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Abstract. This paper presents three attack vectors of bit-wise crypt-
analysis including rotational, bit-wise differential, and zero-sum distin-
guishing attacks on the AND-RX permutation Friet-PC, which is im-
plemented in a lightweight authenticated encryption scheme Friet. First,
we propose a generic procedure for a rotational attack on AND-RX cipher
with round constants. By applying the proposed attack to Friet-PC, we
can construct an 8-round rotational distinguisher with a time complexity
of 2102. Next, we explore single- and dual-bit differential biases, which
are inspired by the existing study on Salsa and ChaCha, and observe the
best bit-wise differential bias with 2−9.552. This bias allows us to practi-
cally construct a 9-round bit-wise differential distinguisher with a time
complexity of 220.044. Finally, we construct 13-, 15-, 17-, and 30-round
zero-sum distinguishers with time complexities of 231, 263, 2127, and 2383,
respectively. To summarize our study, we apply three attack vectors of
bit-wise cryptanalysis to Friet-PC and show their superiority as effective
attacks on AND-RX ciphers.

Keywords: Authenticated Encryption · Permutation · Friet-PC · Ro-
tational Attack · Bit-wise Differential Attack · Zero-sum Distinguisher

1 Introduction

1.1 Background

Friet, which was proposed by Simon et al. at EUROCRYPT 2020 [26], is a
lightweight authenticated encryption scheme with a 128-bit security level that
is resistant to side channel and fault injection attacks. It adopts the authenti-
cated encryption mode SpongeWrap based on the duplex construction [5]. The
SpongeWrap mode is based on the concept of efficiently building an authenti-
cated encryption scheme from cryptographic permutation; thus, designers who
adopt SpongeWrap as the authenticated encryption mode have an important
task of designing a lightweight cryptographic permutation with a high security



level. The designers of Friet proposed a new design technique for ciphers with
efficient fault-detecting implementations, and then designed new cryptographic
permutations called Friet-PC and Friet-P for implementation in Friet.

A previous version of the Friet-PC permutation, called Frit, was proposed
by the same designers in 2018 [25]. It adopts the AND-Rotation-XOR (AND-RX)
construction, which is much similar to the Addition-Rotation-XOR (ARX) con-
struction. Shortly thereafter, Dobraunig et al. performed a key recovery attack
against the full-round version in the use case of Frit as an Even-Mansour block
cipher [9]. In addition, Qin et al. applied a cube attack on the reduced-round
version in the use case of Frit as a duplex-based authenticated encryption mode
[23]. Friet-PC was designed considering these attacks.

The designers evaluated the security of Friet-PC against differential and lin-
ear attacks [26]. They first investigated the propagation properties to determine
the minimum weights of differential and linear trails, and then experimentally
obtained a 6-round differential trail with weight 59 and an 8-round linear trail
with weight 80. These trails can be extended to a 6-round differential distin-
guisher with a time complexity of 259 and an 8-round linear distinguisher with a
time complexity of 280. As a security evaluation by a third party, Liu et al. pro-
posed a new framework called a rotational differential-linear attack [19], which
is inspired from the differential-linear attack proposed by Langford and Hellman
[17]. Their proposed attack significantly improved the security evaluation by the
designers, and allowed us to construct a 13-round rotational differential-linear
distinguisher with a time complexity of 2117.81. To the best of our knowledge,
the security evaluation for Friet-PC by a third party has not been reported
except for that by Liu et al.; thus, the best attack on Friet-PC is the 13-round
rotational differential-linear distinguisher.

1.2 Our Contribution

In this study, we evaluate the security of Friet-PC with three attack vectors of
bit-wise cryptanalysis: rotational, bit-wise differential, and zero-sum distinguish-
ing attacks. Although these vectors are widely used as generic attacks against
ARX and AND-RX ciphers, no study appears to have applied these attacks to
evaluate the security of Friet-PC as yet. If an adversary can efficiently per-
form these attacks on Friet-PC, they may threaten the security of not only the
permutation Friet-PC but also the authenticated encryption scheme Friet.

Table 1 summarizes the results of previous security evaluations and the evalu-
ation in this study for Friet-PC. The proposed security evaluations sufficiently
improve the existing best attack by Liu et al.; thus, we show their superiority
as effective attacks on AND-RX ciphers. We remark that the proposed attacks
are no practical threat to Friet-PC, however, it is recommended to use these
attack vectors of bit-wise cryptanalysis to evaluate the security of AND-RX ci-
phers when designing the AND-RX ciphers in the future. The details of the
proposed security evaluations are given in the following text.
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Table 1. Summary of our results.

Attack type Rounds Time Reference

Differential/Distinguisher 6 259.00 [26]

Linear/Distinguisher 8 280.00 [26]

Rotational Differential-Linear/Distinguisher 8 217.81 [19]

Rotational Differential-Linear/Distinguisher 9 229.81 [19]

Rotational Differential-Linear/Distinguisher 13 2117.81 [19]

Rotational/Distinguisher 8 2102.00 Section 3

Bit-wise Differential/Distinguisher 9 220.04 Section 4

Zero-sum/Distinguisher 13 231.00 Section 5

Zero-sum/Distinguisher 15 263.00 Section 5

Zero-sum/Distinguisher 17 2127.00 Section 5

Zero-sum/Distinguisher 30 2383.00 Section 5

Rotational Attack We perform a rotational attack, which has been mainly
applied to ARX and AND-RX ciphers [1, 4, 10, 12, 13, 14, 15, 16, 18, 20, 22]. We
propose a new technique called XORmasking technique, and generalize an attack
procedure for a rotational attack on AND-RX ciphers with round constants. No
existing attacks are known to use the concept of masking specific values for the
input/output values of the target ciphers as done in the proposed technique. To
apply the proposed XOR masking technique to the target ciphers, we analyze
the influence of round constants on the XOR and AND operations in detail
and obtain appropriate mask values for the input/output values of Friet-PC.
By applying the generalized attack procedure with the proposed XOR masking
technique to the reduced-round Friet-PC, an 8-round rotational distinguisher
with a time complexity of 2102 was achieved. We believe that it is feasible to use
the proposed attack procedure against other ARX and AND-RX ciphers with
round constants.

Bit-wise Differential Attack We conduct a bit-wise differential attack, which
has been mainly applied to ARX stream ciphers [2, 6, 24]. We experimentally
explore single- and dual-bit differential biases of the 9-, 10-, and 11-round Friet-
PC. By using the best dual-bit differential bias of the 9-round Friet-PC, we
demonstrate a practical bit-wise differential distinguisher for the 9-round Friet-
PC with a time complexity of 220.044. The existing bit-wise differential attack
has been applied only to ARX ciphers so far, however, it can be clarified that
this attack is also effective for AND-RX ciphers in this study.

Zero-sum Distinguisher We compute the bound of the algebraic degree for
a certain number of rounds of Friet-PC with the bit-based division property
[27]. By precisely modeling each operation of Friet-PC and carefully choosing
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Algorithm 1 Friet-PC

Input: a, b, c ∈ {0, 1}128
Output: (a′, b′, c′)← Friet-PC(a, b, c)
1: procedure Friet-PC(a, b, c)
2: for i = 0 to 23 do
3: c← c⊕ rci ▷ δi
4: (a, b, c)← (a⊕ b⊕ c, c, a) ▷ τ1
5: b← b⊕ (c ≪ 1) ▷ µ1

6: c← c⊕ (b ≪ 80) ▷ µ2

7: (a, b, c)← (a, a⊕ b⊕ c, c) ▷ τ2
8: a← a⊕ ((b ≪ 36) ∧ (c ≪ 67)) ▷ ξ
9: end for
10: return (a, b, c)
11: end procedure

input patterns, we succeed in constructing 13-, 15-, 17-, and 30-round zero-sum
distinguishers [3] with time complexities of 231, 263, 2127, and 2383, respectively.
To the best of our knowledge, these are the best distinguishers for reduced-round
Friet-PC, given that the attacker has a full control over the internal state,
which is a common assumption to analyze the security of a public permutation.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we briefly describe
the specification of the Friet-PC permutation. In Section 3, we first review the
existing techniques for the rotational attacks, and propose a generic attack pro-
cedure for a rotational attack on AND-RX ciphers with round constants. Based
on the proposed attack procedure, we provide a rotational distinguisher for the 8-
round Friet-PC. In Section 4, we first introduce the existing techniques for the
bit-wise differential attacks, and then provide a bit-wise differential distinguisher
for the 9-round Friet-PC. In Section 5, we first describe the how to search for
integral distinguishers with the bit-based division property, and then provide the
zero-sum distinguishers for the 13-, 15-, 17-, and 30-round Friet-PC. Finally,
Section 6 concludes the paper.

2 Specifications of Friet-PC Permutation

Friet-PC has three limbs (a, b, c) ∈ {0, 1}128, and its round function consists
of the following six steps:

– a round constant addition step δi that is a limb adaptation,
– two non-native limb transposition steps τ1 and τ2,
– two mixing steps µ1 and µ2 that are limb adaptations, and
– a nonlinear step ξ that is also a limb adaptation.
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Fig. 1. Round function of Friet-PC.

Table 2. Round constants rci in hexadecimal notation, omitting the leading zero digits.

i rci i rci i rci i rci i rci i rci

0 1111 4 101 8 1001 12 1 16 1110 20 1011

1 11100000 5 10110000 9 100000 13 110000 17 11010000 21 1100000

2 1101 6 110 10 100 14 111 18 1010 22 1100

3 10100000 7 11000000 11 10000000 15 11110000 19 1010000 23 10010000

We describe the procedure of the Friet-PC permutation as shown in Algorithm
1 and Fig. 1, and use the following notation for this procedure:

– x⊕ y is the exclusive or (XOR) of two limbs x and y,
– x ∧ y is the bit-wise logical and (AND) of two limbs x and y,
– x ≪ n is the left rotation by n bits of a limb x, and
– rci is the i-th round constant as listed in Table 2.

We use this notation throughout the remainder of this paper.

3 Rotational Distinguisher

We analyze the security of Friet-PC against a rotational attack, which has
been applied to ARX and AND-RX ciphers, such as block ciphers Threefish [13],
Speck [1, 18], Simon [20] and Simeck [20]; stream ciphers Salsa [12] and ChaCha
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[4]; hash functions Keccak [22], BLAKE2 [10, 14] and Skein [14, 15]; and message
authentication code algorithm Chaskey [16]. In this section, we first review the
generic techniques for the rotational attacks and subsequently explain a new
technique for a rotational attack on AND-RX ciphers with round constants.
Then, we describe the application of the proposed technique to Friet-PC and
finally show a rotational distinguisher for the 8-round Friet-PC with a time
complexity of 2102.

3.1 Rotational Attacks

In 2010, Khovratovich and Nikolić [13] explored the propagation of a rotational
pair (X,X ≪ r) or (X,X ≫ r) throughout an ARX cipher, and generalized a
new technique called rotational attack. In the following text, we discuss only the
propagation of the rotation pair (X,X ≪ r), as the propagation of the rotation
pair (X,X ≫ r) can be explained similarly. A rotational attack on an ARX
or AND-RX cipher allows an adversary to analyze the rotational probability
of the entire cipher by multiplying the individual rotational probabilities of all
operations used in the cipher. In other words, the adversary can properly perform
the rotational attack on an ARX or AND-RX cipher by computing the rotational
probabilities of four distinct operations, i.e., modular addition, AND, rotation,
and XOR. The rotational probabilities of AND, rotation, and XOR are given by

Pr[(X ∧ Y ) ≪ r = (X ≪ r) ∧ (Y ≪ r)] = 1, (1)

Pr[(X ≪ r1) ≪ r2 = (X ≪ r2) ≪ r1] = 1, (2)

Pr[(X ⊕ Y ) ≪ r = (X ≪ r)⊕ (Y ≪ r)] = 1, (3)

while the rotational probability of modular addition is given by the following
lemma.

Lemma 1 ([8, Corollary 4.12]). If we suppose an n-bit word X to be fixed
and an n-bit word Y to be chosen uniformly at random, then we obtain

Pr[(X + Y ) ≪ r = (X ≪ r) + (Y ≪ r)] = 2−n(2n−r −XR)(2
r −XL), (4)

where XL = (xn−1, . . . , xn−r) and XR = (xn−r−1, . . . , x0) for X.
On the other hand, if we suppose two n-bit words X and Y to be chosen

uniformly at random, then we obtain

Pr[(X + Y ) ≪ r = (X ≪ r) + (Y ≪ r)] =
1

4
(1 + 2r−n + 2−r + 2−n). (5)

It should be noted here that all inputs to an ARX or AND-RX must be rotational
pair for the rotational attack to perform well, claimed by Khovratovich and
Nikolić [13]. According to them, we cannot perform a proper rotational attack
on an ARX or AND-RX cipher with round constants such as Friet-PC, because
it is practically difficult to obtain a rotational pair of round constants. To solve
this problem, some studies explored a rotational attack against ARX and AND-
RX block ciphers Speck [1, 18] and Simon [20] with constants that actually
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correspond to round keys. However, no study on a rotational attack against an
ARX or AND-RX cipher with round constants specified in the specification, such
as Friet-PC, has been reported as yet.

3.2 Rotational Attack on AND-RX Ciphers with Round Constants

To properly perform a rotational attack on an AND-RX cipher with round con-
stants, we first demonstrate that the XOR operation in the presence of round
constants can preserve the propagation of a rotational pair with a probability
of one by introducing a XOR masking technique into a rotational attack. Then,
we establish the rotational probability of the AND operation in the presence
of round constants. Finally, we propose a generic attack procedure for a rota-
tional attack on AND-RX ciphers with round constants. In the following text,

we describe a rotational pair as (X,
←−
X ) instead of (X,X ≪ r).

XOR Masking Technique for the XOR Operation with Constants. We
first introduce a XOR masking technique so that the XOR operation in the
presence of round constants rc expressed in the form

←−−−−
X ⊕ rc

?
=
←−
X ⊕ rc⊕mask1 (6)

satisfies the equality. The left side of (6) is not XOR masked as it satisfies the
same form as the left side of Eq.(3). Then, it can be seen from Eq.(3) that (6)
satisfies the equality with a probability of one when mask1 = rc⊕←−rc because

←−−−−
X ⊕ rc =

←−
X ⊕ rc⊕mask1

=
←−
X ⊕ rc⊕ rc⊕←−rc

=
←−
X ⊕←−rc. (7)

In summary, the XOR operation in the presence of round constants can preserve
the propagation of a rotational pair with a probability of one by XORing the
mask value mask1 = rc ⊕ ←−rc. Note that the XOR masking technique can be
applied to both the input and output values of the target cipher. For example,
when the adversary applies the XOR masking technique to the input value,

he/she must choose (X,
←−
X ⊕mask1) as the input rotational pair.

XOR Masking Technique for the AND Operation with Constants. We
examine whether the AND operation in the presence of a round constants, rc1
and rc2, expressed in the form

←−−−−−−−−−−−−−−−−
(X ⊕ rc1) ∧ (Y ⊕ rc2)

?
= (
←−
X ⊕ rc1) ∧ (

←−
Y ⊕ rc2) (8)

satisfies the equality. To reveal the differences between both sides of (8), we use
Eqs.(1) and (3) to transform (8) to

(
←−
X ⊕←−rc1) ∧ (

←−
Y ⊕←−rc2)

?
= (
←−
X ⊕ rc1) ∧ (

←−
Y ⊕ rc2). (9)
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Table 3. Truth table for Example 1.

←−xi ⊕←−−rc1,i
←−xi ⊕ rc1,i

←−yi ⊕←−−rc2,i
←−yi ⊕ rc2,i (←−xi ⊕←−−rc1,i) ∧ (←−yi ⊕←−−rc2,i) (←−xi ⊕ rc1,i) ∧ (←−yi ⊕ rc2,i)

0 1
0 0 0

1 0 1

1 0
0 0 0

1 1 0

We then apply the XOR masking technique to the input value so that the
AND operation in the presence of round constants expressed in the form

(
←−
X ⊕←−rc1) ∧ (

←−
Y ⊕←−rc2)

?
= (
←−
X ⊕ rc1 ⊕mask2) ∧ (

←−
Y ⊕ rc2 ⊕mask3) (10)

satisfies the equality. Here, (10) satisfies the equality with a probability of one
when (mask2,mask3) = (rc1 ⊕←−rc1, rc2 ⊕←−rc2) because

(
←−
X ⊕←−rc1) ∧ (

←−
Y ⊕←−rc2) = (

←−
X ⊕ rc1 ⊕mask2) ∧ (

←−
Y ⊕ rc2 ⊕mask3)

= (
←−
X ⊕ rc1 ⊕ rc1 ⊕←−rc1) ∧ (

←−
Y ⊕ rc2 ⊕ rc2 ⊕←−rc2)

= (
←−
X ⊕←−rc1) ∧ (

←−
Y ⊕←−rc2) (11)

This implies that the adversary must choose [(X,
←−
X ⊕mask2), (Y,

←−
Y ⊕mask3)]

as the input rotational pair when he/she applies the XOR masking technique to
the input value.

Similarly, we apply the XOR masking technique to the output value corre-
sponding to the input rotational pairs so that the AND operation in the presence
of round constants expressed in the form

[(
←−
X ⊕←−rc1) ∧ (

←−
Y ⊕←−rc2)]⊕mask4

?
= [(
←−
X ⊕ rc1) ∧ (

←−
Y ⊕ rc2)]⊕mask5 (12)

satisfies the equality. However, it is practically difficult to determine the appro-
priate mask values so that (12) satisfies the equality. We will explain the reason
after providing the following two examples. Let xi, yi, rc1,i, and rc2,i be the i-th
bit of X, Y , rc1, and rc2, respectively.

Example 1. We focus on the AND operation of the i-th bit in (9). We assume
that either rc1,i⊕←−−rc1,i = 1 or rc2,i⊕←−−rc2,i = 1 holds. In this example, we assume
that rc1,i ⊕←−−rc1,i = 1 holds for the sake of simplicity. Table 3 provides a truth
table corresponding to (9). This table shows that the AND operation of the i-th
bit holds with a probability of 2−1.

Example 2. We also focus on the AND operation of the i-th bit in (9). In this
example, we assume that both rc1,i ⊕←−−rc1,i = 1 and rc2,i ⊕←−−rc2,i = 1 hold. Table
4 provides a truth table corresponding to (9). This table shows that the AND
operation of the i-th bit holds with a probability of 2−1.
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Table 4. Truth table for Example 2.

←−xi ⊕←−−rc1,i
←−xi ⊕ rc1,i

←−yi ⊕←−−rc2,i
←−yi ⊕ rc2,i (←−xi ⊕←−−rc1,i) ∧ (←−yi ⊕←−−rc2,i) (←−xi ⊕ rc1,i) ∧ (←−yi ⊕ rc2,i)

0 1
0 1 0 1

1 0 0 0

1 0
0 1 0 0

1 0 1 0

These examples show that the AND operation of the i-th bit in (9) holds with
a probability of 2−1 when at least either rc1,i ⊕ ←−−rc1,i = 1 or rc2,i ⊕ ←−−rc2,i = 1
holds. Moreover, these examples show bitwise independent events since (9) is a
bit-wise operation; thus, we can compute a probability that the AND operation
expressed in (9) satisfies the equality by simply counting the number of bits for
which either rc1,i ⊕←−−rc1,i = 1 or rc2,i ⊕←−−rc2,i = 1 holds for each bit. These facts
lead to the following theorem.

Theorem 1. Let (X,
←−
X ) and (Y,

←−
Y ) be two rotational pairs where symbol ’←−’

represents the left rotation by r bits, and let rc1 and rc2 be round constants.
Then, the rotational probability of the AND operation in the presence of round
constants is given as follows:

Pr
[←−−−−−−−−−−−−−−−−
(X ⊕ rc1) ∧ (Y ⊕ rc2) = (

←−
X ⊕ rc1) ∧ (

←−
Y ⊕ rc2)

]
= 2−hw[(rc1⊕←−rc1)|(rc2⊕←−rc2)],

(13)
where hw[·] represents the hamming weight.

Proof. As discussed earlier, the AND operation of the i-th bit in (9) holds with a
probability of 2−1 when at least either rc1,i⊕←−−rc1,i = 1 or rc2,i⊕←−−rc2,i = 1 holds.
Moreover, we can compute a probability that the AND operation expressed in
(9) satisfies the equality by simply counting the number of bits for which either
rc1,i ⊕ ←−−rc1,i = 1 or rc2,i ⊕ ←−−rc2,i = 1 holds for each bit. We can achieve this
by calculating the hamming weight such as hw[(rc1 ⊕ ←−rc1) | (rc2 ⊕ ←−rc2)]. In
summary, the rotational probability of the AND operation in the presence of
round constants is given as shown in Eq.(13).

Now, we explain why it is practically difficult to determine the appropriate mask
values so that (12) satisfies the equality. This is because the mask values cannot
be uniquely determined unless the adversary knows the correct values of X and
Y , which are usually the intermediate information of the target cipher and are
not available to the adversary (with exceptions). For example, from Table 3, if
the values of ←−yi ⊕←−−rc2,i and

←−yi ⊕ rc2,i are 1, the adversary must apply the XOR
mask to satisfy the equality, but he/she cannot decide whether to apply the
XOR mask without knowing the value of ←−yi . Therefore, we should evaluate a
rotational probability of the AND operation in the presence of round constants
according to Theorem 1 without applying the XOR masking technique to the
output value corresponding to the input rotational pairs.
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Fig. 2. Proposed attack procedure: (a) Step 1, (b) Step 2, and (c) Step 3.

Attack Procedure. Based on the discussed XOR masking technique, we pro-
pose a generic attack procedure for a rotational attack on AND-RX ciphers with
round constants. The proposed attack consists of offline and online phases. In
the offline phase, we perform the following procedure:

Step 1. We analyze the input and output mask values for the i-th round func-
tion of the target AND-RX cipher. In this step, we apply the XOR masking
technique to the input rotational pair so that the influence of the round
constant does not propagate to the output rotational pair. As shown in Fig.
2 (a), the input rotational pair is masked with a specific value X to cancel
the influence of the round constant; then, we do not need to apply the XOR
masking technique to the output rotational pair.

Step 2. We explore the input mask value for the (i − r1)-th round function
of the target AND-RX cipher by going back r1 rounds from the i-th round
function of the cipher. This is feasible because we can easily construct the
inverse function of the AND-RX cipher. As shown in Fig. 2 (b), we obtain
the input mask value W for the (i − r1)-th round function such that the
output mask value of the (i− 1)-th round function becomes X.

Step 3. We investigate the output mask value for the (i+r2)-th round function
of the target AND-RX cipher. As shown in Fig. 2 (c), the input mask value of
the (i+1)-th round function is 0, as obtained in Step 1; then, we can obtain
the output mask value Y for the (i + r2)-th round function by analyzing
the influence of the round constants through the r2 rounds of the target
AND-RX cipher.

We finally obtain the input mask value W and the output mask value Y for the
(r1+r2+1)-round version of the target AND-RX cipher. Thereafter, in the online
phase, by utilizing these mask values, we can construct a rotational distinguisher
for the target AND-RX cipher in a manner similar to that in existing studies
[1, 4, 10, 12, 13, 14, 15, 16, 18, 20, 22].
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3.3 Application to Friet-PC

We apply the proposed attack procedure to Friet-PC. We first perform the
offline phase of the proposed attack procedure on Friet-PC and obtain the
input/output mask values for each round. Then, we examine the techniques
for mitigating the influence of the round constants. Finally, we perform the
online phase of the proposed attack procedure on Friet-PC, and demonstrate
a rotational distinguisher for the 8-round Friet-PC with a time complexity of
2102.

Offline Phase. Let (mask
(r)
a ,mask

(r)
b ,mask

(r)
c ) be the input mask variables

for the r-round limbs (a, b, c), or the output mask variables for the (r−1)-round

limbs (a, b, c), respectively; let RC≪t
r = rc≪t

r ⊕
←−−−
rc≪t

r , where rc≪t
r is the r-th

round constant with t-bit left rotation, and (rc≪t
r ,
←−−−
rc≪t

r ) is a rotational pair of
the r-th round constant.

Based on the offline phase in the proposed attack procedure, we obtain the
input/output mask values for each round of Friet-PC as follows:

Step 1. We need to mask the i-round input rotational pair with a specific
value to cancel the influence of the round constant. Algorithm 1 shows that
the round constant rci is used for the first operation in the round func-
tion of Friet-PC, such as c ← c ⊕ rci; thus, we can obtain the i-round

input/output mask values (mask
(i)
a ,mask

(i)
b ,mask

(i)
c ) = (0, 0,RC≪0

i ) and

(mask
(i+1)
a ,mask

(i+1)
b ,mask

(i+1)
c ) = (0, 0, 0) because

←−−−−−−
c⊕ rc≪0

i =←−c ⊕ rc≪0
i ⊕mask(i)c

=←−c ⊕ rc≪0
i ⊕ RC≪0

i

=←−c ⊕ rc≪0
i ⊕ rc≪0

i ⊕
←−−−
rc≪0

i

=←−c ⊕
←−−−
rc≪0

i (14)

holds with a probability of one. The influence of the round constant is can-
celled completely by using these input mask values.

Step 2. We need to mask the (i−r1)-round input rotational pair with a specific
value such that the output mask value of the (i − 1)-th round function

becomes (mask
(i)
a ,mask

(i)
b ,mask

(i)
c ) = (0, 0,RC≪0

i ); thus, by going back r1
rounds from the i-th round function of Friet-PC, we can obtain the (i−r1)-
round input mask value. Table 5 lists the input mask values by going back
up to (i− 3) rounds.

Step 3. In Step 1, we have obtained the i-round output mask value (mask
(i+1)
a ,

mask
(i+1)
b ,mask

(i+1)
c ) = (0, 0, 0), which is the (i + 1)-round input mask

value. Thus, by analyzing the influence of the round constants through the
r2 rounds of Friet-PC, we can obtain the (i+r2)-round output mask values.
Table 5 lists the output mask values by going up to (i+ 4) rounds.
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Table 5. List of input/output mask values.

Mask variables Input/output mask values

mask
(i−3)
a

RC≪0
i−2 ⊕ RC≪80

i−2 ⊕ RC≪0
i−1 ⊕ RC≪1

i−1 ⊕ RC≪81
i−1 ⊕ RC≪1

i ⊕ RC≪2
i ⊕ RC≪80

i ⊕ RC≪82
i ⊕

RC≪160
i

mask
(i−3)
b

RC≪1
i−2 ⊕ RC≪80

i−2 ⊕ RC≪81
i−2 ⊕ RC≪2

i−1 ⊕ RC≪80
i−1 ⊕ RC≪81

i−1 ⊕ RC≪82
i−1 ⊕ RC≪3

i ⊕ RC≪82
i ⊕

RC≪83
i ⊕ RC≪160

i ⊕ RC≪161
i

mask
(i−3)
c

RC≪0
i−3 ⊕ RC≪0

i−2 ⊕ RC≪1
i−2 ⊕ RC≪81

i−2 ⊕ RC≪1
i−1 ⊕ RC≪2

i−1 ⊕ RC≪82
i−1 ⊕ RC≪0

i ⊕ RC≪2
i ⊕

RC≪3
i ⊕ RC≪80

i ⊕ RC≪81
i ⊕ RC≪83

i ⊕ RC≪161
i

mask
(i−2)
a RC≪0

i−1 ⊕ RC≪80
i−1 ⊕ RC≪0

i ⊕ RC≪1
i ⊕ RC≪81

i

mask
(i−2)
b RC≪1

i−1 ⊕ RC≪80
i−1 ⊕ RC≪81

i−1 ⊕ RC≪2
i ⊕ RC≪80

i ⊕ RC≪81
i ⊕ RC≪82

i

mask
(i−2)
c RC≪0

i−2 ⊕ RC≪0
i−1 ⊕ RC≪1

i−1 ⊕ RC≪81
i−1 ⊕ RC≪1

i ⊕ RC≪2
i ⊕ RC≪82

i

mask
(i−1)
a RC≪0

i ⊕ RC≪80
i

mask
(i−1)
b RC≪1

i ⊕ RC≪80
i ⊕ RC≪81

i

mask
(i−1)
c RC≪0

i−1 ⊕ RC≪0
i ⊕ RC≪1

i ⊕ RC≪81
i

mask
(i)
a 0

mask
(i)
b 0

mask
(i)
c RC≪0

i

mask
(i+1)
a 0

mask
(i+1)
b 0

mask
(i+1)
c 0

mask
(i+2)
a RC≪0

i+1

mask
(i+2)
b RC≪80

i+1

mask
(i+2)
c RC≪80

i+1

mask
(i+3)
a RC≪0

i+1 ⊕ RC≪0
i+2

mask
(i+3)
b RC≪1

i+1 ⊕ RC≪80
i+1 ⊕ RC≪81

i+1 ⊕ RC≪160
i+1 ⊕ RC≪80

i+2

mask
(i+3)
c RC≪0

i+1 ⊕ RC≪81
i+1 ⊕ RC≪160

i+1 ⊕ RC≪80
i+2

mask
(i+4)
a RC≪1

i+1 ⊕ RC≪80
i+1 ⊕ RC≪0

i+2

mask
(i+4)
b RC≪160

i+1 ⊕ RC≪161
i+1 ⊕ RC≪240

i+1 ⊕ RC≪1
i+2 ⊕ RC≪80

i+2 ⊕ RC≪81
i+2 ⊕ RC≪160

i+2 ⊕ RC≪0
i+3 ⊕ RC≪80

i+3

mask
(i+4)
c RC≪0

i+1 ⊕ RC≪80
i+1 ⊕ RC≪81

i+1 ⊕ RC≪161
i+1 ⊕ RC≪240

i+1 ⊕ RC≪0
i+2 ⊕ RC≪81

i+2 ⊕ RC≪160
i+2 ⊕ RC≪80

i+3

mask
(i+5)
a RC≪0

i+1 ⊕ RC≪1
i+1 ⊕ RC≪81

i+1 ⊕ RC≪160
i+1 ⊕ RC≪1

i+2 ⊕ RC≪80
i+2 ⊕ RC≪0

i+3 ⊕ RC≪0
i+4

mask
(i+5)
b

RC≪2
i+1 ⊕ RC≪80

i+1 ⊕ RC≪81
i+1 ⊕ RC≪82

i+1 ⊕ RC≪161
i+1 ⊕ RC≪240

i+1 ⊕ RC≪320
i+1 ⊕ RC≪160

i+2 ⊕
RC≪161

i+2 ⊕ RC≪240
i+2 ⊕ RC≪0

i+3 ⊕ RC≪80
i+3 ⊕ RC≪160

i+3 ⊕ RC≪80
i+4

mask
(i+5)
c

RC≪1
i+1 ⊕ RC≪82

i+1 ⊕ RC≪160
i+1 ⊕ RC≪241

i+1 ⊕ RC≪320
i+1 ⊕ RC≪0

i+2 ⊕ RC≪80
i+2 ⊕ RC≪81

i+2 ⊕ RC≪161
i+2 ⊕

RC≪240
i+2 ⊕ RC≪160

i+3 ⊕ RC≪80
i+4

Further Discussion for the Online Phase. According to Theorem 1, the
lower the hamming weight in the rotational pair associated with the influence of
the round constants, the higher is the rotation probability of the AND operation
in the presence of round constants; thus, if we mitigate the influence of the round
constants as much as possible, we can perform the online phase in the proposed
attack procedure with a high probability. To mitigate the influence of the round
constants in the online phase, we deliberate over the following three questions:

Q1. Should we select the pattern (X,
←−
X ) or (X,

−→
X ) as a rotational pair?

Q2. What value should we select as a rotational amount r?

Q3. How should we decide the target rounds?
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To answer these questions, we analyze the round constants of Friet-PC by
using the following four examples:

Example 3. We consider the case where exactly one bit is 1 in the round con-
stants of Friet-PC, such as rc9, rc10, rc11. In this example, we use rc9 for the
sake of simplicity. Then, the hamming weight of [rc9 ⊕ ←−rc9] can be minimized
regardless of the selection of the rotational pair and rotational amount, i.e.,
hw[rc9 ⊕←−rc9] = 2.

Example 4. We consider the case where two or more bits are 1 in the round
constants of Friet-PC and all of the bit strings 1 are continuous in hexadecimal
notation, such as rc0, rc1, rc6. In this example, we use rc0 for the sake of simplicity.
Then, the hamming weight of [rc0 ⊕←−rc0] can be minimized when the rotational
amount is selected as r = 4, regardless of the selection of the rotational pair, i.e.,
hw[rc0 ⊕←−rc0] = 2. If the rotational amount is selected as r = 1, the hamming
weight of [rc0 ⊕←−rc0] can be maximized, e.g., hw[rc0 ⊕←−rc0] = 8.

Example 5. We consider the case where two bits are 1 in the round constants of
Friet-PC and the bit strings 1 are not continuous in hexadecimal notation, such
as rc3, rc4, rc8. In this example, we use rc3 and rc8 for the sake of simplicity. In
one case, the hamming weight of [rc3⊕←−rc3] can be minimized when the rotational
amount is selected as r = 8, regardless of the selection of the rotational pair,
i.e., hw[rc3 ⊕←−rc3] = 2. In another case, the hamming weight of [rc8 ⊕←−rc8] can be
minimized when the rotational amount is selected as r = 12, regardless of the
selection of the rotational pair, i.e., hw[rc8 ⊕←−rc8] = 2. Therefore, the distance
between 2-bit strings 1 is the optimum rotational amount.

Example 6. We consider the case where three or more bits are 1 in the round
constants of Friet-PC and the bit strings 1 are not continuous in hexadeci-
mal notation, such as rc2, rc5, rc17. In this example, we use rc2 for the sake
of simplicity. Then, the hamming weight of [rc2 ⊕←−rc2] can be minimized when
the rotational amount is selected as r = 4, regardless of the selection of the
rotational pair, i.e., hw[rc2 ⊕←−rc2] = 4.

These examples show that to mitigate the influence of the round constant, we
need to change the rotational amount according to the value of the round con-
stant though we can freely select the rotational pair; however, it is impossible
to change the rotational amount while performing a rotational attack. Hence,
we need to decide the target round that can mitigate the influence of the round
constants without changing the rotational amount. Consequently, we choose the
9th to 16th round of Friet-PC as the target rounds in order to efficiently per-
form the online phase in the proposed attack on the 8-round Friet-PC. As
discussed in Examples 3 and 4, for the round constants in the target rounds, the
hamming weight can be minimized by selecting the rotational amount as r = 4.

In addition, we select the pattern (X,
←−
X ) as the rotational pair.
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Table 6. Minimum weights for the AND operation in the target round of Friet-PC.

Round i 9 10 11 12 13 14 15 16 sum

Weight 28 14 2 0 4 18 36 0 102

Complexity Estimation. As discussed in Section 3.2, to perform a rotational
attack on Friet-PC properly, we need to evaluate the rotational probability of
the AND operation in the presence of round constants. When focusing on the
round function of Friet-PC, only the output limb a is influenced by the AND
operation. Further, according to Algorithm 1, the AND operation is executed in
the final step of the round function of Friet-PC, and the output limbs (b, c) in
each round become the input of its AND operation; thus, this situation implies

that the output mask values (mask
(r+1)
b ,mask

(r+1)
c ) for the r-th round output

limbs (b, c) influence a rotational probability of the AND operation in each round.
Based on Theorem 1, we estimate a rotational probability of the AND op-

eration in the round function of Friet-PC by calculating the hamming weight

from (mask
(r+1)
b ,mask

(r+1)
c ) for r ∈ {i− 3, i− 2, i− 1, i, i+ 1, i+ 2, i+ 3} and

i = 12. Table 6 lists the minimum hamming weights for the AND operation in the
target round of Friet-PC. As discussed earlier, we can estimate the minimum
hamming weights for each mask values, such as hw[RC≪0

i ] = 2, by selecting the
rotational amount as r = 4. To confirm the accuracy of our estimation, we have
conducted an experiment to compute the rotational probability of the 10th to
14th round of Friet-PC; then, we have confirmed that the rotational probabil-
ity of the target round can be approximated to 2−38. Herein, we explain that the
minimum hamming weight in the 16th round of Friet-PC is 0. This is because
the output limbs (b, c) in each round are not influenced by the AND operation;
thus, when a complete rotational pair holds for all input limbs (a, b, c) in each
round, a rotational distinguisher can be performed with a probability of one by
masking properly the output limbs (b, c) with the mask values listed in Table 5
(experimentally verified over 232 trials).

To summarize our results, we choose the 9th to 16th round of Friet-PC
as the target rounds, and have demonstrated a rotational distinguisher for the
8-round Friet-PC with a time complexity of 2102. However, we cannot demon-
strate a rotational distinguisher for 9 or more rounds of Friet-PC because it
provides a 128-bit security level.

4 Bit-wise Differential Distinguisher

In this section, we investigate the security of Friet-PC against a bit-wise dif-
ferential attack, which has been mainly applied to ARX ciphers, such as stream
ciphers Salsa and ChaCha [2, 6, 24]. Specifically, we focus on single- and dual-
bit differential attacks, reported by Choudhuri and Maitra [6], and demonstrate
a practical bit-wise differential distinguisher for the 9-round Friet-PC with a
time complexity of 220.044.
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4.1 Single- and Dual-bit Differential Attacks

Let x
(r)
i be the i-th bit of the r-round limb x for 0 ≤ i ≤ 127; let x

′(r)
i be an

associated bit with the difference ∆x
(r)
i = x

(r)
i ⊕x

′(r)
i . The input difference ∆x

(0)
i

for r = 0 and the output difference ∆x
(r)
i for r > 0 are referred to as ID and

OD, respectively. We note that x
(r)
0 and x

(r)
127 are the least significant bit (LSB)

and most significant bit (MSB), respectively. For all possible choices of input
limbs, single- and dual-bit differential probabilities are defined by

Pr
(
∆x

(r)
j = 1 | ∆x

(0)
i = 1

)
=

1

2
(1 + ϵd), (15)

Pr
(
∆x

(r)
j0
⊕∆x

(r)
j1

= 1 | ∆x
(0)
i = 1

)
=

1

2
(1 + ϵd), (16)

where ϵd denotes the bias of the OD.
To distinguish the r-round limb x(r) computed by the reduced-round Friet-

PC from true random number sequences, we use the following theorem proved
by Mantin and Shamir [21].

Theorem 2 ([21, Theorem 2]). Let X and Y be two distributions, and suppose
that the event e occurs in X with a probability p and Y with a probability p·(1+q).
Then, for small p and q, O( 1

p·q2 ) samples suffice to distinguish X from Y with
a constant probability of success.

Let X be a distribution of OD of true random number sequences, and let Y be
a distribution of OD of the reduced-round Friet-PC. Based on single-bit and
dual-bit differential probabilities, the number of samples to distinguish X and
Y is O( 2

ϵ2d
) since p and q are equal to 1

2 and ϵd, respectively.

4.2 Experimental Results

To find bit-wise differential biases of the reduced-round Friet-PC, we have
conducted experiments with 228 randomly chosen samples. Our experimental
environment is as follows: five Linux machines with 40-core Intel(R) Xeon(R)
CPU E5-2660 v3 (2.60 GHz), 128.0 GB of main memory, a gcc 7.2.0 compiler,
and the C programming language.

Tables 7-9 list the single- and dual-bit differential biases for the 9-, 10-, and
11-round Friet-PC. As shown in Table 7, we obtain the best bit-wise differen-

tial bias for the 9-round Friet-PC, such that ID is ∆b
(0)
40 , OD is ∆a

(9)
121⊕∆c

(9)
54 ,

and ϵd is approximately 2−9.360. To obtain a more precise differential bias in
this ID-OD pair, we have conducted an additional experiment with 236 ran-
domly chosen samples. Thus, we obtain a more precise differential bias for the
9-round Friet-PC, such that ϵd is approximately 2−9.522. According to Theo-
rem 2, 220.044 samples are sufficient for distinguishing the 9-round Friet-PC
from a true random number generator with a constant probability of success.
For the 9-round Friet-PC, the best dual-bit differential bias, i.e., ϵd = 2−9.522,

provides a practical bit-wise differential distinguisher when ID is ∆b
(0)
40 and OD
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Table 7. Single- and dual-bit differential biases (log2) for the 9-round Friet-PC.

Single-bit Dual-bit

ID OD ϵd ID OD ϵd

∆b
(0)
113 ∆a

(9)
66 -9.390 ∆b

(0)
40 ∆a

(9)
121 ⊕∆c

(9)
54 -9.360

∆b
(0)
109 ∆a

(9)
62 -9.395 ∆b

(0)
105 ∆a

(9)
58 ⊕∆c

(9)
119 -9.378

∆b
(0)
63 ∆a

(9)
16 -9.415 ∆b

(0)
118 ∆a

(9)
71 ⊕∆b

(9)
35 -9.395

∆b
(0)
125 ∆a

(9)
78 -9.417 ∆b

(0)
14 ∆a

(9)
95 ⊕∆b

(9)
59 -9.413

∆b
(0)
23 ∆a

(9)
104 -9.421 ∆b

(0)
38 ∆a

(9)
119 ⊕∆c

(9)
52 -9.414

∆b
(0)
78 ∆a

(9)
31 -9.430 ∆b

(0)
92 ∆a

(9)
45 ⊕∆c

(9)
106 -9.416

∆b
(0)
58 ∆a

(9)
11 -9.434 ∆b

(0)
28 ∆a

(9)
109 ⊕∆c

(9)
42 -9.420

∆b
(0)
98 ∆a

(9)
51 -9.436 ∆b

(0)
55 ∆a

(9)
8 ⊕∆b

(9)
100 -9.423

Table 8. Single- and dual-bit differential biases (log2) for the 10-round Friet-PC.

Single-bit Dual-bit

ID OD ϵd ID OD ϵd

∆c
(0)
111 ∆a

(10)
83 -11.863 ∆a

(0)
118 ∆b

(10)
122 ⊕∆c

(10)
45 -11.501

∆c
(0)
10 ∆c

(10)
117 -11.872 ∆c

(0)
57 ∆b

(10)
4 ⊕∆b

(10)
117 -11.509

∆c
(0)
125 ∆a

(10)
124 -11.897 ∆c

(0)
102 ∆b

(10)
27 ⊕∆b

(10)
120 -11.588

∆c
(0)
66 ∆a

(10)
104 -11.921 ∆c

(0)
119 ∆b

(10)
109 ⊕∆c

(10)
79 -11.609

∆a
(0)
21 ∆c

(10)
120 -11.931 ∆c

(0)
99 ∆a

(10)
31 ⊕∆c

(10)
16 -11.617

∆b
(0)
52 ∆b

(10)
58 -11.953 ∆b

(0)
103 ∆a

(10)
58 ⊕∆b

(10)
47 -11.632

∆c
(0)
16 ∆b

(10)
72 -11.954 ∆b

(0)
83 ∆a

(10)
6 ⊕∆b

(10)
41 -11.640

∆c
(0)
122 ∆a

(10)
13 -11.960 ∆b

(0)
113 ∆a

(10)
8 ⊕∆c

(10)
103 -11.649

is ∆a
(9)
121 ⊕ ∆c

(9)
54 . Similarly, as shown in Tables 8 and 9, we obtain the best

bit-wise differential biases for the 10- and 11-round Friet-PC, such that ϵd
are approximately 2−11.501 and 2−11.596, respectively. These experimental re-
sults may indicate insufficient accuracy because the best differential biases for
the 10- and 11-round Friet-PC are approximately equal. To obtain a more
precise differential bias for the 10-round Friet-PC, we have conducted an ad-

ditional experiment with 238 randomly chosen samples when ID is ∆a
(0)
118 and

OD is ∆b
(10)
122 ⊕ ∆c

(10)
45 . This is the best ID-OD pair for the 10-round Friet-

PC. Consequently, we obtain the more precise differential bias for the 10-round
Friet-PC, such that ϵd is approximately 2−18.634; thus, at least 238.268 samples
are sufficient for distinguishing the 10-round Friet-PC from a true random
number generator with a constant probability of success. In summary, our ex-
periments have revealed that the practical bit-wise differential distinguisher for
Friet-PC performs properly up to 9 rounds (out of 24 rounds in the original
version).

16



Table 9. Single- and dual-bit differential biases (log2) for the 11-round Friet-PC.

Single-bit Dual-bit

ID OD ϵd ID OD ϵd

∆a
(0)
100 ∆a

(11)
74 -11.772 ∆a

(0)
48 ∆a

(11)
19 ⊕∆c

(11)
103 -11.596

∆b
(0)
57 ∆a

(11)
52 -11.844 ∆c

(0)
111 ∆b

(11)
57 ⊕∆c

(11)
19 -11.604

∆c
(0)
14 ∆a

(11)
73 -11.847 ∆c

(0)
25 ∆b

(11)
5 ⊕∆b

(11)
90 -11.616

∆c
(0)
21 ∆a

(11)
3 -11.873 ∆c

(0)
89 ∆a

(11)
90 ⊕∆b

(11)
73 -11.635

∆a
(0)
20 ∆a

(11)
61 -11.885 ∆b

(0)
31 ∆c

(11)
17 ⊕∆c

(11)
59 -11.647

∆b
(0)
84 ∆b

(11)
104 -11.886 ∆b

(0)
67 ∆a

(11)
68 ⊕∆c

(11)
60 -11.655

∆a
(0)
45 ∆b

(11)
37 -11.913 ∆b

(0)
88 ∆a

(11)
20 ⊕∆c

(11)
11 -11.679

∆b
(0)
56 ∆b

(11)
108 -11.913 ∆c

(0)
74 ∆a

(11)
60 ⊕∆b

(11)
5 -11.681

5 MILP-aided Zero-sum Distinguisher

5.1 Zero-sum Distinguisher and Division Property

The zero-sum distinguisher [3] a widely-utilized tool to evaluate the security of
a public permutation, though it has never influenced the security of the corre-
sponding hash or encryption schemes as far as we know. A critical reason exists in
the attackers’ capacity to control the whole internal state, which is impossible in
the schemes adopting the sponge structure. However, it is still interesting if one
could identify a non-trivial zero-sum distinguisher with better time complexity
than those obtained with trivial algebraic degree evaluations.

The bit-based division property [27] is a powerful technique to compute the
increase of algebraic degrees for a bit-oriented public permutation, especially
when combined with the automatic search method [28]. However, the usage
of division property has not been discussed in the proposal of Friet [26] and
we believe this is essential if non-trivial increase of algebraic degrees could be
identified. Consequently, in the following part, we briefly introduce bit-based
division property [27] and then report our findings.

First, define the following functions before defining the division property.

Definition 1 (Bit-Product Function). For any u ∈ Fn
2 , let πu(x) be a func-

tion from Fn
2 to F2. For any x ∈ Fn

2 , define πu(x) as follows:

πu(x) =

n−1∏
i=0

x[i]u[i]

Let πu be a function from (Fn0
2 × Fn1

2 × · · · × Fnm−1

2 ) to F2 for all u ∈ Fn
2 . For

any u = (u0, u1, · · · , um−1),x = (x0, x1, · · · , xm−1), define πu(x) as follows.

πu(x) =

m−1∏
i=0

πui(xi)
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Then, the bit-based division property [27] can be defined as follows:

Definition 2 (Bit-Based Division Property). Let X be a multiset whose
elements takes a value of Fn

2 . When the multiset X has the division property
D1n

K , where K denotes a set of n-dimensional vectors whose i-th element takes 0
or 1, it fulfills the following conditions:⊕

x∈X

πu(x) =

{
unknown if there exist k ∈ K s.t. wt(u) ⪰ k,
0 otherwise.

wt(u) is the hamming weight of u. If there k ∈ K and k′ ∈ K satisfying k ⪰ k′

in the division property D1n

K , k can be removed from K because it is redundant.
When we utilize MILP method to evaluate the division property propagation,
we need to focus on the elements of K. Xiang et al. proposed new notations
[28] called division trail to illustrate division property propagation, which can
be defined as follows:

Definition 3 (Division Trail). Let fr denote the round function of an it-
erated block cipher. Assume the input multiset to the block cipher has initial
division property Dn,m

k , and denote the division property after i-round propaga-
tion through fr by Dn,m

Ki
. Thus, we have the following chain of division property

propagations:

{k} def
= K0

fr→ K1
fr→ K2

fr→ · · ·

Moreover, for any vector k∗i in Ki(i ≥ 1), there must exist an vector k∗i−1 in
Ki−1 such that k∗i−1 can propagate to k∗i by division property propagation rules.
Furthermore, for (k0,k1, · · · ,kr) ∈ K0×K1× · · ·×Kr, if ki−1 can propagate to
ki for all i ∈ {1, 2, · · · , r}, we call (k0,k1, · · · ,kr) an r-round division trail.

Proposition 1. Denote the division property of input mulitset to an iterated
block cipher by Dn,m

k , let fr be the round function. Denote

{k} def
= K0

fr→ K1
fr→ K2

fr→ · · · fr→ Kr

the r-round division property propagation. Thus, the set of the last vectors of all
r-round division trails which start with k is equal to Kr.

In general, we need to show that the Hamming weight of any vector of Kr derived
from the division property DK0

of input multiset is not less than or equal to 1,
and then we need to prove that the division trail where Kr is unknown does not
exist.

5.2 MILP Modeling

In this subsection, we describe the MILP-based methods to search for the integral
distinguishers [7] and explain how to express the division property propagation
through the basic operations of Friet-PC based on the method proposed by
Xiang et al. [28].
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When evaluating the propagation of division property, it is necessary to con-
sider the basic operations of a block cipher such as COPY and XOR. In the
following, we will introduce the bit-based division property propagation through
these basic operations and how to express the division property propagation
through these operations as linear inequalities.

Modeling COPY. COPY operation is the basic operation used in Feistel ciphers.
A portion of the input copied into two equal parts, one of which is fed to the
round function. Denote F an function taking x ∈ F2 as input and (y0, y1) = (x, x)
as output. If the input multiset X has division property Dn

k , the output multiset
Y will have division property Dn,n

K′ , where

K′ ← (k − i, i) for 0 ≤ i ≤ k.

Since we consider the bit-based division property, we only need to consider the

division property propagation where k = 1. Thus, the division trails are (0)
copy→

(0, 0), (1)
copy→ (0, 1) and (1)

copy→ (1, 0). Let (a)
copy→ (b0, b1) be the division trails

through the COPY operation, the following inequalities are sufficient to describe
the division property propagation of COPY [28].{

a− b0 − b1 = 0
a, b0, b1 are binaries

Modeling XOR. Denote F an function taking (x0, x1) ∈ F2 × F2 as input and
y = x0 ⊕ x1 as output. If the input multiset X has division property Dn,n

K , the
output multiset Y will have division property Dn

k′ , where

k′ = min
(k0,k1)∈K

{k0 + k1}

We only need to consider the division property propagation where k = 1. Thus,

the division trails are (0, 0)
XOR→ (0), (0, 1)

XOR→ (1) and (1, 0)
XOR→ (1). Let

(a0, a1)
XOR→ (b) be the division trails through the XOR operation, the following

inequalities are sufficient to describe the division property propagation of XOR
[28]: {

a0 + a1 − b = 0
a0, a1, b are binaries

Modeling AND. Denote F an function taking (x0, x1) ∈ F2 × F2 as input and
y = x0 ∧ x1 as output. If the input multiset X has division property Dn,n

K , the
output multiset Y will have division property Dn

k′ , where

K′ ← max
(k0,k1)∈K

{k0, k1}

We only need to consider the division property propagation where k = 1. Thus,

the division trails are (0, 0)
AND→ (0), (0, 1)

AND→ (1), (1, 0)
AND→ (1), (1, 1)

AND→
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Table 10. Integral distinguishers

Complexity Rounds Integral distinguisher

231 7 (C128, C97A31, C128)→ (U128,B128,B128)

263 8 (C128, C65A63, C128)→ (U128,B128,B128)

2127 9 (C128, CA127, C128)→ (U128,B128,B128)

2255 9 (C128,A128, CA127)→ (U128,B128,B128)

2383 15 (CA127,A128,A128)→ (B128,B128,B128)

(1). Let (a0, a1)
AND→ (b) be the division trails through the AND operation, the

following inequalities are sufficient to describe the division property propagation
of AND [28]: 

b− a0 ≥ 0
b− a1 ≥ 0
b− a0 − a1 ≤ 0
a0, a1, b are binaries

The Initial Division Property. Since we search for integral distinguishers based
on bit-based division property, it is necessary to set the input division property
to ALL (A) or CONSTANT (C) for each bit independently. Assuming we have
2s plaintext, we can set s bits in the initial division property as ALL (A).

Stopping Rule. Let (a0n−1, · · · , a00)→ · · · → (arn−1, · · · , ar0) be a r-round division
trail. If the trail where the output division property with only i-th bit (0 ≤ i < n)
being 1 and the rest being 0 for a given initial division property does not exist,
the i-th bit holds the BALANCE (B) property. We can check whether i-th bit
holds BALANCE (B) or UNKNOWN (U) by checking if such a trail exists. This
can be easily evaluated with MILP [28]. Specifically, if the model is infeasible
for the given constraints, there is no such trail, and vice versa.

5.3 Our Search

We modeled the operations of the Friet-PC round as the MILP constraints
and optimized the models using the MILP solver. All the models are solved with
the Gurobi solver [11]. All the searches are performed on a machine equipped
with an Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz with HyperThreading
enabled.

From Fig. 1, it is clear that the input of limb b will not pass through the
AND operation, which is the only non-linear transformation part in the round
function. Therefore, for zero-sum distinguisher with a low time complexity, it is
always better to choose as many active bits from limb b as possible. The obtained
integral distinguishers are shown in Table 10.
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5.4 Zero-sum Distinguishers

The above integral distinguisher can be converted into zero-sum distinguishers
with a start-from-the-middle method as in [3]. Specifically, we view an inter-
nal state in a middle round as input and search for integral distinguishers in
both backward and forward directions. As a result, the following four zero-sum
distinguishers can be constructed:

– 30-round zero-sum distinguisher with 2383 time and data complexity.

(B128,B128,B128) 15−round← (CA127,A128,A128)
15−round→ (B128,B128,B128)

– 17-round zero-sum distinguisher with 2127 time and data complexity.

(B128,B128,B128) 8−round← (C128, CA127, C128) 9−round→ (U128,B128,B128)

– 15-round zero-sum distinguisher with 263 time and data complexity.

(B128,B128,B128) 7−round← (C128, C65A63, C128) 8−round→ (U128,B128,B128)

– 13-round zero-sum distinguisher with 231 time and data complexity.

(B128,B128,B128) 6−round← (C128, C97A31, C128) 7−round→ (U128,B128,B128)

In summary, a practical 13-round zero-sum distinguisher and a theoretical
17-round zero-sum distinguisher with time complexity below 2128 are obtained.
However, the full-round zero-sum distinguisher requires half of the total input
space, i.e., it requires 2383 time and data.

Remark. It is in general difficult to compare distinguishers on a public permu-
tation if the attacker has a control over the full internal state, as this is always
impossible in schemes constructed with a public permutation and the sponge
structure. Notice that the distinguishing attacks reported in [19] also require the
capability to control the whole internal state of Friet-PC.

6 Conclusion

In this study, we evaluated the security of the Friet-PC permutation against
bit-wise cryptanalysis including rotational, bit-wise differential, and integral at-
tacks. First, we provided a generic procedure for a rotational attack on AND-
RX ciphers with round constants and applied it to the Friet-PC permutation.
Subsequently, we demonstrated an 8-round rotational distinguisher with a time
complexity of 2102. Second, we explored single- and dual-bit differential biases of
the reduced-round Friet-PC and extended one of them to a 9-round bit-wise
differential distinguisher with a time complexity of 220.044. Finally, we found 7-,
8-, 9-, and 15-round integral characteristics and extended these characteristics
to 13-, 15-, 17-, and 30-round zero-sum distinguishers with time complexities of

21



231, 263, 2127, and 2383, respectively. We thus improved the best existing attack,
which was evaluated by Liu et al. [19], against the reduced-round Friet-PC.
We remark that the proposed attacks are no practical threat to Friet-PC, how-
ever, it is recommended to use these attack vectors of bit-wise cryptanalysis to
evaluate the security of AND-RX ciphers when designing the AND-RX ciphers
in the future.
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