv. Letting
ãi = uia + wi and b̃ = b + v, we have that ãib = uiab + uiav + wib + wiv.

Therefore D̃t+i+1 = gãib̃ and (D̃0 = g, D̃i = gãi , D̃t+1 = gb̃, D̃t+i+1 = gãib̃) is a
DDH tuple.

Case 2. Suppose (D0,D1,D2,D3) is not a DDH tuple, i.e., (D0 = g,D1 =
ga,D2 = gb,D3 = gc = gab+r) for some r 6= 0. We have that, for i ∈ [t],
D̃t+i+1 = guic+wib+uiva+wiv = guiab+uir+wib+uiva+wiv = g(uia+wi)(b+v)+uir. Let-

ting ãi = uia + wi and b̃ = b + v, g(uia+wi)(b+v)+uir = gãib̃+uir. Where, since
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ui, r 6= 0, gãib̃+uir 6= gãib̃ is a random element. Consequently, (D̃0 = g, D̃i =

guia+wi , D̃t+1 = gb+v, D̃t+i+1 = gãib̃+uir 6= gãib̃) is not a DDH tuple.
Since all ui, wi values are chosen uniformly at random within Z∗p, and only

used once for the corresponding tuple, all tuples will be different with over-
whelming probability. In consequence, when (D0,D1,D2,D3) is a DDH tuple,
for i ∈ [t], every tuple composed by (D̃0, D̃i, D̃t+1, D̃t+i+1) will also be a (dif-
ferent) DDH tuple. Conversely, when (D0,D1,D2,D3) is not a DDH tuple, then
every (D̃0, D̃i, D̃t+1, D̃t+i+1) will be a (different) not DDH tuple; or, equivalently
(D̃0, ..., D̃2t+1) is a random (2t+ 2)-tuple.
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