
1

Escaping from Consensus: Instantly Redactable
Blockchain Protocols in Permissionless Setting

Xin-Yu Li, Jing Xu, Ling-Yuan Yin, Yuan Lu, Qiang Tang and Zhen-Feng Zhang

Abstract—Blockchain technologies have drawn a lot of attentions, and its immutability is paramount to applications requiring persistent
records. However, tremendous real-world incidents have exposed the harm of strict immutability, such as the illicit data stored on
Bitcoin and the loss of millions of dollars in vulnerable smart contracts. Moreover, “Right to be Forgotten” has been imposed in new
General Data Protection Regulation (GDPR) of European Union, which is incompatible with blockchain’s immutability. Therefore, it is
imperative to design efficient redactable blockchain in a controlled way.
In this paper, we present a generic design of redactable blockchain protocol in the permissionless setting, applied to both
proof-of-stake and proof-of-work blockchain. Our protocol can (1) maintain the same adversary bound requirement as the underlying
blockchain, (2) support various network environments, (3) offer public verifiability for any redaction, and (4) achieve instant redaction,
even only within one slot in the best case, which is desirable for redacting harmful data. Furthermore, we define the first ideal
functionality of redactable blockchain and conduct security analysis following the language of universal composition. Finally, we
develop a proof-of-concept implementation showing that the overhead remains minimal for both online and re-spawning nodes, which
demonstrates the high efficiency of our design.

Index Terms—Blockchain, Proof-of-Stake, Proof-of-Work, Redactable Blockchain.

F

1 INTRODUCTION

Blockchain has been gaining increasing popularity and ac-
ceptance by a wider community, which enables Internet
peers to jointly maintain a ledger. One commonly men-
tioned feature of blockchain is immutability (or untamper-
ability) in mass media, and immutability of blockchain is
paramount to certain applications to ensure keeping per-
sistent records. However, in many other applications, such
strict immutability may not be desirable or even hinder a
wider adoption for blockchain technology.

First, since everyone in the Internet is able to write
to permissionless blockchain, some malicious users may
abuse the ability to post arbitrary transaction messages [1].
It could be the case that the data stored on the ledger
might be sensitive, harmful or illegal. For instance, Bitcoin
blockchain contains leaked private keys [2], materials that
infringe on intellectual rights [3], and even child sexual
abuse images [4]. It is clear that allowing those contents to
be publicly available for everyone to access is unacceptable.
They may affect the life of people forever, and block broader
blockchain applications [5] in areas involving data such as
government records [6][7] and social media [8][9].

On the other hand, as a full node, maintaining the whole
ledger will also bear with the burden of maintaining those
potentially illicit contents, thus the risk of being prosecuted
for possessing and distributing illicit information increases.

• Xinyu Li is with the Department of Computer Science, University of Hong
Kong, Pokfulam, Hong Kong, China. (email: xinyuli1920@gmail.com).

• Jing Xu, Lingyuan Yin, Yuan Lu and Zhenfeng Zhang are with the
Trusted Computing and Information Assurance Laboratory, Institute of
Software, Chinese Academy of Sciences, Beijing 100190, China. (email:
{xujing, lingyuan2018, luyuan, zhenfeng}@iscas.ac.cn)

• Qiang Tang is with the School of Computer Science, The University of
Sydney, Sydney, Australia. (email: qiang.tang@sydney.edu.au)

Concerning about above liability, honest nodes may opt-
out as a full node, which in turn hurts the security of
permissionless blockchain itself.

Indeed, with the adoption of the new European Union’s
General Data Protection Regulation (GDPR) [10] in May
2018, it is no longer compatible with current blockchains
such as Bitcoin and Ethereum [11] to record personal data.
In particular, GDPR imposes the “Right to be Forgotten”
as a key Data Subject Right [12], i.e., the data subject shall
have the right to require the controller to erase personal
data concerning him/her. How to facilitate wider adoption
of blockchain while complying with new regulations on
personal data becomes a natural challenge.

Second, in certain systems, some flexibility is necessary
to hedge with user mistakes or accidents to protect the
system integrity. For example, in database, a rollback is the
operation which returns the database to some previous state
[13]. One other example is misdirected payment. According
to statistics, around a quarter of people have accidentally
paid the wrong person [14].

A voluntary code of conduct has been introduced by the
Payments Council (part of UK finance) for building societies
and banks when the misdirected payments appear. If a
user who made the mistake notifies his bank fast enough,
and provides clear evidence, “his bank will contact the
receiving bank on his behalf to request the money isn’t
spent, so long as the recipient doesn’t dispute the claim”
[14]. In the centralized banking system, there may still exist
options to reverse incorrect transactions, while if similar
mistakes happen in decentralized cryptocurrencies, thing
would become much more complicated even if it is ever
feasible.

We would like to stress that though blockchain offers
a more reliable trust model as no single entity can fully

2

control the system, however, it by no means insists on a
strict immutability as an inherent property that is derived
from consensus.

In fact, when the notorious DAO vulnerability was
exploited, 3,641,694 Ethers (worth of about 79 million US
dollars) were stolen due to the flaws of Ethereum and DAO
contract [15], the financial losses have to be resolved by
patching the vulnerability and “rollback” via a hard fork
(majority of the miners are suggested by the Ethereum
developers to adopt a newer client and create a fork of
the chain from a state before the vulnerable contract got
deployed). Hard forks also happened before, e.g., for Bitcoin
when upgrading its protocol [16]. Of course, hard forks are
not desirable as they may split the community and are very
costly to implement.

Following above discussions, there exists a strong need
to redact content of blockchain in exceptional circumstances,
as long as the redaction proposal is clearly examined and
satisfies full transparency and accountability (not deter-
mined by any single entity, and sufficient confidence can
be gained that at least some honest users have approved the
proposal).

1.1 Related Work

There exist several works that start exploring feasible meth-
ods for redacting blockchain.

A straightforward approach is to initiate a hard fork,
which essentially requires all community members to vote
by action (whether to follow the new fork). Doing this
sometimes brings the risk of dividing the community, e.g.,
Bitcoin has a dozen forks, each of which now forms its own
community. Moreover, such a procedure is extremely costly
and slow, which normally takes multiple months to finalize
[17], and if the redaction needs to touch an ancient block,
growing a longer fork may take even much longer.

Ateniese et al. [18] the concept of redactable blockchain
in the permissioned setting. They use a chameleon hash
function [19] to compute hash pointer, i.e., when redact-
ing a block, a trusted party (e.g., the certificate authority)
with access to the chameleon trapdoor key can efficiently
compute a collision for the hash of the block. By this way,
the block data can be modified while maintaining the chain
consistency [20][21]. Later, in order to support controlled
and fine-grained redaction of blockchain, Derler et al. [22]
proposed a new primitive called policy-based chameleon
hash (PCH), where arbitrary collisions for a given hash can
be found by anyone with the trapdoor satisfying the policy.

Their solutions focus on the permissioned setting, while
in permissionless setting, there is no single trusted entity
and users can join and leave the blockchain system at any
moment, thus their solutions will suffer from scalability is-
sues when secretly sharing the trapdoor key among miners
and computing a collision for the hash function by a multi-
party computation protocol. Moreover, public accountabil-
ity of redaction cannot be provided in their solutions, and
users are not aware whether any redaction has happened.

Puddu et al. [23] also presented a redactable blockchain,
called µ chain. In µ chain, the sender can encrypt all dif-
ferent versions of his/her transactions accompanied by a
redaction policy, the unencrypted version is regarded as the

valid transaction, and the keys for decryption are secretly
split into shares for miners. When receiving a request for
redacting a transaction, miners first check it according to
redaction policy established by the sender, then compute the
appropriate decryption key by executing a multi-party com-
putation protocol, and finally decrypt the alternate version
of the transaction as a new valid version. Unfortunately, the
malicious users who establish redaction policy can escape
redaction, or even break the stability of transactions by the
influence among transactions. Moreover, µ chain also faces
scalability problem when reconstructing decryption keys by
the multi-party computation protocol.

Recently, Deuber et al. [24] gave the first construction of
redactable blockchain protocol for the permissionless setting
relying on a consensus based voting, where any redaction
can only be approved if enough votes for approving the
redaction are collected. Each user can verify whether a
redaction proposal is approved by checking the number
of votes on the chain. Similarly, Thyagarajan et al. [25]
proposed a generic protocol called Reparo on top of any
blockchain to perform redactions, where the block structure
remains unchanged by introducing external data structures
to store block contents.

Their solutions are elegant, however, the new joined user
has to check all the blocks within the voting period to verify
a redaction on the blockchain. More importantly, the voting
period is very long, for example, 10241 consecutive blocks
are required in their Bitcoin instantiation, which takes about
7 days to confirm and publish a redaction block. Neverthe-
less, in practice, it is inefficient to redact sensitive data after
such a long time, and it is also difficult to ask newly joined
users in the system maintain these redactions. In addition,
the threshold of votes in their solutions relies on chain
quality of underlying blockchain, concretely, if the threshold
of votes approaches 1/2 (as in their bitcoin instantiation),
the chain quality also approaches 1/2. However, according
to [26], the chain quality is close to 1− ρ

1−ρ , where we denote
by ρ the fraction of computational power the adversary
controls, and thus redactable blockchains [24] [25] actually
tolerate ρ < 1/3 adversary.

Further, in the permissionless setting it seems unrea-
sonable to have a trusted party holding certain trapdoor
to modify the chain (like in the permissioned setting [18]).
It follows that we have to choose a committee to jointly
make the decision. Indeed, existing works [24][25] pick one
committee member per block who can only make one vote.
For this reason, the time needed for one redaction will be
at least linear to T · t, where T is the committee size, and
t is the block generation time of the underlying blockchain.
However, in order to ensure honest majority, the committee
size has to be substantially large (e.g., at least 1024 in
[24][25]), which in turn leads to a rather slow redaction.

Based on the above discussion we would like to study a
central question in this paper:

Can we design a redactable blockchain in the permissionless
setting such that
1) the redaction can be completed quickly (i.e., within time c · t

for a small constant c), and moreover

1. 1024 is suggested in [24][25] to guarantee honest majority of
committee members with negligible violation probability.

3

2) the redaction would not impose any additional restriction on
the adversarial rate on the underlying blockchain?

1.2 Our Contributions

In this work we answer the above question in the affirmative
by introducing a new redaction mechanism. In particular,
we design redactable blockchain protocols in the permis-
sionless setting such that the redaction could be instant,
which means that the redaction time is at most c·t for a small
c. Ideally c = 1, and thus the redaction could be as fast as
the underlying chain! Moreover, the selection of committee
for voting does not rely on the chain quality any more, and
thus the assumption of 1/3 adversarial rate is avoided.

More specifically, the contributions of this work are
summarized as follows.

A brand-new redaction strategy. The core idea of this
work is to decouple the voting stage from the underlying
consensus layer. Observe that existing work emulates the
Bitcoin design, viewing block generation as a random walk
that eventually converges to the longest chain, thus directly
binding the committee selection to the consensus (treating
each block as a random draw of a peer) requires a long
convergence time (large number of blocks). But in certain
blockchain design (such as Algorand [27]), one may use
each block to randomly draw a large number of committee
members, then let the committee members to run BFT to
determine next block.

Inspired by this simple observation, our strategy pro-
ceeds in two steps. First, instead of selecting just one
committee member in each slot like in existing works, we
directly use the underlying component relying on stake
or computing power to select a large enough committee
randomly among all parties, where we set the committee
size to guarantee that a sufficient fraction of committee
members are honest. Then the selected committee members
would vote for one redaction request which would be
approved if the votes exceed a threshold value. Intuitively,
in our strategy both the committee selection process and
voting period occur outside of the consensus layer (i.e., the
block generation), which makes it possible to achieve in-
stant redaction and 1/2 adversary bound as the underlying
blockchain.

Generic construction of blockchain with instant redac-
tion. Based on the new redaction strategy, we propose a
generic construction of blockchain with instant redaction.
In particular, in the first phase for committee selection,
the functionality of the committee election (resp. committee
verification) is refined by the general functions Cmt (resp.
VerifyCmt). However, it is challenging to make Cmt and
VerifyCmt suitable for different instantiations such as PoS
and PoW. In our approach, whether a party being elected as
the committee member is based on his voting period instead
of his current slot, i.e., the first slot sl of his voting period as
the input parameter of functions, which makes committee
selection more generic.

Then in the second phase, each committee member
would vote by signing on the hash of the candidate edited
block and diffuse the vote (i.e., the signature as well as the
proof of committee members) to the network. To avoid the
impact of network delays and collect enough votes, we set

the maximum time of collecting votes (a.k.a. voting period)
to be w slots, which is independent of block generation time.
The leader of current slot (during voting period) adds votes
collected and corresponding succinct proofs to his block.

On a high level, any party can propose a candidate
edited block B∗

j for Bj in the chain, and only committee
members in the voting period can promptly process the
edit request once receiving B∗

j , including voting for B∗
j and

broadcasting their votes and corresponding proofs; the slot
leader during the voting period adds these votes and proofs
to its block data collected and proposes a new block; if votes
are approved by the redaction policy (e.g., voting bound in
the voting period), Bj is replaced by B∗

j .
Note that our redaction method can achieve instant

redaction, if the underlying blockchain progresses fast, then
redaction will also be fast. Moreover, for the new joined user,
it is also fast to verify a redaction in the blockchain. Fur-
thermore, our redactable protocol can tolerate an adversary
with less than 50% computational power (or stake) as the
underlying blockchain, which is optimal in the blockchain
protocol. This also means our approach will not reduce the
adversary bound requirements of all blockchain protocols.
Our protocol can also provide accountability for redaction
like [24][25], i.e., any edited block on the chain is publicly
verifiable. In addition, multiple redactions per block can be
performed throughout the execution of the protocol.

Simulation based security analysis of redactable
blockchain. Unlike most of existing works which only
analyze the impact brought by the redaction operation,
we give the first systematic and comprehensive analysis
of the redactable blockchain as it is. To characterize the
security properties of redactable blockchains more precisely
and analyze them rigorously, we define for the first time
the ideal functionality of a redactable blockchain in the
simulation based paradigm. Our proof first considers an
idealized functionality Ftree that keeps a record of the
valid chains at any time, and then shows that any attack
against the real-world protocol also implies an valid at-
tack against the ideal protocol that invokes Ftree. In the
idealized functionality Ftree, we use Ftree.committee query
to obtain the committee members, and Ftree.redact query
to redact the blockchain under certain conditions. In fact,
separating these two queries in our idealized functionality
ensures generality and instant redaction of redactable pro-
tocol. Moreover, Ftree models the ability of voting period
changing with w.

As a sanity check, we show that the ideal functional-
ity indeed implies the redactable common prefix property
defined in [24], and the usual chain quality and chain
growth properties [28]. Essentially, the redactable common
prefix property ensures that any edited block which violates
original common prefix should satisfy the redaction policy
RP . However, different from the redaction policy in [24]
considering the consecutive ℓ blocks as the redaction period
(which is not suitable for instant redaction), ourRP requires
votes are embedded in at most w slots, where ℓ is the
committee size and w is the number of slot in the voting
period.
Instantiations and performance evaluation. We demon-
strate that our construction is generic by presenting concrete

4

TABLE 1
Comparison of our redaction solution with existing works

system-scale
MPC

network
compatibility1

adversary
tolerance for PoW2

public
verifiability

redaction
time/slots3

verification time of
redaction/slots4

Ateniese et al. [18] required yes 1/2 no N/A N/A
Puddu et al. [23] required yes 1/2 no N/A N/A
Derler et al. [22] required yes 1/2 no N/A N/A
Deuber et al. [24] not required yes 1/3 yes 513 513

Thyagarajan et al. [25] not required yes 1/3 yes 513 513

Ours not required yes 1/2 yes
PoS: 1

PoW: ≤ 20
PoS: 1

PoW: ≤ 20
1 Network compatibility implies that the redaction solution does not impose any network assumption on the underlying blockchain.
2 We only list the required adversary tolerance in PoW setting, while in PoS setting, all of adversary tolerance is 1/2 and thus omitted in the table.
3 We evaluate the time one redaction can be completed in the best-case, where N/A is the abbreviation for the phrase “Not Applicable”. In [24] and

[25], the voting period is ℓ (instantiated to 1024 slots), and in the best-case more than one half of slots (i.e., 513 slots) are needed for the redaction. In
our PoS construction, the redaction can be completed within just one slot if the underlying network is well enough. While in our PoW construction,
the selection of committee members is completed in r slots, where r is instantiated to 20 in Section V, thus in the best-case 20 slots are enough for
one redaction. Note that for all solutions in the table, one completed redaction can only be stable on the chain after several new blocks have been
generated, e.g. six blocks in Bitcoin.

4 We evaluate the time one redaction can be verified in the best-case, and the analysis is similar to the above item.

instantiations of the general functions Cmt and VerifyCmt
on PoS and PoW (in principle, we may also instantiate
via proof of space). Our instantiations can achieve the
optimal 1/2 adversary bound as the underlying blockchain
and moreover support various network environments even
semi-synchronous and asynchronous networks, and thus
provide compatibility with the underlying blockchain.

In PoS instantiation, how to select a committee and set
the voting bound to ensure that adversarial votes would
never reach the bound is the main challenge. Our core
idea is to select a committee with a fixed (expected) size T
where the number of malicious members is guaranteed to be
strictly less than 1/2.T . Thus no matter how large the actual
committee would be we can always set the voting bound to
be 1/2.T . Specifically, we leverage the hash function or ver-
ifiable random function (VRF) to sample sufficient number
of committee members according to stake distribution as in
[27]. Different from 1/3 committee adversary tolerance in
[27], we ensure the majority of committee members are hon-
est by changing the constraint conditions on the expected
committee size T .

While in PoW instantiations, we have to face more
challenges. First, different from PoS, an adversary during
the procedure of collecting votes still can continue to solve
the computational puzzle, which leads to much computa-
tional power than honest users. Second, if an adversary in
PoW withholds some blocks, and once these blocks are put
to the chain, the adversary may have more advantage of
computing the corresponding puzzles in advance. Finally,
in semi-synchronous and even asynchronous networks, the
actual number of committee members is impossible to be
determined in advance, and thus it is hard to choose the
voting bound. To resolve these instant redaction challenges
in PoW blockchain, we propose a new approach to design
redactable PoW blockchain compatible with various net-
works, and select committee members by finding solutions
to a well-chosen easy puzzle (i.e., bigger difficulty parameter
D), so that during regular mining procedure many easier
puzzle solutions will be produced as a byproduct. In partic-

ular, according to “no long block withholding” lemma [26,
Lemma 6.10], we increase the rounds of committee election
to guarantee honest majority of committee members, even
though the adversary has extra time advantage to find
easier puzzle solutions. We also set the expected committee
size satisfying two conditions: 1) a sufficient fraction of
committee members are honest; and 2) malicious committee
members cannot generate enough votes and complete the
redaction of blockchain.

In addition, we give detailed analysis of each instanti-
ation, and all of them satisfy the condition that committee
members are chosen randomly and majority of the commit-
tee members are honest. The comparison of our construction
with some related redactable blockchains is also shown in
Table 1.

We also develop a proof-of-concept (PoC) implementa-
tion of our redaction approach, and conduct a series of
experiments to evaluate the overhead after applying our
redaction mechanism. The results show the high efficiency
of our design. In particular, compared to the underlying
blockchain (which simulates Cardano SL), the overhead
incurred by redactions remains minimal for both online
nodes and re-spawning nodes. For the online nodes, they
only have to face a cheap and constant overhead (i.e.,
an extra latency of 0.8 second) to validate a newcoming
block including a proof on redaction and then perform
corresponding editing. For the re-spawning nodes, they
can efficiently validate a redactable chain despite of many
edited blocks. For example, when less than 6.25% blocks are
edited, the time of validating a redactable chain is nearly
same to that of validating an immutable chain. Remarkably,
even if in the extremely pessimistic case that half blocks
are edited, the performance of validating such a redacted
chain remains acceptable (about 5X more than validating an
unedited chain).

2 FORMAL ABSTRACTION OF BLOCKCHAIN

First of all we give the formal abstraction for blockchain
protocols based on the approach of Garay et al. [28] and

5

Pass et al. [26][29].

2.1 Protocol Execution Model
We assume a protocol specifies a set of instructions for
the interactive Turing Machines (also called parties) to in-
teract with each other. We denote by Z an environment
that directs the execution of the protocol and can activate
an honest or corrupt party. Honest parties would follow
the protocol specifications and broadcast messages to each
other. Messages broadcasted between honest parties cannot
be modified by the the adversaryA, however, can be delayed
or reordered arbitrarily by A as long as he would deliver all
messages eventually.

We follow the nice results on the foundation of
blockchains [30][31] to assume a global clock, which can
be seen as an equivalent notion of the height of the latest
chain (or more specifically, the latest slot number in the
blockchain). Notation-wise, by Time, we denote that a
blockchain node invokes the global clock to get the current
time. A protocol’s execution proceeds in atomic time units.
At the beginning of every time unit, honest parties receive
inputs from an environment Z ; while at the end of every
time unit, honest parties send outputs to Z . Z can spawn,
corrupt, and kill parties during the execution as follows.
• During the execution of the protocol, Z can spawn fresh

parties that are honest or corrupt at any moment.
• Z can corrupt an honest party and in turn obtain its local

state.
• Z can kill a party i which is honest or corrupt, or to say

remove i from the protocol execution.

2.2 Blockchain Protocol
We recall basic definitions [32] of blockchain. The blockchain
system consists of n parties P1, . . . ,Pn and each party
Pi possesses a public/secret key pair (pki, ski). We as-
sume without loss of generality all system users know the
public keys pk1, . . . , pkn. We split the protocol execution
into time units called slots. A block in the blockchain
is denoted by the form Bj := (headerj , dj), where
headerj = (slj , stj , G(dj), πj) denotes the block header
information, and dj denotes the block data. In headerj ,
slj ∈ {sl1, · · · , slR} is the slot number, stj is the hash of the
previous block header denoted by H(headerj−1), G(dj)

2

denotes the state of the block data, and πj contains some
special header data for the block (e.g., in PoS, it’s a signature
on (slj , stj , G(dj)) computed under the secret key of slot
leader generating the block, while in PoW, it is a nonce for
the puzzle of PoW). Here H and G denote two collision-
resistent hash functions.

A valid blockchain chain is simply a sequence of blocks
B0, . . . , Bm, where B0 is called the genesis block and con-
tains auxiliary information, and the list of parties are iden-
tified by their respective public-keys. We use Head(chain)
to denote the head of chain (i.e., Bm). In a basic blockchain
protocol, the users always update their current chain to the
longest valid one they have obtained. We use the function
eligible(Pi, sl) to judge the leader election process at the slot
sl, that is, if eligible(Pi, sl) = 1, then Pi is assigned to be

2. In practice G(dj) means the Merkle root of the block data.

an eligible leader and can create a block at sl and broadcast
the updated chain if eligible(Pi, sl) = 1, where the leader
election can be achieved according to specific blockchain
protocol.

We use view ← EXECΠ(A,Z, λ) to denote the trace of a
randomly sampled execution of the blockchain protocol Π
where λ is the security parameter, and |view| denote the
number of time units in the protocol execution. Specifi-
cally, view contains the concatenation of all parties’ view
(i.e., all inputs/outputs, and messages sent/received by the
parties in the execution). Denote by chainti(view) the party
i’s output to Z at time unit t in view, where chain is an
extracted sequence of transactions from the blocks in chain.
The notation chain[i] denotes i-th block of chain, chain[: l]
denotes the prefix of chain consisting of the first l blocks,
chain[l :] denotes the sequence of blocks at length that is not
less than l, and chain[: −l] denotes the chain after removing
the last l blocks. Security properties of blockchain protocol
are referred to Appendix B.

3 REDACTING BLOCKCHAIN

In this section we propose a generic construction that con-
verts a basic blockchain into redactable blockchain protocol.
We also extend the redactable protocol to accommodate
multiple redactions for each block in Appendix D.

3.1 Overview of Redactable Blockchain Protocol

We construct our redactable blockchain protocol Γ by ex-
tending the basic blockchain protocol. We assume that the
fraction of the computational power (or stake) held by
honest users in the blockchain is h (a constant greater than
1/2). We denote by w the needed slots for votes diffusion,
where w can be selected based on specific environments to
guarantee the votes can be received by all users after w slots
with a greater probability. For every sl mod w = 0, we also
use the slots between sl and sl+w− 1 to denote the voting
period for the editing proposal.

In addition, we use Cmt(chain, sl,P, para) to denote a
function that examines whether P is the committee mem-
ber in the voting period beginning from sl and outputs
(c, proof), where para is an optional parameter in spe-
cific instantiations, c is the weight of P in the committee,
proof is committee member proof. Correspondingly, there
is some application-specific function VerifyCmt(chain, sl, c,
proof, para′) to verify (c, proof), where para′ is the public
parameter related to specific applications. In the committee
selected by Cmt, we set the fraction of the computational
power (or stake) held by honest users is at least η (η > 1/2).

First, a redaction policy is introduced to determine
whether an edit to the blockchain should be approved or
not.

Definition 1. (Redaction Policy RP). We say that an edited
block B∗ at the slot sl satisfies the redaction policy, i.e.,
RP(chain, B∗, sl) = 1, if the number of votes on B∗ during
a voting period is more than a threshold value3, where each

3. The threshold value would be set according to different committee
selection methods such that it is more than the maximum number of
votes the adversary can produce.

6

block embedding votes is in chain[: −k0], and k0 is the
common prefix parameter.

Next, in order to accommodate editable data, we extend
the above block structure to be of the form B := (header, d),
where header = (sl, st,G(d), ib, π) and the newly added
item ib denotes the initial state of the block data. Specifically,
if a blockchain chain with Head(chain) = (header, d) is
updated to a new longer blockchain chain′ = chain∥B′,
the newly attached block B′ = (header′, d′) sets header′ =
(sl′, st′, G(d′), ib′, π′) with st′ = H(header) and ib′ =
G(d′). Notice that in order to maintain the link relation-
ships between an edited block and its neighbouring blocks,
inspired by the work [24] we introduce ib to represent the
initial and unedited state of block, i.e., ib = G(d0) if original
block data is d0 in the edited block B = (header, d), where
header = (sl, st,G(d), ib, π).

Generally, a blockchain chain = (B1, · · · , Bm) can be
redacted by the following steps.
1) Proposing a redaction. If a user wants to create an

edit proposal to block Bj in chain, he parses Bj =
(headerj , dj) with headerj = (slj , stj , G(dj), ibj , πj),
replaces dj with the new data d∗j , and then broadcasts
the candidate block B∗

j = (header∗j , d
∗
j) to the network,

where header∗j = (slj , stj , G(d∗j), ibj , πj), and d∗j is the
empty data if the user wants to remove all data from Bj .

2) Updating the editing pool. Upon receiving B∗
j from

the network, every party Pi first validates whether B∗
j

is a valid candidate editing block, and stores it in his
own editing pool EP if it is. Notice that each candidate
editing block in the pool EP has a period of validity
tp. At the beginning of each new slot sl, every party Pi

tries to update his own editing pool EP . Specifically, for
every candidate editing block B∗

j in EP : (i) Pi checks
whether B∗

j has expired or not, and if it is, Pi removes
B∗

j from EP ; (ii) Pi computes RP(chain,B∗
j , slj), and if

it outputs 1, Pi removes B∗
j from EP .

3) Voting for candidate editing blocks. For each candidate
editing block B∗

j in EP , Pi checks whether he has voting
right in the current voting period, which is determined
by Cmt(chain, ⌊sl′/w⌋ ∗ w, Pi, para), where sl′ is the
current slot, and ⌊sl′/w⌋ ∗ w denotes the first slot in the
current voting period. If it outputs (c, proof) and c ̸= 0,
Pi broadcasts (c, proof) and the signature sig on H(B∗

j)
as his votes.

4) Proposing new blocks. The slot leader of sl′ creates a
block and broadcasts chain in exactly the same manner
as the basic blockchain, if his editing pool is empty.
Otherwise, for the candidate block B∗

j in the editing pool,
the leader tries to collect and validate the votes on B∗

j

in the voting period by using sub-protocol collectVote
(Figure 2). If collectVote returns vote-proof at slot sl′, the
leader of sl′ adds vote-proof to his block data, creates a
new block and broadcasts chain.

5) Editing a block. For each B∗
j in the editing pool EP , the

users check whetherRP(chain,B∗
j , slj) = 1. If yes, they

replace chain[j] with B∗
j and remove B∗

j from EP .
Redactable blockchain protocol offers public verifiability.

Concretely, to validate a redactable chain, users can check all
blocks and the link relation between neighbouring blocks as
in the immutable blockchain protocol. Once a “broken” link

between blocks is found, users check whether the link is
still valid for the original state, and whether the redaction
policy RP is satisfied. By this way, the redaction operation
of blockchain can be verified. For example, in the blockchain
chain = (B1,· · · ,Bm), if stj ̸= H(headerj−1) for headerj−1

= (slj−1, stj−1, G(dj−1), ibj−1, πj−1), chain is valid only
under the condition of stj = H(slj−1, stj−1, ibj−1, ibj−1,
πj−1) and RP(chain,Bj−1, slj−1) = 1.

For presentation simplicity, we extend the structure
of block headers in the underlying blockchains, but it is
straightforward to perform engineering optimizations to
maintain the same block structure between the old and
the new nodes. The idea behind the “soft-fork” could be
simple [25]: i) the upgraded blockchain node maintains
two separate storages for the original blockchain and the
modifications respectively, so the blockchain’s upgrade does
not have to change the structure of block headers at the end
of new nodes; ii) all modification requests and approvals are
sent to the blockchain by rephrasing existing script opcodes,
for example, through being attached to OP RETURN in
bitcoin-like script (e.g., Cardano’s settlement layer).

3.2 Redactable Blockchain Protocol

Before our protocol is described, we first define how to de-
termine the validity of the blocks, blockchains and candidate
editing blocks. Roughly speaking, we need to ensure that for
an edited block, its original state before editing still can be
accessible for verification.
Valid Blocks. To validate a block B, the validateBlock algo-
rithm (Algorithm 1) first checks the validity of data included
in B according to the system rules. It then checks the
validity of the leader by eligible function. Finally, it verifies
the signature π (on (sl, st,G(d), ib) or on (sl, st, ib, ib)) with
the public key pk of the leader or verifies the nonce π for
the puzzle of PoW. In particular, for an edited block, the
signature π is on the “old” state (sl, st, ib, ib). We say that B
is a valid block iff validateBlock(B) outputs 1.

Algorithm 1 Block validation algorithm validateBlock(B)
1: Parse B = (header, d), where header = (sl, st, G(d), ib, π);
2: Validate data d, if invalid return 0;
3: Validate the leader, if invalid return 0;
4: Validate data π, if invalid return 0;
5: else return 1;

Valid Blockchains. To validate a blockchain chain, the
validateChain algorithm (Algorithm 2) first checks the va-
lidity of every block Bj , and then checks its relationship to
the previous block Bj−1, which has two cases depending on
whether Bj−1 is an edited block. If Bj−1 has been redacted
(i.e., stj ̸= H(headerj−1), its check additionally depends on
whether the redaction policy RP has been satisfied. We say
chain is valid iff validateChain(chain) outputs 1.
Valid Candidate Editing Blocks. To validate a candidate
editing block B∗

j for the j-th block of blockchain chain,
the validateCand algorithm (Algorithm 3) first checks the
validity of B∗

j . It then checks the link relationship with
Bj−1 and Bj+1, where the link with Bj+1 is “old”, i.e.,
stj+1 = H(slj , stj , ibj , ibj , πj). We say B∗

j is a valid can-
didate editing block iff validateCand(chain,B∗

j) outputs 1.

7

Algorithm 2 Chain validation algorithm validateChain(chain)
1: Parse chain = (B1, · · · , Bm), parse Bj = (headerj , dj)

where headerj = (slj , stj , G(dj), ibj , πj), and set j = m;
2: while j ≥ 2 do
3: if validateBlock(Bj) = 0,return 0;
4: else if stj = H(headerj−1), then j = j − 1;
5: else if stj = H(slj−1, stj−1, ibj−1, ibj−1, πj−1) ∧
6: RP(chain, Bj−1, slj−1) = 1, then j = j − 1;
7: else return 0.
8: end while
9: return validateBlock(Bj).

Algorithm 3 Candidate block validation algorithm
validateCand(C, B∗

j)

1: Parse B∗
j = (headerj , d

∗
j), where headerj =

(slj , stj , G(d∗j), ibj , πj);
2: if validateBlock(B∗

j) = 0 then return 0;
3: Parse Bj−1 = (headerj−1, dj−1),
4: where headerj−1 = (slj−1, stj−1, G(dj−1), ibj−1, πj−1);
5: Parse Bj+1 = (headerj+1, dj+1),
6: where headerj+1 = (slj+1, stj+1, G(dj+1), ibj+1, πj+1);
7: if stj = H(slj−1, stj−1, ibj−1, ibj−1, πj−1)
8: and stj+1 = H(slj , stj , ibj , ibj , πj), then return 1;
9: else return 0.

We now present redactable blockchain protocol Γ in
Figure 1, where collectVote is used to collect the votes.
Collecting votes. The subroutine collectVote (Figure 2) col-
lects and validates the votes from the slot sl (where sl mod
w = 0) to the slot sl+w−1. The collected votes are stored in
msgs buffer. The algorithm first checks whether the number
of votes on H(B∗

j) is enough by RP(chain,B∗
j , slj), and

stops collecting if it is. Otherwise, it begins to validate the
vote. Specifically, it first verifies the signature on H(B∗

j)
under the public key of the voter, and then confirms the
voting right and the voting number c of the voter deter-
mined by VerifyCmt(chain, sl, c, proof, para′)4. Then the
algorithm generates an aggregate signature asigj on all
these valid vote signatures SIG, aggregates corresponding
proofs PROOF , and returns them, where aggregate signa-
ture can reduce the communication complexity and storage
overhead for blockchains.

Remark 1. (How to set the voting period w.) Observe that
in a synchronous network, messages are delivered within
a maximum network delay of ∆ and we can initially set
w = ∆. While in semi-synchronous or asynchronous net-
work, we can not obtain such ∆. We can firstly make a rough
estimate of the network delay ∆ and set w = ∆ initially, and
if there are not enough votes for a candidate editing block
during the current voting period due to network delay, then
the block will be voted again in the next voting period,
where we set w = 2∆. The time window will increase
exponentially with slot until the candidate editing block
expires. By this way, it is very likely that a candidate editing
block will be approved eventually unless message delays
grow faster than the time window indefinitely, which is
unlikely in a real system.

4. In this paper, we assume the identifier of the public key would
be sent to receivers associated with the signature, such that the corre-
sponding public key can be located for verification.

Redactable Blockchain Protocol Γ (of Node P)
/ * Initialization * /
Upon receiving init() from Z , P is activated to initialize as
follows:

let (pkp, skp) := Gen(1λ)
/ / For simpler presentation, VRF uses the same keys
let txpool be an empty FIFO buffer
let chain := B0, where B0 is the genesis block
let EP be an empty set (to store editing candidates)
let VEP be an empty set (to store proof for voted editings)
let vote msgs be an empty FIFO buffer (to store votes)

/ * Receiving a longer chain * /
Upon receiving chain′ for the first time, the (online) P
proceeds as:

If |chain′| > |chain| and validateChain(chain′) = 1;
let chain := chain′ and broadcast chain

/ * Receiving transactions * /
Upon receiving transactions(d′) from Z (or other nodes) for
the first time, the (online) P proceeds as:

let txpool.enqueue(d′) and broadcast d′

/ * Receiving candidate blocks for editing * /
Upon receiving edit(B∗

j) from Z (or other nodes) for the first
time, the (online) P proceeds as:

let EP := EP ∪ {B∗
j }, if validateCand(chain,B∗

j) = 1

/ * Receiving vote information * /
Upon receiving vote(ci, proofi, pki, H(B∗

j), sigj) for the first
time, the (online) P proceeds as:

let vote msgs.enqueue((ci, proofi, pki, H(B∗
j), sigj))

/ * When collectVote subroutine returns * /
Upon receiving vote-proof(v) from collectVote(sl, . . .)
through the subroutine tape, the (online) P proceeds as:

let VEP := VEP ∪ v, where v is in form of (H(B∗
j), asigj ,

PROOF)

/ * Main procedure * /
for each slot sl′ ∈ {1, 2, . . . }, the (online) P proceeds as:

for each B∗
j in EP :

if B∗
j is expired, let EP := EP \ {B∗

j }
if RP(chain,B∗

j , slj) = 1, let chain[j] := B∗
j , EP :=

EP \ {B∗
j }

if EP ̸= ∅:
let sl := ⌊sl′/w⌋ ∗ w
activate collectVote(sl, vote msgs, . . .) subroutine
let (c, proof) := Cmt(chain, sl,P, para)
if c is non-zero:

for each B∗
j in EP , broadcast vote(c, proof, pkP ,

H(B∗
j), sigj), where sigj = Sign(skP ;H(B∗

j))

if eligible(P, sl′) = 1:
let d′ := txpool.dequeue() ∪ VEP
let (header, d) := Head(chain)
let header′ := (sl′, st′, G(d′), ib′, π′), where st′ :=
H(header) and π′ is the output of P (the signature or
the nonce)
let chain := chain∥(header′, d′)
let VEP := ∅
broadcast chain

output chain=extract(chain) to Z , here we denote by
chain an ideal blockchain where each block consisting of
transactions of the corresponding block of chain.

Figure 1. Redactable Blockchain Protocol Γ

4 Security Analysis

In this section, we analyze the security of redactable
blockchain protocol Γ as depicted in Figure 1. The security

8

subroutine collectVote(chain, sl,msgs, w, T, η) invoked by P
/ / msgs is a FIFO buffer keeping on receiving votes from the network
/ / sl is the number of the first slot in this w-slot voting period
let SIG be a dictionary of hash-set pairs;
let PROOF be a dictionary of hash-set pairs;
Upon Time1 ≥ sl + w:

halt
Upon msgs not empty:

assert sl ≤ Time < sl + w
for each Time

for each (c, proof, pk,H(B∗
j), sigj)← msgs.dequeue()

if RP(chain,B∗
j , slj) = 1 continue;

if SIG[B∗
j] and PROOF [B∗

j] not initialized yet
let SIG[B∗

j] := ∅, PROOF [B∗
j] := ∅;

if sigj on H(B∗
j) cannot be validated by pk continue;

if VerifyCmt(chain, sl, c, proof, para′) = 0 continue;
SIG[H(B∗

j)] := SIG[H(B∗
j)] ∪ {sigj};

PROOF [H(B∗
j)] := PROOF [H(B∗

j)] ∪ {proof};
compute aggregate signature asigj on H(B∗

j) from SIG[H(B∗
j)]

send vote-proof(H(B∗
j), asigj , PROOF [H(B∗

j)]) to P
let SIG[H(B∗

j)] := ∅ and PROOF [H(B∗
j)] := ∅

1Time represents to invoke the global clock to get the latest slot number

Figure 2. Collecting Votes

properties of redactable blockchain are same as that of basic
blockchain, except for the common prefix property (c.f.
Appendix B).

Redactable Common Prefix. We observe that our pro-
tocol Γ inherently does not satisfy the original definition
of common prefix due to the (possible) edit operation. In
detail, consider the case where the party P1 is honest at
time slot sl1 and the party P2 is honest at time slot sl2
in view, such that sl1 < sl2. For a candidate block B∗

j

to replace the original Bj , whose votes are published at
slot sl such that sl1 < sl < sl2, the edit request has
not been proposed in chainsl1P1

(view) but may have taken
effect in chainsl2P2

(view). As a result, the original Bj remains
unchanged in chainsl1P1

(view) while it is replaced with the
candidate B∗

j in chainsl2P2
(view). Therefore, prefixk(view) ̸= 1,

which violates Definition 6 in Appendix B.
The main reason lies in the fact that the original def-

inition of common prefix does not account for edits in
the chain, while any edit may break the common prefix
property. To address this issue, we adopt the extended defi-
nition called redactable common prefix [24] and consider the
effect of each edit operation, which is suitable for redactable
blockchains. Roughly speaking, the property of redactable
common prefix states that if the common prefix property is
violated, it must be the case that there exist edited blocks
satisfying the redaction policy RP .

Let redactprefixk(view) = 1 if for all time t ≤ t′, and for
all parties Pi, Pi′ such that Pi is honest at time t and Pi′ is
honest at time t′ in view, one of the following conditions is
satisfied:
1) the prefixes of chaintPi

(view) and chaint
′

Pi′
(view) consist-

ing of the first |chaintPi
(view)| − k records are identical,

or
2) for each B∗

j in the prefix of chaint
′

Pi′
(view) but not

in the prefix of chaintPi
(view) consisting of the first

|chaintPi
(view)| − k records, it must be the case that

RP(chain,B∗
j , tj) = 1 where tj < t < t′.

Definition 2. (Redactable Common Prefix [24]). We say a
blockchain protocol Π satisfies k0-redactable common pre-

fix, if for every k ≥ k0 and all (Z,A), there exists a negligible
function negl(λ) such that

Pr[view← EXECΠ(A,Z, λ) : redactprefixk(view) = 1] ≥ 1−negl(λ).

Essentially, Γ behaves just like the underlying immutable
blockchain protocol in Appendix D if there is no edit in the
chain, and otherwise each edit must be approved by the
redaction policy RP . Therefore, we prove Γ can guarantee
the same or variant version of properties as the underlying
immutable blockchain under the redaction policy RP .

Theorem 1. (Security of Γ). Assume that the signature
scheme SIG is EUF-CMA secure, the aggregate signa-
ture scheme ASIG is unforgeable, the hash function H is
collision-resistant, the function Cmt ensures the fraction of
honest users (in terms of computational power or stake) in
the committee is at least η, and the underlying immutable
blockchain protocol in Appendix D satisfies k0-common
prefix, (k0, µ)-chain quality, and τ -chain growth. Then,
redactable blockchain protocol Γ satisfies the k0-redactable
common prefix, (k0, µ)-chain quality, and τ -chain growth.

Proof roadmap. We first consider an ideal-world protocol
Πideal having access to an ideal functionality Ftree, and
prove that Πideal satisfies redactable common prefix, chain
quality, and chain growth in Section IV.A. Then we prove
the ideal-world protocol Πideal can be securely emulated by
the real-world protocol Γ in Section IV.B.

4.1 Security of Ideal Protocol Πideal

We first define an ideal functionality Ftree (Figure 3) and
analyze an ideal-world protocol Πideal (Figure 4) parame-
terized with Ftree. We use the ideal functionality Ftree to
keep a record of the extracted blockchain chain (see Figure
1) up to now which is denoted by tree. Initially, only the
blockchain genesis corresponding to the genesis block is
contained in the set tree. Ftree decides whether a party P
is the elected leader for every time step t with probability
ϕ(s, p) or the committee member with probability ϕ(s, p′),
where ϕ is a general function whose output is proportional
to the stake (or the computational power) s of P , and
the parameter p (or p′, resp.) provides the randomness.
An adversary A can know which party is elected as the
leader (or voting committee member, resp.) in time t using
the Ftree.leader (or Ftree.committee, resp.) query. Further,
honest and corrupted parties can extend known chains with
new block by calling Ftree.extend, if they are elected as
leaders for specific time steps. Specifically, honest parties
always extend chains in the current time, while corrupted
parties are allowed to extend a malicious chain in a past
time step t′ as long as t′ complies with the strictly increasing
rule. In addition, the voting committee member can call
Ftree.redact to redact the blockchain, if the votes during
one voting period are more than the number of corrupted
committee members. Finally, Ftree records each valid chain,
and parties can check if any chain they received is valid by
calling Ftree.verify.

Theorem 2. (Security of Πideal). If the underlying im-
mutable ideal protocol in Appendix D satisfies k0-common
prefix, (k0, µ)-chain quality, and τ -chain growth, then Πideal

9

Ftree(p, p
′)

Upon receiving init(): tree := genesis, time(genesis) := 0
Upon receiving leader(P, t) from A or internally:

let s be the stake (or computational power) of P at time t
if leader(P, t) has not assigned,

set and return leader(P, t) =
{
1 with probability ϕ(s, p)

0 otherwise
Upon receiving extend(chain,B) from honest party P :

denote by t the present time
if leader(P, t) = 1, chain∥B /∈ tree and chain ∈ tree
extend chain to chain∥B in tree, set time(chain∥B) := t
return “succ”

Upon receiving extend(chain,B, t′) from corrupted party P∗:
denote by t the present time
if leader(P∗, t) = 1, chain∥B /∈ tree and chain ∈ tree, and
time(chain) < t′ < t
extend chain to chain∥B in tree, set time(chain∥B) := t′

return “succ”
Upon receiving committee(P, t) from A or internally:

let s be the stake of P at time ⌊t/w⌋ ∗ w
or the computational power of P at time t

if committee(P, t) has not been assigned,

return committee(P, t)=
{
1 with probability ϕ(s, p′)

0 otherwise
Upon receiving redact(chain, i, B∗) from ξ distinct parties Pj :

assert chain ∈ tree and committee(Pj , tj) = 1 for every Pj

assert all of ⌊tj/w⌋ are equal
assert ξ is more than the number of corrupted parties Pj

with committee(Pj , tj) = 1
redact chain[i] := B∗ and return “succ”

Upon receiving verify(chain) from P :
return 1 if chain ∈ tree, otherwise return 0

Figure 3. Ideal Functionality Ftree

Ideal Protocol Πideal

Upon receiving init(): chain := genesis
Upon receiving chain′:
if |chain′| > |chain| and Ftree.verify(chain

′) = 1
chain := chain′ and broadcast chain

for every slot:
for the input B (or B∗) from Z :
–if Ftree.extend(chain,B) outputs “succ”,
extend chain to chain∥B and broadcast chain
–if Ftree.redact(chain, i,B

∗) outputs “succ”,
let chain[i] := B∗ and broadcast chain
–output chain to Z

Figure 4. Ideal Protocol Πideal

satisfies the k0-redactable common prefix, (k0, µ)-chain
quality, and τ -chain growth.

Proof Sketch. Note that if there is no edit in chain,
then Πideal behaves exactly like the underlying immutable
ideal protocol in Appendix D, and thus k0-common prefix,
(k0, µ)-chain quality, and τ -chain growth can be preserved
directly. Thus we mainly prove the security of Πideal with
any edit satisfying the redaction policy RP . We defer the
security proof in Appendix D.

4.2 Real-world Emulates Ideal-world
We next show that the real-world protocol Γ as depicted in
Figure 1 emulates the ideal-world protocol Πideal.

Theorem 3. (Γ emulates Πideal). For any probabilistic
polynomial-time (PPT) adversaryA of the real-world proto-

col Γ, there exists a PPT adversary (also called the simulator)
S of the ideal protocol Πideal, such that for any PPT environ-
ment Z , for any λ ∈ N, we have:

view(EXECΠideal(S,Z, λ)) c≡ view(EXECΓ(A,Z, λ)),

where
c≡ denotes computational indistinguishability.

Proof Sketch. The proof process can be shown by a stan-
dard simulation argument. Specifically, for any adversary A
in the real world, we can construct a simulator S in the ideal
world such that no p.p.t. environment Z can distinguish
an ideal execution with the simulator S and Πideal from
a real execution with the adversary A and Γ under the
security assumption of the underlying primitives including
the digital signature scheme, aggregate signature scheme
and verifiable random function. We defer the (security) def-
initions of the corresponding primitives and security proof
of the theorem in Appendix A and Appendix D respectively.

5 INSTANTIATION

Following the generic construction, we now present two
concrete instantiations of redactable PoS blockchain and
PoW blockchain.

5.1 Redactable Proof-of-Stake Blockchain
In proof-of-stake blockchain, we assume S is total stakes in
the system, T is the expected number of stakes in committee
for voting, and the fraction of stakes held by honest users
in the committee is at least η. The committe members
are selected only at the first slot sl of each voting period
between sl and sl+w−1, and w can be set based on specific
network environment to guarantee the votes received by all
users after w slots with a greater probability.
Checking committee members Cmt. The function Cmt
(Algorithm 4) checks whether a party Pi (with secret key
ski and stake si) is the committee member at the slot sl and
outputs (c, proof). Inspired by the idea of Algorand [27],
Cmt uses VRFs to randomly select voters in a private and
non-interactive way5. Specifically, Pi computes (hash, π)←
V RFski

(seed∥sl) with his own secret key ski, where sl mod
w = 0, seed is identical to that in the underlying proof-of-
stake blockchain, and the pseudo-random hash determines
how many votes of Pi are selected. In order to select voters
in proportion to their stakes, we regard each unit of stakes as
a different “sub-user”. For example, Pi with stakes si owns
si units, each unit is selected with probability p = T

S , and the
probability that q out of the si sub-users are selected follows
the binomial distribution B(q; si, p) = C(si, q)p

q(1−p)si−q ,
where C(si, q) = si!

q!(si−q)! and Σsi
q=0B(q; si, p) = 1. To

determine how many sub-users of si in Pi are selected,
the algorithm divides the interval [0,1) into consecutive
intervals of the form Ic = [Σc

q=0B(q; si, p),Σ
c+1
q=0B(q; si, p))

for c ∈ {0, 1, · · · , si−1}. If hash
2hashlen falls in the interval Ic,

it means that c sub-users (i.e., c votes) of Pi are selected,
where hashlen is the bit-length of hash.
Verifying committee members VerifyCmt. The function
VerifyCmt (Algorithm 5) verifies Pi (with public key

5. In a similar way, hash function can also be used to select committee
members in a public way [33], which is secure against static adversary.

10

Algorithm 4 Checking committee members
Cmt(chain, sl, ski, si, seed,Pi, T, S)

1: (hash, π) := V RFski(seed∥sl);
2: p := T

S
; c := 0;

3: while hash
2hashlen /∈ [Σc

q=0B(q; si, p),Σ
c+1
q=0B(q; si, p)) do

4: c := c+ 1.
5: end while
6: proof := (hash, π);
7: return (c, proof).

pki) is the committee member with the weight c using
proof (i.e., (hash, π)). Specifically, it first verifies proof by
VerifyVRFpki

(hash, π, seed∥sl), and then verifies hash
2hashlen

falls in the interval Ic.

Algorithm 5 Verifying committee members
VerifyCmt(chain, pki, sl, si, seed, c, proof, T, S)

1: (hash, π) := proof ;
2: if VerifyVRFpki

(hash, π, seed∥sl) = 0, then return 0;
3: p := T

S
; χ := 0;

4: while hash
2hashlen /∈ [Σχ

q=0B(q; si, p),Σ
χ+1
q=0B(q; si, p)) do

5: χ := χ+ 1.
6: end while
7: if χ = c, then return 1;
8: else return 0.

Parameter Selection. As mentioned earlier, we consider
each unit of stakes as a different “sub-user”, for example,
if user Ui with si stakes owns si units, then Ui is regarded
as si different “sub-users”. We assume the total stakes S in
the system is arbitrarily large. When a redaction is proposed,
a committee for voting will be selected from all sub-users.
The expected size of committee, T , is fixed, and thus the
probability ρs of a sub-user to be selected is T

S . Then the
probability that exactly K sub-users are sampled is(
S

K

)
ρKs (1− ρs)

S−K =
S!

K!(S −K)!
(
T

S
)K(1− T

S
)(S−K)

=
S · · · (S −K + 1)

SK

TK

K!
(1− T

S
)(S−K)

If K is fixed, we have

lim
S→∞

S···(S−K+1)
SK = 1

and

lim
S→∞

(1− T
S)

(S−K) = lim
S→∞

(1−T
S)S

(1−T
S)K

= e−T

1 = e−T

Then the probability of sampling exactly K sub-user
approaches:

TK

K!
e−T (1)

Denote by #good and #bad the number of honest and
malicious committee members respectively. If we set the
majority of commmitee members are honest (i.e., η > 1/2),
the following conditions should be satisfied.

(1): #good ≥ 1/2 · T . The condition is violated when the
number of honest committee members is < 1/2·T . From (1),
the probability that we have exactly K honest committee
members is (h·T)K

K! e−h·T , where honest stakes ratio in the

60 65 70 75 80 85 90

% of Honest Users

0

200

400

600

800

1000

1200

1400

1600

C
om

m
itt

ee
 S

iz
e

5*10-9

Figure 5. The x-axis specifies h, the stakes fraction of honest
users. The y-axis specifies T , the committee size.

system is h (h > 1/2). Thus, the probability of violating the
condition is given by the formula:

1/2·T−1∑
K=0

(hT)K

K!
e−hT .

(2): #bad < 1/2 · T . As above, the probability
that we have exactly L malicious committee members is
((1−h)·T)L

L! e−(1−h)·T . Thus, the probability that satisfying the
condition is given by the formula:

1/2·T−1∑
L=0

((1− h)T)L

L!
e−(1−h)T .

F is a parameter which marks a negligible probability
for failure of either condition, and our experience sets F =
5 × 10−9. Our goal is to compute the minimum value of
T , and ensure the probability that condition (1) or (2) doses
not hold is at most F . If we find some T that satisfies both
conditions with probability 1 − F , then it is also true for
any larger value of T . Based on the above observation, in
order to find the optimal T , we firstly assign an arbitrary
large value (e.g., 104) to T , and then check whether both
conditions are satisfied. If both conditions hold, we decrease
T and check whether both conditions are still satisfied. We
continue the above process until finding the minimal T that
ensures both conditions are satisfied. In this way, we can get
Figure 5, plotting the expected committee size T satisfying
both conditions, as a function of h, with a probability of
violation of 5 × 10−9. A similar approach to compute the
threshold of committee size can be referred to [27].

In the implementation of our system, we assume the
fraction of honest stakes is 0.656, and thus we select T =
1000 according to Figure 5. A valid editing block is ap-
proved only when it obtains more than 1/2 ·T votes, that is,
the threshold value in Definition 1 is equal to 1/2 · T = 500.

6. Recall that our protocol can tolerate 1/2 adversary bound in both
PoS and PoW instantiations, and larger adversary rate would imply
larger committee size.

11

Fraction of Honest Users. According to Theorem 1, we only
need to prove the fraction (in terms of stakes) of honest users
in the committee is at least η. If A can “presciently” ensure
which user would become the member of the voting com-
mittee, he can adaptively corrupt and impersonate this user,
such that the fraction of honest users in the committee is
less than η. However, according to the uniqueness property
of the underlying VRF, the adversary has only a negligible
probability 1/2hashlen to win. In detail, the function value
hash of VRF is random and unpredictable, the adversary
without the secret key can only predict whether an honest
user is chosen as the committee member with a negligible
probability 1/2hashlen. In addition, A is allowed to corrupt
the known committee members only after the correspond-
ing w slots, which would not bring any non-negligible
advantage since the committee would be reselected in the
next voting period.

5.2 Redactable Proof-of-Work Blockchain

We also give an instantiation for PoW that is compatible
with various networks. To get sufficient numbers of commit-
tee members according to computational power distribution
and ensure honest majority in the committee, we just need
to collect sufficient PoW puzzle solutions. This can be easily
realized by creating a “virtual selection” procedure using
PoW with a bigger difficulty parameter D.

However, the adversary may be able to find “virtual
puzzle solutions” in advance by the withholding attack.
Specifically, if the adversary is lucky to produce a longer
chain before sl that is likely to be the longest valid chain of
slot sl, it temporarily withholds the chain and starts to find
“virtual puzzle solutions”. Then at slot sl, the adversary
releases its chain and solutions, thus he has more time to
find solutions. To thwart this attack, we elect the committee
in r consecutive slots such that the majority of committee
is honest even under the withholding attack. Like in the
PoS instantiation, we use the network related parameter
w to ensure all users would receive the votes with large
probability, where w ≥ r.
Checking committee members Cmt. In the function Cmt
(Algorithm 6), if P can find some “virtual puzzle solutions”
for PoW with difficulty parameter D between sl and sl +
r − 1, P is elected as the committee and the weight c of
P in the committee is the number of puzzle solutions. The
committee member proof proof includes the corresponding
puzzle solutions.

Algorithm 6 Checking committee members
Cmt(chain, sl, pk,D,P, r)

1: c := 0;
2: proof := ∅;
3: Time := sl;
4: while Time ≤ sl + r − 1 do
5: Parse chain = (B1, · · · , Bm);
6: Parse BTime = (Time, pk, st,G(d), ib, π, d);
7: if P finds nonce such that

H(Time, pk, st,G(d), nonce) < D,
8: then c := c + 1, proof := proof ∪

(Time, pk, st,G(d), nonce);
9: end while

10: return (c, proof).

Verifying committee members VerifyCmt. The function
VerifyCmt (Algorithm 7) verifies whether P with the public
key pk is the committee member by computing hash with
the puzzle solutions, which is similar to Algorithm 6.

Algorithm 7 Verifying committee members
VerifyCmt(chain, pk, sl,D, c, proof, r)

1: Parse chain = (B1, · · · , Bm), where Bi = (headeri, di), i ∈
[1..m];

2: if the number of set member in proof is not c then return
0;

3: for every proof in proof do
4: if Time ≥ sl + r or Time < sl, then return 0;
5: if H(Time, pk, st,G(d), nonce) ≥ D or st ̸=

H(headerTime−1), then return 0;
6: end for
7: return 1.

Parameter Selection. We assume the adversary is able to
find “virtual puzzle solutions” at most t slots earlier than
honest nodes and we elect the committee in r slots. Sup-
pose that h = 1

2 + ϵ fraction of nodes in the underlying
blockchain are honest, where ϵ ∈ (0, 1

2). Let α = D
2ℓ
hn and

β = D
2ℓ
(1 − h)n denote the expected number of “virtual

puzzle solutions” found by honest nodes and corrupt nodes
in each slot respectively, where ℓ is the output length of the
hash function H(·) and n is the total number of nodes.

We denote the maximum number of “virtual puzzle
solutions” found by the adversary from the slot sl − t to
sl + r − 1 by NA, and the minimum number of “virtual
puzzle solutions” found by honest nodes from the slot sl to
sl + r − 1 by NH , respectively. Due to the Chernoff bound
[34], for any δ > 0, except with a negligible probability p1 =

exp(− δ·min{δ,1}·β(t+r)
3), it holds that NA ≤ (1 + δ)β(t + r).

Similarly, for any δ ∈ (0, 1), except with a negligible prob-
ability p2 = exp(− δ2αr

2), it holds that NH ≥ (1 − δ)αr. If
we set the majority of committee members are honest (i.e.,
η > 1/2), then we need to guarantee NH > NA and thus
the following condition should be satisfied:

(1 + δ)β(t+ r) < (1− δ)αr.

Therefore, we have r > t
(1−δ)h

(1+δ)(1−h)−1
.

According to “no long block withholding” lemma [26,
Lemma 6.10], we set t to be the longest number of slots that
the adversary can withhold a block B. Consider the case
that k0 new blocks are mined in the longest valid chain
when the adversary withholds some blocks, where k0 is
the common prefix parameter. According to the common
prefix property, these withholding blocks will never appear
in the chains of honest nodes. Therefore, t should be less
than the minimum time the longest valid chain increases by
at least k0 blocks. According to the chain growth property
[26, Theorem 4.1], t ≈ k0/α

′, where α′ = D′

2ℓ
hn and D′ is

the difficulty parameter for the underlying PoW blockchain
such that at least one party can find a puzzle solution at
each slot (i.e., D′

2ℓ
n = 1).

For instance, let k0 = 6 as in Bitcoin, h = 0.65 and δ =
0.1, then we have r > 1.93t and without loss of generality
we set r = 2t. Then we can compute t = 10 and r = 20.
Further, if we set p1 = exp(−13) and p2 = exp(−25), then
D = 5000

hr D′ ≈ 385D′. An editing block would be approved

12

only when it obtains more than (1+δ)β(t+r) = (1−h)(1+
δ) 5000hr (t + r) ≈ 4443 votes, which are distributed among
r = 20 slots, that is, the threshold value in Definition 1 is
equal to (1 + δ)β(t+ r) ≈ 4443.

6 IMPLEMENTATION AND EVALUATION

To demonstrate the feasibility of our approach, we choose
redactable proof-of-stake blockchain just as an example
and develop a proof-of-concept (PoC) implementation that
simulates Cardano Settlement Layer (Cardano SL) [35]. We
conduct extensive experiments on it, and reveal this non-
optimized PoC implementation is already efficient. In par-
ticular, we showcase, even if in some extremely pessimistic
cases (having tremendous redactions), the overhead of our
approach remains acceptable (relative to an immutable
chain).

6.1 Setup
Execution environment. We write in standard C language
(C11 version) to implement a proof-of-stake chain that sim-
ulates Cardano SL (i.e., generating a valid local Cardano
replica without executing consensus). The chain supports a
subset of Cardano SL’s bitcoin-style scripts, thus allowing
to record basic ledger operations such as transacting coins
and so on. Furthermore, we build our redaction protocol in
it, thus enabling each block to include a special redaction
transaction to solicit votes on editing earlier blocks. All tests
runs on a personal computer with Ubuntu 16.04 (64bits)
system, and equipped with a 2.20GHz Intel Core i5-5200U
CPU and 8GB main memory.
Cryptographic building blocks. Our PoC implementation
adopts ECDSA over secp256k1 for all digital signatures in
both editing votes and block proposals, which is a widely
adopted approach by PoC tests in the blockchain commu-
nity [36]. For VRF, we adopt a generic approach due to
deterministic “ECDSA” in the random oracle model [37].
We import the VRF’s concrete instantiation over secp256k1
in C language from [38].
Other parameters. We set h = 0.65, namely, the adversary
might control up to 35% of stakes in the system, which
corresponds to the committee with expected size T = 1000.
Moreover, when implementing Ouroboros Praos [32] (for
simulating Cardano SL), we only consider one epoch, thus
omitting the dynamic change of stakes. We might fix the
block size in experiments. For example, we can specify that
each block contains up to 10 transactions, which is enough
to capture the number of transactions in nowadays Cardano.
In addition, we also assume that each redaction request of
editing a block only aims to modify a single transaction.

6.2 Experiments and measurements
Then we conduct extensive experiments in the above PoC
“sandbox” to tell the small overhead of our redaction
protocol relative to an immutable chain through various
performance metrics.
Votes and proofs on redaction. As shown in Table 2, we
begin with some preliminary experiments to understand (i)
the generating time, the validating time, and the size of each
vote on redaction as well as (ii) the validating time and

the size of each proof on approved redaction. In general,
these votes and proofs incur little computational burden and
are also small in size, which at least flatters the necessary
conditions of efficient redactions.

TABLE 2
Preliminary tests of votes and proofs on redaction

Vote on redaction
candidate

Time to generate vote ∼ 9 ms
Time to validate vote ∼ 1 ms
Size of each vote ∼ 0.2 KB

Proof on approved
redaction

Time to validate proof ∼ 560 ms
Size of each proof ∼ 109 KB

Proposing/receiving new blocks with redaction proof. To
evaluate how redactions would impact the performance of
consensus, we consider two key metrics in the online nodes’
critical path: (i) the latency of producing new blocks with
redaction and (ii) the latency of appending new blocks with
redaction to the local replica.

First, we consider the latency of producing blocks with
redaction proof(s) and without redaction proof(s), respec-
tively. For both cases, we test 500 blocks (with fixed size
up to 10 transactions), and do not realize any statistic
differences. Nevertheless, this is not surprising, because we
explicitly decouple the generation of blocks and the voting
on redaction, so the generation of blocks in the two cases
would execute the exactly same code.

Second, we measure the time spent on appending newly
received blocks to the local storage, for the cases with redac-
tion proof(s) and without redaction proof(s) respectively. As
illustrated in Figure 6, we compare appending a block with a
redaction proof to the benchmark case of appending a block
without any redaction proof. For each case, we conduct
extensive tests to get statistics on 500 blocks (at distinct slots
but with fixed block size up to 10 transactions) and visualize
the statistics. It reveals that the extra overhead (incurred
by validating redaction proof and editing earlier block) is
small and nearly constantly. In particular, compared to the
immutable case, the node only needs an extra time of 0.7
second to (i) validate a redaction proof and (ii) edit an earlier
block accordingly.
Validating a chain consisting of edited blocks. Then, we
conduct a series of experiments to measure the extra cost of
validating an entire chain with edited blocks. Comparing to
validating the immutable chain, validating an edited chain
further requires to fetch and validate the proof on redaction
for each edited block (besides validating block headers).
This could be another critical metric to reflect how efficient
our scheme is regarding re-spawning nodes.

To this end, we evaluate the time needed to validate
a redactable chain, with respect to the varying portion of
edited blocks. In the experiments, we generate redactable
chains consisting of 1000 blocks and each block contains
10 transactions, and measure the time to validate them.
As shown in Figure 7, the latency of validating chains
is almost increasing linearly in the number of redactions,
especially when the percentage of edited blocks is small
or moderately large (e.g., smaller than 25%). For example,
when the percentage of edited blocks is 6.25% and 12.5%,
the extra latency to verify the chain is about 10 seconds and
30 seconds, respectively. Even if in the extremely pessimistic

13

Block without proof for editings Block with proof for editings

0.20

0.30

0.80

0.90
La

te
nc

y
of

 a
pp

en
di

ng
 a

 n
ew

co
m

in
g

bl
oc

k
(s

ec
)

is the average; each box shows statistics on 500 blocks

Figure 6. The latency of appending a newcoming block
(without or with proof on redaction) to the local replica.

0 6.25% 12.5% 25% 50%
0

100

200

300

400

500

600

La
te

nc
y

of
 v

al
id

at
in

g
a

10
00

-b
lo

ck
 c

ha
in

 (s
ec

)

Percentage of edited blocks in the chain

Figure 7. The latency of validating 1000-block redactable
chains (respect to various percentages of editings).

case (i.e., 50% blocks are edited), the cost is still acceptable
(i.e., about 5x the immutable case).

6.3 More discussions
Minimal impact on consensus. When proposing and re-
ceiving (new) blocks with proofs on redaction, there is only
small overhead in our design. That means it places little bur-
den on the online blockchain nodes, and more importantly,
it causes minimal overhead to the critical path of consensus.
In particular, when proposing new blocks with redaction,
there is no extra cost to slow down the consensus; while
receiving new blocks with redaction, the extra latency is as
small as 0.8 second.
Efficiency for re-spawning nodes. When some nodes are re-
spawning, they have to bootstrap to sync up to the current
longest chain. Our extensive experiments reveal it would be
feasible for the re-spawning node to download and then
verify the entire chain despite of a few editable blocks.
Especially, in the normal cases that edited blocks are rare
(e.g., less than 6.25%), the extra cost incurred by redaction
is overwhelmed by the original cost of validating chain
headers and transactions.
Instant redaction (close to actual network delay). Our
design dedicates to decouple voting from consensus: all
votes are diffused across the network via the underlying

gossip network; once the votes are successfully diffused,
any honest block proposer can include a proof on redaction
in its block, which would be confirmed immediately after
the block becomes stable. This typically costs only a couple
of minutes in Cardano. In contrast, prior art [24] lets the
node proposing a block to embed its own vote in the block,
resulting in a latency liner to a large security parameter.
For example, [24] requires about 1024 consecutive blocks to
collect votes, which means about 6 hours in Cardano and
7 days in Bitcoin. To sum up, our construction achieves
significant improvement by greatly reducing the latency of
confirming redactions.
Possible storage optimizations. Different from the im-
mutable blockchain, our redaction protocol has to store the
collected votes on each redaction, which is the most signifi-
cant storage overhead relative to an immutable blockchain.
Currently, our PoC implementation requires about 110 KB
to store the votes for each redaction. We remark that var-
ious optimizations can be explored to further reduce the
storage overhead. For example, we can use pairing-based
multi-signature scheme [39] to aggregate signatures of votes
instead of trivially concatenating secp256k1 ECDSA, which
can reduce the size of votes to only about 60 KB.

7 CONCLUSION

It is crucial and even legally required to design redactable
blockchain protocols with instant redaction. We propose a
new redaction strategy to decouple the voting stage from
the consensus layer. Based on the new strategy, we present
a generic approach to construct redactable blockchain pro-
tocols with instant redaction, where redactable blockchain
inherits the same security assumption from the underly-
ing blockchain. Our protocol can tolerate the optimal 1/2
adversary as the underlying blockchain, and supports var-
ious network environments. Our protocol can also offer
accountability for redaction, where any edited block in the
chain is publicly verifiable. In addition, multiple redactions
per block can be performed throughout the execution of
the protocol. We also define the first ideal functionality of
redactable blockchain following the language of universal
composition, and prove the security of our construction.
Moreover, we present concrete instantiations of redactable
PoS and PoW blockchains. Finally, we develop a PoC im-
plementation of our PoS instantiation, and the experimental
results demonstrate the high efficiency of our design. Our
work makes a step forward in understanding of redactable
blockchain protocols.

REFERENCES

[1] M. R, H. J, and H. M, “A quantitative analysis of the impact of
arbitrary blockchain content on bitcoin,” in Financial Cryptography
and Data Security 2018. Springer, 2018, pp. 420–438.

[2] K. Shirriff, “Hidden surprises in the bitcoin blockchain and how
they are stored: Nelson mandela, wikileaks, photos, and python
software.” http://www.righto.com/2014/02/ascii-bernanke-
wikileaks-photog raphs.html, 2014.

[3] S. Hargreaves and S. Cowley, “How porn links and ben
bernanke snuck into bitcoin’s code,” 2013. [Online]. Avail-
able: http://money.cnn.com/2013/05/02/technology/security/
bitcoin-porn/index.html

14

[4] J. Mathew, “Bitcoin: Blockchain could become ‘safe
haven’ for hosting child sexual abuse images.”
http://www.dailydot.com/business/bitcoinchild- porn-
transaction-code/, 2015.

[5] CBinsights, “Banking is only the beginning:
50 big industries blockchain could transform.”
https://www.cbinsights.com/research/ industries-disrupted-
blockchain/, 2018.

[6] “The illinois blockchain initiative.”
https://illinoisblockchain.tech.

[7] T. Economist, “Governments may be big backers of the
blockchain.” https://goo.gl/uEjckp, 2017.

[8] “Akasha.” https://akasha.world.
[9] “Steem.” https://steem.
[10] “The eu general data protection regulation.” https://gdpr-

info.eu/.
[11] “Ethereum project.” https://www.ethereum.org/.
[12] O. K. Ibanez, Luis-Daniel and E. Simperl, “On blockchains and

the general data protection regulation,” in Network and Distributed
Systems Security (NDSS) Symposium 2019, 2018.

[13] M. Isard and M. Abadi, “Falkirk wheel: rollback recovery for
dataflow systems.” https://arxiv.org/abs/1503.08877.

[14] https://www.lovemoney.com/news/91297/sent-money-to-the-
wrong-account-get-money-back-after-misdirected-payment.

[15] C. Jentzsch, “Decentralized autonomous
organization to automate governance.”
https://download.slock.it/public/DAO/WhitePaper.pdf.

[16] “All about the bitcoin cash hard fork.”
https://www.investopedia.com/news/all-about-bitcoin-cash-
hard-fork.

[17] “The hard fork: what’s about to happen to ethereum and the dao.”
https://www.coindesk.com/hard-fork-ethereum-dao.

[18] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable
blockchain - or - rewriting history in bitcoin and friends,” in IEEE
European Symposium on Security and Privacy, EuroS&P 2017, 2017,
pp. 111–126.

[19] J. Camenisch, D. Derler, S. Krenn, H. C.Pohls, K. Samelin, and
D. Slamanig, “Chameleon-hashes with ephemeral trapdoors,” in
IACR International Workshop on Public Key Cryptography. Springer,
2017, pp. 152–182.

[20] G. Ateniese, M. T. Chiaramonte, D. Treat, B. Magri, and D. Venturi,
“Rewritable blockchain.” uS Patent 9,967,096, 2018.

[21] A. files patent for editable blockchain.
https://tinyurl.com/yblq9zdp, 2016.

[22] D. Derler, K. Samelin, D. Slamanig, and C. Striecks, “Fine-
grained and controlled rewriting in blockchains: chameleon-
hashing gone attribute-based,” in Network and Distributed Systems
Security (NDSS) Symposium 2019, 2019.

[23] I. Puddu, A. Dmitrienko, and S. Capkun, “µ chain: how to forget
without hard forks,” in IACR Cryptology ePrint Archive, 2017/106,
2017.

[24] D. Deuber, B. Magriy, S. Aravinda, and T. Krishnan, “Redactable
blockchain in the permissionless setting,” in IEEE Symposium on
Security and Privacy 2019, 2019, pp. 124–138.

[25] S. A. K. Thyagarajan, A. Bhat, B. Magriz, D. Tschudix,
and K. Aniket, “Reparo: publicly verifiable layer to repair
blockchains.” https://arxiv.org/abs/2001.00486.

[26] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain
protocol in asynchronous networks,” in Eurocrypt 2017, vol. 10211.
Springer, 2017, pp. 643–673.

[27] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: scaling byzantine agreements for cryptocurrencies,”
in Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 51–68.

[28] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” vol. 9057, pp. 281–310, 2015.

[29] R. Pass and E. Shi, “The sleepy model of consensus,” in ASI-
ACRYPT 2017, vol. 10625. Springer, 2017, pp. 380–409.

[30] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party
computation using a global transaction ledger,” in Eurocrypt (2)
2016. Springer, 2016, pp. 705–734.

[31] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou,
“Hawk: the blockchain model of cryptography and privacy-
preserving smart contracts,” in IEEE Symposium on Security and
Privacy 2016, 2016, pp. 839–858.

[32] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: an
adaptively-secure, semi-synchronous proof-of-stake blockchain,”
in Proceedings of Eurocrypt 2018. Springer, 2018, pp. 66–98.

[33] P. Daian, R. Pass, and E. Shi, “Snow white: robustly reconfigurable
consensus and applications to provably secure proof of stake,” in
Financial Cryptography and Data Security 2019. Springer, 2019, pp.
23–41.

[34] H. Chernoff, “A measure of the asymptotic efficiency for tests
of a hypothesis based on the sum of observations,” Annals of
Mathematical Statistics, vol. 23, pp. 493–509, 1952.

[35] “Cardano.” https://cardano.org/.
[36] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,

“Hotstuff: Bft consensus in the lens of blockchain,” arXiv preprint
arXiv:1803.05069, 2018.

[37] D. Papadopoulos, D. Wessels, S. Huque, M. Naor, J. Včelák,
L. Reyzin, and S. Goldberg, “Making nsec5 practical for dnssec,”
Cryptology ePrint Archive, Report 2017/099, 2017, https://eprint.
iacr.org/2017/099.

[38] https://github.com/aergoio/secp256k1-vrf.
[39] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures

for smaller blockchains,” in ASIACRYPT 2018, vol. 11273.
Springer, 2018, pp. 435–464.

[40] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature
scheme secure against adaptive chosen-message attacks,” SIAM J.
Comput., vol. 17, pp. 281–308, 1988.

[41] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Proceedings
of Eurocrypt 2003. Springer, 2003, pp. 416–432.

[42] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1999, pp. 120–130.

[43] Y. Dodis and A. Yampolskiy, “A verifiable random function with
short proofs and keys,” in 8th International Workshop on Theory and
Practice in Public Key Cryptography, 2005, pp. 416–431.

15

APPENDIX

In this work, we use negl : N → R to denote the neg-
ligible function, that is, for each positive constant t ∈ N,
|negl(x)| < 1

xt holds for all sufficiently large x ∈ N.

.1 Signature Scheme

A digital signature scheme SIG consists of three standard

algorithms: a key generation algorithm (pk, sk)
$←Gen(1λ)

generating the public/secret key pair, a signing algorithm
σ←Sign(sk,m) generating a signature for the message, and
a verification algorithm {0, 1}←Verify(pk,m, σ) outputting
1 for a valid signature otherwise outputting 0. The correct-
ness property requires that Verify(pk, m, Sign(sk, m)) = 1

holds for all (pk, sk)
$←Gen(1λ) and any message m.

A signature scheme should satisfy the existentially un-
forgeable under adaptive chosen-message attacks (EUF-CMA)
security [40]. We consider the following game between the
challenger C and the adversary A.
1) Setup Phase. The challenger C runs Gen(1λ) to generate

(pk, sk) and sends pk to A.
2) Signing Phase. The adversary A makes signature query

mi to C, and C responds with a signature σi =
Sign(sk,mi).

3) Forgery Phase. FinallyA outputs a message/forgery pair
(m,σ). We say A wins the game if Verify(pk; m, σ) = 1
and m has been queried by A.

Definition 3. (EUF-CMA). We say that a signature scheme
SIG is EUF-CMA secure, if for all PPT adversaries A,
the advantage AdvEUF-CMA

SIG = Pr[A wins] should satisfy
AdvEUF-CMA

SIG ≤ negl(λ).

.2 Aggregate Signature Scheme

An aggregate signature scheme [41] allows aggregating
multiple individual signatures into a single short signature
in a non-interactive way.

An aggregate signature scheme ASIG consists of five
algorithms: KeyGen, Sign, Ver, Agg and AggVer. The key

generation algorithm (pki, ski)
$←KeyGen(1λ) generates the

public/secret key pair for each participant. The signing
algorithm σ ← Sign(sk,m) generates a signature σ on the
message m using the secret key sk. The verification algo-
rithm {0, 1}← Ver(pk,m, σ) outputs 1 for a valid signature
σ otherwise outputs 0. Given multiple individual signatures
(σ1, ..., σn), where σi is a signature on the message mi

under pki for i ∈ [n], the aggregation algorithm asig ←
Agg((pk1, m1, σ1),...,(pkn, mn, σn)) aggregates these sig-
natures into one signature asig. The aggregate verification
algorithm AggVer({(pk1, m1), ... ,(pkn,mn)}, asig) outputs 1
if asig is a valid aggregate signature on (m1, ...,mn) under
(pk1, ..., pkn), otherwise outputs 0.

An aggregate signature scheme should satisfy
completeness, which means that for any n,
{(pk1, sk1), ..., (pkn, skn)} ← KeyGen(1λ), any distinct
messages {m1, , ...,mn}, σi ← Sign(ski,mi) for i ∈ [n],
and asig ← Agg((pk1,m1, σ1), ..., (pkn,mn, σn)), we
have AggVer ({(pk1,m1),...,(pkn,mn)}, asig) = 1 if
Ver(pki,mi, σi) = 1 for i ∈ [n].

An aggregate signature scheme ASIG should also satisfy
unforgeability. To define unforgeability, we consider the
following game between the challenger C and the adversary
A.
1) Setup Phase. The challenger C runs KeyGen(1λ) to gen-

erate the challenge public/secret key pair (pk∗, sk∗), and
sends pk∗ to A.

2) Signing Phase. A can make signature queries on any
message m under pk∗, and C responds with σ ←
Sign(sk∗,m).

3) Forgery Phase. Finally A outputs a public key
set PK = {pk1, ..., pkn−1}, a message set
M = {m∗,m1, ...,mn−1} and an aggregate signature
asig. If pk∗ ∈ PK , m∗ is not queried to Sign(sk∗, .), and
AggVer({(pk∗,m∗), (pk1,m1), ..., (pkn−1,mn−1)}, asig)
= 1, the adversary wins.

Definition 4. (Unforgeability). We say that an aggregate sig-
nature scheme ASIG is unforgeable, if for all PPT adversaries
A, there exists a negligible function negl(λ) such that the
advantage AdvASIG = Pr[A wins] ≤ negl(λ).

.3 Verifiable Random Functions
The concept of verifiable random functions is introduced by
Micali et al.[42]. Informally, it is a pseudo-random function
that provides publicly verifiable proofs on outputs correct-
ness.

Definition 5. (Verifiable Random Functions)[43]. VRF is
a keyed function that consists of the following three al-
gorithms (Gen,VRF,VerifyVRF) such that the key gen-

eration algorithm (pk, sk)
$←Gen(1λ) generates the pub-

lic/secret key pair (pk, sk), the evaluation algorithm
(y, π)←VRFsk(x) outputs an evaluation/proof pair (y, π)
with the secret key sk and x as inputs, and the verification
algorithm {0, 1}←VerifyVRFpk(x, y, π) uses the proof π
to verify whether y is the correct output of VRFsk(.) on
input x, return 1 if yes and 0 otherwise. The correctness

property requires that for all (pk, sk)
$←Gen(1λ) and any x,

if (y, π)←VRFsk(x) then VerifyVRFpk(pk, m, Sign(sk, m)) =
1. VRF should also satisfy the following security properties:

The correctness property requires that for all

(pk, sk)
$←Gen(1λ) and any x, if (y, π)←VRFsk(x)

then VerifyVRFpk(pk, m, Sign(sk, m)) = 1

• Correctness:For all (pk, sk)
$←Gen(1λ) and any x, if

(y, π) = VRFsk(x), then VerifyVRFpk(x, y, π) = 1.
• Uniqueness:For some tuple (pk, x, y1, y2, π1, π2),

if VerifyVRFpk(x, y1, π1) = VerifyVRFpk(x, y2, π2), then
y1 = y2 holds with negligible violating probability.

• Pseudorandomness: for any PPT adversary A, the fol-
lowing condition holds if A has not queried the oracle on
x,

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1λ);

(x)← AV RFsk(.)(pk);

y0 = VRFsk(x); y1 ← {0, 1}lVRF ;

b← {0, 1}; b′ ← AV RFsk(.)(yb)

 ≤ 1

2
+ negl(λ).

.4 Security Properties of Blockchain
We recall common security properties that blockchain pro-
tocols should satisfy as follows.

16

Common Prefix. Informally speaking, the common prefix
property requires that all honest parties’ chains should be
identical except for roughly O(λ) number of trailing blocks
that have not stabilized.

Let prefixk(view) = 1 iff for all times t ≤ t′, and for
all parties i, j such that i is honest at t and j is honest at
t′ in view, we have that the prefixes of chainti(view) and
chaint

′

j (view) consisting of the first |chainti(view)|−k records
are identical.

Definition 6. (Common Prefix). We say that a blockchain
protocol Π satisfies k0-common prefix, if for all (A,Z),
there exists a negligible function negl such that for every
sufficiently large λ ∈ N and every k ≥ k0 the following
holds:

Pr[view← EXECΠ(A,Z, λ) : prefixk(view) = 1] ≥ 1− negl(λ).

Chain Quality. Informally speaking, the chain quality prop-
erty requires that the ratio of adversarial blocks in any
segment of a chain held by an honest party is not too large.

We say that a block B = chain[j] is honest w.r.t. view and
prefix chain[: j′] where j′ < j, if there exists some honest
party i at some time t < |view|who received B as input, and
its local chain chainti(view) contains the prefix chain[: j′].

Let qualityk(view, µ) = 1 iff for every time t and every
party i such that i is honest at t in view, among any consec-
utive sequence of k blocks chain[j+1..j+k] ⊆ chainti(view),
the fraction of blocks that are honest w.r.t. view and prefix
chain[: j] is at least µ.

Definition 7. (Chain Quality). We say that a blockchain
protocol Π satisfies (k0, µ)-chain quality, if for all (A,Z),
there exists a negligible function negl such that for every
sufficiently large λ ∈ N and every k ≥ k0 the following
holds:

Pr[view← EXECΠ(A,Z, λ) : qualityk(view, µ) = 1] ≥ 1−negl(λ).

Chain Growth. The chain growth property requires that the
chain grows proportionally with the number of time slots.
Let growthτ (view) = 1 iff for every time t ≤ |view| − t0 and
every two parties i, j such that in view i is honest at time t
and j is honest at t+ t0, |chaint+t0

j (view)| − |chainti(view)| ≥
τ · t0.

Definition 8. (Chain Growth). We say that a blockchain pro-
tocol Π satisfies τ -chain growth, if for all (A,Z), there exists
a negligible function negl such that for every sufficiently
large λ ∈ N the following holds:

Pr[view← EXECΠ(A,Z, λ) : growthτ (view) = 1] ≥ 1− negl(λ).

We now recall the immutable blockchain protocol Γ′

in Figure 8. Compared with the redactable protocol Γ as
depicted in Figure 1, the redaction operations are pruned
and the original block structure is adopted.

We present the corresponding ideal functionality F ′
tree

(Figure 9) and the ideal immutable protocol Π′
ideal (Figure

10) for Γ′, by pruning the redaction operations from Ftree

(c.f. Figure 3) and Πideal (c.f. Figure 4), respectively.
Redactable common prefix. Assume that there exists B∗

j

in the prefix of chaint
′

Pi′
(view) but not in the prefix of

chaintPi
(view) consisting of the first |chaintPi

(view)| − k0
records, where t ≤ t′, and a party Pi is honest at t and a
party Pi′ is honest at t′ in view, which means Bj is redacted

Immutable Blockchain Protocol Γ′ (of Node P)
/ * Initialization * /
Upon receiving init() from Z , P is activated to initialize as
follows:

let (pkp, skp) := Gen(1λ)
let txpool be an empty FIFO buffer
let chain := B0, where B0 is the genesis block

/ * Receiving a longer chain * /
Upon receiving chain′ for the first time, the (online) P pro-
ceeds as:

If |chain′| > |chain| and validateChain(chain′) = 1;
let chain := chain′ and broadcast chain

/ * Receiving transactions * /
Upon receiving transactions(d′) from Z (or other nodes) for the
first time, the (online) P proceeds as:

let txpool.enqueue(d′) and broadcast d′

/ * Main procedure * /
for each slot sl′ ∈ {1, 2, . . . }, the (online) P proceeds as:

if eligible(P, sl′) = 1:
let d′ := txpool.dequeue()
let (header, d) := Head(chain)
let header′ := (sl′, st′, G(d′), π′), where st′ := H(header)
and π′ is the output of P (the signature or the nonce)
let chain := chain∥(header′, d′) and broadcast chain

output extract(chain) to Z , where extract outputs an ordered
list of each block in chain

Figure 8. Immutable Blockchain Protocol

F ′
tree(p, p

′)
On init: tree := genesis, time(genesis) := 0
On receive leader(P, t) from A or internally:

if Γ[P, t] has not been set,

let Γ[P, t] =
{
1 with probability ϕ(p)

0 otherwise
, and return Γ[P, t]

On receive extend(chain,B) from honest party P :
let t be the current time
assert chain ∈ tree, chain∥B /∈ tree, and leader(P, t) outputs 1
append B to chain in tree, record time(chain∥B) := t
return “succ”

On receive extend(chain,B, t′) from corrupt party P∗:
let t be the current time
assert chain ∈ tree, chain∥B /∈ tree, leader(P, t) outputs 1, and
time(chain) < t′ < t
append B to chain in tree, record time(chain∥B) := t′

return “succ”
On receive verify(chain) from P : return (chain ∈ tree)

Figure 9. Ideal functionality F ′
tree

Ideal Protocol Π′
ideal

On init : chain := genesis
On receive chain′:

Assert |chain′| > |chain| and F ′
tree.verify(chain

′) = 1
For every slot:

–receive input B from Z
–if Ftree.extend(chain,B) outputs “succ”, then let
chain := chain∥B, and broadcast chain

–output chain to Z

Figure 10. Ideal Blockchain Protocol

17

with B∗
j in chaint

′

Pi′
(view) but not in chaintPi

(view). Then it
must be the case that the party Pi′ receives enough votes
(more than the number of corrupt committee members) for
B∗

j according to the ideal protocol specification. Therefore,
the redaction policy RP is satisfied, and we conclude Πideal

satisfies the k0-redactable common prefix.
Chain quality. If an honest block Bj is replaced with a
malicious block B∗

j (e.g., containing illegal or harmful data),
the adversary A can increase the proportion of adversarial
blocks in chain and finally break the chain quality property.
However, according to the ideal protocol specification, an
edited block can only be adopted when the votes are more
than the number of adversarial committee members. Since
only those adversarial committee members would vote for
the malicious block B∗

j , chain cannot be redacted. Therefore,
we conclude Πideal satisfies the (k0, µ)-chain quality.
Chain growth. Note that any edit operation would not
alter the length of chain, since it is not possible to re-
move any blocks from chain according to the ideal protocol
specification. Moreover, the new block issue process in
current time slot is not influenced by votes for any edit
request. No matter whether a party P has received enough
votes, P always extends chain at time slot t as long as
leader(P, t) = 1. Therefore, we conclude Πideal satisfies the
τ -chain growth.

Consider a p.p.t. adversary A in the real-world protocol
Γ. We construct the simulator S in the ideal protocol Πideal

as follows:

1) At the beginning of the protocol execution, S generates
public/secret key pair (pkP , skP) for each honest party
P , and stores the party P and public key pkP mapping.

2) For the leader selection process, we consider two com-
mon cases.
• The leader selection function eligible is modeled as the
random oracle H(·). Whenever A sends a hash query
H(P, t), S checks whether this query has been asked
before and returns the same answer as before if so. Oth-
erwise, S checks whether the identifier P corresponds
to this protocol instance. If not, S samples a random
number of the length |H(·)| and returns it to A. Else if
the check succeeds, S calls b ← Ftree.leader(P, t), and
returns b.
• The random oracle is replaced with normal function
such as PRFk(·). In this case, PRFk(·) is used by both S
and A. Most of the simulation proof is identical to the
random oracle case presented above, except that when
S learns k from Ftree, it simply gives k to A, and S no
longer needs to simulate random oracle queries for A.

3) S keeps track of the real-world chain for every honest
party Pi. Whenever it sends chain to A on behalf of Pi,
it updates this state for Pi. Whenever A sends chain
to honest party Pi, S checks the simulation validity of
chain. If it is valid and moreover chain is longer than
the current real-world chain for Pi, S also saves chain as
the new real-world chain for Pi.

4) Whenever an honest party P sends chain to S , S looks
up the current real-world state chain for P .
• If the editing pool EP is empty, S computes a new
chain′ using the real-world algorithm. Specifically, let sl
be the current slot, and if eligible(P, sl) = 1, then S sets

B := (header′, d′) with header′ = (sl, st′, G(d′), ib′, π′)
such that st′ = H(header) and π′ is the output of P (the
signature for Head(chain) = (header, d) or the nonce).
Finally, S sets chain′ := chain∥B and sends chain′ toA.
• If the editing pool EP is not empty (e.g., one can-
didate edited block B∗

j for Bj is included in EP), S
starts to collect the votes for B∗

j and simulates the vote
process using the real-world algorithm. Specifically, for
any party Pi who sends the candidate B∗

j to S in sl, if
Cmt(chain, ⌊sl/w⌋ ∗ w,Pi, para) returns (ci, proofi), S
votes for B∗

j in the name of Pi by computing vi = Sign
(ski, H(B∗

j)), and then sends (ci, proofi, vi) toA. If S re-
ceives votes for B∗

j , S computes (asig, PROOF) for B∗
j

by the aggregation of vi and (ci, proofi). If eligible(P, sl′)
= 1, S sets d′ := d′∥asig∥PROOF and B :=
(header′, d′) with header′ = {sl′, st′, G(d′), ib′, π′}, such
that st′ = H(header) and π′ is the output of P (the
signature for Head(chain) = (header, d) or the nonce).
Finally, S sets chain′ := chain∥B and sends chain′ toA.

5) Whenever A sends a message chain to an honest party
P , S intercepts the message and checks the validity of
chain by executing the real-world protocol’s checks (i.e.,
validateChain(.)). If the checks do not pass, S ignores the
message. Otherwise,
• For the candidate edited block B∗

j , S abort outputting
vote-failure if RP(chain,B∗

j , sl) = 1 for some slot sl
however S has never received enough votes for B∗

j .
• Else, let chain := extract(chain), and let chain[: l] be
the longest prefix of chain such that Ftree.verify(chain[:
l]) = 1. If any block in chain[l + 1 :] is signed by an
honest party P , S aborts outputting sig-failure. Else, for
each l′ ∈ [l+1, |chain|], S calls Ftree.extend(chain[: l′−1],
chain[l′], t′) acting as a corrupted stakeholder P∗, where
t′ = Time. Then S forwards chain to P .

Lemma A.1. If the signature scheme SIG is EUF-CMA
secure and the hash function H is collision-resistant, the
simulated execution never aborts with sig-failure except
with negligible probability.

Proof. Note that the adversaryA cannot produce a malicious
block B̃∗

j such that H(B̃∗
j) = H(B∗

j) for the candidate
edited block B∗

j , since the hash function H is collision-
resistant. Then, if sig-failure ever happens, the adversary A
must have forged a signature on a new message that S never
signed. Thus, we can immediately construct a reduction that
breaks the EUF-CMA security of the underlying signature
scheme SIG. Specifically, S simulates for A the protocol
executing just as the above specification, and guesses a
random party Pi whose signature security is broken. S
generates the public/secret key pair for all other parties
and produces the corresponding signatures. S also calls the
signing oracle to generate signatures for Pi. Eventually, if A
outputs a valid signature σ and σ has never been previously
output by the signing oracle, σ can be used as a forgery and
EUF-CMA security of SIG is broken.

Lemma A.2. If the aggregate signature scheme ASIG is
unforgeable and the function Cmt ensures the fraction (in
terms of computational power or stake) of honest users in
the committee is at least η, the simulated execution never
aborts with vote-failure except with negligible probability.

18

Proof. If vote-failure ever happens, the adversary S must
have forged an aggregate signature asig on the individual
messages in the name of the ξ parties, among which there
is at least one honest stakeholder. Then we can construct a
reduction that breaks the security of the underlying aggre-
gate signature scheme ASIG. Specifically, S simulates the
protocol executing for A as the above specification, and
guesses a random party Pi as the honest party among the
ξ parties. We denote by (pk∗, sk∗) the public/secret key
pair of Pi. S generates the public/secret key pair for all
other parties and produces the corresponding signatures.
S also calls the signing oracle Sign(sk∗, .) to generate any
signature for Pi as specified in the security experiment.
Eventually, if A outputs a valid aggregate signature asig on
the message set M = {m∗,m1, ...,mn−1} under the public
key set {pk∗, pk1, ..., pkn−1} and m∗ has never been queried
to the signing oracle Sign(sk∗, .), where n = ξ, then asig can
be used as a forgery and the security of ASIG is broken.

Conditioned on the fact that all of the above failure
events do not happen, the simulated execution is identically
distributed as the real-world execution from the perspective
of Z . We thus complete the proof of theorem.

We extend the redactable protocol of Figure 1 to accom-
modate multiple redactions for each block. Intuitively, each
redaction of one block must contain the entire history of
previous redactions of that block, and can only be approved
if all previous redactions (including the current one) are
approved. In this extension, the history information is stored
in the initial state component ib. We now sketch the main
protocol changes.

Proposing an edit. To propose a redaction for block
Bj = (slj , stj , G(dj), ibj , πj , dj), the user replaces dj with
the new data d∗j and replaces ibj with ib∗j = ibj ||G(stj , dj)
if ibj ̸= G(stj , dj). It then generates a candidate block
B∗

j = (slj , stj , G(d∗j), ib
∗
j , πj , d

∗
j). Note that, if Bj has

never been redacted before, then ibj = G(stj , dj) and thus
ib∗j = G(stj , dj).

Valid Blocks. To validate a block, the users run the
validateBlockExt algorithm (Algorithm 8). Intuitively, the
validateBlockExt algorithm performs the same operations
as the validateBlock algorithm (Algorithm 1), except that
it consider the case where the block can be redacted mul-
tiple times. Note that ib stores the history information
of the previous redactions, and thus can be parsed as
ib = ib(1)||...||ib(l) if the block has been redacted l times,
where ib(1) denotes the original state information of the
unredacted block version.

Algorithm 8 Extended block validation algorithm
validateBlockExt(B)

1: Parse B = (sl, st, G(d), ib, π, d);
2: Parse ib = ib(1)||...||ib(l), where ib(i) ∈ {0, 1}∗ ∀i ∈ [l];
3: Validate data d, if invalid return 0;
4: Validate the leader, if invalid return 0;
5: Validate data π, if invalid return 0;
6: else return 1;

Valid Blockchains. To validate a chain, the users run
the validateChainExt algorithm (Algorithm 9). The only dif-
ference from the original Algorithm 2 is that now ib =

ib(1)||...||ib(l) where ib(1) denotes the original state informa-
tion of the unredacted block version.

Algorithm 9 Extended chain validation algorithm
validateChainExt(chain)

1: Parse chain = (B1, · · · , Bm) and set j = m;
2: while j ≥ 2 do
3: parse Bj = (slj , stj , G(dj), ibj , πj , dj);
4: parse Bj−1 = (slj−1, stj−1, G(dj−1), ibj−1, πj−1, dj−1);
5: Parse ibj = ib

(1)
j ||...||ib

(l)
j , where ib

(i)
j ∈ {0, 1}

∗;
6: Parse ibj−1 = ib

(1)
j−1||...||ib

(l′)
j−1, where ib

(i)
j−1 ∈ {0, 1}

∗;
7: if Γ′.validateBlock(Bj) = 0 then return 0;
8: else if stj = H(slj−1, stj−1, G(stj−1, dj−1), ibj−1, πj−1),
9: then j = j − 1;

10: else if stj = H(slj−1, stj−1, ib
(1)
j−1, ib

(1)
j−1, πj−1) ∧

11: RP(chain,Bj−1, slj−1) = 1, then j = j − 1;
12: else return 0.
13: end while
14: return Γ′.validateBlockExt(Bj).

Valid Candidate Editing Blocks. To validate a candidate
editing block, the users run validateCandExt algorithm (Al-
gorithm 10). If a block Bj has been redacted more than once,
then validation of a candidate block B∗

j should account for
the previous redactions. That is, the proof of each redaction
must exist in the chain.

Algorithm 10 Extended candidate block validation algo-
rithm validateCandExt(chain, B∗

j)

1: Parse B∗
j = (slj , stj , G(d∗j), ib

∗
j , πj , d

∗
j);;

2: Parse ibj = ib
(1)
j ||...||ib

(l)
j , where ib

(i)
j ∈ {0, 1}

∗ ∀i ∈ [l];
3: if Γ′.validateBlock(B∗

j) = 0 then return 0;
4: Parse Bj−1 = (slj−1, stj−1, G(dj−1), ibj−1, πj−1, dj−1);
5: Parse ibj−1 = ib

(1)
j−1||...||ib

(l′)
j−1, where ib

(i)
j−1 ∈ {0, 1}

∗ ∀i ∈
[l′];

6: Parse Bj+1 = (slj+1, stj+1, G(dj+1), ibj+1, πj+1, dj+1);
7: if stj ̸= H(slj−1, stj−1, ib

(1)
j−1, ib

(1)
j−1, πj−1)

8: or stj+1 ̸= H(slj , stj , ib
(1)
j , ib

(1)
j , πj−1), then return 0;

9: for i ∈ {2, ..., l} do
10: if there is no valid (asig, PROOF) for hash of the

candidate
11: block H(slj , stj , ib

(i)
j , ib

(1)
j ||...||ib

(i−1)
j) in the chain,

then
12: return 0.
13: end for
14: return 1.

