
1

 Sampling methods for cryptographic tests

 George Marinakis *

 Abstract

Modern cryptographic algorithms have an enormous key diversity, so if we want

to test their strength for all the keys, it will take practically an infinite time. To avoid this,

we use the sampling method, in which we examine a much smaller number of keys n and

then we make estimation for the total key population N with a predetermined sampling

error. For the generation of the n cipher outputs (samples) with the n corresponding keys,

the critical questions are how many samples we will test and how large must be the size

of each sample. The general rule is that, the sampling error is reduced as we increase the

number of the samples. But since the tests must be executed in an acceptable time, we

must compromise the above rule with some additional factors, such as the type of the

cryptographic cipher, the kind and the size of the plain information and of course the

available computer power. In this study we examine the interrelations of all the above

factors, and we propose applicable solutions.

Keywords: Cryptography, Data encryption, Communication security, Computer

security, Data security, Information security.

1. Introduction

When we want to evaluate the cryptanalytic strength of cryptographic algorithms,

we must perform some specific tests on their output sequences (keystreams) as well as

on selected encrypted texts. These tests investigate the complexity and the non-linearity

of the algorithms and are based on specific statistical and cryptanalytic methods, which

test the randomness and the uniform distribution in the bits of the keystreams, as well as

unwanted similarities between the different keystreams. They also check the

independence between the clear and the encrypted text and they generally search for

security weaknesses which can be used for cryptanalytic attacks. Some researchers have

developed tests suites for random number generators and cryptographic algorithms, like

these which are described in [1], [2], [3], [4]. Each of these test suites contains several

statistical tests, which can investigate the existence of weaknesses in cryptographic

algorithms.

For the generation of the output sequences, we must use a software simulation of

the under-test algorithm, which should be able to generate binary unformatted outputs for

all possible combinations of the cryptographic keys. The simulation software besides the

capability of the selection and modification of the keys, must also enable the user to select

the length of the cipher output bitstream.

* George Marinakis holds a MS in Electrical Engineering from University of Patras (Greece)

and a PhD in Cryptography from National Technical University of Athens (NTUA). He is a

former professor at Telecommunications and Electronics School of Signal Officers (Athens,

Greece). He is currently instructor and scientific collaborator at Hellenic Army Academy. He

can be reached at gmari@tee.gr.

2

 The methods which we will propose are based on symmetric cryptographic

algorithms, but similar methods can be applied in asymmetric cryptographic algorithms.

2. Testing all the keys

As we noted, for each test key of the cryptographic algorithm we have to produce

an output sample and apply the tests to it. If we want to test all the keys, due to the very

large size of cryptographic keys (which today varies between 2128 to 2256), it is practically

impossible to test all the combinations of the key. In order to show this, we constructed

Table 1 in which we calculated the total time for the production of samples for all the

keys, for the block cipher AES, for its three choices of key values (90, 128, and 256 bits).

According to [5] , if we use software implementation for a block cipher, the time

needed for the production of one block is given by equation (1), where TMDL is

 TMDL =
CMDL

F
 (1)

the time for a Main Decryption Loop (MDL), CMDL is the

CPU cycles for a MDL and F is the frequency of CPU clock.

If in equation (1) we put CMDL = 167 cycles/block which is

the higher speed of AES software implementation that we found in literature [6] and

F=3,6 GHZ as the currently higher CPU clock speed, we obtain that TMDL = 46,388 nsec.

Also according to [5] , if we use hardware simulation for a block cipher, the

production time for one block, which is called latency, is given by equation (2). Where

Bsize is the number of the input block bits and Throughput is the number of

encrypted/decrypted bits/s (throughput) for single hardware implementations in FPGA or

ASIC, which can reach 200 Gbps according to [7]. If in equation (2) we will put

𝐿atency =
Bsize

Tℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

 (2)
Bsize = 128 bits and Throughput = 200 Gbps, we will

obtain that Latency = 0,64 nsec.

The above times refer to the production of only 128 bits (one block). However, in

cryptographic tests we want larger samples in order to find any non-random patterns in

the bitstream. If we produce samples of 1 Mbit (for the reasons that we explain in

paragraph 5), we must multiply the above times by 7812,5 (106 bits = 128 • 7812,5).

Therefore, we will need approximately 362 μsec with software simulation and 5 μs with

hardware simulation. With these production times we calculated the third and fourth

column of Table 1, which shows that it even with the fastest algorithm implementations

in software or hardware, it will take an astronomical number of years to produce samples

for all the keys.

 Key

 size

 (bits)

 Key

 combinations

(number of samples)

 SAMPLE PRODUCTION TIME FOR ALL KEYS

 (for 1 Mbit samples)

 Software simulation

 (362 μsec / sample)

 Hardware simulation

 (5 μs / sample)

 90

 290

 1,42 • 1016 years

 1,96 • 1014 years

 128

 2128

 3,87 • 1027 years

 5,35 • 1025 years

 256

 2256

 1,32 • 1066 years

 1,83 • 1064 years

 Table 1. Total time for the production of algorithm samples for all keys

3

In addition to the practically impossible time which is needed in order to produce

output samples for all the keys, we have to take into account and the time which is needed

for the application of the statistical tests to each sample. This procedure takes much more

time, as we will see in paragraph 6. From all these factors, it is obvious that during the

cryptographic tests we are obliged to test a much smaller number of output samples

(keys), with the use of the sampling method which is described below.

3. Sampling method

The sampling method is used when we want to measure the existence of some

particular attributes on a very large number of N elements, therefore is very difficult and

time consuming to test all the N elements one by one. To avoid this difficulty, we examine

only a small number n of the total population N and then we make estimation for the total

population, with a predetermined sampling error.

In our case, the procedure is that for each of the n sampling keys we generate an

output sample of the algorithm and we store the n samples in corresponding files. Then,

we submit all the output samples to the relevant statistical and cryptanalytic tests and we

save the results of the tests, in order to make our estimations. The final decision on the

cryptographic power of the algorithm (randomness, independence, unpredictability of

outputs, etc.) is made based on the overall success rate of the tests in the samples. These

checks are extremely time consuming, therefore if we want to have a reliable sampling

(small sampling error) but also a practically feasible time to perform the checks, the main

problems that arise are the following:

a. How many output samples we must check?

b. What should be the size of each sample?

c. How can we reduce the time of the tests?

d. What criteria should we use in order to select the sampling keys?

e. How do we rate the security (cryptographic strength) of the algorithm based on

its test results?

In the present work we will analyze problems (a), (b), (c) and we will propose

methods for solving them. The problems (d) and (e) will be addressed in a future study.

4. Number of the output samples

In our case, n is the number of cryptographic algorithm output samples (which

corresponds to the number of tested keys) and N is the total number of the keys. Also, we

have two possible attributes p and q, because we want to investigate the existence of two

possibilities:

 a) Attribute p : The contents (bits) of the sample are random (strong algorithm).

 b) Attribute q : The contents (bits) of the sample are non-random (weak algorithm).

In our case, we consider that one sample is random when it passes all the

individual tests of the test suites which were mentioned in paragraph 1. If the sample fails

at least one individual test, then it is considered non-random.

Theoretically, our case belongs to the binomial probability distribution (two

attributes). However, in order to facilitate the calculations, we chose the normal

probability distribution, which is very close to the binomial distribution for n > 100,

4

according to [2] and [8]. Therefore, from [8] and [9], we have that for the normal

probability distribution the number of required samples n , is derived from equation (3):

(3)

where:

Ν = total population (total number of keys)

z = 1.96 (the value of the normal

 probability distribution curve for

 confidence level 95%)

p = percentage of random samples

q = 1- p = percentage of non-random samples

e = sampling error for our estimation

 (level of precision)

Due to the fact that the number of cryptographic keys N is a very large number

(usually between 2128 and 2256) which practically tends to infinity, equation (3) can be

simplified to (4):

 𝑛 =
𝑧2𝑝𝑞

𝑒2

(4)

For our calculations it is better to take the worst case, in which n becomes

maximum. This happens when the product pq is maximum. Since the sum of the

probabilities p and q is constant (equal to 1), their product pq is maximum when p = q =

0.5 (50%). In other words, n is maximum when the percentage of random and non random

samples are equal (maximum variability of the two attributes).

If we substitute in equation (4) the values which were described above (z=1.96

and p = q = 0.5), we can calculate the required number of the algorithm samples n for

some characteristic values of the sampling error e. It is obvious that if we want to reduce

the sampling error e, we need to increase the number of samples n. However, during the

cryptographic checks, in addition to the number of samples, an important role plays the

size of each sample, which we will examine in the next paragraph.

We must note that in the following paragraphs 5 and 6, our study is based on

stream ciphers, but the final results and conclusions are similar for block ciphers.

Moreover, we can test the block ciphers in the OFB mode operation, which simulates the

function of a stream cipher.

5. Size of the output samples

If we take stream ciphers as an example, they mix their digital output sequences

with the open information (using the XOR function) in order to produce the encrypted

information. These sequences (key streams) must be as complex as possible, so that they

can not be calculated and reproduced by an interceptor (i.e. they must be close to random).

But in practice the cryptographic sequences of stream ciphers which use linear feedback

registers (LFSR) are not completely random, but pseudo-random with a very long

repetition period. Therefore, theoretically we would say that we need to test samples of

5

the stream ciphers which are equal or greater in size than their minimum repetition period,

in order to investigate the randomness along the entire length of the generated sequence.

Table 2 shows the minimum repetition periods of four simple stream ciphers. To

simplify the calculations, we assumed that each stream cipher is consisted of 1 to 4

identical LFSRs of maximum length (shown in the columns of the table). For each stream

cipher we set as alternative lengths of LFSR, the 40, 48 and 56 bits (rows of the table). If

L is the length (in bits) of an LFSR, then its minimum repetition period is 2L -1, while

when we have a combination of more than one, the total period is equal to the product of

their periods, according to [10]. Therefore, in Table 2 their minimum repetition period is

calculated from the equation:

 Minimum repetition period = (2L1 -1) • (2L2 -1) • (2L3 -1) • (2L4 -1)

 (where L1, L2, L3, L4 are the lengths of LFSR and L1 = L2 = L3 = L4)

In Table 2 for each L, in addition to the period, we also calculated the required

transmission time of the bits in a communication channel with a speed of 10 Mbits/s

(rows of the table with grey background). This is the time which is required by an

interceptor to receive all the periodically repeated bits and analyze the algorithm.

As it is shown in Table 2 the interception of all the bits is impossible, due to the

huge amount of time required. Therefore, we do not consider it necessary to test such

long sequences of output samples for the evaluation of the algorithm.

Length L

 of

 LFSR

 (bits)

 MINIMUM PERIODS OF STREAM CIPHER (bits)

 (the gray rows show their required transmission time with 10 Mbits/s)

with 1 LFSR

 with 2 LFSR

 with 3 LFSR

with 4 LFSR

40

 1,1*1012 bits

1,2*1024 bits

 1,32*1036 bits

 1,46*1048 bits

 1,28 days

3,8*109 years

 4*1021 years

4,48*1033 years

48

 2,8*1014 bits

8*1028 bits

 2,23*1043 bits

 6,27*1057 bits

 321,2 days

years

2,48*1014 years

7,04*1028 years

19,8*1042 years

56

 7,2*1016 bits

5,2*1033 bits

 3,74*1050 bits

 2,7*1067 bits

 228,4 years

16,8*1018 years

11,8*1035 years

4,32*1052 years

 Table 2. Minimum repetition periods (keystreams) of four different stream ciphers

A more feasible but also substantial approach is to choose the size of the tested

samples depending on the volume of information which will be encrypted. In particular,

we are interested in the volume of information which is encrypted with the same key, in

order to examine the robustness of the cryptosystem in practical cryptanalysis conditions.

In most cryptosystems the key changes at least every day, so we are interested in the

amount of information which is encrypted during a day. However, some cryptosystems

(such as voice crypto) change the key with each new communication (session key), so in

6

this case we are interested in the volume of information which is encrypted during a

communication connection (session). As shown in Table 3, the size of the digital

information varies greatly depending on the type and the duration of the information.

According to the above, in the case that we want to evaluate a stream cipher, the

size of its output sequence (key stream) which we will test, must be at least equal to the

maximum size of the information which will be encrypted (or alternatively the most usual

size). For example, we see from Table 3 that in the case that we have 10 pages of text for

encryption, we need an output sequence of only 100 Kbytes, while for 10 minutes of

video, we need to produce an output sequence of 800.000 Kbytes. In the tests which are

described in the next paragraph we had time constraints and also a restricted computing

power, so we chose output samples of 132 Kbytes (1 Mbit in binary unformatted form).

The size of 1Mbit is enough for simple texts up to 12 pages and for digitized voice up to

3.5 minutes. However, when we have a longer duration of telephone communication or

when we want to encrypt photo or video, the sample size of 1Mbit is too small, so we

may not discover some non-random patterns in the output of the stream cipher.

 Information kind

 Duration /

 Resolution

 Size

 (Kbytes)

 Notes

 Simple text 10 pages 100 MS Word

 Voice 5 minutes 1440 vocoder (4800 bits/s)

 Picture or drawing 5 Mpixels 3000 compression JPEG

 Music 3 minutes 6900 compression mp3 / 320 kbps

 Music 3 minutes 2800 compression mp3 / 128 kbps

 Video 10 minutes 800.000 compression MPEG

 Table 3. Indicative size values of different kinds of digitized information

6. Required time

Based on what we have previously analyzed, in order to calculate the time required

for the cryptographic tests, first we apply equation (4) of paragraph 4, in order to calculate

the required number of samples for certain characteristic values of the sampling error.

The results are shown in the first two columns of the comparative Table 4, from where

we see that if we want to reduce the sampling error, we must greatly increase the number

of the samples. For a sampling error of 3% we must test 1067 keys, for sampling error

2% we must test 2401 keys, while for sampling error 1% we must test 9604 keys.

However, the larger number of samples means a much longer time for their production

and testing procedure.

The total time required to test a sample of the algorithm is equal to the sum of the

time required to produce the sample, plus the time required to conduct its randomness

and cryptanalytic robustness tests. In practice, we measured that for an algorithm sample

of 1Mbit, this total time is about 2 hours, using the statistical randomness tests of the

Crypt-X software described in [3] , which we ran on a commercial PC (3.6 GHz, with 4

7

GB RAM). Based on these tests, we created the second part of the comparative Table 4

(columns 3,4,5,6,7,8), which shows the total time required for the investigation of the n

samples, if we share the samples production and testing to 1, 2, 3, 4, 5 and 6 PC.

Table 4 shows, on the one hand, how time-consuming it is to evaluate a

cryptographic algorithm and on the other hand, how drastically the evaluation time can

be reduced if we have the ability to use many computers for the algorithm evaluation.

This is because we will distribute the samples production and testing to multiple

computers which they will work in parallel, thus reducing the total time.

In practice, in order to make a more detailed and reliable evaluation, the sampling

error should be less than 3%. In the case of a 3% sampling error, Table 4 shows that in

order to complete the evaluation in a practically usable time of 45 days (1.5 months), we

must have six parallel working computers. If we want a smaller sampling error or less

days in order to complete the evaluation, then obviously we must use more computers.

 SAMPLING

 ERROR

 (e)

 NUMBER

 OF

SAMPLES

 (n)

 REQUIRED TIME (days)
 (with computers working 8 hours/day)

1 PC 2 PC 3 PC 4 PC 5 PC 6 PC

 10 % 96 24 12 8 6 5 4

 9 % 119 30 15 10 8 6 5

 8 % 150 38 19 13 10 8 6

 7 % 196 49 25 17 12 10 8

 6 % 267 67 34 23 17 13 11

 5 % 384 96 48 32 24 19 16

 4 % 600 150 75 50 38 30 25

 3 % 1067 267 134 89 67 53 45

 2 % 2401 600 300 200 150 120 100

 1 % 9604 2401 1200 800 600 480 400

 Table 4. Required time of cryptographic tests based on the desired sampling error

It is therefore evident that, by using more numerous and more powerful

computers, we are able to test a much larger number and size of the samples, and thus

minimize the sampling error. The bottom line is that, if we want to make the evaluation

of the cryptographic algorithms more thorough and more reliable, we must use as much

as possible computing power.

And finally, it is obvious that for the final decision about the number of the

samples, we must make a compromise between the reliability of the evaluation (small

sampling error) and the available time and computer power.

8

7. Reduction of the testing time

There are some methods in order to reduce the extremely long time of the

cryptographic tests which were described in the previous paragraph. These are:

a. Automation and parallelization: A very significant reduction of the testing time

can be achieved with the use of appropriate software which will automate the main time-

consuming processes, such as the production of the samples, the execution of the

statistical tests, and the classification of the results. In addition, as we noted in paragraph

6, a very significant time reduction can be achieved if we share the total work to several

computers. For the automation of all the testing processes, these computers must be

connected in parallel through a LAN (Local Area Network) and they must be controlled

through a parallel processing software.

As it is shown in Figure 1, if we have k computers connected in parallel, the n

sampling keys of the algorithm will be evenly divided and distributed to them. This means

that each computer will receive n / k keys and will work in parallel with the others, in

order to produce its corresponding n / k output samples of the algorithm, apply the

statistical tests to them and send the results back to the controller.

 computer 1 computer 2 computer 3 computer k

 1 1

n keys n results

keys results keys results keys results keys results
 1 2 3 k

n / k samples

 - Production
 - Testing

Controller

n / k samples

 - Production
 - Testing

n / k samples

 - Production
 - Testing

n / k samples

 - Production
 - Testing

Figure 1. Reduction of the time for cryptographic tests, dividing the work through a

 parallel working LAN (keys 1 + keys 2 + keys 3 + + keys k = n).

The total time TP for the production and testing of the samples in Figure 1 will be:

 ΤP = Τ1 / k (where T1 is the time required with one computer).

This means that the time corresponding to the use of only one computer in the Table 4 of

the previous paragraph, can be reduced to one tenth with the use of ten computers running

in parallel.

9

b. Graphics Processing Unit (GPU): On modern computers the Graphics

Processing Unit (GPU) has great capabilities of parallel processing (which is necessary

for managing the pixels of the screen). Thus, many GPU manufacturers allow the users

to use special software to program the GPU for their own specific applications, as it is

described in [11], [12] and [13]. One such special application of the GPU can be its

programming to speed up the cryptographic tests, in the context of what was mentioned

in the previous subparagraph 7a.

c. Programmable hardware (FPGA or ASIC): For the purpose of the tests, the

implementation of the cryptographic algorithm is easier when it will be done using a high-

level programming language. However, for cryptanalytic and testing purposes, the

execution time of the encryption can be dramatically accelerated if the algorithm is

implemented in an especially programmable hardware FPGA (Field Programmable Gate

Array) or ASIC (Application Specific Integrated Circuit), as it is described in [7] and

[14]. The total time of the cryptographic tests can be reduced furthermore if we will also

implement the statistical tests in FPGA or ASIC.

d. Overclocking: The technique of overclocking, concerns the increase of the

nominal frequency of the computer clock (which has been determined by the

manufacturer) in order to make the computer to operate faster than its original speed.

However, this technique is controversial and we do not recommend it, because it can

cause overheating, instability, reduction of the lifespan and even complete destruction of

the CPU. Basic information and guidelines for overclocking can be found on [15], [16],

[17], [18].

8. Conclusions

In order to reduce the extremely long time of cryptographic algorithm tests, we

use the sampling method in which we examine a much smaller number n of the total key

combinations N, and then we decide for the total key combinations with a predetermined

sampling error. Due to the fact that N is extremely large, we ended up to a simplified

equation which indicates that the number of sampling keys n practically is independent

from N and it is inversely proportional to the sampling error e. Our calculations showed

that for sampling error 3% we must test 1067 keys, for sampling error 2% we need 2401

keys, while for sampling error 1% we need 9604 keys. It is obvious that for the final

decision about the number of samples, we must make a compromise between the

reliability of the sampling (small sampling error) and the available time and computer

power. Concerning the size of the tested samples, a practical and feasible rule is to choose

a length equal to the maximum length of the information which will be encrypted.

The time which is needed for the cryptographic tests can be reduced with the

automation of the main processes (production and testing of the samples, classification

of the results etc.). Also, a significant time reduction method is the sharing of the total

work to several computers working in parallel through a LAN. A further time reduction

can be achieved with the implementation of the algorithm simulation and the statistical

tests into special hardware (FPGA or ASIC). An alternate time reduction method is

the implementation and parallelization of the above processes with the use of

Graphics Processing Units (GPU).

10

References

 [1]. Donald Knuth, “The Art of Computer Programming-Volume 2 / Seminumerical

 Algorithms”, Addison-Wesley 1998.

 [2]. NIST Special Publication 800-22, “A Statistical Test Suite for Random and

 Pseudorandom Number Generators for Cryptographic Applications”, National

 Institute of Standards and Technology (NIST), April 2010.

 [3]. Helen Gustafson et. al., “A computer package for measuring strength of encryption

 algorithms”, Journal of Computers & Security, 13(8), (1994), 687-697.

 [4]. G. Marsaglia and G. Diehard, “Battery of Tests of Randomness”. Available at:

 http://stat.fsu.edu/pub/diehard/ (1996), http://stat.fsu.edu/pub/diehard/

 [5]. George Marinakis, “Minimum key length for cryptographic security”

 http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=597

 [6]. Daniel J. Bernstein and Peter Schwabe, “New AES software speed records”,

 http://cr.yp.to/aes-speed/aesspeed-20080926.pdf

 [7]. “Helion Giga AES cores” , https://www.heliontech.com/aes_giga.htm

 [8]. Harrison M. Wadsworth, “Handbook of Statistical Methods for Engineers and

 Scientists”, Mc Graw-Hill, 1990.

 [9]. Cochran W.G. “Sampling Techniques”, 2nd Ed., New York: John Wiley and Sons, Inc.

[10]. Alfred Menezes, Paul C. van Oorschot, Scott A.Vanstone, “Handbook of Applied

 Cryptography”, CRC Press 1997.

[11]. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips “GPU Computing”

 Proceedings of the IEEE, May 2008.

[12]. O. Harrison and J. Waldron, “Practical Symmetric Key Cryptography on Modern

 Graphics Hardware”. 17th USENIX Security Symposium. San Jose, CA. July 28 -

 August 1, 2008.

[13]. O. Harrison and J. Waldron, “Efficient Acceleration of Asymmetric Cryptography on

 Graphics Hardware”, AfricaCrypt 2009, Gammarth, Tunisia, June 21-25, 2009.

[14]. Kris Gaj and Pawel Chodowiec, “FPGA and ASIC Implementations of AES”,

 http://teal.gmu.edu/courses/ECE746/project.

[15]. Avast, “How to Safely Overclock Your CPU on Windows”

 https://www.avast.com/c-how-to-overclock-cpu.

[16]. Intel, “How to Overclock Your Unlocked Intel Core Processor”

 https://www.intel.com/content/www/us/en/gaming/resources/how-to-overclock.html.

[17]. Intel, “How to Overclock Your CPU from BIOS”

 https://www.intel.com/content/www/us/en/gaming/resources/bios-overclocking.html.

[18]. AMD, “Your tool to unlock AMD Ryzen™ Processors”

 https://www.amd.com/en/technologies/ryzen-master.

http://stat.fsu.edu/pub/diehard/
http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=597
http://cr.yp.to/aes-speed/aesspeed-20080926.pdf
https://www.heliontech.com/aes_giga.htm
http://teal.gmu.edu/courses/ECE746/project.
https://www.avast.com/c-how-to-overclock-cpu
https://www.intel.com/content/www/us/en/gaming/resources/how-to-overclock.html
https://www.intel.com/content/www/us/en/gaming/resources/bios-overclocking.html
https://www.amd.com/en/technologies/ryzen-master

