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Abstract—The module learning with errors (MLWE) prob-
lem is one of the most promising candidates for constructing
quantum-resistant cryptosystems. In this work, we propose an
open-source framework to automatically adjust the level of
parallelism for MLWE-based key exchange protocols to maximize
the protocol execution efficiency. We observed that the number
of key exchanges handled by primitive functions in parallel, and
the dimension of the grids in the GPUs have significant impacts
on both the latencies and throughputs of MLWE key exchange
protocols. By properly adjusting the related parameters, in the
experiments, we show that performance of MLWE based key
exchange protocols can be improved across GPU platforms.

I. INTRODUCTION

The rapid advancement of quantum computer technologies
is making it possible to solve mathematical problems that have
been difficult or intractable for conventional computers [1]. In
particular, most of the public-key cryptosystems currently in
use are expected to be broken by quantum computers. There-
fore, there is a need for post-quantum cryptography which
is secure against attacks from both quantum and classical
computers. For this reason, the National Institute of Standards
and Technology (NIST) is taking the lead in standardizing
post-quantum public-key cryptography, where the last-round
candidate algorithms were published in July 2020 [1]. While
the standardization draft is expected to be released in 2022–
2024, the Kyber [2], [3] key encapsulation mechanism (KEM)
based on the learning with errors [4], [5] (in particular, the
module learning with errors (MLWE) [6]) problem has already
attracted attentions from across the academic fields, as Kyber
is currently one of the four finalists in standardization process.

Recently, the use of graphics processing units (GPUs) as
accelerators for applications outside the domain of computer
graphics, has become widespread, known as general-purpose
computing on the GPU (GPGPU). GPUs have thousands of
arithmetic cores and show higher performance than central
processing units (CPUs) for highly data-parallel computing.
However, the computational power per core on GPUs is
much lower than that of CPUs, and the latency for sequential
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operations is high. Therefore, in order to maximize the com-
puting power of GPUs, we need to implement highly parallel
algorithms that are suitable for the GPU architecture. As for
conventional cryptographic systems such as RSA, implemen-
tations for GPUs have been proposed so far, but they have not
yet achieved a higher performance than those on CPUs [7].
In contrast, learning-with-errors-based cryptography requires
computationally large and complex parallel operations such as
number theoretic transforms (NTT) and matrix multiplication.
Such operations may take a considerable amount of time to
execute on conventional CPUs, but can clearly be accelerated
by parallelized implementations [8]–[11]. However, in order to
run the application efficiently on GPUs, parameters such as the
size of thread blocks allocated to functions and data placement
in memory need to be configured appropriately. Currently, to
the best of our knowledge, there exists no frameworks for
parameter tuning on GPUs for cryptographic applications.

In this paper, we propose an automatic tuning framework
for our full-scratch GPU implementation of Kyber. Different
from the most relevant existing work [8], we develop both the
open-source GPU implementation of Kyber and the parameter
optimization framework 1. In the proposed framework, we
first measure the performance of the GPU implementation by
varying parameters such as the grid and block size. Then, we
determine the optimal parameters by applying a merit function
over the measured performance figures, in this case the latency
and throughput of Kyber key encapsulations. Finally, the
optimized parameters will be fed into the compilation engine
to create the actual running instance of the program. In the
experiments, we show that by using our framework, we can
achieve 85.5% better performance at the maximum over the
baseline implementation.

II. PRELIMINARIES

A. Notations for Lattice Cryptography

In this work, we use n to depict the order ofRq , the quotient
ring of polynomials modulo some integer q, and k the rank
of the module M ∈ Rk

q over Rq . We denote polynomials by

1Source code available at https://github.com/tono-satolab/atpqc-cuda



Algorithm 1 Keypair()→ (pk , sk)

1: z ← {0, 1}32
2: (publicseed‖noiseseed)← SHA3-512({0, 1}32)
3: Â← GenMatrix(publicseed)
4: ŝ← NTTVec(GenNoiseVec(noiseseed , 0))
5: ê← NTTVec(GenNoiseVec(noiseseed , n))
6: t̂← Â ◦ ŝ + ê
7: pk ← (EncodeVec(̂t)‖publicseed)
8: sk ′ ← (EncodeVec(̂s))
9: sk ← (sk ′‖pk‖ SHA3-256(pk)‖z)

Algorithm 2 Enc(pk)→ (c,K)

1: m← SHA3-256({0, 1}32)
2: (K̄‖r)← SHA3-512(m‖SHA3-256(pk))
3: c← CPAPKE.Enc(pk ,m, r)
4: K ← SHAKE-256(K̄‖ SHA3-256(c))

regular font lower-case letters (e.g., a ∈ Rq), vectors by bold
lower-case letters (e.g., a ∈ Rk

q ), and matrices by bold upper-
case letters (e.g., A ∈ Rk×k

q ). In addition, we denote a, a,
and A in NTT-domain by â, â, and Â respectively.

B. The Kyber Scheme

Kyber [2] is a chosen ciphertext attack secure KEM based
on the hardness of the MLWE problem. First, let Rq be the
ring Zq[X]/(Xn + 1), where Xn + 1 is the 2n

′
-th cyclotomic

polynomial, and n = 2n
′−1. Then, let A be a random matrix

following a uniform distribution on Rk×k
q , s be a secret

module with uniform distribution on Rk
q , and e be an error

module following a certain distribution χ on Rk
q . The MLWE

problem is finding s from A and As + e, where s and e are
unknown, and is assumed to be hard [6].

Alg. 1–4 describe the three primitives that construct Kyber
KEM. In Alg. 1, Keypair generates a pair of public key
pk and secret key sk . The public key pk contains publicseed
to generate a random matrix Â, and t̂ = Â ◦ ŝ + ê. Here,
s is a secret module and e is a error module. The secret
key sk contains ŝ, pk , the hash of pk , and a random byte
sequence z. In Alg. 2, Enc generates a ciphertext c by using
CPAPKE.Enc described in Alg. 3, and derives a symmetric
key K. CPAPKE.Enc generates c from u = A · r + e′ and
v = t · r+ e′′ +m, where r is a secret module, e′ and e′′ are
error polynomials, and m is some message. In Alg. 4, Dec ver-
ifies the received ciphertext c using CPAPKE.Enc, and derives
K from c by calculating v − s> · u. In Alg. 3–4, GenMatrix,
GenNoiseVec, and GenNoisePoly generate random matrices,
modules, and polynomials, respectively; NTTVec, INTTVec,
INTTPoly performs NTT [12] for efficient polynomial multi-
plication; CompressVec, EncodeVec, FromMsg, etc. perform
the transformation between polynomials and byte sequences.
SHA3-256, SHA3-512, and SHAKE-256 are hashing algo-
rithms of the Secure Hash Algorithm-3 (SHA-3) function
family [13]. Among the procedures, random generation, NTT,
and the hash algorithm are particularly demanding in terms

Algorithm 3 CPAPKE.Enc(pk ,m, r)→ (c1‖c2)

1: (pk t̂‖publicseed)← pk
2: t̂← DecodeVec(pk t̂)
3: Â> ← GenMatrix(publicseed)
4: r̂← NTTVec(GenNoiseVec(r, 0))
5: e′ ← GenNoiseVec(r, n)
6: e′′ ← GenNoisePoly(r, 2n)
7: u← INTTVec(Â> ◦ r̂) + e′

8: v ← INTTPoly(̂t> ◦ r̂) + e′′ + FromMsg(m)
9: c1 ← CompressVec(u)

10: c2 ← CompressPoly(v)

Algorithm 4 Dec(sk , (c, sk))→ K

1: (sk ′‖pk‖h‖z)← sk
2: (c1‖c2)← c
3: û← NTTVec(DecompressVec(c1))
4: v ← DecompressPoly(c2)
5: ŝ← DecodeVec(sk ′)
6: m′ ← ToMsg(v − INTTPoly(̂s> ◦ û))
7: (K̄ ′‖r′)← SHA3-512(m′‖h)
8: c′ ← CPAPKE.Enc(pk ,m′, r′)
9: K̄ ′′ ← (c == c′)?K̄ ′ : z

10: K ← SHAKE-256(K̄ ′′‖ SHA3-256(c))

of computation, and become the performance bottlenecks in
running Kyber.

As shown in Fig. 1, the key exchange protocol proceeds as
follows. Alice first executes Keypair and transfers pk to Bob.
Bob then runs Enc and returns c to Alice. Alice finalizes the
key exchange protocol by running Dec.

C. CUDA Programming

Compute Unified Device Architecture (CUDA) is a par-
allel computing framework designed for GPU environment
by NVIDIA. Here, we introduce some important concepts in
CUDA programming. A series of parallel processing on the
GPU is treated as a function called kernel, which is launched
by instructions from the host (e.g., CPU). The collection of
threads generated by each kernel is referred to as a grid,
and the threads form a group known as a block. The size
of grid and blocks can be specified when the kernel is booted.
The threads in a block that execute the same instructions
simultaneously in units of 32 constitute a warp.

III. TUNING FRAMEWORK

A. Overview

We have developed a framework shown in Fig. 2, which
automatically tunes cryptographic applications on GPUs for
the given cryptographic protocol, objective function, and ex-
ecution environment. The proposed framework takes three
inputs:
• Host code of primitive functions,
• Device code of kernel functions used in the primitive

functions, and



Alice (receiver) Bob (sender)

(pk , sk)← Keypair()
pk−−−→

(c,K)← Enc(pk)
c←−−

key ← Dec(c, sk) key ← K

Fig. 1. Key exchange protocol based on Kyber [2].
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Fig. 2. Concept of the proposed framework.

• Evaluation function.

The details of primitive functions and kernel functions will be
explained again in Section III-C. In this framework, first, the
measurement program is compiled using the given primitive
function and kernel functions. Then, the tuning mechanism
described in Section III-B determines the optimal parameters
that minimize the evaluation function. Finally, the framework
compiles the primitive functions using the output parameters
and output the optimized executable binary.

B. Tuning Mechanism

The parameter tuning mechanism is implemented as fol-
lows. First, the mechanism gives parameters to the primitive
function, which can be custom designed, and measures the
performance. Then, the execution results are passed to the
evaluation function, and the performance score is recorded.
The above procedure is repeated for all parameters in some
predefined range, and the final output is the optimal parameter
in terms of the performance scores.

In this work, we set the number of key exchanges handled
by primitive functions in parallel, denoted as N , as the
parameter to be optimized. We use l/c as the performance
evaluation function, where l is the execution latency and c is
the throughput of the primitive function. The (average) latency

is calculated according to

l =
1

Il

IL∑
i

ti, (1)

where Il is the number of measurement trials and ti is the
time between the start and the end of one primitive function
for the i-th trial. The throughput is calculated as

c =
NIt
T

, (2)

where T is the time taken to complete the primitive function
after It consecutive executions. We use CUDA streams and
CUDA events to measure execution times.

C. Detailed Components

1) Primitive Functions: The three primitives, Keypair, Enc,
Dec, are implemented as host functions as follows. First,
at program launch, global memory allocation on the GPU
and initialization of CUDA streams and CUDA events are
completed. When each primitive function is invoked, the
framework launches each kernel function with statically given
parameters at compile time. Each kernel function is launched
in parallel with appropriate orders using CUDA streams and
CUDA events. Finally, when all the kernel functions have been
executed, the event is recorded in the specified stream to notify
the completion of the primitive functions.

2) Kernel Functions: We based our implementation upon
the specification provided in [3]. The size of the grid for each
kernel function is set to N , where we assume that each block
processes a single key exchange protocol.
Symmetric Primitives We implemented SHA-3 function

family using warp shuffle instructions based on [14].
Therefore, each block gets assigned to one warp.

Generating Random Matrices GenMatrix assigns k × k
warps to a block, and each warp extends the random
32-bit seed to the width that is long enough to generate
a matrix using SHAKE-128. Then, each warp converts
the output of SHAKE-128 into matrix A by rejection
sampling [15].

Generating Noise GenNoiseVec assigns k warps to a block,
while GenNoisePoly assigns one warp to one block.
Each warp extends the random 32-bit width seed by
SHAKE-256, and converts the output numbers into a
polynomial representation.

Number Theoretic Transform We implemented NTTVec,
INTTVec, and INTTPoly using the Cooley-Tukey algo-
rithm [16] for forward NTT and the Gentleman-Sande
algorithm [17] for inverse NTT [18]. On the GPU, n/2
threads are assigned to apply the transformations to a
single polynomial.

Addition, Subtraction, and Multiplication We
implemented functions for the following six operations:
Â ◦ b̂ + ĉ, Â ◦ b̂, â ◦ b̂, a + b, a + b + c, and a − b.
The size of the blocks are kn/2 threads for the former
three, kn threads for â ◦ b̂, and n threads for a+ b = c
as well as a− b.



TABLE I
TEST ENVIRONMENT AND IMPROVEMENT PERFORMANCES THROUGH THE PROPOSED FRAMEWORK

NVIDIA NVIDIA GTX NVIDIA NVIDIA NVIDIA
K80 TITAN X GTX1080Ti V100 RTX2080Ti

Core Count 2496 3072 3584 5120 4352
Base Clk. Freq. (MHz) 560 1000 1480 1245 1350

Mem. BW (GB/s) 480 336.5 484 900 616

Alice
l (ms) 1.72 (−38.1%) 0.542 (−54.6%) 0.777 (−79.0%) 3.99 (+19.2%) 3.41 (+22.8%)
c (KEX/ms) 26.7 (−10.2%) 83.1 (−23.6%) 136 (+44.6%) 30.4 (+8.65%) 64.8 (+25.9%)
l/c (103ms2/KEX) 645 (−31.1%) 65.2 (−40.6%) 57.3 (−85.5%) 1310 (+9.73%) 527 (−2.46%)

Bob
l (ms) 1.39 (−50.7%) 0.465 (−35.4%) 0.503 (+1.88%) 6.50 (+58.7%) 3.66 (+57.1%)
c (KEX/ms) 48.2 (−40.8%) 149 (−26.7%) 324 (+15.4%) 81.3 (+83.9%) 110 (+97.3%)
l/c (103ms2/KEX) 290 (−16.7%) 31.3 (−11.9%) 15.5 (−11.7%) 800 (−13.7%) 332 (−20.4%)

TABLE II
OPTIMIZED N FOR EACH GPU ARCHITECTURE

GPU Keypair Enc Dec
K80 24 48 88
GTX TITAN X 48 64 48
1080 Ti 72 136 144
V100 80 296 216
2080 Ti 136 376 256

Other Routines Encoding, decoding, verification and
constant-time copying are implemented by unrolling
the loops in the implementation of [3] and assigning a
thread to each of the unrolled loop iterations.

IV. EXPERIMENTS

Here, we first describe the test environment and show the
optimization results of the proposed framework. We choose
the Kyber1024 [8] parameter suite specified for benchmarking.
Kyber1024 corresponds to the NIST Security level 5, which is
equivalent to a block cipher with a symmetric 256-bit key [3],
[19]. For the complete experiment setup, please refer to our
open-source implementation. For baseline comparison, we set
the parameter to be optimized, N to be a fixed integer of
128, according to [9]. We assert that since existing works
offered no automatic parameter tuning mechanisms, a fixed-
parameter approach will always be equally or less efficient
than our optimized parameter set.

Using the Kyber1024-based key exchange protocol, we
measured l, c, and l/c on both Alice and Bob sides. We
benchmarked the framework in several GPU environments,
summarized in Table I. Table I details each GPU environ-
ment, the performance after optimization, and the performance
change before and after our optimization. Here, KEX/ms
is the number of keys that can be exchanged in one mil-
lisecond. The parameters after optimization under each GPU
environment are shown in Table II. From Table I, we see
that the optimization resulted in the improvements of l, c,
and l/c on the Alice’s side by 2.09ms, 68.1 KEX/ms, and
52.2×10−3 ms2/KEX, respectively, on average. Similarly, on
Bob’s side, 2.51ms, 142 KEX/ms, and 29.4×10−3 ms2/KEX
improvements for the same metrics are observed. The biggest
l/c improvement was seen on 1080Ti, where l/c can be
reduced by 85.5% for Alice and 11.7% for Bob. The mean

Keypair Enc Dec0

1

l/
c

Before optimization After optimization

0

1

c

0

1

l

Fig. 3. Comparison of normalized performance scores for primitive functions
on 1080Ti.

improvements in l/c for Alice and Bob are 30.0% and 14.9%,
respectively.

Fig. 3 shows a detailed comparison of normalized l, c,
and l/c for each primitive function before and after the
optimization process on 1080Ti, where l/c improved the most.
Particularly in Keypair, we see that although the throughput
is slightly reduced as a result of reducing N , the latency is
reduced significantly. As a result, the performance metric l/c
is greatly improved.

V. CONCLUSIONS

In this paper, we propose an automatic tuning framework
for post-quantum key exchange scheme implementations on
GPUs. We applied our framework to a full-scratch GPU imple-
mentation of Kyber, a MLWE-based post-quantum KEM. We
explored how parameters, specifically the number of parallel
key exchanges handled by the primitive functions at one time,
impacts the latency l and throughput c of the KEM. Automatic
tuning results showed that, depending on the GPU architecture,
the latency-throughput product can be improved by up to
85.5% and 20.4% on Alice’s and Bob’s sides, respectively,
compared to unoptimized versions.
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