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Abstract—In this paper, we firstly presented optimized im-
plementations of Montgomery multiplication on 64-bit ARM
processors by taking advantages of Karatsuba algorithm and
efficient multiplication instruction sets for ARMG64 architectures.
The implementation of Montgomery multiplication improved the
performance of public key cryptography (e.g. CSIDH, ECC,
and RSA) implementations on ARM64 architectures, directly.
Last but not least, the performance of Karatsuba algorithm
does not ensure the fastest speed record, while it is determined
by the clock cycles per multiplication instruction of target
ARM architectures. In particular, recent Apple processors based
on ARMG64 architecture show lower cycles per instruction of
multiplication than that of ARM Cortex-A series. For this reason,
the schoolbook method shows much better performance than the
sophisticated Karatsuba algorithm on Apple processors. With
this observation, we can determine the proper approach for
multiplication of cryptography library (e.g. MS-SIDH) on Apple
processors and ARM Cortex-A processors.

Index Terms—Montgomery Multiplication, ARM64, Public
Key Cryptography, Software Implementation

I. INTRODUCTION

The modular reduction is the fundamental building block
of conventional public key cryptography (e.g. RSA [1], El-
Gamal [2], and ECC [3], [4]) to post-quantum cryptography
(e.g. RLWE [5], SIDH [6], and CSIDH [7]). One of the most
well-known modular reduction techniques is Montgomery
algorithm [8]. This approach replaces the complicated division
operation for the modular reduction in relatively simple multi-
plication operations. For this reason, efficient implementations
of Montgomery multiplication on target processors have been
actively studied. In this paper, we firstly introduce the opti-
mized Montgomery multiplication on ARM64 processors and
show the impact on public key cryptography protocols (i.e.
CSIDH)!. Furthermore, we found that recent Apple processors
provide the multiplication with very low latency. This nice fea-
ture leads to the new direction to implement the multiplication
on Apple processors (i.e. simple schoolbook approach rather

IThe proposed method is applicable to RSA, and ECC, as well.
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than sophisticated Karatsuba algorithm). With this observation,
we can improve the performance of cryptography libraries
based on Karatsuba algorithm (e.g. MS-SIDH) on recent Apple
processors by replacing the multiplication to the schoolbook
method?.

The remainder of the paper is structured as follows: We
review the related work on Montgomery multiplication, Karat-
suba algorithm, and ARM64 processors in Section II. We
present the optimized implementation of Montgomery mul-
tiplication on ARM64 processors in Section III. In Section
IV, we present results on various 64-bit ARM platforms. We
end with conclusions in Section V.

II. RELATED WORKS
A. Montgomery Multiplication

Montgomery multiplication consists of multiplication and
reduction parts. The multiplication can be implemented in
different ways by altering the order of operands and inter-
mediate results. The operand-scanning method performs a
multiplication in a row-wise manner. This approach is suitable
for processors with many registers to retain long intermediate
results. The alternative approach is the Comba (i.e. product-
scanning) method [9]. Partial products are computed in a
column-wise manner and only small number of registers is re-
quired to maintain the intermediate result. Furthermore, since
all partial products of each word of the result are computed and
added consecutively, the final result word is obtained directly
and no intermediate results have to be stored or loaded in
the algorithm In [10], a hybrid-scanning method combining
two aforementioned methods is presented. Afterward, several
optimized implementations for multiplication were suggested
by caching operands [11], [12]. However, the complexity of
partial products for N-word multiplication is N?2.

Karatsuba algorithm computes a multiplication with only
three partial products compared to four that are required by
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Algorithm 1 Montgomery Reduction

Require: An m-bit modulus M, Montgomery radix R = 2™,
two m-bit operands A and B, and m-bit pre-computed
constant M’ = —M~! mod R

Ensure: Montgomery product (Z = (A - B) - R~ mod M)

. T+ A-B

2: Q<+ T -M modR

3.2+ (T+Q-M)/R

4. if Z > M then Z < Z — M end if
5: return Z

aforementioned multiplication methods [13]. The number of
partial products is estimated by N'923, which is a great
improvement compared to N2 of the standard multiplication.
The previous multiplication on ARMG64 processors mainly
utilized the Karatsuba algorithm for optimal performance.

Montgomery algorithm was firstly proposed in 1985 [8].
Montgomery algorithm avoids the division in modular mul-
tiplication by introducing simple shift operations. Given two
integers A and B and the modulus M, to compute the product
P = A.- Bmod M in Montgomery method, operands A
and B are firstly converted into Montgomery domain (i.e.
A=A -Rmod M and B’ = B - R mod M). For efficient
computations, Montgomery residue R is selected as a power
of 2 and constant M’ = —M ! mod 2" is pre-computed.
To compute the product, following three steps are conducted:
(1) compute T' = A - B; (2) perform Q = T - M’ mod 2™,
(3) calculate Z = (TJEM and (4) compute final reduction
Z «— Z—M if Z > M. Detailed descriptions of Montgomery
reduction is available in Algorithm 1.

There are two approaches, including separated and inter-
leaved ways, for Montgomery multiplication. The interleaved
approach reduces the number of memory access for intermedi-
ate result, but many implementations on ARM64 selected the
separated approach. The separated implementation can employ
the most optimal approach for multiplication and reduction
operations each. In this paper, we also selected the separated
approach. Both multiplication and Montgomery reduction
parts are optimized with Karatsuba algorithm. In particular,
we utilized the Karatsuba based Montgomery reduction by
[14].

In Table I, the comparison of Montgomery multiplication on
64-bit ARMv8 Cortex-A processors is given. Previous works
[15]-[17] target for Montgomery friendly prime and it’s appli-
cation is limited to only SIKE due to the special prime form.
On the other hand, the proposed Montgomery multiplication
is targeting for random prime and it’s application is CSIDH,
RSA, and ECC.

B. 64-bit ARMvS Processors

ARMVS is a 64-bit architecture for high-performance em-
bedded applications. The 64-bit ARMv8 processors support
both 32-bits (AArch32) and 64-bits (AArch64) architectures.
It provides 31 general purpose registers which can hold 32-
bit values in registers wO-w30 or 64-bit values in registers

Implementation Multiplication Montgomery Reduction Application
Liu et al. [15] Karatsuba - -
Seo et al. [16] Karatsuba Product Scanning SIKE

Seo et al. [17]
Jalali et al. [18]
This work

SIKE
CSIDH, RSA, ECC
CSIDH, RSA, ECC

Karatsuba
Operand Scanning
Karatsuba

Product Scanning
Operand Scanning
Karatsuba
TABLE T
COMPARISON OF MONTGOMERY MULTIPLICATION ON 64-BIT ARMV8

CORTEX-A PROCESSORS.

x0-x30. ARMvS8 processors started to dominate the smart-
phone market soon after the release in 2011 and nowadays
they are widely used in various smart phones (e.g. iPhone
and Samsung Galaxy series) and laptop (e.g. MacBook Pro).
Since the processor is used primarily in embedded systems,
smart phones and laptop computers, efficient and compact
implementations are of special interest. ARMvS8 provides two
64-bit multiplication instructions, MUL and UMULH, both of
which carry out one half of a 64 x 64-bit multiplication. In
both cases, inputs are 64-bit registers. MUL computes the lower
64-bit half of results while UMULH computes the higher 64-bit
half. Details of ARMvS8-A architecture can be found in [19].

ITI. PROPOSED IMPLEMENTATIONS
A. Optimization of Montgomery multiplication

One of the most expensive operation for public key cryp-
tography is modular multiplication. In this paper, we present
the optimal modular multiplication implementation in the
separated way for 64-bit ARM architectures.

First, the multi-precision multiplication is performed in
Karatsuba algorithm. As described in [16], 2-level Karatsuba
computations are performed for 512-bit multiplication on 64-
bit ARM architectures. We further optimized the memory
access by using general purpose registers to retain operands. In
particular, Karatsuba multiplication needs to update operands
but these operands are used in following computations. In this
case, we keep operands in registers to avoid frequent memory
loading operations.

Multiplication and reduction operations are implemented in
one function to avoid the function call and register push/pop
instructions. Intermediate results of multiplication are stored in
STACK memory and the result is directly used in the modular
reduction.

For the computation of Montgomery reduction, the product
(Q < T-M’ mod R) is performed (Step 2 of Algorithm 1) in
ordinary way. Afterward, the product @ - M is computed in a
hybrid way (Step 3) [14]. The complexity of N-word original
Montgomery reduction is N2 + N word-wise multiplications,
while the hybrid Montgomery reduction is % + N word-
wise multiplications. In particular, the hybrid Montgomery
reduction consists of two 256-bit Montgomery reduction in
product-scanning approach and two 256-bit (1-level) Karat-
suba multiplication operations.

28 out of 31 registers are utilized for 512-bit Montgomery
reduction on the ARM64 architecture. The detailed register
utilization is given in Table II. When we perform the hybrid
Montgomery reduction (T+2?L'M), computations (Qr, - My, and
Qpu - Mp) are performed in sub-Montgomery reduction and




Modulus M Quotient Q  Temporal registers ~ Constant M’

8 4 15 1
TABLE IT
REGISTER UTILIZATION FOR MONTGOMERY REDUCTION ON ARM64.

Algorithm 2 Optimized implementation of 256-bit sub-
Montgomery reduction on ARM64 processors.

Input: Modulus (M0-M3), intermediate
results (CO-C3), constant (M_INV), 11: mul , Cl, M_INV
temporal registers (T0-T3). 12: adds c1, c1, T2
Output: Intermediate results (CO-C3), 13: ades €2, C2, T3
quotient (Q0-Q3). 14: adcs C3, C3, xzr

1: mul , CO, M_INV 15: adec c0, C0, xzr
2: mul TO, , MO 16: ...
3: umulh T1, , MO
4: mul T2, , M1 17: mul T2, , M3
5: umulh T3, , M1 18: umulh T3, , M3
19: adds c1, c1, TO
6: adds CO, CO, TO 20: adcs c2, c2, T1
7: ades Cc1, c1, T1 21: adc €3, C3, xzr
8: ades C2, C2, xzr 22: adds C2, C2, T2
9: adcs €3, C3, xzr 23: adcs C3, C3, T3
10: adc €0, xzr, xzr

others (Qr - My and Qg - Mp) are performed in Karatsuba
multiplication, where L and H represent lower and higher
parts of operand.

In Algorithm 2, the optimized implementation of 256-bit
sub-Montgomery reduction on ARM64 processors is given.
Partial products of reduction are performed in the product-
scanning way. Three ARM64 instructions (MUL, UMULH,
and ADD) are mainly utilized for partial products. Since mul-
tiplication operations require 6 clock cycles in Cortex-A series,
the utilization of result directly incurs pipeline stalls [16]. In
Line 1 of Algorithm 2, the quotient (Q0) is generated with 64-
bit wise. This is simply performed with single mul instruction.
In Line 2~5, the quotient (QO0) is directly utilized, which
incurs pipeline stalls. In Line 6~7, the result of multiplication
(TO and T1), which is computed in Line 2~3, is accumulated
to the intermediate result. This approach avoids the read-write
dependency. In Line 10, the register is initialized with xzr
instruction and the carry is obtained in CO register. In Line 11,
the quotient (Q1) is generated but it is not utilized directly. In
particular, the accumulation step (Line 12~15) is performed
with partial products in previous steps. This does not incur
the read-write dependency. Following computations (after Line
16 to end) are performed in the similar way (i.e. read-write
dependency free).

After the sub-Montgomery reduction, the remaining part is
performed with the Karatsuba algorithm [16]. The additive
Karatsuba algorithm performs the addition on the operand.
This updates operands which cannot be used again. In the
proposed implementation, we cached the operand in registers
and this avoids the memory access for the operand re-loading.
Afterward, one sub-Montgomery reduction and one Karatsuba
multiplication are performed. Lastly, the final reduction is
performed in the masked way. Firstly the intermediate result is
subtracted by the modulus. When the borrow bit is captured,

it sets the masked modulus. Otherwise, the modulus is set to
zero. The result is subtracted by the masked modulus.

B. Acceleration of Public Key Cryptography

The proposed implementation of Montgomery multipli-
cation is efficiently optimized. We can directly apply the
proposed Montgomery multiplication to the CSIDH library
by [18]. We checked the improved CSIDH implementation
passed the CSIDH tests and pulic-key validation. Furthermore,
conventional public key cryptography based on random prime
(RSA and ECC) can also take advantages of proposed method.

IV. EVALUATION

The proposed implementation is evaluated on the various
ARMG64 architectures, which is largely divided into ARM
Cortex-A and Apple A series. Detailed specifications for each
processor is given in Table III.

In Table IV, the comparison of clock cycles for 512-bit
Montgomery multiplication and constant-time CSIDH-P511
on 64-bit ARM architectures is given. The proposed imple-
mentations of 512-bit modular multiplication achieved perfor-
mance enhancements than school-book method [18] by 1.25x
and 1.23x on Odroid-C2 and Raspberry-pi4, respectively.
Since the approach is generic, we can apply the proposed
method to larger operand sizes. Montgomery multiplication
is the fundamental operation in PKC. For the case study, we
ported the implementation of Montgomery multiplication to
CSIDH implementation. The performance of key exchange is
improved by 1.16x and 1.23x than previous works on Odroid-
C2 and Raspberry-pi4, respectively.

On the other hand, proposed implementations on Apple plat-
forms show the opposite performance result. The schoolbook
method based 512-bit modular multiplication achieved perfor-
mance enhancements than proposed method by 0.71x, 0.65x
and 0.69x on iPad mini5, iPhone SE2, and iPhonel2 mini,
respectively. The performance of key exchange is degraded by
0.71x, 0.64 %, and 0.72x than previous works on Odroid-C2
and Raspberry-pi4, respectively.

In Table V, the comparison of cycles per instruction on
ARMG64 is given. The timing is measured with the average
cycles after performing 1,000 times of each iteration without
read-write dependency. The timing also includes function call
and push/pop instructions. In ARM Cortex-A series, ratios of
MUL and YAULH are 2.62~4.34 and 4.65~6.20 for Odroid-
C2 and Raspberry-pi4 boards, respectively. This shows that the
multiplication operation is more expensive than the addition
operation on the target ARM Cortex-A architecture. For this
reason, Karatsuba algorithm is effective on ARM Cortex-A
series. On the other hand, ratios of JXIg é and U]Xg éH on
Apple A series are 1.34, 1.31, and 1.47~1.38 for iPad mini5,
iPhone SE2, iPhonel2 mini, respectively.

In Table VI, the number of instructions for Montgomery
multiplication methods is given. Schoolbook method (i.e.
operand-scanning) requires 297 addition, 265 multiplication,
and 134 memory access instructions, respectively. Compared
with the Karatsuba algorithm, 225 addition instructions are




Company Platform Core OS Released Revision Decode  Pipeline depth  Out-of-order execution ~ Branch prediction  Exec. ports
ARM Odroid-C2 Cortex-A53(@1.5GHz) Ubuntu 16.04 2014 ARMV8.0-A  2-wide 8 X Conditional 2
Raspberry-pi4 Cortex-A72(@1.5GHz) Ubuntu 20.10 2015 ARMV8.0-A  3-wide 15 [¢] 0 8
iPad mini5 Al12 (Vortex@2.49GHz) iPadOS 14.4 2018 ARMvVS8.3-A 7-wide 16 [e) -
Apple iPhone SE2 A13 (Lightning@2.65GHz) iOS 14.4 2019 ARMV8.4-A  8-wide 16 [}
iPhone12 mini Al4(Firestorm@3.10GHz) iOS 14.4 2020 ARMv8.4-A  8-wide - -
TABLE III
COMPARISON OF ARMVS8-A CORES ON ARM CORTEX-A AND APPLE A PROCESSORS.
Odroid-C2 Raspberry-pid iPad mini5 iPhone SE2 iPhone12 mini
Implementation Timing [ccx 106] Timing [ccx 106] Timing [ccx 106] Timing [ccx106] Timing [ccx106]
[18] opt [18]/0Opt [18] Opt [18]/Opt [18] Opt [18]/Opt [18] Opt [18]/0Opt [18] Opt [18]/Opt
Montgomery multiplication 1,309 cc 1,044 cc 1.25 973 cc 792 cc 1.23 167 cc 233 cc 0.71 154 cc  235cc 0.65 150 cc 214 cc 0.69
Alice key generation 14,374 12,392 1.16 11,892 9,864 1.21 1,210 1,694 0.71 1,086 1,692 0.64 1,131 1,548 0.73
Bob key generation 14,386 12,392 1.16 12,098 9,916 1.22 1,212 1,681 0.72 1,086 1,693 0.64 1,132 1,557 0.73

Validation of Bob’s key 58 50 1.16 43 35 1.21 8 11 0.71 7 11 0.65 7 10 0.72

Validation of Alice’s key 58 50 1.16 43 35 1.21 8 11 0.71 7 11 0.66 7 10 0.72
Alice shared key generation 14,252 12,628 1.13 11,570 10,099 1.15 1,216 1,705 0.71 1,090 1,690 0.64 1,127 1,572 0.72
Bob shared key generation 14,544 12,555 1.16 12,453 10,114 1.23 1,214 1,681 0.72 1,084 1,706 0.64 1,135 1,546 0.73

Alice total computations 28,684 25,070 1.14 23,504 19,998 1.18 2,434 3,410 0.71 2,183 3,393 0.64 2,265 3,130 0.72

Bob total computations 28,988 24,998 1.16 24,594 20,065 1.23 2,433 3,373 0.72 2,177 3,409 0.64 2,274 3,113 0.73

TABLE IV

COMPARISON OF CLOCK CYCLES (x10%) FOR MONTGOMERY MULTIPLICATION (FOR 512-BIT) AND (CONSTANT-TIME) CSIDH-P511 ON 64-BIT
ODROID-C2, RASPBERRY-PI4, IPAD MINIS, IPHONE SE2, AND IPHONE12 MINI.

Platform MUL UMULH ADD MUL/ADD UMULH/ADD

Odroid-C2 2.37 3.93 0.90 2.62 4.34

Raspberry-pi4 ~ 3.02 4.03 0.64 4.65 6.20

iPad mini5 0.57 0.57 0.42 1.34 1.34

iPhone SE2 0.49 0.49 0.37 1.31 1.31

iPhonel2 mini  0.55 0.51 0.37 1.47 1.38
TABLE V

COMPARISON OF CYCLES PER INSTRUCTION ON ARM64.

Implementation ADD/SUB  MUL/UMULH LDR/STR

Schoolbook Method [18] 297 265 134

Karatsuba Algorithm 522 214 70
TABLE VI

NUMBER OF INSTRUCTIONS FOR 512-BIT MONTGOMERY
MULTIPLICATION METHODS.

optimized away but it requires 51 multiplication and 64
memory access instructions, more than the Karatsuba ap-
proach. Due to the efficient multiplication instruction on
Apple processors, reducing the number of multiplication by
sacrificing the addition operation is not effective. For this
reason, even though processors based on ARM64 architecture,
the implementation technique should be different depending on
cycles per multiplication instruction. This observation is useful
for optimization of public key cryptography on ARM64. For
example, Montgomery multiplication of MS-SIDH library is
based on Karatsuba algorithm. This library can be improved
by using operand-scanning method on Apple products.

V. CONCLUSION

In this paper, we presented optimized Montgomery multipli-
cation implementations for the 64-bit ARM Cortex-A proces-
sors. Proposed implementations utilized the Karatsuba algo-
rithm and ARMv8-A specific instruction sets. This work shows
that proposed implementations on ARM Cortex-A platforms
are more efficient than previous works. However, the platform
with low multiplication latency (e.g. Apple A processors)
achieved the better performance with the schoolbook method.
This is because the evaluation of previous works is usually

conducted on ARM Cortex-A processors. With the observation
on this paper, the implementation should be evaluated on
various ARM platforms for fair comparison and practicality.
The obvious future work is improving the MS-SIDH library
on Apple A processors by utilizing the schoolbook method or
other approaches (i.e. product-scanning and hybrid-scanning).
Furthermore, we will investigate the multiplication method for
various integer length. Lastly, proposed implementation will
be the public domain and other cryptography engineers can
directly use them for their cryptography applications.
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