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       Sampling methods for cryptographic tests    
 

             George Marinakis * 

 
      Abstract 
 

Modern cryptographic algorithms have an enormous key diversity, so if we want 

to test their strength for all the keys, it will take practically an infinite time. To avoid this, 

we use the sampling method, in which we examine a much smaller number of keys n and 

then we make estimation for the total key population N with a predetermined sampling 

error. For the generation of the n cipher outputs (samples) with the n corresponding keys, 

the critical questions are how many samples we will test and how large must be the size 

of each sample. The general rule is that, the sampling error is reduced as we increase the 

number of the samples. But since the tests must be executed in an acceptable time, we 

must compromise the above rule with some additional factors, such as the type of the 

cryptographic cipher, the kind and the size of the plain information and of course the 

available computer power. In this study we examine the interrelations of all the above 

factors, and we propose applicable solutions.   
 

Keywords: Cryptography, Data encryption, Communication security, Computer 

security, Data security, Information security. 

 

1. Introduction    
 

When we want to evaluate the cryptanalytic strength of cryptographic algorithms, 

we must perform some specific tests on their output sequences (keystreams) as well as 

on selected encrypted texts. These tests investigate the complexity and the non-linearity 

of the algorithms and are based on specific statistical and cryptanalytic methods, which 

test the randomness and the uniform distribution in the bits of the keystreams, as well as 

unwanted similarities between the different keystreams. They also check the 

independence between the clear and the encrypted text and they generally search for 

security weaknesses which can be used for cryptanalytic attacks. Some researchers have 

developed tests suites for random number generators and cryptographic algorithms, like 

these which are described in [1], [2], [3], [4]. Each of these test suites contains several 

statistical tests, which can investigate the existence of weaknesses in cryptographic 

algorithms. 

For the generation of the output sequences, we must use a software simulation of 

the under-test algorithm, which should be able to generate binary unformatted outputs for 

all possible combinations of the cryptographic keys. The simulation software besides the 

capability of the selection and modification of the keys, must also enable the user to select 

the length of the cipher output bitstream. 
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  The methods which we will propose are based on symmetric cryptographic 

algorithms, but similar methods can be applied in asymmetric cryptographic algorithms.    
 

2. Testing all the keys 
 

As we noted, for each test key of the cryptographic algorithm we have to produce 

an output sample and apply the tests to it. If we want to test all the keys, due to the very 

large size of cryptographic keys (which today varies between 2128  to 2256 ), it is practically 

impossible to test all the combinations of the key. In order to show this, we constructed 

Table 1 in which we calculated the total time for the production of samples for all the 

keys, for the block cipher AES, for its three choices of key values (90, 128, and 256 bits).  

According to [5] , if we use software implementation for a block cipher, the  time  

needed  for  the  production  of  one  block  is  given  by  equation (1), where TMDL is 
 
 

 TMDL =
CMDL

F
   (1) 

the time for a Main Decryption Loop (MDL), CMDL is the 

CPU cycles for a MDL and F is the frequency of CPU clock. 

If in equation (1) we put CMDL = 167 cycles/block which is 

the higher speed of AES software implementation that we found in literature [6] and 

F=3,6 GHZ as the currently higher CPU clock speed, we obtain that TMDL =  46,388 nsec. 

Also according to [5] , if we use hardware simulation for a block cipher, the 

production time for one block, which is called latency, is given by equation (2). Where 

Bsize is the number of the input block bits and Throughput is the number of 

encrypted/decrypted bits/s (throughput) for single hardware implementations in FPGA or 

ASIC,  which  can  reach  200 Gbps  according  to  [7]. If  in  equation  (2)  we  will put 
   

𝐿atency =
Bsize

Tℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
 

   (2) 
Bsize  =  128 bits  and Throughput = 200 Gbps, we will 

obtain that Latency = 0,64 nsec. 

The above times refer to the production of only 128 bits (one block). However, in 

cryptographic tests we want larger samples in order to find any non-random patterns in 

the bitstream. If we produce samples of 1 Mbit (for the reasons that we explain in 

paragraph 5), we must multiply the above times by 7812,5 (106 bits = 128 •  7812,5). 

Therefore, we will need approximately 362 μsec with software simulation and 5 μs with 

hardware simulation. With these production times we calculated the third and fourth 

column of Table 1, which shows that it even with the fastest algorithm implementations 

in software or hardware, it will take an astronomical number of years to produce samples 

for all the keys. 
 

  

  Key    

  size 

 (bits) 

 
             Key      

    combinations 
 

(number of samples) 

 

 SAMPLE PRODUCTION TIME FOR ALL KEYS 

                        (for 1 Mbit samples) 

  

   Software simulation 

     (362 μsec / sample) 

  

   Hardware simulation 

         (5 μs / sample) 
    

  90 
            

          290 

 

       1,42 • 1016     years 
 

       1,96 • 1014     years 

    

 128 
            

          2128 

 

       3,87 • 1027     years 
 

       5,35 • 1025     years 

    

 256 
           

          2256 

 

       1,32 • 1066     years 
 

       1,83 • 1064     years 

            

                Table 1.   Total time for the production of  algorithm samples for all keys 
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In addition to the practically impossible time which is needed in order to produce 

output samples for all the keys, we have to take into account and the time which is needed 

for the application of the statistical tests to each sample. This procedure takes much more 

time, as we will see in paragraph 6. From all these factors, it is obvious that during the 

cryptographic tests we are obliged to test a much smaller number of output samples 

(keys), with the use of the sampling method which is described below. 

 

3. Sampling method 
 

The sampling method is used when we want to measure the existence of some 

particular attributes on a very large number of N elements, therefore is very difficult and 

time consuming to test all the N elements one by one. To avoid this difficulty, we examine 

only a small number n of the total population N and then we make estimation for the total 

population, with a predetermined sampling error.  

In our case, the procedure is that for each of the n sampling keys we generate an 

output sample of the algorithm and we store the n samples in corresponding files. Then, 

we submit all the output samples to the relevant statistical and cryptanalytic tests and we 

save the results of the tests, in order to make our estimations. The final decision on the 

cryptographic power of the algorithm (randomness, independence, unpredictability of 

outputs, etc.) is made based on the overall success rate of the tests in the samples. These 

checks are extremely time consuming, therefore if we want to have a reliable sampling 

(small sampling error) but also a practically feasible time to perform the checks, the main 

problems that arise are the following: 

a. How many output samples we must check? 

b. What should be the size of each sample? 

c. How can we reduce the time of the tests? 

d. What criteria should we use in order to select the sampling keys? 

e. How do we rate the security (cryptographic strength) of the algorithm based on 

its test results? 

In the present work we will analyze problems (a), (b), (c) and we will propose 

methods for solving them. The problems (d) and (e) will be addressed in a future study. 

 

4. Number of the output samples 
 

In our case, n is the number of cryptographic algorithm output samples (which 

corresponds to the number of tested keys) and N is the total number of the keys. Also, we 

have two possible attributes p and q, because we want to investigate the existence of two 

possibilities: 
 

       a) Attribute p : The contents (bits) of the sample are random (strong algorithm). 

       b) Attribute q : The contents (bits) of the sample are non-random (weak algorithm).  
    

In our case, we consider that one sample is random when it passes all the 

individual tests of the test suites which were mentioned in paragraph 1. If the sample fails 

at least one individual test, then it is considered non-random. 

Theoretically, our case belongs to the binomial probability distribution (two 

attributes). However, in order to facilitate the calculations, we chose the normal 

probability distribution, which is very close to the binomial distribution for n > 100, 
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according to [2] and [8]. Therefore, from [8] and [9], we have that for the normal 

probability distribution the number of required samples n , is derived from equation (3): 

 

  

 

 
 

 

(3) 

 

 

where:   
 

Ν = total population (total number of keys)  
 

z = 1.96 (the value of the normal   

       probability distribution curve for       

       confidence level 95%) 
 

p = percentage of random samples 
 

q = 1- p = percentage of non-random samples 
          

e = sampling error for our estimation      

       (level of precision) 

 

Due to the fact that the number of cryptographic keys N is a very large number 

(usually between 2128 and 2256) which practically tends to infinity, equation (3) can be 

simplified to (4): 
                                                      

         𝑛 =
𝑧2𝑝𝑞

𝑒2  

 

(4) 

  
 

For our calculations it is better to take the worst case, in which n becomes 

maximum. This happens when the product pq is maximum. Since the sum of the 

probabilities p and q is constant (equal to 1), their product pq is maximum when p = q = 

0.5 (50%). In other words, n is maximum when the percentage of random and non random 

samples are equal (maximum variability of the two attributes).  

If we substitute in equation (4) the values which were described above (z=1.96 

and p = q = 0.5), we can calculate the required number of the algorithm samples n for 

some characteristic values of the sampling error e. It is obvious that if we want to reduce 

the sampling error e, we need to increase the number of samples n. However, during the 

cryptographic checks, in addition to the number of samples, an important role plays the 

size of each sample, which we will examine in the next paragraph. 

We must note that in the following paragraphs 5 and 6, our study is based on 

stream ciphers, but the final results and conclusions are similar for block ciphers. 

Moreover, we can test the block ciphers in the OFB mode operation, which simulates the 

function of a stream cipher. 

 

5. Size of the output samples 
 

If we take stream ciphers as an example, they mix their digital output sequences 

with the open information (using the XOR function) in order to produce the encrypted 

information. These sequences (key streams) must be as complex as possible, so that they 

can not be calculated and reproduced by an interceptor (i.e. they must be close to random). 

But in practice the cryptographic sequences of stream ciphers which use linear feedback 

registers (LFSR) are not completely random, but pseudo-random with a very long 

repetition period. Therefore, theoretically we would say that we need to test samples of 



5 

 

the stream ciphers which are equal or greater in size than their minimum repetition period, 

in order to investigate the randomness along the entire length of the generated sequence. 

Table 2 shows the minimum repetition periods of four simple stream ciphers. To 

simplify the calculations, we assumed that each stream cipher is consisted of 1 to 4 

identical LFSRs of maximum length (shown in the columns of the table). For each stream 

cipher we set as alternative lengths of LFSR, the 40, 48 and 56 bits (rows of the table). If 

L is the length (in bits) of an LFSR, then its minimum repetition period is 2L -1, while 

when we have a combination of more than one, the total period is equal to the product of 

their periods, according to [10]. Therefore, in Table 2 their minimum repetition period is 

calculated from the equation:  
 

    Minimum repetition period = (2L1 -1) • (2L2 -1) • (2L3 -1) • (2L4 -1)  
 

           (where L1, L2, L3, L4 are the lengths of LFSR and L1 = L2 = L3 = L4) 
 

In Table 2 for each L, in addition to the period, we also calculated the required 

transmission time of the bits in a communication channel with a speed of 10 Mbits/s 

(rows of the table with grey background). This is the time which is required by an 

interceptor to receive all the periodically repeated bits and analyze the algorithm.   

As it is shown in Table 2 the interception of all the bits is impossible, due to the 

huge amount of time required. Therefore, we do not consider it necessary to test such 

long sequences of output samples for the evaluation of the algorithm. 
 

Length L    

      of     

   LFSR 

    (bits) 

                

          MINIMUM  PERIODS  OF  STREAM  CIPHER  (bits)  
 

  (the gray rows show their required transmission time with 10 Mbits/s) 
  
 

with  1 LFSR  
 

 with  2 LFSR 
 

 with  3 LFSR 
 

with  4 LFSR 

40 

   
 1,1*1012 bits 

 

1,2*1024 bits 

 

  
 1,32*1036 bits 

  

 1,46*1048 bits 

    
 1,28 days 

 

3,8*109 years 
  
 4*1021 years 

 

4,48*1033 years 

48 

   

 2,8*1014 bits 
  
8*1028 bits 

  
 2,23*1043 bits 

  
 6,27*1057 bits 

   

 321,2 days 

years 

 

2,48*1014 years 
  

7,04*1028 years 

  
19,8*1042 years 

56 

   
 7,2*1016 bits 

 

5,2*1033 bits 
  

 3,74*1050 bits 
  

 2,7*1067 bits 

   
 228,4  years  

 

16,8*1018  years 
  

11,8*1035  years 
 

4,32*1052  years 

 

    Table 2. Minimum repetition periods (keystreams) of four different stream ciphers 

 

A more feasible but also substantial approach is to choose the size of the tested 

samples depending on the volume of information which will be encrypted. In particular, 

we are interested in the volume of information which is encrypted with the same key, in 

order to examine the robustness of the cryptosystem in practical cryptanalysis conditions. 

In most cryptosystems the key changes at least every day, so we are interested in the 

amount of information which is encrypted during a day. However, some cryptosystems 

(such as voice crypto) change the key with each new communication (session key), so in 
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this case we are interested in the volume of information which is encrypted during a 

communication connection (session). As shown in Table 3, the size of the digital 

information varies greatly depending on the type and the duration of the information. 

According to the above, in the case that we want to evaluate a stream cipher, the 

size of its output sequence (key stream) which we will test, must be at least equal to the 

maximum size of the information which will be encrypted (or alternatively the most usual 

size). For example, we see from Table 3 that in the case that we have 10 pages of text for 

encryption, we need an output sequence of only 100 Kbytes, while for 10 minutes of 

video, we need to produce an output sequence of 800.000 Kbytes. In the tests which are 

described in the next paragraph we had time constraints and also a restricted computing 

power, so we chose output samples of 132 Kbytes (1 Mbit in binary unformatted form). 

The size of 1Mbit is enough for simple texts up to 12 pages and for digitized voice up to 

3.5 minutes. However, when we have a longer duration of telephone communication or 

when we want to encrypt photo or video, the sample size of 1Mbit is too small, so we 

may not discover some non-random patterns in the output of the stream cipher. 
 

 

  Information kind  

   

  Duration /  

  Resolution 

    

    Size  

 (Kbytes) 

 

                Notes 

       Simple text    10 pages      100    MS Word 

           Voice    5 minutes     1440   vocoder (4800 bits/s) 

   Picture or drawing    5 Mpixels     3000   compression JPEG 

            Music    3 minutes     6900  compression mp3 / 320 kbps 

            Music    3 minutes     2800  compression mp3 / 128 kbps 

            Video   10 minutes  800.000   compression MPEG 

 

              Table 3.  Indicative size values of different kinds of digitized information  

 

6.  Required time 
 

Based on what we have previously analyzed, in order to calculate the time required 

for the cryptographic tests, first we apply equation (4) of paragraph 4, in order to calculate 

the required number of samples for certain characteristic values of the sampling error. 

The results are shown in the first two columns of the comparative Table 4, from where 

we see that if we want to reduce the sampling error, we must greatly increase the number 

of the samples. For a sampling error of  3% we must test 1067 keys, for sampling error 

2% we must test 2401 keys, while for sampling error 1% we must test 9604 keys. 

However, the larger number of samples means a much longer time for their production 

and testing procedure. 

The total time required to test a sample of the algorithm is equal to the sum of the 

time required to produce the sample, plus the time required to conduct its randomness 

and cryptanalytic robustness tests. In practice, we measured that for an algorithm sample 

of 1Mbit, this total time is about 2 hours, using the statistical randomness tests of the 

Crypt-X software described in [3] , which we ran on a commercial PC (3.6 GHz, with 4 
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GB RAM). Based on these tests, we created the second part of the comparative Table 4 

(columns 3,4,5,6,7,8), which shows the total time required for the investigation of the n 

samples, if we share the samples production and testing to 1, 2, 3, 4, 5 and 6 PC. 

Table 4 shows, on the one hand, how time-consuming it is to evaluate a 

cryptographic algorithm and on the other hand, how drastically the evaluation time can 

be reduced if we have the ability to use many computers for the algorithm evaluation. 

This is because we will distribute the samples production and testing to multiple 

computers which they will work in parallel, thus reducing the total time.  

In practice, in order to make a more detailed and reliable evaluation, the sampling 

error should be less than 3%. In the case of a 3% sampling error, Table 4 shows that in 

order to complete the evaluation in a practically usable time of 45 days (1.5 months), we 

must have six parallel working computers. If we want a smaller sampling error or less 

days in order to complete the evaluation, then obviously we must use more computers. 
 

 

 SAMPLING  

    ERROR 

       ( e ) 

             

 NUMBER       

      OF   

SAMPLES                

     ( n ) 

           

               REQUIRED TIME (days)                            
        (with computers working 8 hours/day) 

1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 

     10   %           96   24    12    8    6     5     4 

       9   %         119                        30    15  10    8     6     5 

       8   %         150   38    19  13  10     8     6 

       7   %           196   49    25  17  12   10     8 

       6   %         267   67    34   23   17   13   11 

       5   %         384   96    48   32   24   19   16 

       4   %         600  150    75   50   38   30   25 

       3   %       1067  267   134   89   67   53   45 

       2   %       2401  600   300 200 150 120 100 

       1   %       9604 2401 1200 800 600 480 400 
 

   Table 4. Required time of cryptographic tests based on the desired sampling error 

 

It is therefore evident that, by using more numerous and more powerful 

computers, we are able to test a much larger number and size of the samples, and thus 

minimize the sampling error. The bottom line is that, if we want to make the evaluation 

of the cryptographic algorithms more thorough and more reliable, we must use as much 

as possible computing power. 

And finally, it is obvious that for the final decision about the number of the 

samples, we must make a compromise between the reliability of the evaluation (small 

sampling error) and the available time and computer power. 
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7. Reduction of the testing time 
 

There are some methods in order to reduce the extremely long time of the 

cryptographic tests which were described in the previous paragraph. These are: 
 

a. Automation and parallelization: A very significant reduction of the testing time 

can be achieved with the use of appropriate software which will automate the main time-

consuming processes, such as the production of the samples, the execution of the 

statistical tests, and the classification of the results. In addition, as we noted in paragraph 

6, a very significant time reduction can be achieved if we share the total work to several 

computers. For the automation of all the testing processes, these computers must be 

connected in parallel through a LAN (Local Area Network) and they must be controlled 

through a parallel processing software.  

As it is shown in Figure 1, if we have k computers connected in parallel, the n 

sampling keys of the algorithm will be evenly divided and distributed to them. This means 

that each computer will receive n / k keys and will work in parallel with the others, in 

order to produce its corresponding n / k output samples of the algorithm, apply the 

statistical tests to them and send the results back to the controller.  
 

  

           computer 1              computer  2              computer 3                              computer k 

 

             1             1 

 

 

 

 

   

 

n  keys           n  results         

keys        results        keys         results       keys         results                       keys        results     
   1                                  2                                  3                                                 k 

n / k samples 
 

 - Production 
 - Testing 

Controller 

n / k samples 
 

 - Production 
 - Testing 

n / k samples 
 

 - Production 
 - Testing 

n / k samples 
 

 - Production 
 - Testing 

 
 

Figure 1. Reduction of the time for cryptographic tests, dividing the work through a    

                 parallel working LAN (keys 1 + keys 2 + keys 3 + ...... + keys k = n).  

 

The total time TP for the production and testing of the samples in Figure 1 will be:  
 

          ΤP = Τ1 / k (where T1 is the time required with one computer). 
 

This means that the time corresponding to the use of only one computer in the Table 4 of 

the previous paragraph, can be reduced to one tenth with the use of ten computers running 

in parallel. 
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b. Graphics Processing Unit (GPU): On modern computers the Graphics 

Processing Unit (GPU) has great capabilities of parallel processing (which is necessary 

for managing the pixels of the screen). Thus, many GPU manufacturers allow the users 

to use special software to program the GPU for their own specific applications, as it is 

described in [11], [12] and [13]. One such special application of the GPU can be its 

programming to speed up the cryptographic tests, in the context of what was mentioned 

in the previous subparagraph 7a. 
 

c. Programmable hardware (FPGA or ASIC): For the purpose of the tests, the 

implementation of the cryptographic algorithm is easier when it will be done using a high-

level programming language. However, for cryptanalytic and testing purposes, the 

execution time of the encryption can be dramatically accelerated if the algorithm is 

implemented in an especially programmable hardware FPGA (Field Programmable Gate 

Array) or ASIC (Application Specific Integrated Circuit), as it is described in [7] and 

[14]. The total time of the cryptographic tests can be reduced furthermore if we will also 

implement the statistical tests in FPGA or ASIC.  
 

d. Overclocking: The technique of overclocking, concerns the increase of the 

nominal frequency of the computer clock (which has been determined by the 

manufacturer) in order to make the computer to operate faster than its original speed. 

However, this technique is controversial and we do not recommend it, because it can 

cause overheating, instability, reduction of the lifespan and even complete destruction of 

the CPU. Basic information and guidelines for overclocking can be found on [15], [16], 

[17], [18]. 

 

8. Conclusions 
 

In order to reduce the extremely long time of cryptographic algorithm tests, we 

use the sampling method in which we examine a much smaller number n of the total key 

combinations N, and then we decide for the total key combinations with a predetermined 

sampling error. Due to the fact that N is extremely large, we ended up to a simplified 

equation which indicates that the number of sampling keys n practically is independent 

from N and it is inversely proportional to the sampling error e. Our calculations showed 

that for sampling error 3% we must test 1067 keys, for sampling error 2% we need 2401 

keys, while for sampling error 1% we need 9604 keys. It is obvious that for the final 

decision about the number of samples, we must make a compromise between the 

reliability of the sampling (small sampling error) and the available time and computer 

power. Concerning the size of the tested samples, a practical and feasible rule is to choose 

a length equal to the maximum length of the information which will be encrypted. 

The time which is needed for the cryptographic tests can be reduced with the 

automation of the main processes (production and testing of the samples, classification 

of the results etc.). Also, a significant time reduction method is the sharing of the total 

work to several computers working in parallel through a LAN. A further time reduction 

can be achieved with the implementation of the algorithm simulation and the statistical 

tests into special hardware (FPGA or ASIC). An alternate time reduction method is          

the implementation and parallelization of the above processes with the use of                  

Graphics Processing Units (GPU). 
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