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Abstract. We revisit private optimization and learning from an information processing view. The main
contribution of this paper is twofold. First, different from the classic cryptographic framework of operation-
by-operation obfuscation, a novel private learning and inference framework via either data-dependent
or random transformation on the sample domain is proposed. Second, we propose a novel security
analysis framework, termed probably approximately correct (PAC) inference resistance, which bridges the
information loss in data processing and prior knowledge. Through data mixing, we develop an information
theoretical security amplifier with a foundation of PAC security.

We study the applications of such a framework from generalized linear regression models to modern
learning techniques, such as deep learning. On the information theoretical privacy side, we compare three
privacy interpretations: ambiguity, statistical indistinguishability (Differential Privacy) and PAC inference
resistance, and precisely describe the information leakage of our framework. We show the advantages
of this new random transform approach with respect to underlying privacy guarantees, computational
efficiency and utility for fully connected neural networks.

1 Introduction

Machine Learning (ML) is a generic concept to build mathematical models based on data (samples) to make
predictions or decisions. Within the broad category of data analysis, private ML is receiving significant
attention. Depending on whether analysis results (outputs) need to be disclosed or not, there are two typical
secure learning scenarios: One can be modelled as that a user asks a server to securely compute some function
of its data without information leakage on either the input (data) or output (result). The other has a different
goal, which is to disclose the result of a function on a given data set but trading off the dataset privacy and
result utility, for example, the Census Bureau publishes the average salary of the population in the Boston
area.

As for the former case, homomorphic encryption (HE) provides a solution. HE allows computation over
encrypted data and only the user with the secret key can decrypt the output [AAUCI18, MSM17]]. Many
existing secure learning works follow a protocol where optimization is implemented over encrypted data
(ciphertext). Theoretically, if an honest server follows the protocol, the final decrypted model/output matches
the result of the training as if it had been performed on the plaintext data.

As for the second case, where results are disclosed, Differential Privacy (DP) [DMNSO06] is a representative
example. Most existing DP frameworks utilize an additive noise to randomize an algorithm such that from its
outputs, it is hard for one to distinguish the participation of a single datapoint. The noise added should be in a
scale of the sensitivity of an algorithm. In the DP context, sensitivity is defined as the worst-case difference
on the output of the algorithm that two adjacent datasets can produce. Therefore, through the noise, one can
control the privacy loss. Existing DP setups generally require computation to be implemented by the data
holder so only aggregate information is exposed: for example, gradient descent perturbed with well-scaled
noise across iterations [BST14] can be used to train a private model. In general, determining the sensitivity
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of an algorithm is an NP-hard problem [XTOS8|]. Even with the assistance of homomorphic encryption, if a
neural network is securely trained via a cloud service, making the model differentially private when applying
it for inference is not easy.

If a user just wishes to privately release her data rather than privately computing, the only formal privacy
notion as far as we know is Local DP (LDP) [DJW13]], rooted in randomized response [War63]. In the context
of LDP, each attribute of the user’s data has to be perturbed before release, which makes distinguishing every
single sample hard. LDP comes with a tight and heavy cost that the perturbation added to each sample is in
a scale of ©(d), where d denotes the dimensionality. Provided such heavily noisy data, most medium-size
learning tasks become impossible [PCS™20]. Therefore, this raises an interesting question: how can a user first
privately release her data and resort to outside computation power for model training, while afterwards, the
trained model can be also privately used for further prediction or decision? One straightforward approach could
be a hybrid of cryptography and DP, where the model is first trained over homomorphically encrypted data and
then the model is perturbed every time it is used. This apparently universal framework indeed encounters some
obstacles in practice. Besides the above-mentioned sensitivity challenge, so far, even partial homomorphic
encryption based learning protocols encounter large computational and communication overhead. Even
training over MNIST data will take tens of hours in many state-of-art works [WGCI9, |[ZLX ™" 20] with dozens
of gigabytes of traffic to have reasonable accuracy. From an information processing perspective, in this paper,
we set out to propose a unified framework to preserve security in both scenarios described earlier.

In the context of private learning, one key fact that sometimes gets overlooked is that the purpose of
learning is to develop efficiently a usable model, where either the optimum of the model or the approaches to
construct the model may not be unique. As mentioned earlier, through (partial) homomorphic encryption,
one can securely obtain the exact same model as when the training algorithm is applied on the original data.
Differently, the framework proposed in this paper implements the training procedure on a transformed sample
domain to produce a usable model.

We start from a view of statistical supervised learning where we assume samples s; = (z;,¥;), @ =
1,2, ...,n, are i.i.d. from certain distribution P, which we lack full knowledge of in most cases. Here, z; € X
denotes the feature and y; € ) corresponds to the label. The goal of training is to find a model f* such that

f* = arg m}nE(r,y)NP l(f(-]?), y) (1)

Here, I(-,-) is some loss function selected, for example, square loss, where I(f(z),y) = ||f(z) — yl/>.
Given the model f, for newly incoming feature x, one can make a prediction or decision based on f(z)
to approximate the true label . For a certain model f(-), usually, we call E(, ,).p I(f(x),y) as the
generalization error of f(-) and 2 > | I(f(x;),y;) as the empirical error.

Taking the generalization error as the performance metric of a model, the following observation shows the
relationship amongst a class of optimal models in different sample domains. Consider applying a transform 7'
on the sample (feature) domain, where instead our focus becomes figuring out f7. such that

fi*“ = arg m}n]E(z,y)NP l(f(T(‘T))7y) (2)

Given the relationship between f* and f7, we have the following fact: If the transformation T is bijective
and the optimum of (l)) is unique, then f3 = f* o T~!. We then have the following identity that

E(oy)~p U (T(2)),y) = Eyyor U(f o T7H((T(2)), y)-

Therefore, theoretically, under an arbitrary bijection transform over X, an equivalent transformed optimal
model exists. This provides a natural secure learning framework, where the transformation 7" can be viewed
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as a key and T'(x) acts as an encryption procedure. Ideally, one can select some one-way function and the
information leakage on T'(x) is negligible at least in a sense of computational hardness.

A workflow of proposed framework is presented in Fig. [T} which is similar to homomorphic encryption
but in an information theoretical way. On the user side, after some preprocessing (such as normalization or
data augmentation) EL data is uniformly transformed by a function 7'(-); On the server side, a model f(-) is
trained over the transformed data which will then be sent back to the user; Finally, the user takes f o T'(+)
as the reconstructed model for further prediction or decision. However, this apparently simple and elegant

Uniform Transform
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T(-) on Data
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Fig. 1: The Dauntless Framework for Private Learning

framework faces three challenges.

1.1 Challenges

Proper Transformation: First, the above framework relies on an assumption that a magically powerful
learning protocol exists which can always discover the optimal model in the stochastic optimization of (T).
However, in practice, there is limited or even no prior knowledge regarding the sample distribution P, which
instead needs to be approximated by samples observed. In an extreme case, one can imagine, without any prior
knowledge on P, after applying a (pseudo)-random function ((P)RF) on X, the distribution of transformed
samples T'(P) may not be concentrated. Transformed samples 7'(x) only carry the information of T'(P) at
selected discrete sampled points while the generalization to un-sampled points becomes impossible. E| A
second related issue is the learning capacity. In practice, optimization of (T)) is over a bounded class of models
f rather than arbitrary functions. The class of candidate models is characterized with finite parameters. For

! Temporally, we may take the sample s = (z,y) defined above as data after preprocessing for simplicity.
2 From a view of sampling theory, without proper prior knowledge, finite samples can never be a sufficient interpretation
of an arbitrary population.
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example, if the generation of (z,y) can be captured by a noisy linear model where y = (a, z:) + e for some
noise e, and we set out to find the optimal linear regression model, then (T]) becomes

w* = arg HBHE(;E,y)NP l(<w7I>ay)' (3)

Clearly, if one applies some quadratic function T on x, then T'(z) and y may not be well approximated by
any linear model. In other words, after transformation, a linear regression model may not be suitable any
more and we need a larger function class to guarantee controllable generalization error. Therefore, a proper
transformation 7" should satisfy that, with high confidence, transformed model f* o T—1 can still be well
approximated within the class of candidate functions C'y, where C'; is dependent on the training capacity and
strategy of a learner.

Multiple Encryptions with the Same Key: It is well known that if one applies the same key to encrypt
multiple messages, the ciphertext has the potential to be statistically dependent and thus may be vulnerable to
be attacked. Since the transformation 7" has to be carried out uniformly over the sample domain, a composition
of privacy loss across all transformed samples 7'(x) is unavoidable. In large-scale learning, public data may
be utilized for training, where the adversary can conduct a "chosen-plaintext attack".

Privacy v.s. Utility Dilemma or Trapdoor: Information theoretical privacy is a mature field, where many
statistical metrics have been developed to quantify the hardness of distinguishing the true input. However, in-
distinguishability never comes for free. Many (tight) lower bounds between utility and the indistinguishability
measurement are known, for example in convex optimization [BST14] and Principal Component Analysis
(PCA) [CSS12], [DTTZ14]. Notably, the accompanying utility compromise when naively releasing data with
reasonable LDP is often unaffordable.

Similarly, in the transformation framework proposed, if 7" renders stronger privacy preservation, intuitively,
the preimage of T'(z) should be harder to recover or distinguish, which simultaneously also weakens the
learning efficiency over transformed data 7'(X’). Although uniform transformation seems like a smarter way
to obfuscate data compared to purely random noise, so far it is still a strict tradeoff between utility and
privacy. Ideally, it is expected that such transformation 7" behaves like a trapdoor where the user who holds 7'
enjoys efficient learning while the adversary without 1" must pay much more compared to the user’s cost. We
know in cryptography, NP complete problems can be built as trapdoors in an encryption scheme, where what
the adversary pays is quantified as the computational complexity. In the context of information processing
without restrictions on computation power, will a trapdoor still be possible?

1.2 Paper Organization and Contributions

We set out to address the three challenges posed above. In general, there are two possible kinds of trans-
formations to meet the requirements. One kind of transformation can be data-dependent which maps the
private data to some fixed or independent output, for example, some public data. In this case, the transformed
data is totally independent of the private data, and perfect secrecy is achievable. However, it is noted that
no information is propagated through the transformation and such operation usually needs some specific
assumptions, like some proper prior knowledge on the sample distribution P. In Section 2} we will provide a
concrete example for linearly separable data.

The second can be modelled as a random selection of 7" from a set of functions C'r of good continuity
and locality. This allows information carried by data to be propagated through the transmission channel. We
focus on this approach in Section 3] where we provide a protocol for data mixing and random transformation
that uses the entropy of private data as an information-theoretic security amplification. In Section [3| we first
describe the three privacy interpretations we will use to analyze the protocol, namely, ambiguity, statistical



DAUNTLeSS: Data Augmentation and Uniform Transformation for Learning with Scalability and Security 5

indistinguishability and Probably Approximately Correct (PAC) inference resistance, and then describe the
protocol. In Section ] we analyze our protocol and provide security guarantees under these three privacy
interpretations.

In Section 5] we provide results obtained using transformed data training as compared to non-private
data training. We show perfect secrecy can be achieved for learning over linearly separable data, and show
that transformed data learning achieves computational efficiency and utility for fully connected networks.
In Section[6] we present a unified framework to accommodate both private learning and private inference,
controlling both data privacy leakage as well as the privacy of the user’s model.

In Section[7} we review related works, and conclude in Section [§

2 Warm-up: Generalized Linear Model

As a warm-up, we start with a binary classifier with the assumption that the feature space is linearly (hyper-
plane) separable. To be formal, we say two sets X; and X5 whose elements are in R? are linearly separable if
there exist w*, b* € R'*? such that z - (w*)” > b* for x € X while x - (w*)T < b* for z € X,. So, itis
natural to ask what kind of transformation 7" can preserve the linear separability of T'(X;) and T'(X>). The
following lemma provides a sufficient condition:

Lemma 1. If the transformation T (-) is an injective affine mapping, then for Xy, Xo € RY which are linearly
separable, T(-) preserves linear separability.

Proof. If an affine transformation represented by T'(z) = 2 A + c is injective, it is equivalent to that AAT
should be of full rank. We assume that a line z-(w*)” —b* separates the two sets X7 and X», i.e., z-(w*)T > b*
for z € Xy while = - (w*)T < b* for x € X,. Now, consider the following identity:

z- (w9 = (zA) - AT(AAT) "1 (wH)T.

Thus, in the codomain of T'(+), (T'(x), AT (AAT) =Y (w*)T) —c- AT (AAT) =1 (w*)T — b still separates T'(X7)
and T'(X3).

As a special case, if we set T' to be a bijective linear transformation in a form 7'(x) = x A for some
invertible matrix A € R*9, then it is not hard to verify the following: if X; and X, can be separated by a
hyperplane = - (w*)? = b*, then the hyperplane = - A~ (w*)? = b* separates T'(X}) and T'(X>). For data
which can be almost linearly separable under small noise perturbation, a classifier can be efficiently found
through a linear regression. Indeed, the above separability preservation intuition can be further generalized,
where the data generation can be described in a form

y=g((w",z) +b7) )

for some function g(-) with parameters w* and b*. (4) is called Generalized Linear Model (GLM). Interested
readers may refer to [NW72] which elaborates the various applications of GLM. Under the prior knowledge
that data can be well captured by some GLM, a standard approach to approximate (w*,b*) is through
Empirical Risk Minimization (ERM), i.e.,

(Wi, 0%) = argrg?l?;l(g(@, i) +b),yi)- 3)

The key observation w.r.t. GLM is the following identity: for an arbitrary matrix A such that its right inverse
exists, i.e., AA L = I, then (zA, A 'wT) = (w,z). Therefore, with a similar reasoning, if the data
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generation can be well approximated by some GLM, after an injective linear transform on the sample domain,
the true optimum is recoverable from the optimization over transformed data.

To formalize the analysis, consider applying a right-invertible matrix A on each sample z; and construct
the ERM problem on transformed samples as

(Wheoba o) = argmin Z; H(g({w, 2 A)), i) (6)

Clearly, if the optimum (w}, b%) of (5) is unique, then (w )" = A ! (w?)” while b% , = bj. Please note

e’ e T

that this does not require any assumptions on the function [(-) and g(+) such as convexity or smoothnessﬂ

2.1 Perfect Secrecy

It should now be clear that proper transformation can still guarantee the learnability of a class of transformed
data. But what kind of privacy preservation can be provided by a linear transformation? In this section, we
stick to an intuitive perfect privacy preservation. We say a (randomized) mechanism has perfect secrecy or
security if the output (distribution) is fully independent of its input.

Definition 1. A mechanism M is perfectly secure if for arbitrary input I, the distribution of output M(I) is
independent of I.

If so, observation on the output M (I) cannot provide any further information with respect to (w.r.t.) the
sensitive input I. In the following, we will show that efficient learning with perfect privacy is achievable in
linearly-separable data. For the input matrix X € R™*¢ which contains n samples each within R?, we first
consider a special case where n = d and X is invertible. It is noted that once X —1 exists, the transformation
Tx-1(z) = X! is a bijective mapping over R, On the other hand, T'x -1 (X) always returns the identity
I, a constant, which achieves prefect privacy w.r.t. input X. In practice, the number of samples n is usually
larger than the dimensionality d. To generalize the above idea, for input matrix X € R"*? with n > d, we
consider the following transformation X = X - A, for some matrix A € R4*™ of rank d to expand X to be a
square matrix. Clearly, X is singular (of rank at most d) and we cannot find the inverse of X . However, it can
be proved that after an arbitrarily small perturbation on X, we can make it invertible.

Lemma 2. For a singular matrix X e Rxn, A)A( = 0, of which the least non-zero eigenvalue in absolute
value is 7o, then for any v such that |7y| < vo, X + 71, is invertible.

Proof. We use the following identity that

n

det(y-1—X)=[](v—m)

=1

? In linear regression for heavy-tailed distributions, usually the loss function has to be selected to be non-convex, for
example, in [ZZI8], the loss function is defined as L4/ (a|y; — z; - w”|), where

—log(1 — z+4 2%/2) < (z) < log(1+ z + 2°/2)

for some positive number «. This complicated min-max estimator is shown to be more robust but also requires intensive
computation [ACI11].
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where v[1.,] denote the eigenvalues of X in an ascending order. Clearly, if v - I — X is invertible, then

det(~ - I — X) # 0. On the other hand, to guarantee det(v - I — X) # 0, a sufficient condition is y # ~; for
any i and v # 0. For n discrete reals ~[;.,,), one can always find an arbitrarily small but nonzero -y such that it

is not equal to any eigenvalue of X.

To summarize, the above described a perfectly secure protocol from R"*4 — I, in three steps. First,
one randomly selects A € RIX™ and computes X=X A Second, a small perturbation is added to X to
form X = X + ~I,. Third, take the inverse of X, i.e., X1 asthe multiplicative transform, which maps the
data to the constant I,,. Here, we assume that the labels are constant. For example, in a binary classification
problem, one always randomly encodes the two classes by 0 and 1 and the ratio between the numbers of
respective samples is set to be 1:1. Thus, the exposed information is independent of the input and perfect
secrecy is achieved.

2.2 Utility Analysis and Regularization

We say two sets X, X» € R? are §-strongly linearly separable, if, besides the existence of a hyperplane
separating them, their margin satisfies min,, c v, z,ex, |21 — 22| > 6 > 0. To obtain a straightforward
corollary of Lemma [2] when X; and X5 are 0-strongly linearly separable, consider the above mentioned
transformation X A + vI,, on input dataset X . Assuming A € R?*"™ of rank d where the least singular value
of A is o, then for transformed X} and X5,
pyeinin [(x1 — xz2)A|l > 0¢d.

Therefore, after a vI perturbation on X, the /5 norm of perturbation on each sample is at most ~y and thus the
minimal distance of transformed X and X5 under perturbation is at least ogd — 2+.

With a similar reasoning, for GLM optimization, let GL(w,b) = Y., l(¢({(w, z;) + b),y;) while
GLa~(w,b) =31 l(g((A w2 A + ve;) +b), y;), where e; is the i*" natural basis of R™. Thus, with
some mild Lipschitz assumptions on functions {(-) and g(-), the difference GL(w,b) — GL 4 (w,b) can be
well controlled while the perturbation « can be arbitrarily small. The abovementioned techniques can also be
applied in multinomial regression for multi-class problems; we explore this in Section[5.1]

Usually, to avoid overfitting, instead of solving ERM directly, we will add a regularization term, say \- ||w||,
at the end of (3 with some positive constant A\. However, it is noted that, after a multiplicative transformatlon,
straightforwardly adding a regularization term in @) may not help. If the inverse of transformed data X ' i
close to being singular where the largest singular value of X 1is huge, then it is hard to control the normal
regularization term when handling the optimization over the transformed sample domain. Therefore, a better
way is to mimic Principal Component Analysis (PCA) to improve the small singular values of A. But different
from PCA, we do not remove the small singular values which results in dimensionality reduction; instead, we
increase the small ones to a certain threshold. The following method in Algorithm [I]is called Singular Value
Improvement (SVI).

The parameter 7 behaves like the regularization coefficient: a larger 7 implies weaker singularity. Moreover,
it is noted that UV, a product of two unitary matrices is still unitary. Thus, SVI with parameter 7 introduces
at most a perturbation per row whose [ norm is upper bounded by 7. A similar utility analysis can be derived.

2.3 Deep Learning with Perfect Secrecy

In general, a neural network can be described as a function of multi-layer GLM:

Nw(x) =0o(....,0(c(x-W1) - Ws),...,WL) @)
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Algorithm 1 Singular Value Improvement (SVI)

Input: Matrix A € R**"’; Threshold parameter 7 > 0.

1: Apply SVD on A = UX'V, where X is the singular value diagonal matrix;
2: Change all diagonal elements in X’ smaller than 7 to 7 and obtain S.
3: Construct A = ULV

Output: Matrix A € R,

where o is the selected activation function, say ReLu or Sigmoid functions, and W = (Wy, Wa, ..., W),
Wi € R4 1y, ¢ RAxdz W, € R¥-1XdL denotes the weights across L hidden layers, respectively.
E]Mathematically, training (optimizing) a neural net can be described as follows. Let W* denote the optimal
weights for the following ERM over a set of samples S = {(z1,91), (22, %2), -, (Tn, yn) }:

. , 1
w —argﬂé[l}lLS(W)—argﬂ‘}‘l,nﬁgl(/\/w(mi),yi) ®)

for some loss function (-, -). For simplicity, we assume d = n and the feature set X € R™*? of original
training data is invertible. With a similar reasoning, we can instead feed I;, the d x d identity matrix, to train
an L-layer fully-connected neural net to obtain the weights Wy = (W3, Wa, ..., W1,). Consider a new neural
net, where the weight of the first layer is changed to Wx = (X Wy, Wa, ..., W1,). Note that the loss of
Nw, w.r.t. I is equal to that of Ny, w.r.t. X in (8). Also, it is clear that the training to obtain Wy does not
require any knowledge of X, so perfect secrecy is preserved.

Though there is a bijective relationship between the W; and W, we have to remark that in deep learning
with non-convex activation functions, the number of local minima increases exponentially as the number of
neurons and dimensionality increases [AHW™96]|]. This brings significant efficiency concerns that whether
after transformation, training through classic optimization tools such as (Stochastic) Gradient Descent ((S)GD)
can find good models.

3 Random Transformation and Information Theoretical Privacy

In Section |2} we focused on the first type of transformation, which is data-dependent but with perfect secrecy.
In the following, we will focus on the second type, where 1" is randomly selected from some predefined
function set C'z-. Such a transformation is more smooth and will preserve certain dependence between input
data and transformed output. This will allow us to handle a much wider class of learning problems with
generalized privacy notions.

We first define three privacy interpretations in Section [3.1] give an overview of our strategy for PAC
inference resistance in Section and present our protocol in Section 3.3]

3.1 Information Theoretical Privacy

Additional Information: A primary strategy in both cryptography and information theoretical security is
to measure how much additional information (knowledge) is provided by the output of a mechanism. It
is expected that no matter what prior knowledge is assumed for the adversary, after observing outputs of

* For the case where each layer is defined as o (2 - W -+ b) with an additional addition term b, one may replace & = (x, 1)
in , which does not lose generality.
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a privacy-preserving mechanism, the difference between the prior and the posterior belief w.r.t. the input
should be limited. The first formal definition, perfect secrecy, was proposed by Shannon in [Sha49]], where a
mechanism M is perfectly secure if for arbitrary output o, the likelihood £(o|I) = Pr(M(I) = 0) should
be identical for any possible input /. In the previous section, we provided a concrete example to achieve
perfect secrecy: a protocol always outputs a constant identity matrix independent of inputs. Perfect secrecy is
ideal but costly (or limited): information is not propagated under a perfectly secure mechanism. One natural
generalization is to quantify such additional information with well-defined metrics. Inspired by the ideas of
K-anonymity [Swe02]], we introduce the following notion.

Ambiguity Set Towards more interesting tradeoffs, one strategy is to preserve identical likelihoods within a
subset of the input domain rather than globally. We first formalize the definition of ambiguity set.

Definition 2 (Ambiguity Set). For a mechanism M, we call S an ambiguity set of M if for any elements
X1, X4 € S, the distribution of outputs M(X1) and M(X5) are the same.

Another interpretation of the above definition is through a view of indistinguishability.

Definition 3 (Indistinguishability). For a mechanism M, with respect to any possible output o, two inputs
X1 and X are indistinguishable if the likelihood Pr(M(X1) = 0) = Pr(M(Xz) = o).f]

Thus, any two elements within an ambiguity set are indistinguishable with respect to any outputs. Said
another way, elements within an ambiguity set produce outputs in the same distribution ﬂ To provide an
example, we set the transformation 7" to be linear on an input matrix X as 7'(X) = X A for some matrix A.

Lemma 3. If A is a zero-mean Gaussian matrix, of which each entry is i.i.d. generated by a zero-mean
Gaussian distribution, then such a random linear transformation provides an ambiguity set w.r.t. X which
includes all matrices X' such that X' = X - U for some unitary matrix.

Proof. To avoid a tedious discussion on the support domain of the distribution of X A, we provide a proof as
follows. Since each column of A is independent, we consider the first column of A such that X A(:, 1) = o for
some o. Then, we have an identity that XU - U _1A(:, 1) = o for some unitary matrix U. On the other hand,
the distribution density of a zero-mean Gaussian vector A(:, 1) is proportional to exp(— Zle A(i,1)?) =
exp(—||A(:, 1)]|?). It is noted that U1 is still unitary, where ||[U~1A(:,1)|| = ||A(:, 1)| is preserved. Thus,
for X’ = XU, the distribution of X A and X A’ is identical.

In our context, if X € R™*%, where each row represents a sample, under the above transformation, one
cannot distinguish two sets of n samples whose respective pairwise distances are the same. In Appendix
we give another example of how a linear transformation can generate an ambiguity set as the column space of
its input matrix.

> Here, we abuse a bit the notion Pr(-), which denotes the probability density if the distribution is continuous.

% One important security issue is the composition of information leakage from multiple observations of a mechanism on
one private dataset. Ambiguity set is resistant to composition leakage: the ambiguity set is maintained regardless of
multiple arbitrary calls to M on one input dataset X .
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Distribution Divergence (Differential Privacy) Another direction is to consider the difference between
the output distributions generated by two inputs. A representative approach is Differential Privacy (DP).
At a high level, we call an algorithm differentially private if from its output, it is hard to distinguish the
participation of an individual sample. In the following, we generalize the idea of (e, §)-DP to quantify such
indistinguishability as follows:

Definition 4 ((e, J, d, 7)-Privacy). A mechanism M is (e, d, d, 7) private if for any two inputs X1 and Xo
such that under metric d, d(X1, X2) < 7, and for any possible output set S,

Pr(M(X;) € §) < e“Pr(M(Xz) € S) + 0.

Such a definition measures the difference between the likelihoods of two close enough X; and X5 (d(X1, X2) <
T) to produce an output o in the worst case. This can be interpreted as a tradeoff between type I and II error in
a view of hypothesis testing [DRS19]. If we select d to be the Hamming distance and 7 = 1, then it becomes
(¢,0)-DP.

Definition 5 ((¢, 6)-DP [DMNSO06]). A mechanism M is (e, d) differentially private if for any two adjacent
datasets X1 and Xo, which differ only in one sample, and any possible output set S,

Pr(M(X;) € §) < e Pr(M(Xz) € S) + 0.

Many variants can be easily derived with other selections of the metrics to measure the difference between
the distributions of M (X;) and M(X5), for example, KL [WLF16] or a-Renyi [Mir17] divergence.

Data Recovery: As a short summary, a mechanism with ambiguity set or DP guarantees indicates that there is
no additional information provided by the outputs w.r.t. the inputs within one ambiguity set, or the additional
information is limited and quantified by the parameters (e, §) for inputs close enough to each other (sensitivity
restriction). Though rigorous metrics are provided, the above two privacy notions still fail to answer one of
the most intuitive questions about privacy leakage: how much information an adversary can recover w.r.t. the
private data given an observation. Therefore, we propose another line to define privacy by the performance
of adversary approximation of the private input. To answer how much information is leaked, we typically
need more specific assumptions on the prior knowledge, which is also necessary in this context. One can
imagine an extreme case where an adversary already has the full knowledge of the true input and thus a
perfect recovery can always be produced regardless of any mechanism or observations.

Probably Approximately Correct (PAC) Approximation We mimic PAC learning theory to set the privacy
metric in a form that given observations, can an adversary approximate, with error smaller than ¢, the true
input with confidence at least (1 — §)? More formally,

Definition 6 (Resistance to (¢, §)-PAC Approximation). We call a mechanism M resistant to (e, §)-PAC
approximation for private input data X in a distribution P, if given the output M(X), there does not exist an
(possibly randomized) estimator g(-) based on M(X) such that

Pr (lg(M(X) = X[ <) > 16 ©)

In the above definition, the data distribution P captures the prior knowledge from the adversary’s view.
Also, it is notable that in Definition[6] which we abbreviate PAC security, no restriction is put on the estimator
g. In some sense, PAC security is a more comprehensive characterization of data security/privacy compared
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to merely additional information measurement. That is, an adversarial recovery is determined both by the
additional information provided by ciphertext and the adversary’s prior knowledge on plaintext. With the above
preparation, we now proceed to describe how to construct an information theoretical security amplification
via both data mixing and transformation.

3.2 Overview of Strategy

To begin, we formalize the knowledge of an adversary w.r.t. the training dataset. For a training dataset
S = {s1,82,...,8n} of size n, we assume that an adversary has complete knowledge of k samples
{51, 52, ..., 54} within S, termed the public part of S, and denoted S4 = {s[.x)}. The remaining (n — k)
samples {[,,_j41:n]}» Where the adversary may have some prior but not full knowledge, are termed the
private part of S, and denoted Sp = {5[41:n] }-

As in the information flow shown in Fig.[I] privacy leakage is due to the exposure of the transformed data
T(S) ={T(s1),T(s2),....T (sn)}[], because the subsequent training procedure is merely postprocessing.
We will model the adversary inference to recover the private Sp = {s[kﬂm]} given the observation set
T(S) ={T(s1),T(s2),...,T(s5)} and the public part Sy = {s[1.47}.

After quantifying the power of the adversary and user by the number of samples that each has access
to, we now turn to characterize the selection of Cr in two ways. On the utility side, it is hoped that the
generalization error of transformed data described below is not compromised significantly:

}reucr}f Eswpr racl[f(T(8))], (10)

where we use P" to denote the joint distribution of 7 i.i.d. samples and C as the candidate model set to be
optimized over. On the other hand, C'r is set to maximize the adversary inference error:

I%E;XTEéT (|[Adv(T(s)) — s|| > €,5 € Sp | Sa,T(9)), (11)
where Adv denotes an arbitrary inference/learning algorithm that an adversary can apply to invert the
transformed private part Sp. Note that the distribution of elements in .S 4 may not necessarily equal the global
sample distribution P. For example, the adversary may only know a specific class of samples used in a
classification task.

As both the user and the adversary will address their own learning task, before proceeding, let us first
provide a rough estimation of their respective expected learning performances. Described in a Probably
Approximately Correct (PAC) model, we assume that the true data generation model of S is from a function
(concepr) class C,, i.e., the sample s = (z,y) is generated in a form y = h(x) for some h € C,. For
simplicity, we temporarily assume both C, and C'r are finite function sets. In a PAC setup, given samples, the
goal of a learner is to determine the true function/concept h from the candidate set C,, where the performance
metric is defined as the error rate that one outputs a wrong function h’ # h. Here, we denote the Vapnik-
Chervonenkis (VC) dimension [BEHW89] of C, as VC(C,). Intuitively, VC(C,) captures the hardness of
the learning task. After transformation, the function class now becomes the Cartesian product of C'7 and C,,,
i.e., Cr x C,. It is not hard to prove that the VC dimension of the product of two function classes is upper
bounded by the product of the VC dimension of each. Here, we consider the worst case and approximate the
VC dimension of Cp x Cy by VC(Cr) - VC(Cy). Since the user holds n samples, we know the error rate is
O (YerlVa(Ch) ) IADOG).

7 In the following, without loss of generality, we assume the transformation may be applied on both feature domain X
and the label domain ), and denote the transformed sample as 7°(s).
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With a similar reasoning, adversary inference to approximate the inverse of 7' can also be described by a

PAC model. In this learning task, take the feature as T'(s) and label as s. If C is formed by invertible functions,
the data generation is in a form s = T~1(T(s)). Clearly, the corresponding concept set C'r—1 of the inverse
transform 7~ ! is bijective to C, where determining the true inverse of 7" is equivalent to determining 7" itself.
Thus, even with the restriction that the adversary only knows S4 and T'(S4) = {T'(s1),T(s2), .-, T (sk)}
instead of T'(S), the error rate is @(w) Naturally, the relationship between utility and privacy appears
as a tradeoff in terms of VC(Cr): a larger VC(Cr) implies a potentially better data obfuscation but also
a greater utility loss. However, the advantage rate, i.e., how much more the adversary has to pay compared
to the cost of a user, is merely linear in the ratio n/k, and is far from a trapdoor. Thus far, we have only
resorted to additional information loss to preserve privacy. To amplify the advantage and force an unfair
game between adversary and user, we need to further explore underlying uncertainty in data.
Subsampling and Entropy of Private Data: First, a natural resource is permutation. A particular sequence
of different samples is in general not needed in the learning procedure. Shuffled transformed data has
great potential to incur an exponential computational complexity for an adversary to approximate the correct
correspondence between sj;.;) and T(S[L x]) before any meaningful inference. But permutation is not sufficient
to show information theoretical hardness.

With a closer look at the earlier analysis, note that we restricted the transformation on the training dataset
such that each sample in either S4 or Sp is separately transformed. Though the fundamental structure of our
framework is multiple encryptions with the same key, we can force adversary inference without full knowledge
of plaintext and learning with errors. However, the trick here is we do not plan to introduce real noise but
utilize the entropy of private data Sp. E]

To utilize the entropy of private data as an obfuscation, a straightforward approach is to mix public
and private original data before the uniform transformation 7". Indeed, data augmentation provides various
candidates for a mix strategy. Roughly speaking, data augmentation is a large class of methods to modify or
reconstruct training data, which may improve the generalization and robustness especially in deep learning.
Most data augmentation approaches are heuristic but widely applied in practical trainingﬂ In the following,
we take mixup [ZCDLP18]], which has received considerable attention recently, as a concrete example.

Mixup can be simply described by two steps. Provided n samples S = {s1, s, ..., $n }, where s; = (x4, v;),
mixup first randomly subsamples, say s;,, $;, € S, and a random weight A within (0, 1). Then, a new virtual
sample § = (z, y) is defined by the natural weighted average of s;, , s;, with \:

Imagine the case that we apply mixup on S4 and Sp such that s;, and s;, are randomly selected from
S4 and Sp, respectively. Hence, even with the prior knowledge on S 4, the adversary now loses the full
knowledge of sample generation: she now only has partial information of the preimage of transformed data.
We formalize adversary inference under the mixup setup in Algorithm |2} termed Learning with Incomplete
Labels.

To quantify the information theoretical hardness of adversary inference, we set out to lower bound the
sample complexity that one needs to conduct any efficient inference. Assume that an adversary has access to the
oracle for m queries and Adv to be an algorithm (can be randomized) which will output some approximation

8 The computational hardness of, for example, Ring Learning with Errors must count on its finite algebra structure. If
the oracle is over the real domain, many statistical or optimization approaches can break it easily.

? These heuristic data reconstructions are indeed appealing to private learning, where randomization introduced can
amplify privacy but without utility compromise or even strengthening the performance.
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Algorithm 2 Learning with Incomplete Labels by Adversary

1: Adversary queries for a new sample.

2: Oracle randomly selects s, € S, and s, € S, and applies a mixup protocol MZX on (sa,sp) and returns
5= (8a, T(MZIX(5a,5p)).

3: Adversary approximates the inverse of 7" where we quantify the security level as

Pr(||Adv(T(3)) — 3| < €) < &

for sample § ~ P.

with required performance dependent on the m observations, denoted by §™ = (s, T(MZX (sq, 3p))"" )
Let us consider the mutual information between T" and Adv [GHOI1]):

I(T; Adv) < I(T;8™) = mI(T};3). (13)

In the following, we use I (a; b) to denote the mutual information between two variables a and b and H(a)
to denote the entropy where I(a,b) = H(a) — H(a|b). Here, the first inequality in is because Adv is a
function of observations s and the second equality is because we assume the mixed sample is generated

independently. This renders a lower bound on the sample complexity, namely,

I(T; Adv)
m> ————=

- I(T;3%) (14

(T4) coincides with our intuition: the numerator represents how much information is needed for required
approximation error with satisfied confidence, while the denominator represents how much information is
provided per mixed sample on average. Detailing I(7; §), we have

I(T;3) = I(T; 80, T(MIX(54,5p))) = I(T;54) + I(T;T(MIX(5a,5p))|sa)

15
= 1(T35,) + H(T]s,) - H(Tls0. T(MIX(s.5)).

As a comparison, let us consider the case without data mix and the transformation 7" separately applied
to each sample. It is noted that the sample bound (T4) on m still holds, whereas the observation 5 becomes
simpler, namely, (sS4, 7T(s,)). In such a case, the denominator I(T’; 5) is

I(T;58) =I(T; 84, T(8a)) = I(T; 8a) + I(T;T(84)]54)

=1(T;54) + H(T|sq) — H(T|54,T(84)). (16)

Comparing (I6) with (I5), since mixed data is more fuzzy, provided the transformed data, the differing term,
the conditional entropy H (T'|sq, T (MZX (sq4,5,))) should be larger than H (T|T'(s,), s4), which implies
better obfuscation and a larger sample complexity will be required under data mix.

We have to stress that the above analysis is based on the view of an adversary, where the entropy of
private data is determined by her prior knowledge. When the private sample s, and the weight A both become
constant, there will be no difference between (I6) and (I3). Though entropy is a relative notion, in practice,
especially in computer vision, the great diversity of large datasets implies a huge amount of entropy under
reasonable assumptions. More formal analysis will be provided in Section 4.3 along with concrete lower
bounds on the sample complexity.

10 These observations include the correspondence between the public sample and the resultant mixed sample, which is
not exposed to the adversary in the Dauntless framework, but could conceivably be inferred through prior knowledge.
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3.3 Algorithm Description

We now flesh out the main protocol as Algorithm 3]

Algorithm 3 Main Protocol in Dauntless Framework: Data Mix and Random Transformation

Input: Training Dataset of n samples S = s(1.n) = ((z1,1), (T2, Y2), -, (Tn, Yn)) with feature z; € R'*? and label
yi € [1:¢] ={1,2,...,c} for cclasses. S =S4 U Sp.
Phase 1 - Random Label Encoding
1: Randomly generate Y e RCXC’, for some ¢’ > ¢, such that the ¢ rows of Y are (almost) orthogonal to each other.
2: For each sample s; = (x4, y;), replace the label y; by the y;-th row of Y (y;, :).
Phase 2 - Data Mix
1: forj=1:mdo
2:  Independently and uniformly sample s, € S4 and s, € Sp, respectively.
3:  Randomly generate A € (0,1).
4:  Reconstruct mixed sample 5; = Asq + (1 — A)sp, with the weighted average on both feature and label.
5: end for
Phase 3 - Transformation
1: Randomly generate L weight matrices Wy € R4 W, € R4 ¥ W, € R¥-1%4L in which each entry is
independently generated from a distribution Q).
2: Construct a neural network structure of L hidden layers with an activation function o and weights Wy.r): Nw(z) =
o(...,o(o(x-Wi)-Wa),..,Wr).
3: For each mixed sample §; = (Z;, §;), compute the transformation 7'(5;) as (Nw (Z;), 7).
Output: m transformed samples (Nw (Z;),7;),J = 1,2, ..., m.

The data processing on the user side can be summarized in three steps, which is formally presented in
Algorithm@ The first step is to encode the label. Please note in mixup [ZCDLP18]], the labels are encoded as
one-hot Vectors For example, in a binary classification, we have a picture x; of a cat and a picture x5 of a
dog, where (1, 0) denotes the cat label and (0, 1) the dog. When one mixes the two pictures with weights 0.3
and 0.7, respectively, the feature of the mixed sample becomes 0.3x1 + 0.7x2 with the corresponding label as
(0.3,0.7). From a privacy perspective, one-hot vector encoding exposes the random weight used in the data
mix. To avoid this, in Phase 1, we randomly generate a set of (almost) orthogonal vectors to alternatively
encode the label, which can be viewed as a random transformation on the label domain.

The second step is a straightforward data mix, which has been formally discussed before. Public data
known by the adversary and private data are mixed into m new samples. Finally, the last step is applying a
random transformation over the mixed feature domain. Here, we select the function in a form of an L-layer
neural network with random weights.

With the sample transformation procedure described in Algorithm [3] the transformed samples will then
be sent to the server, who is expected to train a model fr over (NW (z), gj), 7 = 1,2,...,m. With the
knowledge of transformation 7" and label encoding bases Y, the user can then conduct (private) inference on
new samples via fr, as described in Algorithm[4]in Section|[6]

! Generally speaking, in mixup we cannot take the label as a real number unless the learning task can be addressed by a
regression.
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4 Privacy Analysis

Given the three privacy notions defined in Section [3.1] we will study the privacy guarantees provided by
Algorithm [3|from the three perspectives.

To give a high-level picture, consider a random transformation 7'(X, #) on dataset X, where T'(-,6) :
R"*4 — R™ with randomness seeds 6. Given X, if T is bijective w.r.t. §, then for output z = (21, 22, ..., 2,) T =
T(X,0), we have

P.(2) = Po(0 = TH(X, 2))|det(0. T (X, 2))|, (17)

where the Jacobian 0,7~ (z,z) = 0T, *(x, 2)/0z;. Here, T~'(X, ) denotes the unique inverse of the
random seeds @ such that T'(X, T~ !(X, z)) = z. Recall the definitions in Section if two data matrices
X1 and X5 are within an ambiguity set, then the outputs T'(X7, ) and T'(X3, 0) are distributed identically.
Similarly, substituting the density function into Definition[4] one can derive corresponding DP parameters.
We flesh out the privacy analysis throughout this section.

4.1 Ambiguity

The ambiguity set of the sample transformation described in Algorithm |3| should be characterized by the
resultant ambiguity from both the feature and label transformation. On the feature side, two operations, data
mixing (Phase 2 in Algorithm 3 and uniform transformation (Phase 3 in Algorithm 3 are applied on the
feature set X . The resultant ambiguity should be at least that which is produced by one operation on them.
Therefore, according to Lemma 3] if the weights of the uniform transformation 7" are i.i.d. generated by a
zero-mean Gaussian, then Algorithm 3] produces ambiguity w.r.t. X that one cannot distinguish two feature
sets which have the same respective pairwise distance.

For the ambiguity w.r.t. the labels, we shift our focus to the private weights applied during mixing.
We first describe the label encoding (Phase 1 in Algorithm [3) and the label mixing (Phase 2 in Algorithm
[B) in a matrix form. There are many ways to generate (almost) orthogonal vectors. Here, we consider
Y to be a randomly generated zero-mean Gaussian matrix in a form Y = [v, v, ..., vT]|T as the label
bases. Each v; represents a label for a class. Thus, equivalently we can represent the original training
dataset S = {(z1,91), (2,¥2), ..., (Tn,yn)} BY {(z1, vy, ), (T2,Vy, ), ..., (Tn, vy, ) }. Note that, during the
data mixing (Phase 2), every mixed sample is a linear combination of the two original samples selected.
Therefore, we can use a matrix A to describe the mixing procedure. Let (jq, j2) be the indices and (A;,1—A;)
be the corresponding weights used of original samples to be mixed for the j-th mixing with j = 1,2, ..., m,
respectively. Then, the matrix M is in a form where the j-th row of M, i.e., M (j,:), is all zeroes except for
the y;, -th and y;,-th entries, the two classes of labels to be mixed, which are \; and (1 — A;), respectively.
Therefore, the encoded label Y of mixed data can be written as,

Y=M-Y. (18)

Clearly, the mixing matrix M € R™*¢ is stochastic, where the sum of each row equals 1. The following
theorem presents an ambiguity set w.r.t. M.

Theorem 1. Algorithm 3| renders an ambiguity set w.r.t. the private mixing matrix M where two mixing
matrices M and M’ belong to one ambiguity set if M = UM’ for some unitary matrix U.

Proof. We first rewrite (I8) as the following identity,

Y=M-V.-V .Y (19)
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Here, V is an arbitrary invertible matrix. It is noted that the label bases Y is randomly generated by i.i.d.
normal distribution, of which the density function should be proportional to exp(d>-i_; >, Y (i, )2,
where Y (4, j) denotes the entry of Y at the crossing of the i-th row and j-th column. Since a unitary matrix
will preserve the l-norm of the vector mapped, UY and Y enjoy the same probability density. On the other
hand, if two mixing matrices M and M’ have the relationship as M’ = M - V for some unitary matrix V/,
then substitute M’ = M -V and Y’ = V~! - Y into (19), and the two pairs (M,Y") and (M’,Y”) produce
the same Y with the same likelihood.

As a corollary, note that in Algorithm [3] we only mix two samples each time. If we do not restrict the
mixing matrix M but randomly select M to be a stochastic matrix, then the ambiguity set can be further
described as follows:

Corollary 1. If the mixing matrix M is randomly selected to be a stochastic matrix, then in the above label
encoding and mixing procedure, every M enjoys an ambiguity set which includes all elements in a form
M - U, where U is some stochastic unitary matrix.

4.2 Differential Privacy

In this section, we turn to analyze the obfuscation from a statistical divergence or DP perspective. In such a
view, an algorithm is more private if the output of an algorithm is less sensitive to the input, which implies
more information loss during the transform. Recall in Section [3.2] we used the VC dimension to interpret
the tradeoff between privacy and utility of a transformation. The results presented in this subsection can
supplement that analysis by quantifying the dependence between input and output.

DP mechanisms have been widely studied wherein the most common tool is additive noise such as
Gaussian or Laplace Mechanism [BST14]. However, in our context, both the uniform transformation 7" and
data mixing can be viewed as an multiplicative operator on the data. We take the feature dataset X as an
example. In Algorithm 3] recall the analysis shown in Section d.1] the mixing procedure can be described
by a left-multiplication matrix M as M - X, where M represents the mixing weight. On the other hand, the
uniform transformation 7" can be captured by a (generalized) right-side linear transformation. For each layer,
the neural network is in a form (X - W), where W and o represent the weight and activation function,
respectively. This raises an interesting question: what kind of DP guarantee can be provided by a multiplicative
mechanism? Of independent interest, [BBDS12]], [KKMM13] study a related problem that through random
projection, how the Johnson-Lindenstrauss (JL) Lemma preserves DP. E]In this section, we set out to provide
a more systematic study on this topic. Without loss of generality, in the following, we restrict our focus to
what DP guarantees are achievable by a linear transformation X - A w.r.t. the private input matrix X € R"*¢,

First, to avoid some tedious discussion, we assume some normalization on input X. It is noted that after
any linear transformation, X A is always within a linear space spanned by the columns of X (column space).
Therefore, for non-trivial DP guarantees, we have to restrict the private inputs X to share a same column
space. To overcome the restriction, we assume a normalization processing step on X which expands X to be
an invertible square matrix R™*™ if n > d. A simple expansion is that we duplicate X in a concatenated form
[X]X]...] X] until it becomes a square matrix. If n cannot be divided by d, we randomly select (n mod d)
columns from X to be the last copy. In Section 2] we mentioned two approaches to make a matrix invertible,
such as diagonal perturbation and SVI. Thus, to ease presentation, in the following, we just assume X to be a
n X n invertible matrix.

12 JL Lemma states that there exists a dimensional reduction mapping which preserves pairwise distance of elements
within a set with high probability. JL Lemma has a close relationship to compressive sensing and locality-sensitive
hashing. In our context, the uniform transformation 7" is not necessarily designed to preserve the pairwise distance.
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In additive DP mechanisms, it is well known that (Laplace/Gaussian) noise of greater variance produces
stronger DP guarantees (smaller ¢, 6 under the same setup). However, multiplicative DP does not match this
intuition, i.e., a linear operator A generated by a more heavy-tailed distribution does not simply strengthen
DP in general. One of the main reasons is that the multiplicative sensitivity depends not only on the input
difference but also on the singularity of X. (We include an interesting result for the special case if X is
diagonal in Appendix ) In general, for two invertible matrices X, Xo € R"*" where £ = Xy — X,
denotes their difference, the transformed distribution of X« and X5« for some random vector « € R"” in
distribution Q, is equivalent to studying

P(Xia=z) det(Xs) P(X;'z) det(X;+E) P(X;'2)

P(Xoa=2) det(X,) P(X;lz) T det(X1)  P((X1+E)lz) ¢

1
Replacing z by (X; + E)ain , it is equivalent to considering dejéf&tf ). P(“J;;(%) E%) Thus, a natural

question raised is how to select the distribution of « to minimize the ratio.

We provide a framework to study this problem. Without loss of generality, we assume P () e"”(“a"z)
for some function ¢(-) : R — R such that fRn e?Uel”) do < +o00. In addition, we assume the Lipschitz
constant of ¢(+) is L in the following, i.e., [¢)(a) — ¥(b)| < L|b — a|. Clearly, to control the difference
quantity || X ~! Fa|, we need proper assumptions on the norms of E and the tail bound of ||c||. Following
the idea in [BBDS12], to avoid any further restrictions on the data matrix X, when X is singular or close to
being singular, we will perform the following modification before transformation. Similar to SVI, assume
that the SVD of X is X = UX'V. We modify X to X = U(o + 7 - I)V, thereby the least singular value of
X is at least T

Theorem 2. Let P(a) o ¢*Ue) where Pr(||a|| > r) < 6,. For a random matrix W € R™*% such
that each row of W i.i.d. follows the distribution of a, the following transformation on private data matrix,
X e R™", namely, X - X =U(o +71-I)V — XW, satisfies (¢,0)-DP, where

e =d'eg(e® — 1) + egy/2d log(1/6),

§=d(6o+0,) +0.

and

Here,
B B B —r2log(8o/32
0=—+4L=(1+2) g(d0/32) 7
T T T n+24y/nlog(dy/16)
and 6o and 8 are free parameters to be selected. The sensitivity parameter B is defined as the upper bound of
the ls norm of the difference between any two samples.

The proof of Theorem [2] can be found in Appendix [D] Taking Theorem [2] as the building block, one
can further characterize the DP guarantees produced by a multi-layer neural network with random weights.
Equipped with non-linear activation functions, for example, the sigmoid function, the sensitivity may contract
when data passes through more layers. From Theorem [2} € is proportional to the ratio /7, while, in our
case, a larger 7 implies a heavier regularization on the data and may compromise the performance. From our
experiments on MNIST and CIFAR-10, we find that if we set d’ = d and the sensitivity 5 in a scale of 1/d,
with a Gaussian matrix and proper selection of 7 to produce € = 1, there is no obvious performance drop.

13 SVI is not the only way to improve the sensitivity. Ideally, in the learning after transformation context, it is expected
that we can apply some uniform transformation on the data matrix to increase the small singular values.
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4.3 PAC Security

In Section[3.1] we formally introduced the PAC security definition and in Section[3.2] we provided a generic
framework to lower bound the sample complexity for required estimation performance. In this section, we
follow the strategy to concretely connect the PAC security budget, i.e., the (¢, §) inference restriction given in
(©), with the sample complexity in two important scenarios: First, towards Corollary 2} we continue the focus
on the PAC security of data, which captures how much information can be recovered w.r.t. private samples;
Second, we change the security objective to be the transformation 7 itself and study how (statistically) closely
an adversary can approximate 7" in Theorem [5] PAC security studied in the above two cases will be the
building blocks to characterize the privacy in two dimensions: the data privacy loss during model training
and later model applications, and defending against model extraction (stealing) through multiple accesses
[CIM20], which we will explore in Section@

PAC Security of Samples We flesh out the analysis of adversarial inference with specification on the data
and transformation. To ease the analysis, we assume the private mixing weights are known to the adversary,
as clarifying below, and we instead focus on the PAC security of the feature: For the data, we assume every
mixed sample is formed by a private sample and a public sample, which are random Gaussian vectors:
Sa,8p € R'*? and every entry of s, and sp independently follows a Gaussian distribution N (0, 7,) and
N(0,7,), respectively. E]We assume the mix weight to be fixed as (1, 1) (without normalization). As shown
in (14) and (15), compared to fixed weights, random weights will always lead to a smaller I(T’; 3), the
average information provided by a single sample, which implies better privacy. Following the definition of
PAC approximation in Section for a mixed sample 5 generated by s, + s, with the transformation 7', a
mechanism M, 5=, based on m observations denoted by (s4,7'(5))™, can return an e-approximation to
the inverse of T~ (if it exists) to recover the input with confidence (1 — §), if
amsiy, UM r@)m (T(5)) = 5l <€) 21 =0. 2D
Note that in the observations, we are conservatively assuming that the adversary knows the correspondence
between each mixed sample and the public sample that was used to generate it. Further, in this subsection,
we assume 7T is a one layer neural network with some activation function o, i.e., T'(5) = o(5W). We will
assume the weight matrix ¥ to be an invertible matrix within R?*¢, Without loss of generality, the activation
function o is not necessarily invertible but can be regarded as a truncation or a compressed function on the
linearly transformed sample 51V with finite precision. For simplicity, we assume 7'(3) is a d’-dimensional
vector within a bounded discrete set K, and we use |K| in the following to denote the total number of elements
in KC. As for the random weight W, we assume W is selected to be an inverse of a S-uniform matrix. Here, a
S-uniform matrix denotes a random matrix whose elements are i.i.d. randomly selected from [— 3, (], denoted
We first present a high-level picture of the subsequent analysis on the lower bound of sample complexity.
With a similar reasoning as shown in Section [3.2] the process of data generation and inference forms a
Markov Chain, § — §W — o(5W) — Adv, for any estimator of the inverse of 7', which can be regarded as
a composition of W~ and o~ 1. E]Thus, IW= o7 Adv) < I(W=Y 07 (84, T(8a + 5p)))™) which
implies
> I(W=1 071 Adv)
TIWY o780, T (8 + Sp))

14 Gaussian input assumptions on training data are commonly used in existing works [CSZ20, [DKS17, DKKZ20].

15 With a slight abuse of notations, when the activation function ¢ is not invertible, we take o' as an oracle such that
-1
o (o(s)) =s.
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With a closer look at the numerator, we have [(W =1, 0~ 1; Adv) = I(0~1; Adv) + I(W~1; Adv|o~1t) >
I(W~L; Adv|o~1), where instead we may shift our focus to the approximation error of W 1. The following
lower bound of I(W ~1; Adv|o~1!) involves an application of Fano’s inequality. Before proceeding, we first
introduce the notion of an (¢, §) packing set.

Definition 7 ((€, d) packing set of C). For z following a distribution P and a given function set C, an element
subset {c1,ca,...,cn} of C is called an (¢, §) packing set if for any © # j,

Pr([lei(z) = ¢;(2)] = €) = 4.
Now, in the context where z = 5W and C is [—f3, 3]9*¢, the domain of W !, we have the following
lemma w.r.t. the approximation to W1,

Lemma 4. For any given W and an arbitrary (2¢,25) packing set in the support domain of W ~1, there exists
at most one element W1 within the packing set such that

Pr([|[(GW)W ! -5 <€) >1-06.

Proof. Suppose there exist two elements W~ ! and Wy ! within the (2¢,25) packing set both satisfying
@1): Pr(|GW)W — 5| <€) > 1~ 6 and Pr(||(GW)W, ' — 5| < €) > 1 — 4. On the other hand,
GWYW L — W)W, | < ||(GW)Wt — 5| + ||(5W)W, ! — 5| Therefore, we have

Pr([|(sW)W, ' =3l < en[|(5W)W5 ' = 5] <€) < Pr(|(sW)W, ' = (sW)Wy || < 2e).
On one hand, with a union bound,

Pr(|(sW)W; ' — 5| <eA||(BW)W; ! — 5] <¢)

> Pr(||(GW)W — 5| <€) +Pr(|GW)Wy ! —5] <€) —1>1-26
(22)
On the other hand, with Definition

Pr(||[(sW)Wy ! — (sW)W5 || < 2€) < 1 — 29,
which is a contradiction.

It remains to use the above packing set notion to construct a covering over the support set of W 1. Then,
we can generalize Fano’s inequality to derive a lower bound for the numerator. The conclusion is stated as
follows.

Theorem 3. Let T be a one-layer random neural network with input data and a weight matrix W that is
an inverse of a d X d [B-uniform matrix, as assumed above. Given an arbitrary estimation mechanism Adv
satisfying (e,0) PAC approximation (21)), then

I(W™ o7h Adv) > d*log(B/A) — 1

where € and ¢ satisfy the following, § = (1 — @(2ec//TA))(1 — 2d - emp(—%). Here, 7 = 7, + 75, and
A and c are free parameters. ¢(t) is the cumulative distribution function of the normal distribution N (0, 1),

ie, d(t) =1/v2r [*__e /2t
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The proof of Theorem isin Appendix As mentioned before, I(W =1, 0~1; Adv) measures how much
information is required to support an efficient (¢, §)-PAC approximation. Theoremmatehes our intuition:
the lower bound gets larger with a bigger 7, i.e., input data of higher entropy (since A can be smaller for a
larger 7 to achieve the same ¢), or a bigger 3, which corresponds to a larger concept size of transformation.
In the following theorem, we provide an upper bound on the denominator I(W =1, 0715 54, T(s4 + sp)).

Theorem 4. Under the same setup on the W, o and input data,

Ta+ Tp

IV ,07 50, Tlsq +5,)) < log K] + 5 log(“ ™)

Tp

The proof of Theorem []is included in Appendix [F} Putting Theorems [3] and [] together, we have the
following PAC approximation resistance guarantee for Algorithm 3}

Corollary 2. With the above setup, when the number of samples

d*log(8/4) 1
" log|K| + § log(™™)

Algorithm 3| is resistant to arbitrary (e, §)-PAC approximation, where € and 0 satisfy the following, 6 =
(1 —P(2ec//TA))(1—2d- exp(—%), with T = T4 + Tp, and free parameters A and c.

PAC Security of Transformation In this section, we will set the privacy concern as whether an adversary
can approximate the transformation itself well. In this case, we will not impose any restrictions on the
activation function. Without loss of generality, in the transformation o (5W), we simply assume o to be the
identity or equivalently any invertible function and the random weight W € R%*4’" We call a mechanism
M based on the observation (s,, T(3))™ an (e, §) PAC-approximation to the random weight W used[i‘]in
transformation 7" if

Pr(M(s) —sWl <e) 21 -0 (23)

Here, we also provide another random weight selection of W, where we assume each column of W, i.e.,
W(:,i),i=1,2,...,d, follows a distribution such that ||W (:,4)|| is independently and uniformly distributed
within an interval [1, 8 + 1]. With a similar reasoning as Theorem and TheoremE], we have the following
theorem whose proof is in Appendix [G]

Theorem 5. Under the above assumptions, when

d'log(B/4) — 1

m <
AW (B, 70+ 7p)) — (25T 4 Bl og(B 41) — 1))

)
there does not exist any (e, §)-PAC approximation to the random weight W of transformation T. Here, € and

0 satisfy
71 o 2v/2¢ B
7= 50— R ),

16 Since we do not put any specific assumptions on the activation function o, we stick to the recovery of the random
weight IV in the following. But with some proper assumptions on the continuity, one can generalize the results to the
approximationto 7' = o o W.
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and

a® a®

>~ 1 1
v(gr) = [ T MO 5 p) ~ o8 (= (10 5 50) =) da,

where I'(z,y) is the upper incomplete gamma function that I'(x,y) = fyoo t*~te~tdt, and 0 = I'(0, %) A
is a free parameter.

As a short summary, either in data privacy (Corollary [2)) or model security (Theorem [5), the private
sample entropy improves both the numerator and denominator of the sample complexity bound. With the
assistance of private samples, the total information required for a satisfied adversarial inference gets larger
while the information provided per mixed sample decreases. In Theorem 5} such an amplification factor on
sample complexity appears in a form O(log(7,)7,), when we take the remaining parameters as constants.
Such a claim also holds if W is selected to be a uniform matrix. Indeed, with a uniform matrix W, similar to
Corollary 2| the numerator of the sample complexity in Theorem can be further improved to be ©(d’ d
The reason that we assume W in the current form is just to simplify the denominator calculation. Therefore,
if W is selected to be an inverse of a uniform matrix or a uniform matrix itself in Corollary 2]and Theorem 3]
respectively, and we measure the power of randomness of W to resist adversarial inference (taking output
quantification precision and other security parameters as constants), the sample complexity required in both
cases is ©(d), the dimensionality of the samples.

5 Experimental Results

This section consists of four main experiments, where we set out to further study the following problems:
transformation of perfect secrecy, random neural net transformation and fully-connected network training, the
hardness of recovery of private images, and the match between transformation and training algorithm. The
Adult dataset from UCI, and two standard image-datasets, MNIST and CIFAR-10 are the data sources for the
following empirical results.

5.1 Perfect Secrecy

Experiments in this section were run in Matlab R2020a.

Ridge Regression on Adult: In Section 2] we theoretically study how to achieve perfect secrecy for the
generalized linear model. We take the Adult dataset as the first example. The Adult consensus data contains
14 attributes including education level, age, gender and occupation. The task here is to develop a predictor
that predicts whether an individual’s annual income is above $50K.

To obtain perfect secrecy, we consider transforming the original data to some independent values. To
specify the operations, the input feature set X € R™*!* is first transformed to a square matrix X W, with
a random matrix W € R4*", For regularization, we apply SVI on the SVD form of XW = UXV by
X = U(X+7-1,)V. Then, we define the transformation on the feature domain z € X as T'(x) = - W- X1,
and fix the transformed training dataset as a constant I,,. We take 4,000 samples, 2,000 from each class, as
the test data. When the training number n = 20, 000 and n = 30, 000, the Non-Private (non-private) ridge
regressions achieve 63.3% and 66.5% accuracy, respectively. As a comparison, when we select 7 = 1, the
perfect-secrecy ridge regressions achieve 63.2% and 66.2% accuracy, respectively.

'7 Also from our experiments, the two W generation approaches have almost the same utility.



22 Hanshen Xiao and Srinivas Devadas

Multi-classification on MNIST: As mentioned before, a neural network is a special generalized linear model,
and we further consider multi-class classification with perfect secrecy. We take the MNIST dataset, the images
of 10 handwritten digits, as an example. We consider the following neural network architecture, which is
formed by three fully-connected layers of 300, 200 and 100 neurons, respectively, which are connected by
Relu activation functions, and a softmax classification layer at the end. Instead of using the full MNIST data,
we conduct and compare several subclassification tasks, where the number of classes c varies from 2 to 10.
Correspondingly, for given ¢, we take 2000 samples of each digit from 1 to c as the training dataset. Similarly,
we transform MNIST data via the above-mentioned semilinear transformation with SVI of 7 = 1. Under the
same training setup, we compare the training over original data and transformed data in Table 1.

Table 1: Handwriting Digit Classification of MNIST with Perfect Secrecy via Fully-connected Network

Methods/Accuracy  |2-Classify 4-Classify 6-Classify 8-Classify 10-Classify
Non-Private Training 99.4% 98.2% 97.9% 97.2% 97.0%
Perfect Secrecy Training| 98.3% 94.8% 90.1% 85.6% 82.2%

The experiments suggest that as the data and the classification task become more complicated (the number
of classes gets larger), the trained network is more prone to be over-fitted. As shown in Table 1, the accuracy
(generalization) of perfect secrecy training drops more sharply compared to the baseline. Recall the analysis
in Section [2.3] an arbitrary neural network on an invertible linearly-transformed dataset is bijective to a
same size neural net, which shares the same training error on the original data. In other words, the described
perfect-secrecy training can be viewed as randomly finding a network of satisfied training error. As tasks get
more complicated, those nets which generalize well are sparser amongst all nets of small training error. We
believe the above data-independent training can provide an interesting perspective to study generalization in
neural networks [JGH18. [LL18]], and may be of independent interest.

5.2 Data Mix and Random Transformation

We present experiments on the effects of data processing proposed in Algorithm [3]on training.

MNIST: These experiments were conducted using an implementation of Algorithm [3[in Matlab R2020a.
The results use an Intel Core i7 CPU @3.1GHz, with 16GB of memory. We use the entire 60,000 training
samples of MNIST. As for the random transformation, we use a one-layer neural network, where the number
of neurons equals the dimension of samples. Therefore, after applying the data mixing over the original
samples set R"*?, we generate m mixed samples in a form R™*¢, Through the transformation, the size of
transformed data does not change, which is still R”*<. In developing the PAC based privacy proof in Section
we proposed two approaches to generate the weight matrix W € R?*? for sample transformation:

— Approach 1: W is the inverse of a matrix, whose each entry i.i.d. follows a uniform distribution U[—23, 3].
— Approach 2: Each row of W is i.i.d. selected such that the [, norm of the vector is uniformly distributed
as U[1,1+ f].

Approach 1 and 2 correspond to the weight generations described in Corollary [2]and Theorem [5] respectively.
In the following, we select 3 = 50 in both approaches. In Table [2} we include the details of the training
time (measured as SGD iterations with a batch size of 128) and classification accuracy achieved. Here, we
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select the network to be trained as a 5-layer structure with 4 fully-connected layers of 256, 128, 64, 32
neurons, respectively, and a regression layer at the end. We run 20 trials of each case listed in Table 2] where
averages and standard deviations (in parentheses) are provided. The cost of each iteration is 0.022 seconds
and 0.023 seconds, for the no-mix non-private and the mix (non-private and private) training, respectively.
The difference is because of the slightly different empirical loss functions produced by original and mixed
samples, respectively. From Table 2] it is clear that the weight matrix generated by Approach 2 produces more

Table 2: Handwriting Digit Classification of MNIST with Fully-connected Neural Network

Methods Weight Generation # Samples Iterations (10%) Accuracy(%)
Non-Private Training n.a. 60,000 5.8 (£0.9) 98.5 (£0.07)
2-Mix Non-Private Training n.a. 120,000 9.2 (£1.1) 98.3 (£0.08)
2-Mix Non-Private Training n.a. 180,000 15.1 (£0.3)  98.6 (£0.08)
2-Mix Transformed Training|  Approach 1 120,000 47.8 (£13.7) 96.9 (£0.7)
2-Mix Transformed Training|  Approach 1 180,000 76.2 (£29.7) 97.2(£1.8)

4-Mix Transformed Training Approach 1 120,000 48.3 (+7.8)  95.4 (+2.0)
4-Mix Transformed Training|  Approach 1 180,000 68.9 (+£18.4) 95.7 (+£2.4)
2-Mix Transformed Training|  Approach 2 120,000 15.6 (£1.7)  98.3 (£0.07
2-Mix Transformed Training Approach 2 180,000 19.7 (+£2.0)  98.4 (+0.10
4-Mix Transformed Training Approach 2 120,000 17.9 (£1.5)  97.8 (£0.13
4-Mix Transformed Training|  Approach 2 180,000 19.3 (£2.2)  98.0 (£0.08

O —

stable and efficient learning over transformed data. One key factor which influences both the training time
and performance of transformed data is the distribution of singular values of the weight matrix used in the
transformation network. Intuitively, a weight matrix in which the largest and smallest singular values differ
by a lot will make the transformed data more fuzzy. In Approach 1, with certain probability, a uniform matrix
can be quite close to singular and the largest singular value of the matrix inverse is much larger than that of
the matrix itself. The probability with which this occurs becomes higher when the dimensionality increases
resulting in more unstable learning performance. However, a straightforward tradeoff between the utility and
privacy is rejecting outlier random matrices generated prior to data transformation and exposure, and the
consequent security loss can be modelled by an additional failure probability
CIFAR-10: Table |3| provides results on CIFAR-10 using the same network we specified above with an
implementation of Algorithm in PyTorch 1.7.1. The results use an Intel(R) Core(TM) i7-8700K CPU @
3.70GHz, with 32GB of memory, and a GeForce GTX 1060 GPU with 6GB of memory. Each run was 30
epochs with a batch size of 128, and the cost of each iteration is 0.003897 seconds and 0.004033 seconds, for
the no-mix non-private and the mix (non-private and private) training, respectively, on the GPU. Client-side
time for mixing and transformation generation and implementation on the CPU was less than 250 seconds for
400,000 mixed samples.

Given our use of a relatively simple fully connected network, the Non-Private training accuracy and the
Mix Non-Private training accuracy are around 50%. Accuracy numbers are averaged across 3 trials. Mix
Transformed data training accuracy is close to the Non-Private mix training for both approaches. We used the

18 It is worthwhile mentioning that Approach 1 and Approach 2 shown in Corollaryand Theoremproduce different
and incomparable PAC security guarantees, where the objectives of concern are data privacy and transformation
security, respectively.
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outlier rejection approach mentioned above for Approach 1. We reject the random matrices generated if the
ratio between the largest and the smallest singular values is > 1.15 x 10%.

Table 3: Object Detection of CIFAR-10 with Fully-connected Neural Network

Methods Weight Generation # Samples Iterations (10%) Accuracy (%)

Non-Private Training n.a. 60,000 14.0 55.59
2-Mix Non-Private Training n.a. 100,000 234 50.35
2-Mix Non-Private Training n.a. 200,000 46.8 51.97
2-Mix Non-Private Training n.a. 300,000 70.3 53.12
2-Mix Non-Private Training n.a. 400,000 93.7 53.67
2-Mix Transformed Training Approach 1 100,000 234 40.30
2-Mix Transformed Training Approach 1 200,000 46.8 46.49
2-Mix Transformed Training|  Approach 1 300,000 70.3 48.98
2-Mix Transformed Training Approach 1 400,000 93.7 48.67
2-Mix Transformed Training Approach 2 100,000 234 49.58
2-Mix Transformed Training|  Approach 2 200,000 46.8 52.64
2-Mix Transformed Training Approach 2 300,000 70.3 52.96
2-Mix Transformed Training Approach 2 400,000 93.7 53.41

5.3 Transformed Data Recovery

We conducted experiments to measure the hardness of inverting transformed data. Depending on specific
prior knowledge, attacks may also vary. In the following experiments, we aim to model an attack where an
adversary only has full knowledge on the public data and correspondence. The results provide some intuition
on the relationship between transformation, data mixing and privacy.

To relax restrictions on the adversary, we assume that the adversary knows all the underlying corre-
spondences and the random weight for those public samples used in the mixing and transformation. This is
also the assumption made in Corollary 2] and Theorem [5] To give an example, suppose samples from two
subsets Sp € Sp and Sa € S, within private S;, and public .S, sample sets, respectively, are mixed in a form
Dosie8, Aisi+ 2 eg, Aisi- The adversary will know the corresponding T'(3 -, cg Aisi + 2 c5, Aisi)
and public sample(s) S, and A; involved. We assume the adversary takes those "noisy" samples with
Zsj g, Ajsj as the label and the observation T'(3_, g, Aisi + Zsj g, Ajsj) as the feature, and trains a
network to mimic the inversion of transformation 7'.

Details of experiments can be found in Appendix [Al we summarize the main observations here:

— Recovery is possible in MNIST if enough mix samples (and their correspondences) are provided. Recovery
is more difficult given fewer samples. There is a budget associated with the number of samples that can
be exposed to inhibit recovery, and we provided a theoretical basis for this budget.

— Recovery is more difficult for more complex datasets such as CIFAR-10 in comparison with simpler
datasets like MNIST. Our theory explains this; compared to CIFAR-10, MNIST is much sparser and
under our setup it corresponds to a smaller entropy of the private data.

— Data mixing produces a big security amplification: under the same setup, data recovery is much easier (a
smaller sample complexity required) without data mixing, becoming a simple chosen plaintext attack.
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5.4 Matching the Transformation to the Training Algorithm

As the first key challenge described in Section [I.1] a proper transformation is such that the transformed
data matches the subsequent training algorithm. From our observation, a random fully-connected data
transformation network matches well with a fully-connected or transformer neural network. The Convolutional
Neural Network (CNN) provides an interesting example here. It is well-known that by applying AlexNet
[KSH17] or Residual neural network (Resnet) [HZRS16], one can achieve 90+% detection accuracy on
CIFAR-10. Training with a fully connected network is significantly less accurate (cf. Table FE] However, if
we let the image data (reshaped into a vector form) pass through a random fully-connected layer transform
as before, and then conduct training with a CNN, it is no better than training original CIFAR-10 images
with a fully-connected network. In images, neighboring pixels are potentially more correlated compared to
faraway ones, and thus the feature maps generated by the convolutional kernel are more efficient in extracting
important information. One can therefore hypothesize that an image transformed by a fully-connected layer
will lose locality, since each coordinate in the transformed image is an aggregation of all pixels from the
original image. This can be viewed as a feature map where the kernel size equals that of the image itself.
Therefore, the first convolutional layer is not a neighborhood operation on such transformed samples. Thus, for
such transformed data, it may be just as or more efficient to use a fully-connected network rather than a CNN.
To match a CNN, a more-friendly transformation could be a random convolutional layer. In our preliminary
experiments with random convolutional layer transforms, the accuracy gap compared to non-private CNN
training over CIFAR-10 images is within a few percents. However, our privacy proof cannot directly be
generalized to the random convolution case, and therefore we leave a comprehensive study to future work.

6 Private Model Release and Model Extraction Defense

With the above preparation, we now return to the challenges we pointed out in Section [I] i.e., a unified
framework to accommodate both private learning, outsourced to a server, and private inference, controlling
both data privacy leakage as well as the privacy of the user’s model. Recent studies have shown that even
with black-box accesses, one can recover sensitive information or even the full machine learning model
[FIR15],[TZJ16]]. Such inversion can heavily compromise the privacy of data, which the model is trained
over, and the intellectual property of the model holder.

For the former challenge, i.e., the privacy leakage of training data during the post-processing of the private
model, if the training procedure is differentially private, for example an SGD protocol perturbed by Laplace
or Gaussian Mechanism [ACG™ 16]], there will not be any problems since DP is resistant to postprocessing.
However, as we mentioned in Section[I] almost all existing DP works assume that the computation has to
be implemented by the user. To resort to untrusted cloud service, an LDP mechanism on the original data
seems to be the only approach. On the other hand, even if the computing process is protected through a
cryptographic approach, such as homomorphic encryption, the sensitivity calculation in general is NP-hard
[XTO8] and thus it is hard to apply a DP mechanism for the postprocessing operations. In the following, we
describe how to quantify such leakage when applying the model for inference.

Data Privacy Protection: Algorithm an inference protocol over mixed samples, is inspired by [LWG™20)]
which shows that mixup can not only improve the performance of training but also inference. This coincides
with our intuition that, taking 0.5(x + z’) as input, a well-trained predictor should output the mixed label
of 0.5(z + z’). We may consider the worst case that the query client and server are colluding and thus fr
is also known to the adversary. In Algorithm 4] 3/, the private label, is unknown to the adversary. Also in

' From a training perspective, when we feed images to a fully-connected network directly, the number of parameters to
be optimized is large, since image dimension is usually large, thereby making training difficult.
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Algorithm 4 Private Application of a c-classification Model for Inference

Input: A private dataset D; Label bases of ¢ classes b1, ba, ..., b. and Transformation 7" generated by user; Model fr
trained over transformed dataset with 7" by server and sent back to user;

1: A query with a feature «x is sent to the user by some query client;

2: User randomly selects a sample (z’,y) from D and produces a mixed feature 0.5(z + ).

3: Apply transformation 7" over 0.5(z + z') and calculate f7(T(0.5(z + =')));

4: Approximate the true label of x by 2[fr(T'(0.5(x + z’))) — 0.5y’] and compute the nearest label basis:

i = arg an] 1207 (T(0.5(z + ")) — 0.5¢'] — by
i€[l:c

Output: :*-th class as the inference result.

practice, most commonly used predictors, such as a neural network with non-linear activation functions,
are not invertible. To relax the restrictions, we still assume f7 is invertible and that the adversary can even
recover T'(x + z'). Therefore, provided the query feature 2 and T'(x + '), the privacy loss caused during
inference is reduced to the PAC security model described in Section [ when analyzing Algorithm [3] Hence,
through Algorithms[3]and 4] the PAC security model provides a unified analysis for privacy leakage during
both learning and inference over transformed data. Applying Corollary [2] which connects the privacy budget
(e,9) to the sample complexity, when we take the entire data privacy loss during model training and model
application into account, the sample complexity m should cover both the training samples exposed and the
later inference queries.

Model Extraction Defense: The second challenge, i.e., one may steal the model or approximate fr o T
through multiple accesses, is indeed also resolved by Algorithm[4 Such approximation hardness is quantified
in Theorem [5] where we measure the sample complexity to find a mapping which is statistically close to T'.
Thus, even if the query client and the server are colluding where fr is known, adversaries cannot steal the
model without efficient approximation of 7'. Similarly, provided (e, §) security budget of the model itself, the
sum of the numbers of exposed training samples and the later inference queries should be no bigger than the
sample complexity m.

Putting things together, a unified private learning and inference framework is constituted through a
combination of Algorithms [3]and 4 The proposed protocols with PAC security represent a framework where
the privacy/security losses in four dimensions, namely, the data privacy and the model security loss [CIM20]],
during the training and the model application (inference) are uniformly measured m

7 Related Works

Data Mixing and Privacy: A popular data augmentation method mixup was proposed in [ZCDLP18]
and has been widely studied both empirically [BCG™ 19, TCB™19, VLB 19, [PXZ19], and theoretically
[ZDK20]. Mixup achieves significant success in semi-supervised learning [BCG™ 19]] and has been shown to
strengthen the robustness even under adversarial attacks [PXZ19]]. We are not the first to consider introducing
mixup for privacy preservation. Huang et al. proposed a private training protocol, Instahide in [HSLA20],
and Liu et al. proposed a private inference protocol, Datamix in [LWG™20]. Instahide performs sample-
specific sign-flipping unlike the uniform transformation over each sample in the Dauntless framework.
Straightforward applications of mixup may encounter two major vulnerabilities from adversarial inference.

20 If one wants to achieve the PAC security w.r.t. both data, with budget (1, 61 ), and the model, with budget (e2, 62),
simultaneously, the sample budget should be the minimum of that determined by their respective security budgets.
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Recall the description of mixup in Section[3.2] First, the trivial one-hot label encoding exposes both the random
weights used for mixing. Second, though data can be randomly mixed, the underlying permutation cannot
provide rigorous privacy guarantees. E] Carlini et al. [CDG™20]] approximates the sample correspondence
in Instahide with a similarity graph, and follow-up works [CSZ20, HST™20], which are based on the phase
retrieval model, present several attacks on Instahide.

Transfer Learning and Data Transformation: Generally speaking, transfer learning studies how the expe-
rience or knowledge gained in solving one model could be reused for other tasks. Transfer learning has been
well studied recently [PY09, TST0, ZQD™20]. Especially in deep learning, it is common to use a pre-trained
network for a large and challenging classification task as a basis, over which the new model is further trained.
The framework of perfect secrecy training shown in Section[2]can also be presented in a transfer learning view:
for privacy preservation, we map private data to some public data and then incorporate the transformation and
the corresponding model of the public data. In Section 2} we only studied a linear transformation and set the
transformed data to be constant (identity). We leave more comprehensive investigation on the transformation,
which may be more suitable to transfer learning, to future work.

8 Conclusion

Exploiting the fundamental statistical nature of machine learning, we have proposed a unified private learning
and inference framework that implements a training procedure on a transformed sample domain to produce
a usable model. We propose a new information theoretic security metric, namely PAC inference resistance.
Different from the classic view where security/privacy loss is measured by the additional information provided
by ciphertext, PAC security further takes the prior knowledge into account providing a more comprehensive
characterization.

Our preliminary experiments in the Dauntless framework show promise in producing usable models from
transformed datasets, in a computationally-efficient manner. The proposed framework sheds light on a possibly
unified analysis on data privacy, model security, data feature extraction and training from an information
processing perspective. Advances in machine learning with more efficient feature extraction and training
algorithms may enhance data protection, by allowing more flexible designs of sample transformation that
match the training. Conversely, studies on sample transformation and security in an information processing
view may help advance the understanding of machine learning mechanisms.

2! A hypothesis in [HSLAZ0] is that the computational hardness of mixup can be reduced to the subset sum problem.
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A Recovery of Private Images from Transformed Data

We first consider the following example, where in the MNIST dataset with 60,000 training samples, all the
samples of digits from 1 to 5 are private while the rest 6 to 0 are all public. In this case, 5, corresponds
to all samples of digits 1-5 and .S, corresponds to the rest. As mentioned in Section [5.3] we assume the
adversary takes those "noisy" samples with 3 5 A;s; as the label and the observation T'(3_, -5 Aisi +
Zsje G, A s;) as the feature, and trains a network to mimic the inversion of transformation 7'. Unless
otherwise stated, we used Approach 1 (cf. Section[5.2) to generate the transformed data.

In our first experiment, we consider the scenario where 180,000 mixed samples are randomly generated
as described above, where we randomly select 10 private mixed images with their corresponding transformed
ones and the recovery is shown in Fig.[2| In Fig. |2} the first row corresponds to the private part of selected
images, the second row corresponds to the transformed images, and the recovered images are shown in the
third row. In the following experiments, since the transformed images all look like random noise, we will
omit them. Clearly, as we restrict the adversary to the samples of only digits {6, 7, 8,9, 0}, the learning with
noisy data produces a predictor which applies the knowledge from those 5 classes in the public samples to
approximate the unknown private data, and the recovery essentially fails. However, in practice, it is more
likely that the private and public sets share samples from a same class. It is more interesting to assume that
the adversary has much more prior knowledge on samples in each class.

In the second example, we change the assumption of private and public sets of MNIST in that we
assume the samples of each class are evenly divided into two parts, which are included in public and private
sets, respectively. In other words, the adversary knows 50% samples in each class. We still assume the
correspondence and mixing weights for public samples are known by the adversary. Fig. [3|shows the recovery
of 10 private pictures randomly picked. Clearly, the recovery is much more successful, where about 70% of
private pictures are well-approximated. In expectation, the "noise" is almost in the same scale in the first and
the second examples, as one half of MNIST pictures are unknown. However, MNIST handwriting pictures
are relatively simple, where the data matrix is sparse. Provided 180,000 observations, an adversary with prior
knowledge on one half of samples in each class can successfully invert the transformation 7'.

We now consider weakening the prior knowledge the adversary has. In Fig. ] under the same setup, we
assume only 25% of samples in each class are known by the adversary. This impedes recovery significantly.
Similarly, on another dimension, we can also decrease the number of mixed samples generated. In Figs.[3]-
[l we still assume 50% samples are public but only 60,000 2-mixed samples are generated, over which the
training achieves 94.9% accuracy. Under the same setup, the private pictures recovered are shown in Fig.
[l Furthermore, if we do 4-mix where the mixed images become more fuzzy, the recovery becomes more
difficult. Under the same setup, training over 60,000 4-mix samples achieves 93.7% accuracy, where the
recovered pictures are shown in Fig. [6]

Importantly, more complicated pictures have a potential for larger entropy. If the data to be mixed and
transformed is CIFAR-10 pictures, even with prior knowledge on one half of 50,000 CIFAR-10 training
samples and 200,000 mixed samples produced, the inversion becomes much harder, as shown in Fig.

Finally, we show that if we simply apply a uniform transformation (Approach 1) on the original samples
without data mixing, the attack becomes easier to carry out. In Figs.[§]and[9] under the same setup, we assume
the adversaries know 50% and 95% of the CIFAR-10 training dataset, respectively, and the recovered pictures
are shown. Clearly, though perfect reconstruction is impossible, a much better private image approximation is
produced.
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Fig. 2: Recovery of Transformed MNIST Pictures with Prior Knowledge on All Samples of Digits 6-0 and
180,000 Mixed Samples

Fig. 3: Recovery of 2-Mix Transformed MNIST Pictures with Prior Knowledge on 50% of Full Dataset and
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Fig. 4: Recovery of 2-Mix Transformed MNIST Pictures with Prior Knowledge on 25% of Full Dataset and
180,000 Mixed Samples
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Fig. 5: Recovery of 2-Mix Transformed MNIST with Prior Knowledge on 50% of Full Dataset and 60,000
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Fig. 6: Recovery of 4-Mix Transformed MNIST Pictures with Prior Knowledge on 50% of Full Dataset and

60,000 Mixed Samples

Fig. 7: Recovery of 2-Mix Transformed CIFAR-10 Pictures with Prior Knowledge on 50% of Full Dataset

and 200,000 Mixed Samples
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Fig. 8: Recovery of NO-Mix Transformed CIFAR-10 Pictures with Prior Knowledge on 50% of Full Dataset
of 50,000 Samples
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Fig. 9: Recovery of NO-Mix Transformed CIFAR-10 Pictures with Prior Knowledge on 95% of Full Dataset

of 50,000 Samples
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B A Transformation Construction with Ambiguity Set Comprising the Column
Space

From a view of linear space, each column of X A is a linear combination of the columns of X. In other words,
X A is within the linear space spanned by the columns of X. Therefore, if we restrict the transformation to be
linear, in an additional information measurement, the least privacy loss is to only expose the column space of
X. In the following, we construct a linear transformation framework such that its ambiguity set equals the
column space of its input.

For simplicity, we assume X is of full rank. We divide our analysis into two cases: if n < d, then there
always exists a matrix XEI such that X Xgl = I, O(d—n)xn]- Such a transform is of perfect secrecy w.r.t.
all full rank matrices where n < d. Second, if n > d, clearly we cannot find such an Xgl but similarly,
we aim to find some unique feature only determined by the column space of X. Since there are infinite
d-dimensional subspaces in R, resorting to a look-up table becomes impossible. To efficiently encode and
construct a mapping, which is uniquely determined by a d-dimensional subspace, we provide the following
scheme shown in Algorithm 5]

To justify that Algorithm [5] preserves perfect ambiguity w.r.t. all matrices enjoying the same column space
as X, we need the following lemma:

Lemma 5. For any two sets of normalized orthogonal bases X1 = [z, x}, ...,x}] and X5 = [23, 23, ..., 2]
of a d-dimensional linear space, there exists a unitary matrix U € R such that X, = XoU.
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Algorithm 5 Perfect Column Space Ambiguity Transformation

1. Apply Gram—Schmidt Orthonormalization on the columns of X = [z1, 22, ..., z4] With normalization to X =
[Z1, T2, ..., Zd.

2. Randomly generate a unitary matrix U € R,

3. Output X = XU.

4. Determine the transform matrix A = (X7 X) ' X X.

. . . d

Proof. Since X; and X5 are two normalized orthogonal bases of one linear space, let a:ll =5 =1 Cijx?,
. . .. _ . 1 n o (2NT 2 N2

where in a matrix form, itis X1 = XoC. Since ||z; || = 1, we have > 7, _, cijea(x;)” ~af =320 ci; = 1,

i.e., each column of C' is normalized. Furthermore, since (x})T . acll = 0, which implies Zi:l cijeq = 0, 1e.,

the inner product of any two columns equals 0, which are orthogonal. Thus, C' is an unitary matrix.

With the above lemma, following the orthonormalization and normalization across the columns of X, we
find a set of normalized orthogonal bases of the column-spanned space. Through a random unitary matrix,
any normalized orthogonal basis has identical probability to be the output. Therefore, it is indistinguishable
for all elements in the same column space.

C Multiplicative Differential Privacy for Diagonal Matrix

In this section, we set out to study whether analogous to the additive DP mechanism, through selections of the
multiplicative operator from a more heavy-tailed distribution, we can derive arbitrarily strong DP guarantees
(arbitrarily small distinguishability advantage). Though in general, without further assumptions the answer is
negative but in a special case if the input matrix is diagonal, we have the following observations.

We start with one-dimensional reals. For two real numbers 71 and 75, how close could the distributions of
r1 and zoa be for some random « generated from certain distribution Q? Without loss of generality, we
assume both 71 and ro are positive. Then, we have for any z € R

Prirma=z) r P(z/r)

— = = . 24
Pr(raa=2) 1 P(z/ra) @4)
To make the above ratio as close as possible to 1, we consider the following distribution:
1 l , 0<2z<1
-
P(z) = T (25)
N |
147
for some 7 > 0. Then, we have the following lemma.
Lemma 6. For random « distributed as (23)), and arbitrary z,
P(ria = z) < max{ry/ro,ro/m1} Plrea = 2) +7/(1+ 7). (26)

The proof of Lemma@is simply substituting the density function to express the ratio. Here, 7/(1+7)
corresponds to the probability that Pr(z € [0,1)). As 7 — 0, the two resultant output distributions move
towards being identical. The above observation has a straightforward generalization to multidimensional space
for positive diagonal matrices. Consider X1 = DZAG[z}, z3, ..., x}] and Xy = DTZAG[23, 23, ..., 23], where
DT.AG|* denotes a diagonal matrix with diagonal elements *. If we select W) = DZAG[o, ag, ..., a,],
where «; 1.i.d. as in , we have the following lemma.
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Lemma 7. For random diagonal matrix W) with i.i.d. diagonal elements distributed as , and two
positive diagonal matrices X1 and X, for arbitrary z,

P(X, WO = 2) < max{det(X,)/det(Xs),det(Xs)/det(X1)} P(XoW D = 2) 4 nr/(1+ 7). (27)

Lemma(7]is a composition of Lemma [6| with the union bound. The above results on diagonal matrices
render the random transformation construction of Algorithm 6]

Algorithm 6 Singular Value Obfuscation

Input: Matrix X € R™*".

1. Apply SVDon X = UXV , where X' is the singular value diagonal matrix;

2. Transformation by X’ = X VT W where W € R™*" is a diagonal matrix of which the diagonal elements are i.i.d.
as (23).

Output: Matrix X' € R™"*™,

The output of Algorithm [6] can be rewritten as X’ = UXW. As a corollary of Lemma[7] for any two
input matrices X7 and X which share the same left-singular vectors (same U in their SVD), then as 7 — 0,
Algorithm[6] produces an ambiguity set which includes matrices with the same left-singular vectors U.

D Proof of Theorem 2|

Proof. Since the selection of each row of W is independent, the high-level structure of the proof is that
we first describe such distribution difference in one coordinate of the output and then we compose those
differences to derive the final result. It is noted that after SVI, the gap matrix becomes X 1— X o =X1—Xo+
(X1 — X1) — (X3 — X5), where the last two quantities need careful control. Now, consider the following
identity

XoXT - X XT = E(Xy + B)T + X, ET. (28)

(XX = (X)) Tz = 2T (X&) T (X XD) (X X)) 7! - (X)) )z

= 2T [(X XY Y X XT + E(X, + B)T + X1 ET)(Xo X)) — (X, X))~

=2T(X\ XY Y EX, 4+ BE)" + X, ET)(XoXT) V2.

(29)
Without loss of generality, replacing z by X; ¢ in (29), we have
o’ [(X)THEX + E) + X, ET)(Xo X)) X«
= [a"(X1)'E] - [xT XQXQ) LXia] + [T (X)X - [ET (X XT) 71 X1a]
= [aT(X) 7' E] - [XT(X5 )T X (Xe — E)a] + [T (X)) 7' X41] - [ET(X5 YT (X) " (X2 — E)al.
(30)

Take a closer look at several key components in . The first is X. 5 ' X5. Assume X, = UXV and thus
X, = U(X 4 7 - I)V. This provides X; ' Xy = V(X + 7 - I)~' £V, where each diagonal element of
(X +7-I)71X is less than 1 since 7 > 0. This observation produces a useful corollary that for any vector z,

l]z



DAUNTLeSS: Data Augmentation and Uniform Transformation for Learning with Scalability and Security 37

[ X5 X5 - z|| < ||2]|. The other useful conclusion we will use is, for arbitrary matrix X, the Frobenius norm

is always no less than the /5 norm. Now, if we rewrite F in the following form that £ = e; - viT, where ¢; is

the i natural basis, v; is the i*" row of E and i is the index of the sample in which the two adjacent datasets

X, and X, differ. Then, we can further write (30) as

[a”(X1)7Ye] ol - XT (X)X (X — B)a] + [of (X1) 7' Xqv] - [el (X5 1) (X)) (X2 — B)a.
(31

Before proceeding, we first prove the following lemma.

Lemma 8. Assuming o € R™ which is randomly selected from the (n — 1)-dimensional sphere centered at O
with radius r, i.e., ||| = r, then o is a Sub-Gaussian random variable and

—2log(d/4
pr(oT - < IUIVZOROTD |
n+ 24/nlog(d/2)
Proof. Equivalently, we can rewrite & = ¢ - g/||g||, where g ~ N (0, I,,), since a normalized Gaussian vector

is uniformly distributed in the unit (n — 1)-sphere S,,_1. First, for ||g||?, which follows a x-distribution,
applying the Bernstein inequality, we have the following concentration bound,

Pr(||g||*> < n —2v/nc) < e °.

On the other hand, vT'g ~ N (0, ||v]|), and thus
Pr(|v”g| > |ju]\/~2log(é'/2)) < d".

Putting the above two bounds together, we have

rllvll —210g(5’/2))

Vn —2y/nc

Let c = —log(d/2) and ¢’ = 6/2, we have the argument claimed.

Pr(r- v g|/llgl| < 1—d" —e

Back to , we have the following observation. First,
is at least 7. Second, |[v7 - XT (X5, )T < 7.
Applying Lemma 8 on each component of (31)), we have that

X n le; I < % since the least singular value of X,

[vill,_—r?[lvi]|21og(6/32)

T T(n-&-QW)

Pr (|27 [(%,X7) 7" - (Ko XT) V2| < 201+

)>1-6 (32

Now, we can turn to bound the ratio,

-1 SUIXT 0P . -
P(X™z) "1™ GLIIXT 2 - X5

: _ ) LT[ XT) = (X XT) 2| (33)
P(X;tz)  ev(IXs 'zl —

2
Pl

det(X1)

As for the ratio e (Ka)’

we follow the idea in [BBDS12]], which is based on the Linskii Lemma [BhaO7]:
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Lemma 9 ([Bha07])). Given two matrices X and X' € R"*", whose singular values are \y > Ag > ...\,
and Ny > Xy, > ..\, respectively, let E = X' — X. Then, foreveryk € [1 : nlandany 1 < iy <is < ... <

i <N,
k k k
DX <D N+ su(E
j=1 j=1 j=1

where sv(E)|y.,) are the singular values of E in an non-increasing order.

From the above lemma, in our case, E is of rank 1, which has only one non-zero singular value upper
bounded by 5. Thus, if we can further guarantee the least singular values of both X and X' are at least 7,
then

detX u Ai Ni—N. S ou kg
del(X7) H < I 5= TLosmghednnimed o
i=1 Ai>A i iXi >\ @

(32), and together produce the (g, 6o + 6,.) DP leakage for one dimension of the output, where
B B —r2Blog(0/32)

P 4L(1 + )
n + 24/nlog(do/16))
Applying the well-known DP composition [DRV1Q], a d’-fold of (eg, dg + d;-)-DP mechanism will produce

(deo(e© — 1) + egy/2d log(1/4),d (8 + ;) + ), and the claim follows.

E Proof of Theorem 3

Proof. As mentioned before, I(W =1, 071 Adv) > I(W~!; Adv|oc~1), where conditional on 01, Adv is
equivalent to satisfying
(||Adv(sW) —35|<e>1-04.

g"’~5a"l‘$pv

Thus, we first construct a packing set over the support set of W1, i.e., [~ 3, 3]9*<. In the following, we use
V|| to define the norm of a matrix V" as the largest eigenvalue of V.

Lemma 10. For a S-uniform matrix V, with probability at least (1 — 2d - exp(f%)),

Proof. 1t is well-known that a uniform distributed variable is sub-Gaussian. To be specific, if © ~ U[—/, 5],
then E,[e*?] < ¢*"#*/2 Therefore, consider a d-dimensional uniform vector v whose entries are i.i.d.
selected from [—f, /3], and any d-dimensional unit vector w such that ||u|| = 1. Applying the Hoeffding
bound on sub-Gaussian variables, we have

t2
232

with a union bound on the above, we have, if V' is selected to be a d x d S-uniform matrix,

Pr(|{v,u)| > t) < 2exp(—

).
Setting t = f’
2

PI‘(HUV” < C) >1-—2d- eg:p(_w

).

Therefore, with probability at least (1 — 2d - e:cp(—ﬁ)), Vil <e.
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With Lemma a corollary is that, with probability at least (1—2d-exp(— ﬁ )), the smallest eigenvalue

of V=1 should be at least 1/c. Let W = V=, Now we can move to lower bound ||WW (W, * — W, 1)||. In the
next step, we consider the anti-concentration of a Gaussian distribution. Assuming two vectors uj, us € R4,
such that ||u; — ug|| > A, then with probability at least (1 — 2d - ea:p(—%)), W (uy —ug)T|| > Afe.
For any ¢ > 0 and a Gaussian variable z distributed as N (0, ), Pr(|x| > ¢) = 2(1 — &(t/+/7)), where §(t)
is the cumulative distribution function of the normal distribution N (0, 1), i.e., \/% S ioo e~t/2dt. Therefore,

by setting 7 = 7, + 73, for a Gaussian vector 5 € R¢ of which each entry is i.i.d. selected from N (0, 7), and
any ¢ > 0, we have

2
Pr(|(5. W (ur = w2) )] 2 0) > 21 = B(te/VTAN (1 = 2 eapl—5 ) (35)

After the above preparation, we can now show how to construct a packing set w.r.t. W 1. One candidate is
simply a partition on the interval [— 3, 5]. We naturally divide [—/3, 8] into 23/ A intervals of equal length A.
For simplicity, we assume /A is an integer. Then, we select one half of them in a form: {[—3+2i- A, -+
(20 +1)-A4],i=0,1,...,8/A — 1}. It is noted that arbitrary different elements from different sets are of
distance at least A. Now, we generalize such a partition to each entry of W ~! within the range [, 5]¢*“.
The concatenated partition is in a form {[—3 4+ 2i- A, —B + (2i + 1) - A],i = 0,1, ..., /A — 1}4*4_ which
in total produces (3 /A)d2 many subclasses. For arbitrary W, ' and W, * from two different subclasses,
we know that the Iy norm of at least one column of (W, > — Wy ') is at least A. Thus, we finally have

that for any W~ ! and W{l from two different subclasses described above, with probability at least § =
2(1 = P(t\/c//TA))(1 — 2d - emp(—%), [5W (W' — W, Y)|| > t. Hence, if we select one element
from each subclass, they naturally produce a (¢, §) packing set w.r.t. W1 provided the transformed data 5.

A simple but useful fact which will be used later is, such a packing set construction can also lead to a
straightforward covering of the support set [—3, 3]9%¢. In other words, we divide the full space [— /3, 3]4*¢
into a union of packing sets in a form

({[-B+2i-A, —B+(2i4+1)-A],i = 0,1, ..., B/ A—1}, {[-B+(2i+1)-A, — B+ (2i+2)-A],i = 0,1, ..., B/ A—1})4*4,

The following analysis will connect the mutual information and its partition form.
Consider
(z,y)

= X (0] p
I(z,y) = zegeyp( y)1 8 o)

)

where there exist two disjoint Borel sets 31 and 55 as a partition of 5 = B; U B>. We have the following
identity,

PEY) s p(zy) - p)p(y)
megeyp(x,y) lo p(x)p(y) Priwe Bl)zegw Pr(z € 5’1)1 & p(z,y) (36)

On the other hand, it is noted that when we restrict « into 1, the conditional mutual information I(x; y|x €
B1) equals

p(z,ylz € By) p(z,y) p(z,y) Pr(z € B1)
, By)log YL = P1) 1 . (37
L e B ) |, 2, Fia € Br) " ) Prta € Boply)”

rEBy,YyE

which is equivalent to the right hand side of multiplying a factor 1/Pr(z € By). Through the above
discussion, we can focus on the conditional mutual information on each packing set designed.
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It is well known that under Shannon entropy, Fano’s inequality can produce an upper bound on H (T~ Adv).
However, Fano’s inequality cannot directly apply to the continuous case. To overcome this, we propose a
generalization under proper assumptions.

Lemma 11 (A Generalization of Fano’s Inequality). Let x be uniformly distributed over a domain (possi-
bly continuous) X where there exists a partition X = X1 U Xo U ... U Xn. {X;,4 = 1,2, ..., N} are disjoint
and further Pr(x € X;) = % Then, for any estimator X which satisfies a Markov Chain x — y — X if there
exists a sequence of discretizations D1, Do, ... of X such that lim;_, ., D; = X, then

I(x;x) 2 (log N)(1 - Fe) — 1,
where P, denotes the probability that x and X do not belong to the same set X;.

Proof. Let E be an indicator that £ = 1 if both y and x belong to the same set X; otherwise £ = 0.
Consider a discretization where each partition set X; contains C' elements and y is uniformly distributed
over those discrete elements. Since I(x; X) = H(x) — H(x|x) = log(NC) — H(x|x), in the following, we
focus on H (x|%). Applying the Chain rule,

H(E, xIx) = H(x|x) + H(E|x,x) = H(E[X) + H(x|E, X). (38)

It is noted that F is deterministic given x and ¥, and thus H(FE|y, X) = 0. On the other hand, H(E|Y) <
H(E) <1and

H(X|E,X) = Pr(E = 0)H(x|%. E = 0) + Pr(E = DH(x|%, E = 1) < (1 - P.)log C + P, log NC.
Thus, combining all, we know
H(x) — H(x|x) > 1log(NC) —1 —logC — P, log(NC/C) = (1 — P.)log N — 1. (39)

Now, we will apply Lemma [ 1| by replacing x, X and N by W~1, Adv and the number of packing
sets in . Please note that Adv may not necessarily simply be an estimation of W1, i.e., we do not
restrict Adv within the domain of [, 8]¢*?. But virtually, for any Adv operator, there exists at most one
(€,0)-statistically close W~ in a (2¢,26) packing set. Let P, = 0, and thus we obtain a lower bound on
the conditional mutual information I(W~1; Adv|o=!, W =1 € Cy 25), where Ca 25 denotes one (2¢, 26)
packing set constructed above. As assumed, W ! is uniformly distributed either across the full support
set [—3, 4]9*?, and thus also uniformly across one packing set. Recall the connection between mutual
information and the equivalent form of the sum of conditional mutual information developed in (36) and (37),
we know such a bound is also an lower bound for I(W ~%; Adv|o—!). The theorem follows.

F Proof of Theorem 4

Proof. To derive an upper bound, it is noted that I(W 1,071 5,, T(sq + $p)) = H(8a,T(Sa + 8p)) —
H (34, T(54 + sp) W=, 071). Clearly, H (4, T (8a + 8p)) < H(s4) + H(T (84 + 8p)). On the other hand,
H (30, T(sq+5p) W1 071) = H(T(sa+5,)|W™, 07 ) +H (54| T(sa+5p), W1,071). As assumed, the
public data s,, is a Gaussian vector, where each entry i.i.d. follows N (0, 7,). Thus, H(s,) = %(1+log(277,)).
As for H(s4|T(sq + sp), W™, 071), note that, once T'(s, + s,) and (W1, 071) are given, they also



DAUNTLeSS: Data Augmentation and Uniform Transformation for Learning with Scalability and Security 41

determine s, + s, uniquely. For simplicity, we use 7! to denote the (W =1, o) in the following. Therefore,
we have

H(84|T (50 + 8p), T71) = / P(T(sq +8p) =8, T =t")VH(84|T (50 + 8p) =8, T =
s'€R4, ' €[—B,8]9%

:/ de(sa—l—sp:s)H(sa\sa—i—sp:s):H(sa|sa+sp).
s€

(40)
Substituting the distribution of s, and s, into the above equation, we have

H(salsa +5,) = — / / P(5as 50 + 5p) 10g(p(sa]5a + 5p))dsq dsy
Sa J SatSp

d)Ta. (x)¢7' (y - LU)
= — _ 1 P
d / /y 6 ()61, (y = ) log T dy @1)

— 4 / / G2 ()b, (y — ) (10g br, (2)5r, (4 — ) — 108 bro 1, (4)) it dy.

Here, ¢, denotes the density function of the Gaussian distribution N (0, 7), i.e., ¢ (z) = \/21776_“‘2/ 2T We
separately calculate the two quantities in (41).

As a straightforward corollary of the differential entropy of a Gaussian, since fy ¢r, (y — x)dy = 1 for
fixed x, we have

_ / / br, ()7, (y — ) lOg 7, ()7, (y — x)dx dy = %(1 +log27T,) + %(1 +log2n7,).  (42)
zJy

For the very last part, — [ fy ¢, ()07, (y — ) log ¢r, 4+, (y), Which is equivalent to

[ ([ 00 @00,y ~ 5)d0) YoB 61,4, (4)dy = 51+ log 2 (7 + 7). @3)
Yy xr

Therefore, the sum of (42) and produces a closed form for H(s,|T(sq + sp), T1). Since H(s,) =
4(1 + log 27 (7)), we have H(s,) — H(sa|T(sq + 8p), T71) = %(log(%)), which approaches 0 as
7, — oo. Finally, for H(T(sq + s,)) — H(T(sq + sp))|T71), since T(s, + sp) is restricted to a finite
discrete set C, it is upper bounded by log(|K|). Combining both, the theorem follows.

G Proof of Theorem

Proof. With a similar reasoning as the proofs to Theorem [3|and Theorem[d] the following content includes
two parts, where the first derives a lower bound I(W; Adv), while the second derives an upper bound of
I(W; 54, T(5)).

We first construct a packing set of . For each row w € R?, which is within an I, ball of radius 3
denoted by B we split the support set into 2% parts based on the norm in a form Sy, 5o, ..., S, 2 where
S; = {w||wl| € ((i — 1) - £, - £]}. Similarly, a partition over (B3)¢ can be {S[1.0/}". The following
lemma develops the foundation of the packing set. °
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Lemma 12. Fors € N(0,7 - I;) and any Wy, W5 € RY%" such that the norm of each column of W1 — W
is at least %, then
PI‘(||§(W1 — W2)|| > 26) > 29,

where € and ¢ satisfy the following

1 2v/2¢
§==(1-d (20 —1)).
51— 2o =0) - 1)
Proof. Since the inner product (5, w) ~ N(0, 7||w||). Thus, Pr(|(5,w)| > t) = 2(1 — &(t/+/7||w]])). By
setting t = jf? and |w| = £, with a union bound we have
2\/56

Pr([5(Wh — Wa)| = 20)]) = 1 - /(26

vara) Y

Hence, by only selecting non-adjacent partition subsets, ({S2;+1,4 = 0,1, ..., %—1}, {S2,i=1,2,..., %})d'
produces a covering of the support domain of W while on the other hand, if we select one element from each
subclass, they will form a packing set. Following Lemma [TT] with the same notations used in Lemma 2} we
have

I(W; Adv) > d'log(B/A) — 1.

In the following, we focus on upper bounding I(W; s,, T'(5)), where we have

I(W; s4,T(3))

H (50, T(5)) — Hisa, T(5) ) s
< H(sq) + H(T(3)) — H(s4|W) — H(T(3)|84, W).
Here, it is noted that the selection of s, is independent of that of W, and thus, H(s,|W) = H(s,). On the
other hand, provided W and s,, T'(5) = T'(s, + sp) also uniquely determines s, W. Therefore, (44) can be
further rewritten as
1(W; 50, T(3)) < H(T(5)) — H(s,W|W). 45)

To analyze T'(5), for w such that ||w|| ~ U (1,1 + f], let z = (5, w), we have

48 1 g—a/rllwll®) 1 a? a?
Pz =) :/1 5 Vel = 2 O a0 5

Here, I'(x,y) is the upper incomplete gamma function where I'(x,y) = fyoo t*~le~tdt. Thus, we have

1 a2 a? 1 a? a?

H(T(5)) = —2/0 W (Ir:(o, (BT 1)2)—F(0, 57)) log (2\/%6 (1 (o, 23 T 1)2)—F(0, 37))) da
As for H((sp, w)|w), we have
B
H((spw)lw) = [ p) ()l =w) = 5 [ HE~ NO7-?)do
f 1+8 o log(2 1 (36)
= %/1 (log(2mety) + 2logw) dw = o8 ;reTp) + B; log(B+1) — 1.



DAUNTLeSS: Data Augmentation and Uniform Transformation for Learning with Scalability and Security 43

With (46), let the function ¥ (3, 7) be in a form,

a? 2 1 a? a?

< 1 a
W(ﬂﬂ-) = _/O \/%5 (F(O’ 27_([3 + 1)2)_F(07 E)) log (2\/%ﬁ (F(O’ 27—(6 + 1)2)_F(0’ E))) da”

and we can upper bound I(W; s,,T(3)) as follows.

[(Wi5a.T(5)) < d'[0(B,70 + 7)) — (log@;””) LB ; L log(B+1) - 1)), @7

Combining both the lower bound of numerator and the upper bound of the denominator, we have the claim.
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