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Abstract. At Asiacrypt 2020, Moriya et al. introduced two new IND-
CPA secure supersingular isogeny based Public Key Encryption (PKE)
protocols: SiGamal and C-SiGamal. Unlike the PKEs canonically derived
from SIDH and CSIDH, the new protocols provide IND-CPA security
without the use of hash functions. SiGamal and C-SiGamal are however
not IND-CCA secure. Moriya et al. suggested a variant of SiGamal that
could be IND-CCA secure, but left its study as an open problem.
In this paper, we revisit the protocols introduced by Moriya et al. First,
we show that the SiGamal variant suggested by Moriya et al. for IND-
CCA security is, in fact, not IND-CCA secure. Secondly, we propose a
new isogeny-based PKE protocol named SimS, obtained by simplifying
SiGamal. SimS has smaller public keys and ciphertexts than (C-)SiGamal
and it is more efficient. We prove that SimS is IND-CCA secure under
CSIDH security assumptions and one Knowledge of Exponent-type as-
sumption we introduce. Interestingly, SimS is also much closer to the
CSIDH protocol, facilitating a comparison between SiGamal and CSIDH.

Keywords: Post-quantum cryptography · supersingular isogenies · PKE
· CSIDH · SiGamal · SimS.

1 Introduction

The construction of a large scale quantum computer would make the nowadays
widely used public PKE schemes insecure, namely RSA [29], ECC [21] and their
derivatives. As a response to the considerable progress in constructing quantum
computers, NIST launched a standardization process for post-quantum secure
protocols in December 2016 [26].

Isogeny-based protocols are in general based on the assumption that given
two isogenous curves E and E′, it is difficult to compute an isogeny from E to
E′. This hard problem was used by J. M. Couveignes [11], Rostovtsev and Stol-
bunov [30] to design a key exchange protocol using ordinary isogenies, and by
Charles, Goren and Lauter [8] to design a cryptographic hash function using su-
persingular isogenies. In 2011, as a countermeasure to the sub-exponential quan-
tum attack on the CRS (Couveignes-Rostovtsev-Stolbunov) scheme by Childs et
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al. [9], Jao and De Feo designed SIDH [20] (Supersigular Isogeny Diffie-Hellman),
a Key Exchange protocol based on supersingular isogenies. The submission
of SIKE [19] (a Key Encapsulation Mechanism based on SIDH) to the NIST
standardization process marked the starting point of a more active research in
isogeny-based cryptography. Isogeny-based protocols are not the most efficient
candidates for post quantum cryptography, but they provide the shortest keys
and ciphertexts.

In 2018, Castryck et al. constructed CSIDH [6] (Commutative SIDH) using
the Fp-sub-graph of the supersingular isogeny graph. CSIDH key exchange is
close to CRS but is an order of magnitude more efficient. PKE schemes based
on isogeny problems include SIKE, SÉTA [14] and more recently SiGamal and
C-SiGamal [24]. SÉTA and the PKEs canonically derived from the key exchange
protocols SIDH and CSIDH are only OW-CPA secure. They require the use of
hash functions and/or generic transformations such as the Fujisaki-Okamoto [16]
or OAEP [1] to fulfil higher security requirements such as IND-CPA and IND-
CCA security ([14, §2.4],[19, §1.4], [24, §3.3]). This motivated Moriya, Onuki and
Tagaki to introduce the SiGamal [24, §5] and C-SiGamal [24, §6] PKE schemes
derived from CSIDH. SiGamal and C-SiGamal provide IND-CPA security under
new assumptions they introduce. The authors noticed that neither SiGamal nor
C-SiGamal is IND-CCA secure. In Remark 7 of [24], they suggest a slightly
modified version of SiGamal that from their point of view could be IND-CCA
secure, but they left its study as open problem.

Contributions. In this paper, we prove that the variant of SiGamal suggested by
Moriya et al. in Remark 7 of their paper is not IND-CCA secure by exhibiting a
simple and concrete attack. We then modify SiGamal to thwart this attack, and
obtain a new isogeny-based PKE scheme which we call SimS. We prove that SimS
is IND-CPA secure relying on CSIDH security assumptions (Assumption 2). This
is a considerable improvement on SiGamal whose IND-CPA security relies on
new assumptions. We then introduce a “knowledge of Exponent” type assump-
tion (Assumption 3) under which we prove that SimS is IND-CCA secure. This
assumption may have other applications in isogeny-based cryptography.

We adapt the Magma code for SiGamal [23] to run a proof of concept im-
plementation of SimS using the SiGamal primes p128 and p256. For the prime
p128, SimS is about 1.13x faster than SiGamal and about 1.19x faster than C-
SiGamal. For the prime p256, we get a 1.07x speedup when compared to SiGamal
and a 1.21x speedup when compared to C-SiGamal.

For the same set of parameters, SimS has smaller private keys, public keys
and ciphertexts compared to SiGamal and C-SiGamal. SimS is simple, sits be-
tween SiGamal and CSIDH, helps to better understand the relation between
SiGamal and CSIDH while providing IND-CCA security and being more effi-
cient compared to SiGamal. Table 1 best summarizes our contributions.

Outline. The remainder of this paper is organized as follows: in Section 2, we
recall the security definitions for PKE schemes, the main ideas of the class group
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CSIDHpke SimS SiGamal C-SiGamal
Private key [a] [a] a a
Size of plaintext log2 p r − 2 r − 2 r − 2
Size of Alice’s public key log2 p log2 p 2 log2 p 2 log2 p
Size of ciphertexts (or Bob’s public key) 2 log2 p 2 log2 p 4 log2 p 2 log2 p
Class group cost for p128 compared to CSIDH x1.00 x1.30 x1.50 x1.50
Class group cost for p256 compared to CSIDH x1.00 x2.31 x2.57 x2.57
Enc + Dec cost for p128 compared to CSIDHpke x1.00 x1.38 x1.57 x1.65
Enc + Dec cost for p256 compared to CSIDHpke x1.00 x2.62 x2.82 x3.17
Security OW-CPA IND-CCA IND-CPA IND-CPA

Table 1: Comparison between CSIDHpke, SimS, SiGamal and C-SiGamal.
CSIDHpke uses the csidh-512 prime, while SimS, SiGamal and C-SiGamal use
the primes p128 and p256 which are SiGamal primes that provide the same secu-
rity level as the csidh-512 prime.

action and the CSIDH key exchange protocol. In section 3, we present the SiGa-
mal PKE scheme and we show that the variant suggested in [24, Remark 7] is
not IND-CCA secure. Section 4 is devoted to SimS and its security arguments.
In section 5 we present the outcome of a proof-of-concept implementation and
compare SimS to CSIDH and (C-)SiGamal in Section 6. We conclude the paper
in Section 7.

2 Preliminaries

2.1 Public key encryption

We recall standard security definitions related to public key encryption.

Definition 1 (PKE). A Public Key Encryption scheme Pλ is a triple of PPT
algorithms (Key Generation, Encryption, Decryption) that satisfy the following.

1. Given a security parameter λ as input, the key generation algorithm Key Generation
outputs a public key pk, a private key sk and a plaintext space M.

2. Given a plaintext µ ∈ M and a public key pk as inputs, the encryption
algorithm Encryption outputs a ciphertext c = Encryptionpk(µ).

3. Given a ciphertext c and sk as inputs, the decryption algorithm Decryption
outputs a plain text = Decryptionsk(c).

Definition 2 (Correctness). A PKE scheme Pλ is correct if for any pair of
keys (pk, sk) and for every plaintext µ ∈M,

Decryptionsk
(
Encryptionpk(µ)

)
= µ.

Definition 3 (IND-CPA secure). A PKE scheme Pλ is IND-CPA secure if
for every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ), µ0, µ1 ← A(pk,M),

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← A(pk, c)

]
=

1

2
+ negl(λ).
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Definition 4 (IND-CCA secure). A PKE scheme Pλ is IND-CCA secure if
for every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ), µ0, µ1 ← AO(·)(pk,M),

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← AO(·)(pk, c)

]
=

1

2
+negl(λ),

where O(·) is a decryption oracle that when given a ciphertext c′ 6= c, outputs
Decryptionsk(c′) or ⊥ if the ciphertext c′ is invalid.

2.2 Class group action on supersingular curves defined over Fp

We refer to [31,32] for general mathematical background on supersingular elliptic
curves and isogenies, to [6,15] for supersingular elliptic curves defined over Fp and
their Fp-endomorphism ring, and to [10,28] for isogenies between Montgomery
curves.

Let p ≡ 3 mod 4 be a prime greater than 3. The equation By2 = x3+Ax2+x
where B ∈ F∗p and A ∈ Fp \ {±2} defines a Montgomery curve E over Fp. The
curve E : By2 = x3 + Ax2 + x is isomorphic (over Fp) to the curve defined by
the equation y2 = x3 +Ax2 + x (resp. −y2 = x3 +Ax2 + x) when B is a square
in Fp (resp. B is not a square in Fp). The curve E is said to be supersingular if
#E(Fp) ≡ 1 mod p, otherwise E is said to be ordinary. If E is a supersingular
curve defined over Fp with p > 3, then #E(Fp) = p + 1. All the elliptic curves
we consider in this paper are supersingular curves defined by an equation of the
form y2 = x3 +Ax2 +x where A ∈ Fp is called the Montgomery coefficient of the
curve. In the rest rest of this section, we briefly describe the class group action
used in CSIDH.

Let E be a supersingular curve defined over Fp and let π be the Frobenius
endomorphism of E. The Fp-endomorphism ring O of E is isomorphic to either
Z[π] or Z[ 1+π2 ] [15]. As in the ordinary case, the class group cl(O) of O acts
freely and transitively on the set E``p(O) of supersingular elliptic curves defined
over Fp and having Fp-endomorphism ring O. We have the following theorem.

Theorem 1. [6, Theorem 7] Let O be an order in an imaginary quadratic field
such that E``p(O) is non empty. The ideal class group cl(O) acts freely and
transitively on the set E``p(O) via the map

cl(O)× E``p(O)→ E``p(O)
([a], E) 7→ [a]E = E/E[a],

where a is an integral ideal of O and E[a] = ∩α∈a kerα.

From now on, we will consider the quadratic order Z[π] and the action of its
class group cl(Z[π]) on the set E``p(Z[π]). We represent Fp-isomorphism classes
of curves in E``p(Z[π]) using the Montgomery coefficient A [4, Proposition 3].

The efficiency of the computation of an isogeny with known kernel essentially
depends on the smoothness of its degree. In [6], the authors work with a prime p
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of the form p = 4`1 · · · `n−1. This implies that for i ∈ {1, · · · , n},
(
−p
`i

)
= 1 and

by the Kummer decomposition theorem [22], (`i) = lili in cl(Z[π]), where li =
(`i, π− 1) and li = (`i, π+ 1) are integral ideals of prime norm `i. It follows that
[li][li] = [`i] = [1] in cl(Z[π]), hence [li]

−1 = [li]. Since the primes `i are small,
then the action of the ideal classes [li] and [li]

−1 can be computed efficiently
using Vélu formulas for Montgomery curves [10,28]. In reality, the kernel of the
isogeny corresponding to the action of the prime ideal li = (`i, π−1) is generated
by a point P ∈ E(Fp) of order `i, while that of the isogeny corresponding to
the action of l−1i = (`i, π + 1) is a point P ′ ∈ E(Fp2) \ E(Fp) of order `i such
that π(P ′) = −P ′. The computation of the action of an ideal class

∏
[li]

ei where
(e1, · · · , en) ∈ {−m, · · · ,m}n can be done efficiently by composing the actions
of the ideal classes [li] or [li]

−1 depending on the signs of the exponents ei. Since
the prime ideals li are fixed, then the vector (e1, · · · , en) is used to represent the
ideal class

∏
[li]

ei . From the discussion in [6, §7.1], m is chosen to be the least
positive integer such that

(2m+ 1)n ≥ |cl(Z[π])| ≈ √p.

2.3 CSIDH

CSIDH [6] stands for Commutative Supersingular Isogeny Diffie-Hellman and is
a Diffie-Hellman type key exchange protocol. The base group in Diffie-Hellman
protocol is replaced by the unstructured set E``p(Z[π]) and the exponentiation is
replaced by the class group action of cl(Z[π]) on E``p(Z[π]). Concretely, CSIDH
is designed as follows.

Setup. Let p = 4`1 · · · `n − 1 be a prime where `1, · · · , `n are small distinct odd
primes. The prime p and the supersingular elliptic curve E0 : y2 = x3+x defined
over Fp with Fp-endomorphism Z[π] are the public parameters.

Key Generation. The private key is an n-tuple e = (e1, · · · , en) of uniformly ran-
dom integers sampled from a range {−m, · · · ,m}. This private key represents an
ideal class [a] =

∏
[li]

ei ∈ cl(Z[π]). The public key is the Montgomery coefficient
A ∈ Fp of the curve [a]E0 : y2 = x3 + Ax2 + x obtained by applying the action
of [a] on E0.

KeyExchange Suppose Alice and Bob have successfully computed pairs of private
and public key (e,A) and (e′, B) respectively. Upon receiving Bob’s public key
B ∈ Fp \ {±2}, Alice verifies that the elliptic curve EB : y2 = x3 +Bx2 + x is a
supersingular curve, then applies the action of the ideal class corresponding to
her secret key e = (e1, · · · , en) to EB to compute the curve [a]EB = [a][b]E0.
Bob does analogously with his own secret key e′ = (e′1, · · · , e′n) and Alice’s pub-
lic key A ∈ Fp \ {±2} to compute the curve [b]EA = [b][a]E0. The shared secret
is the Montgomery coefficient S of the common secret curve [a][b]E0 = [b][a]E0.
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The security of the CSIDH key exchange protocol relies on the following assump-
tions.

Let λ be the security parameter and let p = 4`1 · · · `n − 1 be a prime where
`1, · · · , `n are small distinct odd primes. Let E0 be the supersingular elliptic
curve y2 = x3 + x defined over Fp, let [a], [b] and [c] be uniformly random ideal
classes in cl(Z[π]).

Assumption 1 The CSSICDH (Commutative Supersingular Isogeny Computa-
tional Diffie-Hellman) assumption holds if for any probabilistic polynomial time
(PPT) algorithm A,

Pr [E = [b][a]E0 | E = A(E0, [a]E0, [b]E0)] < negl(λ).

Assumption 2 The CSSIDDH (Commutative Supersingular Isogeny Decisional
Diffie-Hellman) assumption holds if for any PPT algorithm A,

Pr

b = b∗

∣∣∣∣∣∣
[a], [b], [c]← cl(Z[π]), b

$←− {0, 1},
F0 := [b][a]E0, F1 = [c]E0,
b∗ ← A(E0, [a]E0, [b]E0, Fb)

 =
1

2
+ negl(λ).

In [7], Castryck et al. show that Assumption 2 does not hold for primes
p ≡ 1 mod 4. This does not affect primes p ≡ 3 mod 4, which are used in CSIDH,
SiGamal and in our proposal SimS.

An IND-CPA insecure PKE from CSIDH. A PKE scheme can be canonically
derived from a key exchange protocol. For the case of CSIDH, this PKE scheme
is sketched as follows. Suppose that Alice has successfully computed her key
pair (e,A). In order to encrypt a message m ∈ {0, 1}dlog pe, Bob computes a
random key pair (e′, B) and the binary representation S01 of the corresponding
shared secret S. He sends (B, c = S01 ⊕ m) to Alice as the ciphertext. For the
decryption, Alice computes the shared secret S and its binary representation S01,
then recovers m = S01 ⊕ c. In the comparison in Section 6, the term CSIDHpke
will be used to refer to the previous PKE each time the precision is needed.

The above PKE scheme is not IND-CPA secure. In fact, given two distinct
plaintexts m0 and m1, if (B, c) is a ciphertext for mi, then Si01 = c ⊕ mi is
the binary representation of the Montgomery coefficient of a supersingular curve
while S1−i

01 = c⊕m1−i is that of an ordinary curve with overwhelming probability.
Hence an adversary can efficiently guess if the ciphertext (B, c) is that of m0 or
m1. In practice, a hash function h is used to mask the supersingular property of
the shared secret S, the ciphertext becomes (B, c = h(S01)⊕m).

3 Another look at SiGamal protocol

3.1 SiGamal protocol and variants

Let p = 2r`1 · · · `n − 1 be a prime such that `1, · · · , `n are small distinct odd
primes. Let E0 be the elliptic curve y2 = x3 + x and let P0 ∈ E(Fp) be a point
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of order 2r. Recall that for every small odd prime `i dividing p + 1, there are
two prime ideals li = (`i, π − 1) and li = (`i, π + 1) above `i in cl(Z[π]). Also,
the isogenies φli and φli of domain E0 correspond to the isogenies with kernel
generated by Pli ∈ E0[`i] ∩ ker(π − 1) \ {0} and Pli

∈ E0[`i] ∩ ker(π + 1) \ {0}
respectively. The points liP0 and liP0 are images of the point P0 trough these
isogenies respectively. Let a = (α)le11 · · · lenn ∈ cl(Z[π]) where α is an integer then
point aP0 is the image of P0 by the composition of the isogenies φli if ei > 0
or φli if ei < 0, and the multiplication by α. For a given integer k, we denote
by [k] ◦ b the composition of the isogeny corresponding to the ideal class b and
the scalar multiplication by k, and the point [k] ◦ bP0 denotes the image of P0

trough this isogeny.
The SiGamal PKE scheme can be summarized as follows.

Key Generation. Let p = 2r`1 · · · `n− 1 be a prime such that `1, · · · , `n are small
distinct odd primes. Let E0 be the elliptic curve y2 = x3 +x and let P0 ∈ E(Fp)
be a point of order 2r. Alice takes a random integral ideal a = (α)le11 · · · lenn
where α is a uniformly random element of Z×2r , computes E1 := [a]E0 and
P1 := aP0. Her public key is (E1, x(P1)) and her private key is (α, e1, · · · , en).
Let Z2r−2 = Z/2r−2Z be the message space.

Encryption. Let m ∈ Z2r−2 be a plaintext, Bob embeds m in Z×2r via m 7→ M =
2m + 1. Bob takes a random integral ideal class b = (β)le11 · · · lenn where β is
a uniformly random element of Z×2r . Next, he computes [M ]P1, E3 = [b]E0,
P3 := bP0, E4 = [b]E1 and P4 := b([M ]P1). He sends (E3, x(P3), E4, x(P4)) to
Alice as the ciphertext.

Decryption. Upon receiving (E3, x(P3), E4, x(P4)), Alice computes aP3 and solves
a discrete logarithm instance between P4 and aP3 using the Pohlig-Hellman al-
gorithm [27]. Let M ∈ Z×2r be the solution of this computation. If 2r−1 < M ,
then Alice changes M to 2r −M . She computes the plaintext m = (M − 1)/2.

In C-SiGamal, a compressed version of SiGamal, one replaces the point abP0

by a distinguished point PE4
∈ E4 of order 2r, which then does not need to be

transmitted. The scheme integrates an algorithm that canonically computes a
distinguished point of order 2r on a given supersingular curve defined over Fp
where p = 2rl1 · · · ln − 1. We refer to [24] for more details on the SiGamal and
C-SiGamal.

Moriya et al. prove that SiGamal and C-SiGamal are IND-CPA secure relying
on two assumptions they introduce. However, they point out that SiGamal is not
IND-CCA secure since one can efficiently compute a valid encryption of 3m + 1
from a valid encryption of m. Indeed, given ([b]E0, bP0, [b]E1, [2m + 1]bP1) one
easily computes ([b]E0, bP0, [b]E1, [3][2m + 1]bP1) = ([b]E0, bP0, [b]E1, [2(3m +
1) + 1]bP1). A similar argument applies for C-SiGamal as well.

As a remedy, Moriya et al. suggest to omit the curve [b]E1 in the ciphertext
(see [24, Remark 7]). We now show that this variant is still vulnerable to IND-
CCA attacks.
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3.2 An IND-CCA attack on Moriya et al.’s variant

In this version of SiGamal, a ciphertext for m is of the form ([b]E0, bP0, [2m +
1]bP1) and the decryption process is identical to that of the original SiGamal.
We prove the following lemma.

Lemma 1. Let (m, c) be a pair of plaintext-ciphertext, and let m′ be any other
plaintext. One can compute a valid ciphertext for m′ in polynomial time.

Proof. Write c = ([b]E0, bP0, [2m+1]bP1). Since 2m+1, 2m′+1 ∈ Z×2r , then α =
(2m+ 1)(2m′+ 1)−1 ∈ Z×2r . Since the curve [b]E0 and its point bP0 are available
in c, then the ciphertext c′ = ([b]E0, [α]bP0, [2m + 1]bP1) can be efficiently
computed at the cost of a point multiplication by α.

We now show that c′ is a valid encryption ofm′. To decrypt c′, Alice computes
[a][b]E0 and a([α]bP0) = [α]abP0, then she solves a discrete logarithm problem
between [2m + 1]bP1 = [2m + 1]abP0 and [α]abP0. We have

[2m + 1]abP0 = [α−1(2m + 1)][α]abP0.

Hence the solution of the discrete logarithm problem is

M ′ = ±α−1(2m + 1) = ±(2m′ + 1)(2m + 1)−1(2m + 1) = ±(2m′ + 1).

It follows that the corresponding plaintext (after changing M ′ to 2r −M ′ when
necessary) is (M ′ − 1)/2 = m′.

Corollary 1. The variant of SiGamal suggested by Moriya et al. in [24, Remark
7] is not IND-CCA secure.

4 SimS

We now introduce a new protocol that resists the previous attack. We name our
protocol SimS (Simplified SiGamal), which highlights the fact that our scheme
is a simplification of SiGamal.

4.1 Overview

We observe that the attack presented in the previous section is effective because
the ciphertext contains the curve bE0 and its 2r-torsion points bP0.

SimS is obtained by adjusting SiGamal in such a way that when a curve is
part of the ciphertext, then none of its points are, and the other way around.
In order to achieve this, we replace the point abP0 in the (C)SiGamal protocol
by a canonical point PE4 ∈ E4 = [a][b]E0. More concretely, in SimS, Alice’s
secret key is an ideal class [a], and her public key is the curve E1 = [a]E0.
To encrypt a message m, Bob chooses a uniformly random ideal class [b], he
computes E3 = [b]E0, E4 = [b]E1 and he then canonically computes a point
PE4
∈ E4(Fp) of smooth order 2r|p + 1. He sends E3 and P4 = [2m + 1]PE4

to



SimS: a Simplification of SiGamal 9

E0 E1 = [a]E0

E3 = [b]E0

E4 = [b]E1,

P4 = [2m + 1]PE4

E4 = [a]E0,

m′ = DLP (P4, PE4)

[a]

[b]

[b]

[a]

Fig. 1: SimS scheme. The elements in black are public, while those in blue are
known only by Bob and those in red only by Alice.

Alice. In order to recover m, Alice computes E4 = [a]E3 and PE4 , then solves
a discrete logarithm instance in a group of order 2r using the Pohlig-Hellman
algorithm. Figure 1 depicts the scheme.

The IND-CCA attack presented in Section 3.2 is no more feasible in SimS
since no point of the curve E3 nor the curve E4 are part of the ciphertexts.

4.2 The SimS public key encryption protocol

Now let us concretely describe the key generation, encryption and decryption
processes. We use the Algorithm 1 to canonically compute the point PE ∈ E(Fp)
of order 2r|p+ 1.

Before we describe the protocol, let us notice that revealing P4 or its x-
coordinate may leak too much information about the curve E4. In fact x(P4) is
the root of the 2r division polynomial of E4. Moreover, one could easily derive
x(P4 + (0, 0)) = 1

x(P4)
by a simple inversion in Fp, which would affect the IND-

CCA security of the scheme. To avoid this, we make use of a randomizing function
fE : Fp → Fp, indexed by supersingular curves defined over Fp, satisfying the
following conditions:

P1: fE is bijective, fE and its inverse gE = f−1E can be efficiently computed
when E is given;

P2: for every element x ∈ Fp, an adversary having no access to x and E cannot
distinguish fE(x) from a random element of Fp;

P3: for every element x ∈ Fp, for every non identical rational function R ∈
Fp(X), an adversary having no access to x and E cannot compute fE(R(x))
from fE(x).

Example 1. In the proof of concept implementation in Section 5, we use the
function fE : x 7→ x′ where bin(x′) = bin(x) ⊕ bin(AE) and bin(·) takes an
element in Fp and returns its binary representation.

Clearly, fE is an involution, hence fE is bijective and satisfies (P1). Proving
that fE satisfies (P2) and (P3) is less straightforward. Nevertheless, we give some
intuitive arguments on why we believe that fE satisfies (P2) and (P3). Given
an element y ∈ Fp, in order to distinguish whether y = fE(x) where x is the
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x-coordinate of a point of order 2r on some supersingular curve E, to the best of
our knowledge, one needs to first fix the curve E, then check if bin(y)⊕ bin(AE)
is the bit representation of the x-coordinate of a point of order order 2r on E.
This process needs to be repeated for all O(

√
p) supersingular elliptic curves

defined over Fp. Hence leading to an exponential adversary. The third property
(P3), intuitively, follows from the fact there is no compatibility with XOR and
algebraic operations. In fact, given a⊕ b, it seems hard to derive R(a)⊕ b where
R is non identical rational function.

Having such a function, SimS is designed as follows.

Key Generation: Let p = 2r`1 · · · `n− 1 be a prime such that `1, · · · , `n are small
distinct odd primes and λ + 2 ≤ r ≤ 1

2 log p where λ is the security parame-
ter. Let E0 be the elliptic curve y2 = x3 + x. Alice takes a random ideal class
[a] ∈ cl(Z[π]), computes E1 := [a]E0. Her public key is E1 and her private key is
[a]. The plaintext space is the set M = Z2r−2 .

Encryption: Let m ∈ Z2r−2 be a plaintext, Bob embeds m in Z×2r via m 7→ 2m+1.
Bob takes a random ideal class [b] ∈ cl(Z[π]) and computes E3 = [b]E0, E4 =
[b]E1 and P4 = [2m + 1]PE4

. He sends (E3, x
′ = fE4

(x(P4))) to Alice as the
ciphertext.

Decryption: Upon receiving (E3, x
′), Alice verifies that E3 is a supersingular

curve, computes E4 = [a]E3 and PE4
. If gE4

(x′) is not the x-coordinate of a
2r-torsion point on the curve E4, then Alice aborts. She solves the discrete log-
arithm instance between P4 = (gE4(x′),−) and PE4 using the Pohlig-Hellman
algorithm. Let M ∈ Z×2r be the solution of this computation. If 2r−1 < M , then
Alice changes M to 2r −M . She computes the plaintext (M − 1)/2.

Theorem 2. If fE4
satisfies (P1), then SimS is correct.

Proof. Since fE4 satisfies (P1), then fE4 is bijective, fE4 and its inverse gE4 =
f−1E4

can be efficiently computed by Alice since she has access to E4.
As in CSIDH, the Montgomery coefficients of the curves [a][b]E0 and [b][a]E0

are equal. Therefore Alice and Bob obtain the same distinguish point PE4
. Since

the points PE4
and P4 = [2m+ 1]PE4

have order 2r, then the Pohlig-Hellman al-
gorithm can be implemented on their x-coordinates x(P4) = gE4(x′) and x(PE4)
only to recover M ≡ ±(2m + 1) mod 2r. Since m ∈ Z2r−2 , then 2m + 1 < 2r−1.
Alice changes M to 2r − M if 2r−1 < M , then she computes the plaintext
(M − 1)/2 = m.

Remark 1. Instantiating SimS with SIDH would lead to a PKE scheme which is
not IND-CCA secure because SIDH is vulnerable to adaptive attacks [17].
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4.3 Security arguments

We prove that the IND-CPA security of SimS relies on Assumption 2. We also
prove that SimS is IND-CCA secure under a Knowledge of Exponent-type as-
sumption which we introduce.

Theorem 3. If Assumption 2 holds and fE4
satisfies (P2), then SimS is IND-

CPA secure.

Proof. We adapt the proof of [12, Theorem 1] to our setting. Let us suppose
that SimS is not IND-CPA secure, then there exists a PPT adversary A that
can successfully distinguish whether a given ciphertext (E3, x

′) was encrypted
from a plaintext m0 or m1 with a non negligible advantage γ. We will use A to
construct a PPT CSSIDDH solver A′ that breaks Assumption 2.

Let (E0, [a]E0, [b]E0, E) be a tuple given to us as a CSSIDDH instance input.
Our goal is to decide if this is a correct tuple ([a][b]E0 = E) or a bad tuple
([a][b]E0 6= E).

Let T be the following two-steps test.

– Simulation. One simulates a SimS instance using two plaintext messages
m0,m1 chosen by the adversary A and (E0, [a]E0, [b]E0, E). Concretely, one
computes PE , secretly chooses a random bit b ∈ {0, 1} and returns the
ciphertext c = ([b]E0, fE(x([2mb + 1]PE))).

– Query A. One queries A with ([a]E0, c) and gets a response b′. The result
of the test T is 1 if b = b′ and 0 if b 6= b′.

Now we distinguish two cases.

Case 1: the adversary A can detect invalid ciphertexts by returning
an error message. Here we run the test T once. If the result of the query
step is an error message instead of a bit, then c is an invalid ciphertext. Hence
E 6= [a][b]E0 and the tuple is bad. If in the query step A returns a bit b′, then c
is a valid ciphertext. Hence [a][b]E0 = E, and the tuple is correct.

We therefore construct our CSSIDDH solver A′ as follows: if the query step
result is an error message, A′ returns bad; if it is a bit, A′ returns correct.

Case 2: the adversary A cannot detect invalid ciphertexts. Here the
query step result will always be a bit b′. The CSSIDDH solver A′ repeats the
test T and studies the proportion PrT (1) of 1’s obtained.

Suppose that (E0, [a]E0, [b]E0, E) is a correct tuple, then all the ciphertexts
c computed in the simulation steps are valid, hence the adversary A has the
same advantage as in an actual attack. Therefore,

PrT (1) =
1

2
+ γ.

On the other hand, let suppose that (E0, [a]E0, [b]E0, E) is a bad tuple. Then
[a][b]E0 6= E and the ciphertext c is invalid. Since A does not have access to
E and x([2mb + 1]PE), and that fE satisfies (P2), then A can not distinguish
x′ = fE(x([2mb + 1]PE)) from a random element of Fp. Therefore the output
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b′ of the query step is independent of b. Hence one expects to have roughly the
same number on 1’s and 0’s after repeating the test T several times. This implies
that

PrT (1) =
1

2
± ngl(λ).

We therefore construct our CSSIDDH solver A′ as follows: if PrT (1) = 1
2±ngl(λ),

then A′ returns bad; if not, then A′ returns correct. ut

Compared to the IND-CPA game setting, the adversary also has access to
a decryption oracle O(·) in the IND-CCA game setting. To prove that SimS is
IND-CCA secure, it is sufficient to prove that the decryption oracle is useless.
This immediately follows if we assume that no PPT adversary having access to
E0, E1 and a valid ciphertext c, can produce a brand new valid ciphertext c′

unless she encrypts c′ herself. This is formalized in the following assumption.

Assumption 3 The CSSIKoE (Commutative Supersingular Isogeny Knowledge
of Exponent) assumption is stated as follows.

Let λ be a security parameter, let p = 2r`1 · · · `n − 1 be a prime such that
λ+ 2 ≤ r ≤ 1

2 log p. Let [a], [b] be a uniformly sampled elements of cl(Z[π]). Let
(fE)E∈cl(Z[π]) be a family randomizing functions as defined in Section 4.2 such
that each of these functions satisfies (P3).

Then for every PPT adversary A that takes E0, [a]E0 and ([b]E0, f[a][b]E0
(x(P )))

where P ∈ [a][b]E0 is a point of order 2r as inputs, and returns a couple
([b′]E0, f[a][b′]E0

(x(P ′))) 6= ([b]E0, f[a][b]E0
(x(P ))) where P ′ ∈ [a][b′]E0 is a point

of order 2r, there exists a PPT adversary A′ that takes the same inputs and re-
turns ([b′], [b′]E0, f[a][b′]E0

(x(P ′)))).

Theorem 4. Let us suppose that SimS is IND-CPA secure, and that Assump-
tion 3 holds. Then SimS is IND-CCA secure.

Proof. Let us suppose that Assumption 3 holds and SimS is not IND-CCA se-
cure, and let us prove that SimS is not IND-CPA secure.

Since SimS is not IND-CCA secure, then there exists a PPT adversary
AO(·) = (A1, O(·)) (where O(·) is the decryption oracle) that successfully de-
termines if a given ciphertext c is that of a plaintext m0 or m1 with a non
negligible advantage γ.

Suppose that the adversary AO(·) queries the decryption oracle O(·) with
some valid ciphertexts c1 = (F1, x1), · · · , cn = (Fn, xn) computed by A1. By
Assumption 3, there exists a polynomial time algorithmA2 that when outputting
c1 = (F1, x1), · · · , cn = (Fn, xn) also outputs the ideal classes [b1], · · · , [bn] such
that Fi = [bi]E0 for i ∈ {1, · · · , n}. From the knowledge of the ideal classes
[b1], · · · , [bn] and [a]E0, the adversary A2 successfully decrypts c1, · · · , cn.

Replacing the decryption oracle O(·) by A2, we obtain an adversary A′ =
(A1,A2) that successfully determines if a given ciphertext c is that of m0 or m1

with advantage γ (which is non negligible) and without making any call to the
decryption oracle. This contradicts SimS’s IND-CPA security. ut
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Remark 2. In all this section, we have assumed that the ideal classes [a] and
[b] were uniformly sampled elements of cl(Z[π]). Strictly speaking, in order to
uniformly sample elements in cl(Z[π]), one needs to compute the class group
structure and its generators. Computing the class group cl(Z[π]) requires sub-
exponential time in its discriminant [3, §1]. The class group structure for the
CSIDH-512 prime was computed in [3] with a lot of computational effort. As
in the preliminary version of CSIDH or instantiations of CSIDH using different
primes for which the class group is unknown, we assume that the many small
prime ideals li used to sampled elements in cl(Z[π]) (see Section 2.2) generate
the entire class group or a sufficiently large subgroup of the class group such
that the sampled ideals are close to being uniformly random. See [6, §7.1] for
more details.

Remark 3. The secret vectors (e1, · · · , en) ∈ [−m,m]n used to sample ideals
a = le11 · · · lenn ∈ cl(Z[π]) can be seen as analogous to exponents in discrete
logarithm-based protocols, and Assumption 3 is in that sense analogous to the
“knowledge of exponent” assumption (see Appendix A) introduced by Damg̊ard
in the context of discrete logarithm-based cryptography [13] and also used in [18].
If ever the class group cl(Z[π]) were computed for the SimS primes, then the
analogy would be more immediate.

5 Implementation results

Here we present the experimentation results obtained by adapting the code of
SiGamal [23]. The implementation is done using the two primes proposed by
Moriya et al. for SiGamal.

SiGamal prime p128. Let p128 be the prime 2130 · `1 · · · `60 − 1 where `1 through
`59 are the smallest distinct odd primes, and `60 is 569. The bit length of p128 is
522. The private key bound is m = 10.

SiGamal prime p256. Let p256 be the prime 2258 · `1 · · · `43 − 1 where `1 through
`42 are the smallest distinct odd primes, and `43 is 307. The bit length of p256 is
515. The private key bound is m = 32.

All the costs (number of field multiplications, where 1S=0.8M and 1a=0.05M)
of CSIDH presented are done with the csidh-512 prime (of 512 bits) while those
of SimS, SiGamal and C-SiGamal are with p128 and p256. The costs presented
in Table 2 and Table 3 are the average costs of 20, 000 rounds of key generation,
encryption and decryption of each scheme.

Remark 4. In this proof of concept implementation, the class group algorithm
considered does not take into account the improvements in [5], [2], [4].

6 Comparison with SiGamal and CSIDH

Here we compare SimS, (C-)SiGamal and CSIDH (or CSIDHpke more precisely).
The comparison is done at four levels: design, security, keys and ciphertext sizes,
and efficiency.
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Prime csidh-512 p128 p256
Scheme CSIDH SimS (C)SiGamal SimS (C)SiGamal

Costs 441, 989 576, 124 663, 654 1, 023, 400 1, 140, 189

Table 2: Cost (number of field multiplications, where 1S=0.8M and 1a=0.05M)
of class group action for CSIDH with the csidh-512 prime, SimS, SiGamal and
C-SiGamal with p128 and p256.

p128 p256
KGen Enc. Dec. KGen Enc. Dec.

C-SiGamal
663, 594

1, 433, 805 767, 176
1, 151, 447

2, 685, 714 1, 528, 020
SiGamal 1, 326, 856 760, 861 2, 208, 530 1, 536, 829

SimS 576, 124 1, 159, 533 679, 733 1, 023, 827 2, 057, 297 1, 417, 401

Table 3: Computational costs (number of field multiplications, where 1S=0.8M
and 1a=0.05M) for C-SiGamal, SiGamal and SimS with p128 and p256.

Design. At the design level, SimS sits between (C)SiGamal and CSIDH. SimS’s
private keys are ideal classes, as in CSIDH, while in (C)SiGamal they are integral
ideals. In the class group action in (C-)SiGamal, a point has to be mapped
through the isogeny as well, as opposed to CSIDH and SimS.

Securiy. Security-wise, SimS IND-CPA security relies on CSIDH assumptions,
contrarily to SiGamal whose IND-CPA security relies on new assumptions. More-
over, SimS is IND-CCA secure.

Keys and ciphertext sizes. The size of SimS’s ciphertexts is equal to that of C-
SiGamal’s ciphertexts, and is half that of SiGamal ciphertexts. The size of SimS’s
public keys is half that of the public keys in SiGamal and C-SiGamal. The size
of the private key in (C)SiGamal, compared to that of SimS, is augmented by
r bits that are used to store the integer α such that the secret ideal a is in the
form a = (α)le11 · · · lenn .

Efficiency. SimS is more efficient compared to SiGamal and C-SiGamal when us-
ing the same primes. From the results in Table 2, we have that for the prime p128,
the SimS class group action computation is 1.15x faster than that of (C)SiGamal
and is 1.30x slower than that of CSIDH; and for the prime prime p256, it is 1.11x
faster than that of (C)SiGamal and is 2.31x slower than that of CSIDH. For
Encryption and decryption with the prime p128, SimS is about 1.13x faster than
SiGamal and about 1.19x faster than C-SiGamal. For the prime p256, we get a
1.07x speedup when compared to SiGamal and a 1.21x speedup when compared
to C-SiGamal.

We summarize the comparison in Table 1. Note that the encryption in CSIDH-
pke is essentially two CSIDH class group computations and the decryption is one
class group computation.
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7 Conclusion

In this paper, we revisited the protocols introduced by Moriya et al. at Asiacrypt
2020, and obtained several results. We proved that the variant of SiGamal sug-
gested by Moriya et al. is not IND-CCA secure. We construct a new isogeny
based PKE scheme SimS by simplifying SiGamal in such a way that it resists
the IND-CCA attack on SiGamal and its variants. SimS is more efficient than
SiGamal and it has smaller private keys, public keys and ciphertexts. We prove
that SimS is IND-CPA secure relying on CSIDH assumptions. We introduce a
Knowledge of Exponent assumption in the isogeny context. Relying on the later
assumption, we prove that SimS is IND-CCA secure. Interestingly, SimS is also
closer to CSIDH than SiGamal was, allowing for a better comparison between
those two protocols.

We leave a better study of the Knowledge of Exponent assumption and fur-
ther cryptographic applications of this assumption to future work.
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A Knowledge of Exponent assumption

In the context of Discrete Logarithm-based cryptography, the Knowledge of Ex-
ponent assumption is stated as follows.

Assumption 4 (Knowledge of Exponent assumption [25]) Let G = 〈g〉
be a cyclic group of prime order q where q is of cryptographic size. Let x be a
uniformly random exponent in {2, · · · , q−1} and let h = gx. The adversary tries
to compute h1, h2 ∈ G such that h1 = gz and h2 = hz for some z ∈ {2, · · · , q−1}.
The knowledge of exponent assumption holds if for every polynomial time adver-
sary A that when given g, q and h outputs (gz, hz), there exists a polynomial
time adversary A′ that for the same inputs outputs (z, gz, hz).

Intuitively, this assumption states that the only efficient way to compute
(gz, hz) is to first fix z, then to compute gz and hz.

In SimS, the ciphertexts are of the form c = ([b]E0, f[b][a]E0
(x([2m0+1]P[b][a]E0

)).
Assumption 3 states the only efficient way to compute a valid ciphertext is to
first fix the ideal class [b], then run the encryption algorithm of SimS to compute
c = ([b]E0, f[b][a]E0

(x([2m0 + 1]P[b][a]E0
)).

B Generating the distinguished point of order 2r

Here we discuss how when given a supersingular curve E defined over Fp where
p = 2r`1 · · · `n− 1, one can efficiently generate a distinguished point PE of order
2r. The algorithm used by Moriya et al. in C-SiGamal to generate such a point
mainly relies on the following result.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
http://people.csail.mit.edu/rivest/Rsapaper.pdf
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Theorem 5. ([24, Appendix A]) Let p be a prime such that p ≡ 3 mod 4 and let
E be a supersingular Montgomery curve defined over Fp satisfying EndFp

(E) ∼=
Z[π]. Let P ∈ E.
If P ∈ E[π − 1] \ E[2], then x(P ) ∈ (F∗p)2 ⇐⇒ P ∈ 2E[π − 1].
If P ∈ E[π + 1] \ E[2], then x(P ) /∈ (F∗p)2 ⇐⇒ P ∈ 2E[π + 1].

Hence when searching for the x-coordinate of points of order 2r in E, we need
to avoid elements of Fp that are squares. Since p = 2r`1 · · · `n − 1 with r > 1,

then
(
−1
p

)
= −1,

(
2
p

)
= 1 and

(
`i
p

)
= 1 for i ∈ {1, · · · , n}. Furthermore,

let us suppose that `1, · · · , `n−1 are the first smallest odd primes, then for

every I ⊂ {0, 1, · · · , n − 1},
(
−

∏
i∈I `i
p

)
= −1 where `0 = 2. Moriya et al.’s

Algorithm [24, Appendix A] exploits this to consecutively sample x from the
sequence −2,−3,−4, · · · and when x is the x-coordinate of a point in E(Fp), it
checks if this point has order divisible by 2r. Corollary 2 proves that if a such x
is the x-coordinate of a point in E(Fp) then the corresponding point has order
divisible by 2r, hence the check is not necessary.

Corollary 2. Let p be a prime such that p ≡ 3 mod 4 and let E be a super-
singular Montgomery curve defined over Fp satisfying EndFp

(E) ∼= Z[π]. Let
P ∈ E(Fp) such that x(P ) 6= 0.
If x(P ) /∈ (F∗p)2 then [`1 × · · · × `n]P is a point of order 2r.

Proof. Since E(Fp) = E[π − 1] is a cyclic group, then there exist a point Q
of order p + 1 = 2r`1 · · · `n such that E(Fp) = 〈Q〉. Set P = [αP ]Q. Since
E is in the Montgomery form, then E(Fp) ∩ E[2] = 〈(0, 0)〉. Since x(P ) 6= 0,
then P ∈ E[π− 1] \E[2]. Let us suppose that x(P ) /∈ (F∗p)2, then by Theorem 5
P /∈ 2E[π−1], hence αP is odd. Therefore, gcd(p+1, αP ) = gcd(2r`1 · · · `n, αP ) =
gcd(`1 · · · `n, αP ). This implies that P = [αP ]Q is a point of order

p+ 1

gcd(p+ 1, αP )
= 2r · `1 · · · `n

gcd(`1 · · · `n, αP )
.

Hence [`1 × · · · × `n]P is a point of order 2r.

Exploiting Corollary 2 we get Algorithm 1 which improves on that used by
Moriya et al. for the same purpose.

A random element x ∈ F∗p \ (F∗p)2 is the x-coordinate of a point P ∈ E(Fp)
with probability 1

2 . The probability that Algorithm outputs ⊥ is bounded by(
1
2

)`n−1
. For SiGamal primes p256 and p128 (see Section 5), `n−1 is 191 and 281

respectively, hence the output is ⊥ with probability 2−191 and 2−281 respectively.

Remark 5. Algorithm 1 is deterministic, hence always outputs the same point
PE when the input in unchanged.
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Algorithm 1 Computing the distinguished point PE

Require: The prime p = 2r`1 · · · `n − 1 and Montgomery coefficient A ∈ Fp of
a supersingular curve.

Ensure: PE ∈ E(Fp) of order 2r.
1: Set x← −2
2: while x3 +Ax2 + x is not a square in Fp and −x ≤ `n−1 + 1 do
3: Set x← x− 1

4: if −x ≤ `n−1 + 1 then
5: Set P = (x, ·) ∈ E(Fp)
6: Set PE = [`1 × · · · × `n]P
7: return PE
8: else
9: return ⊥.
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