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Abstract. Quantum Key Distribution or QKD provides symmetric key
distribution using the quantum mechanics/channels with new security
properties. The security of QKD relies on the difficulty of the quantum
state discrimination problem. We discover that the recent developments
in PT symmetry can be used to expedite the quantum state discrimina-
tion problem and therefore to attack the BB84 QKD scheme. We analyze
the security of the BB84 scheme and show that the attack significantly
increases the eavesdropping success rate over the previous Hermitian
quantum state discrimination approach. We design and analyze the ap-
proaches to attack BB84 QKD protocol exploiting an extra degree of
freedom provided by the PT -symmetric quantum mechanics.

1 Introduction

Security and cryptographic mechanisms rely on the secret key between the au-
thorized sender and receiver for the confidentiality or integrity protections. While
public-key cryptography offers mechanisms to exchange keys so that the outcome
of the public-key exchange yields the symmetric keys, the traditional public-key
key exchange based on RSA and Diffie-Hellman Key Exchange are in risk because
of the emerging quantum computing. The advancement of quantum computing
is both in practice (proof-of-concept quantum computers, e.g., IBM [12] and
Google [16]) and in the algorithms building on quantum computers (e.g., Shor’s
algorithm, Ref. [22]). While such quantum computing developments can be used
for expediting the solving of the problems for beneficial purposes, it can also find
its uses for breaking the traditional cryptographic ciphers. The traditional hard-
ness problems anchoring the security of such key exchange algorithms, such as
prime factorization problem, can be solved in polynomial time by the attackers
equipped with quantum computers. National Institute of Standards Technology
(NIST), traditionally influential in standardizing and facilitating the deployment
of cryptographic ciphers, e.g., DES, AES, is therefore currently in the multi-year
process of standardizing quantum-resistant key exchange ciphers.



More recent developments for key exchange/distribution use the sender-
receiver channels, including those using quantum channels/mechanics, Ref. [8,23]
or wireless signal channels in radio-frequency (RF), Ref. [9], or in electrical field
propagation, Ref. [13]. We focus our study on the emerging Quantum Key Dis-
tribution (QKD) which exchanges quantum bits (qubits) between the sender
and the receiver over a quantum channel, such as one based on optical com-
munications, Ref. [10,17,11]. QKD provides a unique security property that the
authorized sender and receiver can detect if the qubit transmissions have been
accessed/eavesdropped and the key compromised so that the sender and receiver
can distinguish between the secret key vs. the eavesdropped key.

Unlike the classical public key cryptography, QKD is based on the difficulty
of the physical problem of the quantum state discrimination, Ref. [2], and on the
no-cloning theorem, Ref. [25]. The goal of the quantum state discrimination is to
find in which state the qubit is, and consists of finding an optimal observable and
strategy of measurements. The no-cloning theorem ensures that an eavesdropper
as able to do the measurement only once, since the qubit cannot be perfectly
copied. Since the security of QKD is based on the laws of physics rather than on
the hard mathematical problem, it is information-theoretically secure as opposed
to assuming a computational bound on the attacker.

We apply the state of the art research on PT -symmetric quantum mechanics
and discover a novel method to increase the eavesdropping success rate of the
attacker against BB84 QKD protocol. PT symmetry enables the attacker to
discriminate the quantum states with higher probability, enabling the advanced
attack to learn the exchanged keys. We construct three approaches for the attack
on BB84 in theory and analyze the practicality and implementation options.

The rest of the paper is organized as follows. Section 2 provides the primer
and the background in BB84 QKD protocol as well as a comparison between
the regular Hermitian quantum mechanics vs. the PT symmetric one. Section 3
explains how PT symmetry can advance the quantum state discrimination and,
building on that, Section 4 describes the three approaches in attacking BB84
and analyzes them. Section 5 discusses the related work focusing on the QKD
in practice and the litearture studying QKD in information-theoretical security.
Lastly, Section 6 concludes the paper.

2 A Primer on QKD and PT Symetry vs. Hermitian
Quantum Mechanics

2.1 BB84 QKD Protocol

While in the classical communications the information is encoded in classical bits,
in quantum communications, the information is encoded in qubits. This allows
to detect the presence of the adversary trying to learn the key since the applied
measurement changes the state of the qubit. By comparing the randomly chosen
measurements, sender and receiver can detect the presence of an evesdropper in
the channel.



Fig. 1: An illustration of the BB84 protocol for the qubit transmission for the
key exchange. The sender Alice (left) transmits the qubits in one of the four
states, e.g., ψ00, while the receiver Bob (right) uses either of the two bases to
make measurements on the received qubits.

BB84 QKD protocol, Ref. [8], uses the set of two bases:{
|ψ00〉 = |0〉
|ψ10〉 = |1〉

and

{
|ψ01〉 = |+〉 = |0〉+|1〉√

2

|ψ11〉 = |−〉 = |0〉−|1〉√
2

(1)

Note, the conversion between the first and second basis can done by the
Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
Alice generates two threads of random classical bits, a and b, of equal length

l and encodes them using the bases in Eqn. 1, by the following block of qubits:

|ψ〉 =

l⊗
i=1

|ψaibi〉

which is sent through an open channel to Bob, as illustrated in Fig. 1. Bob
generates the thread of random classical bits c of the same length l and makes a
measurement in the basis specified by c. Then, Alice and Bob through an open
classical channel establish in which cases the classical bits from b and c coincide
using the results of the measurements in these cases as the shared secret key and
discard the rest.



Fig. 2: An illustration of four states used in the BB84 protocol and the Bob’s
receiving/measurement process. The first column shows the sender Alice’s state;
the second column corresponds to the receiver Bob’s basis; and the third column
shows the Bob’s measurement/decoding result. If Bob’s basis matches and aligns
with Alice’s state, then Bob can correctly decode the qubit with a probability of
1. If Bob’s basis does not match/align with Alice’s state, the it becomes a coin
toss with Bob’s decoding between the two states, i.e., the correct qubit with 0.5
probability. After the qubits have been transmitted (not shown in the diagram),
the sender shares the bases she used for each of the the qubit transmission so
that the receiver and the sender know which qubits were delivered successfully
with the matching state/base. These qubits are used to construct the secret key.

To demonstrate an advantage of the PT -symmetric quantum mechanics over
the Hermitian one for an attack on BB84, we consider the simplest Eve’s attack
in both approaches.

In the conventional Hermitian quantum mechanics, Eve who is trying to
learn the key guesses the basis correctly in 50% of the cases, and in the other
50% of the cases the results of her measurements becomes a coin toss with a
random output, Fig.2. Therefore, on average, Eve is able to guess 75% of the
bits correctly sent by Alice to Bob.

The attacker on BB84 has to discriminate between the four possible states
which are used for the encryption and this is a difficult problem in the Hermitian
quantum mechanics. Even in the case of two non-orthogonal quantum states, it
is not possible to discriminate between them by a single measurement.

BB84 and QKD in general rely on both the quantum state discrimination
problem and the no-cloning theorem. Our research focuses on a PT -symmetric
quantum state discrimination to enhance the eavesdropping rate.

2.2 PT Symmetry vs. Hermitian

PT -symmetric quantum mechanics is a complex extension of the regular Her-
mitian quantum mechanics, Refs. [5,6,19], and provides additional opportunities



to solve the quantum state discrimination problem. In this approach, the condi-
tion of Hermiticity of the Hamiltonian, H = H†, is replaced by a more general
requirement of PT symmetry. The Hamiltonian H is defined as PT - symmetric
if it satisfies the requirement H = HPT .

The action of the parity operator P changes the sign of the quantum-mechanical
coordinate x̂ and the momentum p̂ operators:

Px̂P = −x̂; P p̂P = −p̂

Up to the unitary transformation, P operator is defined as:

P =

(
0 1
1 0

)
The anti-linear time-reversal operator T flips the signs of p̂ and the imaginary

unit i while leaving x̂ invariant:

T x̂T = x̂; T p̂T = −p̂; T iT = −i

In comparison with the Hermitian case, a remarkable property of PT -symmetric
Hamiltonian is that in addition to governing the time evolution of the quantum
state, it allows to manipulate an inner product of two states providing an extra
degree of freedom.

Firstly, it can be exploited for speeding up the quantum evolution. After
being theoretically predicted, Ref. [7], this effect was demonstrated experimen-
tally Ref. [28]. Secondly, this additional degree of freedom plays a crucial role
for the quantum state discrimination problem enabling, in principle, single-
measurement two-state quantum state discrimination, Ref. [4].

However, such an approach involves a similarity transformation of the initial
Hilbert space in which the state vectors are defined into a space spanned by
the eigenvectors of the PT -symmetric Hamiltonian. This transformation can be
only done with the efficiency less than one, and the measurement may produce a
null result. Consequently, even though in principle PT -symmetric quantum state
discrimination involves a single measurement to discriminate N = 2 states, it can
provide inconclusive results (provides definite results with a probability less than
one) even in the absence of the noise. This feature of PT -symmetric quantum
discrimination resembles an unambiguous state discrimination developed in the
framework of the regular Hermitian quantum mechanics, Ref. [15].
PT -symmetric devices for quantum state discrimination are currently under

experimental investigation, Ref. [24], promising practical implementations in the
near future. In Section 5, we provide an estimate on the efficiency η which has
to be achieved in such devices in order to be of practical relevance for an attack
on BB84.

Our Contributions. Using the novel PT -symmetric quantum state discrim-
ination, Ref. [4], we show how to achieve an enhancement of the eavesdropping
rate for an attack on BB84 by approximately 10.5% in comparison with the
regular Hermitian case.



3 Using PT Symmetry for the Quantum State
Discrimination Problem

In this section, we apply PT symmetry for quantum state discrimination prob-
lem which in turn can be used for attacking BB84. The Hamiltonian satisfying
the requirement of PT -symmetry has the following general form, Ref. [4]:

H = HPT =

(
reiθ s
s re−iθ

)
(2)

where r, s and θ are real parameters. The α parameter defined by the pa-
rameters of PT -symmetric Hamiltonian, Eqn.(2), sin (α) = r

s sin (θ) manifests
an additional degree of freedom provided by PT -symmetry. Variation of the α
allows to manipulate an inner product of two quantum states.

In comparison with the Hermitian quantum mechanics, PT -symmetric quan-
tum mechanics has an additional C operator which depends on the α parameter:

C =
1

cos (α)

(
i sin (α) 1

1 −i sin (α)

)
(3)

In the limit α→ 0 this operator coincides with the regular P operator. The
CPT scalar product of two vectors |λ〉 and |µ〉, in the PT -symmetric quantum
mechanics, is defined as:

〈λ|µ〉 = (CPT λ)
T · µ (4)

where T refers to the transposition of a matrix.
Unlike the Hermitian case where the scalar product is fixed, variation of

the matrix elements in PT -symmetric Hamiltonian, Eqn.(2), transforms non-
orthogonal vectors into orthogonal ones, Ref. [7].

In the case when the number of states is N = 2, PT -symmetric quantum
mechanics provides two alternative solutions for the state discrimination, Ref. [4]:

– Solution 1: Adjusting PT -symmetric Hamiltonian in order to make two
quantum states orthogonal under the CPT scalar product.

– Solution 2: Evolving two quantum states by the PT -symmetric Hamiltonian
to make them orthogonal by a regular Hermitian scalar product.

Solution 1 uses the variation of α parameter to adjust the CPT scalar prod-
uct, Eqn. 4 while Solution 2 takes advantage of the fact that H 6= H† and
effectively the Hermitian scalar product is changed by the following matrix,
Ref. [4]:

cos2 (α) eiH
†te−iHt =

(
cos2 (ωt− α) + sin2 (ωt) −2i sin2 (ωt) sin (α)

2i sin2 (ωt) sin (α) cos2 (ωt+ α) + sin2 (ωt)

)
(5)

Note, in the limit α → 0 it reduces to the unit matrix and coincides with
the regular Hermitian case. In our solution described in the Section 4, we con-
sider attacks on BB84 exploiting both these solutions and different parts of the
parameter space of the PT -symmetric Hamiltonian, Eqn. 2.



4 Attack on BB84

In this section, we propose three alternative attack approaches and show that
with the use of PT -symmetric quantum mechanics it is possible to correctly
guess the fraction 5η

6 of the encoded bits sent by Alice to Bob in comparison
with 3

4 in a regular Hermitian case, where η is the efficiency of the similarity
transformation mentioned in Section 1. Although all these three approaches give
the same efficiency for an attacker in theory, they have different implications
when implementing them in practice.

4.1 Approach 1: Unambiguous exclusion of one of the states

First, we consider an option which allows to unambiguously exclude one of the
states, Ref. [3].

In PT -symmetric quantum mechanics the Hilbert space can effectively by
curved similarly to black hole curving the space in general relativity, Ref. [7].
This makes the positions on the Bloch sphere in-equivalent. First, application of
the following gate:

R1 =

(
1 0
0 i

)
allows to convert our states to a form convenient for the subsequent CPT

measurement:{
|ψ00〉 → |0〉
|ψ10〉 → |1〉

and

{
|ψ01〉 → |0〉+i|1〉√

2

|ψ11〉 → |0〉−i|1〉√
2

Now, observe that the CPT scalar product of the transformed states |ψ01〉
and |ψ11〉 vanishes for an arbitrary value of the α parameter:

(〈ψ01|ψ11〉)CPT = 0

since

(〈ψ01|)CPT =
(1 + sin (α))√

2 cos (α)

(
1
−i

)T
This allows to build the following CPT projection operators:

P 1
1 =

(
|ψ01〉〈ψ01|
〈ψ01|ψ01〉

)
CPT

=
1

2

(
1 −i
i 1

)

P 1
2 =

(
|ψ11〉〈ψ11|
〈ψ11|ψ11〉

)
CPT

=
1

2

(
1 i
−i 1

)
which are the CPT observables since:[

CPT , P 1
1,2

]
= 0

and the corresponding CPT measurement:



M̂1 = P 1
1 − P 1

2

The corresponding cosines of angles between our transformed states take the
form:

cos2 (|ψ01〉, |ψ00〉) = cos2 (|ψ01〉, |ψ10〉) =
1 + sin (α)

2

cos2 (|ψ11〉, |ψ00〉) = cos2 (|ψ11〉, |ψ10〉) =
1− sin (α)

2

cos2 (|ψ01〉, |ψ11〉) = 0

Taking the limit α → ±π2 , one of two states |ψ01〉 or |ψ11〉 can be eliminated
depending on the ± sign chosen. For example, if we take the limit α → π

2 , the
measurement produces the result M1 = −1 only in the case when the state is
|ψ11〉 and the result M1 = 1 means that the qubit is in one of the three states,
|ψ00〉, |ψ10〉 or |ψ01〉.

Therefore, an application of this approach would provide an attacker an
unambiguous knowledge of an encoded state in 25% of the cases. On average,
if Eve guesses the base wrongly which happens in 50% of the time, she can
correctly guess the state of the qubit in fraction of 2

3 of the cases in comparison
with 1

2 in the Hermitian case. Therefore, on average, Eve correctly guesses the

encoded bit in 5η
6 of the cases.

However, such an approach involves taking the limit α→ ±π2 meaning that
the absolute values of the matrix elements of the PT -symmetric Hamiltonian
have to be large, and exactly at α = ±π2 the C operator, Eqn. 3, and metrics,
Eqn. 4, become singular (the so-called PT -symmetry breaking point).

As a result, this approach may be challenging for the practical implementa-
tion. Therefore, we consider an alternative solution in the next subsection which
involves moderate values of the α parameter and the CPT measurements.

4.2 Approach 2: CPT measurement with α 6→ ±π
2

We show that it is possible to achieve the same average result without taking
the limit α → ±π2 . To exploit the fact of that the Hilbert space is curved, we
apply the following gate:

R2 =

(
cos
(
ρ
2

)
i sin

(
ρ
2

)
i sin

(
ρ
2

)
cos
(
ρ
2

) ) (6)

and adjust the value of ρ to put our states in the convenient positions for the
subsequent CPT measurement.

After application of this gate, the angles between our reference states in terms
of the CPT scalar product become:

cos (|ψ00〉, |ψ10〉) =
sin (α) sin (ρ)√

1− cos2 (ρ) sin2 (α)



cos (|ψ00〉, |ψ01〉) =
1 + sin (α) (sin (ρ) + cos (ρ))√

2 (1 + cos (ρ) sin (α)) (1 + sin (ρ) sin (α))

cos (|ψ00〉, |ψ11〉) =
1 + sin (α) (cos (ρ)− sin (ρ))√

2 (1 + cos (ρ) sin (α)) (1− sin (ρ) sin (α))

cos (|ψ10〉, |ψ11〉) =
1− sin (α) (sin (ρ) + cos (ρ))√

2 (1− cos (ρ) sin (α)) (1− sin (ρ) sin (α))

cos (|ψ01〉, |ψ11〉) =
sin (α) cos (ρ)√

1− sin2 (ρ) sin2 (α)

cos (|ψ10〉, |ψ01〉) =
1 + sin (α) (sin (ρ)− cos (ρ))√

2 (1− cos (ρ) sin (α)) (1 + sin (ρ) sin (α))

cos (|ψ10〉, |ψ11〉) =
1− sin (α) (sin (ρ) + cos (ρ))√

2 (1− cos (ρ) sin (α)) (1− sin (ρ) sin (α))

cos (|ψ01〉, |ψ11〉) =
sin (α) cos (ρ)√

1− sin2 (ρ) sin2 (α)

Plugging α = π
4 and ρ = 3π

4 makes cos (|ψ00〉, |ψ11〉) = 0. This allows to build
the following projection operators:

P 2
1 =

(
|ψ00〉〈ψ00|
〈ψ00|ψ00〉

)
CPT

=
1

2

(
1− sin(ρ)

1+cos(ρ) sin(α)
−i(cos(ρ)+sin(α)+cos(ρ) sin(α))

1+cos(ρ) sin(α)
i(cos(ρ)+sin(α)+cos(ρ) sin(α))

1+cos(ρ) sin(α) 1 + sin(ρ)
1+cos(ρ) sin(α)

)

P 2
2 =

(
|ψ11〉〈ψ11|
〈ψ11|ψ11〉

)
CPT

=
1

2

(
1 + sin(ρ)

1+cos(ρ) sin(α)
i(cos(ρ)+sin(α)+cos(ρ) sin(α))

1+cos(ρ) sin(α)
−i(cos(ρ)+sin(α)+cos(ρ) sin(α))

1+cos(ρ) sin(α) 1− sin(ρ)
1+cos(ρ) sin(α)

)
which are also the CPT observables:[

CPT , P 2
1,2

]
= 0

Then, applying the following measurement:

M̂2 = P 2
1 − P 2

2

and identifying the result of the measurement M2 with the value of the
encoded bit as: {

M2 = 1⇒ a = 0

M2 = −1⇒ a = 1

allows to correctly guess the encoded bit in 5η
6 fraction of the cases.

However, one potential disadvantage of such an approach is that in practice
it may be simpler to implement the Hermitian measurements instead of the
CPT one. Therefore, we consider one additional option which involves Hermitian
measurements instead.



4.3 Approach 3: Evolution and the Hermitian measurements

We use an alternative Solution 2 of the PT -symmetric quantum state discrim-
ination problem involving the non-Hermitian evolution resulting in an effective
change of the Hermitian scalar product, Eqn. 5.

First, we apply the same gate as we used before, Eqn. 6, which puts two of
our states in the convenient positions for the further Hamiltonian evolution with
σ = π

4 :

|ψ00〉 →
(

cos
(
π−2σ

4

)
−i sin

(
π−2σ

4

)) ; |ψ11〉 →
(

cos
(
π+2σ

4

)
−i sin

(
π+2σ

4

))
The Hamiltonian evolution is performed for a time τ given by the equation:

sin2 (ωτ) =
cos2 α cosσ

2 sinα− 2 sin2 α cosσ
(7)

As a result, 〈ψ00|ψ11〉Hermitian = 0 and analogously to the Approach 2 this
allows to couple the two bases.

After the time given by an Eqn. 7 our four states are converted to:

|ψai,bi〉 → e−iHτ |ψai,bi〉

where the evolution operator is given by:

e−iHτ =
e−ir cos(θ)τ

cos (α)

(
cos (ωτ − α) −i sin (ωτ)
−i sin (ωτ) cos (ωτ + α)

)
The resulting Hermitian projection operators are:

P 3
1,2 =

(
|ψ00,11〉〈ψ00,11|
〈ψ00,11|ψ00,11〉

)
Hermitian

(8)

Analogously, the measurement is constructed as

M3 = P 3
1 − P 3

2

And we identify the result of the measurement M3 = 1 as ai = 0 and
M3 = −1 as ai = 1.

Note, the PT -symmetric Hamiltonian evolution preserves the CPT norm
of the states since [C, H] = 0 but changes the Hermitian norm of the states.
Therefore, we normalize our states in the projection operators in Eqn. 8 corre-
spondingly.

Now we need to find an optimal value of parameter α in such a way that
it minimizes the average error in determining which bit was encoded by Alice.
Performing an analogous calculations to the Approach 2 and expressing the
cosines between the evolved states which now are governed by Eqn. 5, we plot
the corresponding average probability of correct guessing in Fig. 3. Note, there
is a minimal value of the parameter α which makes such Hamiltonian evolution
possible such that sin2 (ωτ) ≤ 1 in Eqn. 7. Additionally, note that this minimal
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Fig. 3: The probability of correct guessing of the encoded bit as a function of the

α parameter. For α < tan−1
(√

1
2

(√
2− 1

))
, solution does not exist.

value of α corresponds to the biggest possible value of probability of correct
guessing in this approach and which is the same as in the previously considered
Approaches 1 and 2 and equals 5η

6 . This optimal value equals:

αOptimal = tan−1

(√
1

2

(√
2− 1

))
≈ 0.427079

4.4 Comparison Between Three Approaches

All three approaches give the same average probability of the eavesdropper to
correctly guess the encoded bit of 5η

6 . However, the Approach 1 has an advantage
that in 25% of the cases allows to unambiguously determine the state which is
used for encoding the bit.

However, Approach 1 requires the parameters of the PT -symmetric Hamil-
tonian, Eqn. 2, to be close to the the PT -symmetry breaking point which may
be challenging for the practical implementation.

Approach 2 involves moderate values of the α parameter and should be there-
fore simpler for the practical implementation.

However, currently many of the PT -symmetric Hamiltonians are implemented
as on optical devices where the Hermitian measurements are simpler to imple-
ment, Refs. [14,20,26,29]. Therefore, the Approach 3 uses an intermediate values
of the α parameter far from the the PT -symmetry breaking point as well as the
Hermitian measurements.

Finally, we estimate the required efficiency of such devices in order for these
Approaches to be relevant in practice. The efficiency of the PT -symmetric quan-



tum state discriminator has to satisfy the requirement:

5p

6
>

3

4
⇒ η > 90%.

The most recent experimental implementation on the PT -symmetric quan-
tum discrimination, Ref. [24], provides a practical experimental platform for the
future studies but does not investigate the efficiency for this purpose.

5 Related Work

In this section, we discuss the related work in QKD and, more specifically, its
practical relevance in implementations and how it offers information-theoretic
security.

5.1 QKD in Practice

Over the past few years, QKD has gained attention for its unique security bene-
fits. Continuous research to find the practical relevance yielded in multiple sim-
ulations, implementations, and modeling frameworks, Refs. [17,27,18]. Decoy-
state QKD uses attenuated coherent light sources in place of perfect single pho-
ton sources and is used in the experiments conducted in Refs. [17,27]. It helps de-
tection of photon-splitting eavesdropping and can be used in high loss channels.
The authors in Ref. [27] demonstrated the first experimental implementation of
decoy-state QKD over telecom fiber. The experimentation include implementa-
tions of one-decoy protocol over 15km telecom fiber and weak+vacuum protocol
over 60km of telecom fiber. The authors in Ref. [17] demonstrated the possibility
of global-scale quantum networks by successfully performing decoy-state QKD,
using BB84, between a ground observation station and a satellite at an alti-
tude of around 500KM. The empirical experiments in these work highlight the
unique security benefits by QKD. Furthermore, the first measurement-device-
independent (MDI) QKD realization in the free-space over the 19.2km in atmo-
sphere, Ref. [11], has been demonstrated approaching a practical satellite-based
QKD.

Other work facilitate the practical implementations by providing a frame-
work building on QKD security relying on the use of a single-photon source and
fundamental laws of security. Device imperfections and practical implementa-
tion limitations play a huge role in keeping QKD security intact. The authors
in Ref. [18] proposed a modeling framework that helps as a reference for BB84
QKD. The proposed framework identifies the device imperfections, engineering
limitations, and design trade-offs.

Our approaches can be used to enhance an eavesdropping rate in these and
similar devices. Therefore, while constructing the QKD in practice, one has to
keep in mind these possibilities if an efficient PT -symmetric device for quantum
state discrimination is implemented on practice.



5.2 QKD for Information-Theoretic Security

According to Shannon, Ref. [21], the system is defined to achieve perfect se-
crecy if the mutual information between the ciphertext and the plaintext is zero:
I (C,M) = 0. As a result, the amount of entropy in the key must be greater or
equal than that in the message, H (K) ≥ H (M). One-time pad encryption by
the Vernam cipher, Ref. [1], fulfills this condition and is provably secure encryp-
tion scheme. However, for its execution, it requires a large key to be exchanged
between the communicating parties, which prohibits its deployment in many
computing/networking applications.

QKD provides a unique opportunity to meet this challenge and make Vernam
cipher of practical relevance. For example, in Ref. [11] more than 3.5×106 sifted
keys were exchanged over the distance of approximately 20 km through the
atmosphere in 13.4 hours. Nevertheless, QKD can also provide the keys for any
other symmetric-key cryptosystems.

Furthermore, the no-cloning theorem preserves the information-theoretic se-
curity. The no-cloning theorem on which the security of the QKD rely, Ref. [25],
is based on the linearity of quantum mechanics and applies both to the Hermitian
as well as the PT -symmetric quantum mechanics since they differ by the sym-
metry properties of the Hamiltonian and are both linear. However, as we show
in this paper, the eavesdropping efficiency in the PT -symmetric quantum me-
chanics can be higher in comparison with the Hermitian one if the corresponding
device is implemented with sufficient efficiency.

6 Conclusion

Recent advances in quantum mechanics and the PT - symmetric quantum state
discrimination can be exploited for attacking and eavesdropping on the key trans-
missions in the BB84 QKD protocol. We construct three approaches for attacking
BB84, all of which have the same performances for guessing the secret bit at 5η

6 .
While our contributions and validations are theoretical, we analyze the prac-

ticality and the relevance of our work. The choice between the Approach 1, 2 or
3 depends on the accessibility of the CPT and Hermitian measurements as well
as the availability of the parameter space of the PT -symmetric Hamiltonian,
Eqn. 2. As QKD becomes more viable and popular with generating/sharing the
keys for securing the next-generation systems, our work informs the security of
QKD and facilitates greater research in the direction. We also call for greater
research bridging physics/quantum mechanics and cybersecurity as we prepare
for the quantum computing era.
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