
Redactable Blockchain Protocols with Instant Redaction
Jing Xu

xujing@iscas.ac.cn
Institute of Software, Chinese

Academy of Sciences

Xinyu Li
xinyuli1920@gmail.com

Institute of Software, Chinese
Academy of Sciences

&&The University of Hong Kong

Lingyuan Yin
lingyuan2018@iscas.ac.cn

Institute of Software, Chinese
Academy of Sciences

Yuan Lu
luyuan@iscas.ac.cn

Institute of Software, Chinese
Academy of Sciences

Qiang Tang
qiang.tang@sydney.edu.au
The University of Sydney

Zhenfeng Zhang
zhenfeng@iscas.ac.cn

Institute of Software, Chinese
Academy of Sciences

ABSTRACT
Blockchain technologies have received a great amount of atten-
tion, and its immutability is paramount to facilitate certain appli-
cations requiring persistent records. However, in many other use-
cases, tremendous real-world incidents have exposed the harm of
strict immutability. For example, illicit data stored in immutable
blockchain poses numerous challenges for law enforcement agen-
cies such as Interpol, and millions of dollars are lost due to the
vulnerabilities of immutable smart contract. Moreover, “Right to
be Forgotten" (a.k.a. data erasure) has been imposed in new Eu-
ropean Union’s General Data Protection Regulation, thus causing
immutable blockchains no longer compatible with personal data.
Therefore, it is imperative (even legally required) to design efficient
redactable blockchain protocols in a controlled way.

In this paper, we present a generic approach of designing redactable
blockchain protocol in the permissionless settingwith instant redac-
tion, applied to both proof-of-stake (PoS) blockchain and proof-of-
work (PoW) blockchain with just different instantiations to ran-
domly select “committees” according to stake or computational
power. Our protocol can maintain the same adversary bound re-
quirements and security assumption as the underlying blockchain
(e.g., 1/2 adversary bound and asynchronous networks), which is
compatible with most current blockchains requiring only minimal
changes. It also offers public verifiability for redactable chains, where
any edited block in the chain is publicly verifiable. Compared to
previous solutions in permissionless setting, our redaction oper-
ation can be completed instantly, even only within one slot for
the best-case scenario of PoS instantiation, which is desirable for
redacting harmful or sensitive data. Correspondingly, our redac-
tion verification in the blockchain is also instant. Furthermore, we
define the first ideal functionality of redactable blockchain follow-
ing the language of universal composition, and prove that our pro-
tocol can achieve the security property of redactable common pre-
fix, chain quality, and chain growth. Finally, we develop a proof-
of-concept implementation, and conduct extensive experiments to
evaluate the overhead incurred by redactions. The experimental
results show that the overhead remains minimal for both online
nodes and re-spawning nodes, which demonstrates the high effi-
ciency of our design.

KEYWORDS
Blockchain; Proof-of-Stake; Proof-of-Work; Redactable Blockchain

1 INTRODUCTION
Blockchain has been gaining increasing popularity and acceptance
by a wider community, which enables Internet peers to jointly
maintain a ledger. One commonlymentioned feature of blockchain
is immutability (or untamperability) inmassmedia, and immutabil-
ity of blockchain is paramount to certain applications to ensure
keeping persistent records. However, in many other applications,
such strict immutability may not be desirable or even hinder a
wider adoption for blockchain technology.

First, since everyone in the Internet is able to write to permis-
sionless blockchain, some malicious users may abuse the ability to
post arbitrary transaction messages [40]. It could be the case that
the data stored on the ledger might be sensitive, harmful or ille-
gal. For instance, Bitcoin blockchain contains leaked private keys
[41], materials that infringe on intellectual rights [28], and even
child sexual abuse images [34]. It is clear that allowing those con-
tents to be publicly available for everyone to access is unaccept-
able. They may affect the life of people forever, and block broader
blockchain applications [16] in areas involving data such as gov-
ernment records [9, 23] and social media [3, 10].

On the other hand, as a full node, maintaining the whole ledger
will also bear with the burden of maintaining those potentially il-
licit contents, thus the risk of being prosecuted for possessing and
distributing illicit information increases. Concerning about above
liability, honest nodes may opt-out as a full node, which in turn
hurts the security of permissionless blockchain itself.

Indeed, with the adoption of the new European Union’s General
Data Protection Regulation (GDPR) [7] in May 2018, it is no longer
compatible with current blockchains such as Bitcoin and Ethereum
[6] to record personal data. In particular, GDPR imposes the “Right
to be Forgotten" as a key Data Subject Right [29], i.e., the data sub-
ject shall have the right to obtain from the controller the erasure of
personal data concerning him or her without undue delay. How to
facilitate wider adoption of blockchain while complying with new
regulations on personal data becomes a natural challenge.

Second, in certain systems, some flexibility is necessary to hedge
with user mistakes or accidents to protect the system integrity. For
example, in database, a rollback is the operation which returns the
database to some previous state [30]. One other example is misdi-
rected payment. According to statistics, around a quarter of people
have accidentally paid the wrong person [1]. The Payments Coun-
cil (part of UK finance) introduced a voluntary code of conduct

1

for banks and building societies to follow when it comes to these
misdirected payments. If a user who made the mistake notifies his
bank fast enough, and provides clear evidence, “his bank will con-
tact the receiving bank on his behalf to request the money isn’t
spent, so long as the recipient doesn’t dispute the claim” [1]. In
the centralized banking system, there may still exist options to re-
verse incorrect transactions, while if similar mistakes happen in
decentralized cryptocurrencies, thing would become much more
complicated even if it is ever feasible.

We would like to stress that though blockchain offers a more
reliable trust model as no single entity can fully control the sys-
tem, however, it by no means insists on a strict immutability as an
inherent property that is derived from consensus.

In fact, when the notorious DAO vulnerability was exploited,
3,641,694 Ethers (worth of about 79 million US dollars) were stolen
due to the flaws of Ethereum and DAO contract [31], the financial
losses have to be resolved by patching the vulnerability and “roll-
back” via a hard fork (majority of the miners are suggested by the
Ethereum developers to adopt a newer client and create a fork of
the chain from a state before the vulnerable contract got deployed).
Hard forks also happened before, e.g., for Bitcoin when upgrading
its protocol [4]. Of course, hard forks are not desirable as they may
split the community and are very costly to implement.

Following above discussions, there exists a strong need to redact
content of blockchain in exceptional circumstances, as long as the
redaction proposal is clearly examined and satisfies full transparency
and accountability (not determined by any single entity, and suffi-
cient confidence can be gained that at least some honest users have
approved the proposal).

1.1 Related Work
There exist several works that start exploring feasible methods for
redacting blockchain.

A straightforward approach is to initiate a hard fork, which es-
sentially requires all communitymembers to vote by action (whether
to follow the new fork). Doing this sometimes brings the risk of
dividing the community, e.g., Bitcoin has a dozen forks, each of
which now forms its own community. Moreover, such a proce-
dure is extremely costly and slow, which normally takes multiple
months to finalize [8], and if the redaction needs to touch an an-
cient block, growing a longer fork may take even much longer.

Ateniese et al. [12] proposed the notion of redactable blockchain
in the permissioned setting. They use a chameleon hash function
[15] to compute hash pointer, when redacting a block, a collision
for the chameleon hash function can be computed by a trusted
party (e.g., the certificate authority) with access to the chameleon
trapdoor key. By this way, the block data can be modified while
maintaining the chain consistency [11, 24]. Later, in order to sup-
port fine-grained and controlled redaction of blockchain, Derler
et al. [20] introduced the novel concept of policy-based chameleon
hash, where anyonewho possesses enough privileges to satisfy the
policy can then find arbitrary collisions for a given hash.

Their solutions focus on the permissioned setting, while in per-
missionless setting, there is no single trusted entity and users can
join and leave the system at any time, thus their solutions will suf-
fer from scalability issues when sharing the trapdoor key among

miners and computing a collision for the chameleon hash function
by a multi-party computation protocol. Moreover, public account-
ability of redaction cannot be provided in their solutions, and users
are not clear to when and where a redaction having occurred.

Puddu et al. [39] also presented a redactable blockchain, called
𝜇 chain. In 𝜇 chain, the sender of a transaction can encrypt some
different versions of the transaction, denoted by “mutations", the
decryption keys are secretly shared among miners, and the unen-
crypted version of a transaction is regarded as the active transac-
tion. When receiving a request for redacting a transaction, min-
ers first check it according to redaction policy established by the
sender of the transaction, then compute the appropriate decryp-
tion key by executing a multi-party computation protocol, and fi-
nally decrypt the appropriate version of the transaction as a new
active transaction. Unfortunately, the malicious users who estab-
lish redaction policy can escape redaction, or even break the sta-
bility of transactions by the influence among transactions. More-
over, 𝜇 chain also faces scalability problem when reconstructing
decryption keys by the multi-party computation protocol.

Recently, Deuber et al. [21] proposed the first redactable blockchain
protocol in the permissionless setting, which does not rely on heavy
cryptographic protocols or additional trust assumption. Once a
redaction is proposed by a user, the protocol starts a consensus-
based voting period, and only after obtaining enough votes for ap-
proving the redaction, the edition is performed on the blockchain.
Each user can verify whether a redaction proposal is approved by
checking the number of votes on the chain. Similarly, Thyagara-
jan et al. [42] proposed a generic protocol called Reparo on top of
any blockchain to perform redactions, where the block structure re-
mains unchanged by introducing external data structures to store
block contents.

Their solutions are elegant, however, the new joined user has
to check all the blocks within the voting period to verify a redac-
tion on the blockchain. More importantly, the voting period is very
long, for example, 1024 consecutive blocks are required in their Bit-
coin instantiation, which takes about 7 days to confirm and pub-
lish a redaction block. Nevertheless, in practice, it is inefficient to
redact sensitive data after such a long time, and it is also difficult
to ask newly joined users in the system maintain these redactions.
In addition, the threshold of votes in their solutions relies on chain
quality of underlying blockchain, concretely, if the threshold of
votes approaches 1/2 (as in their bitcoin instantiation), the chain
quality also approaches 1/2. However, according to [37], the chain
quality is close to 1− 𝜌

1−𝜌 , where 𝜌 is the fraction of computational
power the adversary controls, and thus redactable blockchains [21]
[42] actually tolerate 𝜌 < 1/3 adversary.

1.2 Our Contributions
In the permissionless setting, it seems unreasonable to have a trusted
party holding certain trapdoor to modify the chain (like in the per-
missioned setting [12]). It follows that we have to choose a com-
mittee to jointly make the decision. Indeed, existing works [21, 42]
pick one committee member per block. For this reason, the redac-
tion will be at least linear to𝑇 .𝑡 , where𝑇 is the committee size, and

2

𝑡 is the block generation time of the underlying blockchain. How-
ever, in order to ensure honest majority, the committee size has to
be substantially large.

In this work, we aim to achieve redactable blockchains in the
permissionless setting such that the redaction could be instant, which
means that the redaction time is at most 𝑐 · 𝑡 for a small constant 𝑐 .
Ideally 𝑐 = 1, and thus the redaction could be as fast as the under-
lying chain!

More specifically, our technical contributions are threefold.
Generic construction of blockchain with instant redaction.
We present a generic approach to design blockchain with instant
redaction. Observe that existing work emulates the Bitcoin design,
viewing block generation as a random walk that eventually con-
verges to the longest chain, thus directly binding the committee
selection to the consensus (treating each block as a random draw of
a peer) requires a long convergence time (large number of blocks).
But in certain blockchain design (such as Algorand [26]), one may
use each block to randomly draw a large number of committee
members, then let the committee members to run BFT to deter-
mine next block.

Inspired by this simple observation, we proceed in two steps.
First, we deviate from the previous path and directly use the un-
derlying component relying on stake or computing power to se-
lect committees randomly among all parties, ensuring a sufficient
fraction of committee members are honest. In particular, the func-
tionality of the committee election is refined by the general func-
tions Cmt and VerifyCmt. However, it is challenging to make Cmt
and VerifyCmt suitable for different instantiations such as PoS and
PoW. In our approach, whether a party being elected as the com-
mittee member is based on his voting period instead of his current
slot, i.e., the first slot 𝑠𝑙 of his voting period as the input parameter
of functions, which makes committee selection more generic.

Then in the second phase, each committee member would vote
by signing on the hash of the candidate edited block and diffuse the
vote (i.e., the signature as well as the proof of committee members)
to the network. To avoid the impact of network delays and collect
enough votes, we set the maximum time of collecting votes (a.k.a.
voting period) to be 𝑤 slots, which is independent of block gener-
ation time. The leader of current slot (during voting period) adds
votes collected and corresponding succinct proofs to his block.

On a high level, any party can propose a candidate edited block
𝐵∗𝑗 for 𝐵 𝑗 in the chain, and only committee members in the vot-
ing period can promptly process the edit request once receiving
𝐵∗𝑗 , including voting for 𝐵∗𝑗 and broadcasting their votes and cor-
responding proofs; the slot leader during the voting period adds
these votes and proofs to its block data collected and proposes a
new block; if votes are approved by the redaction policy (e.g., vot-
ing bound in the voting period), 𝐵 𝑗 is replaced by 𝐵∗𝑗 .

Note that our redaction method can achieve instant redaction, if
the underlying blockchain progresses fast, then redaction will also
be fast. Moreover, for the new joined user, it is also fast to verify
a redaction in the blockchain. Furthermore, our redactable proto-
col can tolerate an adversary with less than 50% computational
power (or stake), which is optimal in the blockchain protocol. This

also means our approach will not reduce the adversary bound re-
quirements of all blockchain protocols. Our protocol also offers ac-
countability for redaction, where any edited block in the chain is
publicly verifiable. In addition, multiple redactions per block can
be performed throughout the execution of the protocol.
Simulation based security analysis of redactable blockchain.
To characterize the security properties of redactable blockchains
more precisely and analyze them rigorously, we define for the first
time the ideal functionality of a redactable blockchain in the simu-
lation based paradigm. Our proof first considers an idealized func-
tionality F𝑡𝑟𝑒𝑒 that keeps track of all valid chains at any moment,
and then shows that any attack that succeeds in real-world proto-
col can be turned into an attack in the idealized F𝑡𝑟𝑒𝑒 model. In
the idealized functionality F𝑡𝑟𝑒𝑒 , we use F𝑡𝑟𝑒𝑒 .committee query to
obtain the committee members, and F𝑡𝑟𝑒𝑒 .redact query to redact
the blockchain under certain conditions. In fact, separating these
two queries in our idealized functionality ensures generality and
instant redaction of redactable protocol. Moreover, F𝑡𝑟𝑒𝑒 models
the ability of voting period changing with𝑤 .

As a sanity check, we show that the ideal functionality indeed
implies the redactable common prefix property defined in [21], and
the usual chain quality and chain growth properties [25]. Essen-
tially, the redactable common prefix property ensures that any edited
block which violates original common prefix should satisfy the
redaction policy RP. However, different from the redaction policy
in [21] considering the consecutive ℓ blocks as the redaction pe-
riod (which is not suitable for instant redaction), our RP requires
votes are embedded in at most 𝑤 slots, where ℓ is the committee
size and𝑤 is the number of slot in the voting period.
Instantiations and performance evaluation. We demonstrate
that our construction is generic by presenting concrete instanti-
ations of the general functions Cmt and VerifyCmt on PoS and
PoW (in principle, we may also instantiate via proof of space). Our
instantiations can achieve the optimal 1/2 adversary bound and
moreover support various network environments even asynchro-
nous network, and thus provide compatibility with the underlying
blockchain. In PoS instantiation, we similarly leverage hash func-
tion or verifiable random function (VRF) to sample sufficient num-
ber of committee members according to stake distribution. Differ-
ent from 1/3 committee adversary tolerance in Algorand [26], we
ensure the majority of commmitee members are honest by chang-
ing the constraint conditions on the expected committee size 𝑇 .

While in PoW instantiations, more cares are needed. First, differ-
ent fromPoS, an adversary during the procedure of collecting votes
still can continue to solve the computational puzzle, which leads to
much computational power than honest users. Second, if an adver-
sary in PoW withholds some blocks, and once these blocks are put
to the chain, the adversary may have more advantage of comput-
ing the corresponding puzzles in advance. Finally, in asynchronous
network, the actual number of committee members is impossible
to be determined ahead of time, and thus it is hard to choose the
voting bound. To resolve these instant redaction challenges in PoW
blockchain, we propose a new approach to design redactable PoW
blockchain in asynchronous network, and committee members are
elected by finding solutions to a properly chosen easy puzzle (i.e.,

3

Table 1: Comparison of our redaction solution with existing works

system-scale
MPC

network
compatibility1

adversary
tolerance for PoW2

public
verifiability

redaction
time/slots3

verification time of
redaction/slots4

Ateniese et al. [12] required yes 1/2 no N/A N/A
Puddu et al. [39] required yes 1/2 no N/A N/A
Derler et al. [20] required yes 1/2 no N/A N/A
Deuber et al. [21] not required yes 1/3 yes 513 513

Thyagarajan et al. [42] not required yes 1/3 yes 513 513

Ours not required yes 1/2 yes PoS: 1
PoW: ≤ 20

PoS: 1
PoW: ≤ 20

1 Network compatibility implies that the redaction solution does not impose any network assumption on the underlying blockchain.
2 We only list the required adversary tolerance in PoW setting, while in PoS setting, all of adversary tolerance is 1/2 and thus omitted in the table.
3 We evaluate the time one redaction can be completed in the best-case, where N/A is the abbreviation for the phrase “Not Applicable". In [21] and [42], the voting
period is ℓ (instantiated to 1024 slots), and in the best-case more than one half of slots (i.e., 513 slots) are needed for the redaction. In our PoS construction, the
redaction can be completed within just one slot if the underlying network is well enough. While in our PoW construction, the selection of committee members is
completed in 𝑟 slots, where 𝑟 is instantiated to 20 in Section V, thus in the best-case 20 slots are enough for one redaction. Note that for all solutions in the table,
one completed redaction can only be stable on the chain after several new blocks have been generated, e.g. six blocks in Bitcoin.

4 We evaluate the time one redaction can be verified in the best-case, and the analysis is similar to the above item.

bigger difficulty parameter𝐷), so that during regular mining proce-
dure many easier puzzle solutions will be produced as a byproduct.
In particular, according to “no long block withholding” lemma [37,
Lemma 6.10], we increase the rounds of committee election to guar-
antee honest majority of committee members, even though the ad-
versary has extra time advantage to find easier puzzle solutions.
We also set the expected committee size satisfying two conditions:
1) a sufficient fraction of committee members are honest; and 2)
malicious committee members cannot generate enough votes and
complete the redaction of blockchain.

In addition, we give detailed analysis of each instantiation, and
all of them satisfy the condition that committee members are cho-
sen randomly and honest fraction of committees are guaranteed.
The comparison of our construction with some related redactable
blockchains is also shown in Table 1.

We also develop a proof-of-concept (PoC) implementation of
our redaction approach, and conduct extensive experiments to eval-
uate the overhead after applying our redaction mechanism. The
results demonstrate the high efficiency of our design. In particular,
compared to the underlying blockchain (which simulates Cardano
SL), the overhead incurred by redactions remains minimal for both
online nodes and re-spawning nodes. For the online nodes, they
only have to face a cheap and constant overhead (i.e., an extra la-
tency of 0.8 second) to validate a newcoming block including a
proof on redaction and then perform corresponding editing. For
the re-spawning nodes, they can efficiently validate a redactable
chain despite of many edited blocks. For example, when less than
6.25% blocks are edited, the time of validating a redactable chain is
nearly same to that of validating an immutable chain. Remarkably,
even if in the extremely pessimistic case that half blocks are edited,
the performance of validating such a redacted chain remains ac-
ceptable (about 5X more than validating an unedited chain).

2 FORMAL ABSTRACTION OF BLOCKCHAIN
In this section, we define the formal abstraction of a blockchain
based on the approach of Garay et al. [25] and Pass et al. [37, 38].

2.1 Protocol Execution Model
We assume a protocol specifies a set of instructions for the inter-
active Turing Machines (also called parties) to interact with each
other. The protocol execution is directed by an environment Z,
which activates a number of parties (either honest or corrupt). Hon-
est parties faithfully follow the protocol’s prescription, whereas
corrupt parties are controlled by an adversaryA. We assume that
honest parties can broadcastmessages to each other. The adversary
A cannot modify the content of messages broadcasted by honest
parties, but it can delay or reorder messages arbitrarily as long as
it eventually delivers all messages.

We follow the nice results on the foundation of blockchains [32,
33] to assume a global clock, which can be seen as an equivalent
notion of the height of the latest chain (or more specifically, the
latest slot number in the blockchain). Notation-wise, by 𝑇𝑖𝑚𝑒 , we
denote that a blockchain node invokes the global clock to get the
current time. A protocol’s execution proceeds in atomic time units.
At the beginning of every time unit, honest parties receive inputs
from an environmentZ; while at the end of every time unit, honest
parties send outputs to Z. Z can spawn, corrupt, and kill parties
during the execution as follows.
• The environmentZ can spawn new parties that are either hon-

est or corrupt any time during the protocol’s execution.
• The environmentZ can corrupt an honest party and get access

to its local state.
• The environmentZ can kill either an honest or a corrupt party
𝑖 , and at this moment, 𝑖 is removed from the protocol execution.

2.2 Blockchain Protocol
We recall basic definitions [19] of blockchain. There are 𝑛 parties
P1, . . . ,P𝑛 and each party P𝑖 possesses a public/secret key pair
(𝑝𝑘𝑖 , 𝑠𝑘𝑖). Without loss of generality, we assume that the public
keys 𝑝𝑘1, . . . , 𝑝𝑘𝑛 are known by all system users. The protocol exe-
cution is divided in time units, called slots. We denote a block to be
of the form𝐵 𝑗 := (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 , 𝑑 𝑗), whereℎ𝑒𝑎𝑑𝑒𝑟 𝑗 = (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑 𝑗), 𝜋 𝑗)
denotes the block header information, and 𝑑 𝑗 denotes the block
data. In ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 , 𝑠𝑙 𝑗 ∈ {𝑠𝑙1, · · · , 𝑠𝑙𝑅} is the slot number, 𝑠𝑡 𝑗 is the

4

hash of the previous block header denoted by𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗−1),𝐺 (𝑑 𝑗)1
denotes the state of the block data, and 𝜋 𝑗 contains some special
header data for the block (e.g., in PoS, it’s a signature on (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑 𝑗))
computed under the secret key of slot leader generating the block,
while in PoW, it is a nonce for the puzzle of PoW). Here 𝐻 and 𝐺
denote two collision-resistent hash functions.

A valid blockchain 𝑐ℎ𝑎𝑖𝑛 relative to the genesis block 𝐵0 is a se-
quence of blocks 𝐵1, . . . , 𝐵𝑚 associated with a strictly increasing
sequence of slots, where 𝐵0 contains auxiliary information and
the list of parties identified by their respective public-keys. We
use Head(𝑐ℎ𝑎𝑖𝑛) to denote the head of 𝑐ℎ𝑎𝑖𝑛 (i.e., 𝐵𝑚). In a basic
blockchain protocol, the users always update their current chain to
the longest valid chain they have seen so far. Let eligible(P𝑖 , 𝑠𝑙) be
a function that determines whether a party P𝑖 is an eligible leader
at the time slot 𝑠𝑙 , then P𝑖 can create a block at 𝑠𝑙 and broadcast
the updated 𝑐ℎ𝑎𝑖𝑛 if eligible(P𝑖 , 𝑠𝑙) = 1, where the leader election
can be achieved according to specific blockchain protocol.

We use view← EXECΠ (A,Z, 𝜆) to denote a randomized execu-
tion of the blockchain protocol Πwith security parameter 𝜆, which
contains the joint view of all parties (i.e., all their inputs, random
coins and all messages sent and received) in the execution. We use
|view| to denote the number of time units in the execution trace
view, and chain𝑡𝑖 (view) denote the output of party 𝑖 to the environ-
ment Z at time unit 𝑡 in view of extracted ideal blockchain chain.
The notation chain[𝑖] denotes 𝑖-th block of chain, chain[: 𝑙] de-
notes the prefix of chain consisting of the first 𝑙 blocks, chain[𝑙 :]
denotes all blocks at length 𝑙 or greater, and chain[: −𝑙] denotes
the entire chain except for the trailing 𝑙 blocks. Security properties
of blockchain protocol are referred to Appendix B.

3 REDACTING BLOCKCHAIN
In this section we present a generic construction that converts a
basic blockchain into redactable blockchain protocol. We also ex-
tend the redactable protocol to accommodate multiple redactions
for each block in Appendix G.

3.1 Overview of Redactable Blockchain
Protocol

We construct our redactable blockchain protocol Γ by modifying
and extending the basic blockchain protocol. We assume that the
fraction of the computational power (or stake) held by honest users
in the blockchain is ℎ (a constant greater than 1/2). We denote by
𝑤 the needed slots for votes diffusion, where 𝑤 can be selected
based on specific environments to guarantee the votes can be re-
ceived by all users after 𝑤 slots with a greater probability. For
every 𝑠𝑙 mod 𝑤 = 0, we also use the slots between 𝑠𝑙 and 𝑠𝑙 +
𝑤 − 1 to denote the voting period for the editing proposal. In addi-
tion, we assume that there is some application-specific function
Cmt(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙,P, 𝑝𝑎𝑟𝑎) that examines whether P is the commit-
tee member in the voting period beginning from 𝑠𝑙 and outputs
(𝑐, 𝑝𝑟𝑜𝑜 𝑓), where 𝑝𝑎𝑟𝑎 is an optional parameter in specific instan-
tiations, 𝑐 is the weight of P in the committee, 𝑝𝑟𝑜𝑜 𝑓 is committee
member proof. Correspondingly, there is some application-specific
function VerifyCmt(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙, 𝑐 , 𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑎𝑟𝑎′) to verify (𝑐, 𝑝𝑟𝑜𝑜 𝑓),
where 𝑝𝑎𝑟𝑎′ is the public parameter related to specific applications.
1In practice𝐺 (𝑑 𝑗) means the Merkle root of the block data.

In the committee selected byCmt, we set the fraction of the compu-
tational power (or stake) held by honest users is at least 𝜂 (𝜂 > 1/2).

First, a redaction policy is introduced to determine whether an
edit to the blockchain should be approved or not.

Definition 3.1. (Redaction Policy RP). We say that an edited
block 𝐵∗ at the slot 𝑠𝑙 satisfies the redaction policy, i.e., RP(𝑐ℎ𝑎𝑖𝑛,
𝐵∗, 𝑠𝑙) = 1, if the number of votes on 𝐵∗ during a voting period is
more than a threshold value2, where each block embedding votes
is in chain[: −𝑘0], and 𝑘0 is the common prefix parameter.

Next, in order to accommodate editable data, we extend the
above block structure to be of the form 𝐵 := (ℎ𝑒𝑎𝑑𝑒𝑟, 𝑑), where
ℎ𝑒𝑎𝑑𝑒𝑟 = (𝑠𝑙, 𝑠𝑡,𝐺 (𝑑), 𝑖𝑏, 𝜋) and the newly added item 𝑖𝑏 denotes
the original state of the block data. Specifically, if a blockchain
𝑐ℎ𝑎𝑖𝑛 with Head(𝑐ℎ𝑎𝑖𝑛) = (ℎ𝑒𝑎𝑑𝑒𝑟, 𝑑) is updated to a new longer
blockchain 𝑐ℎ𝑎𝑖𝑛′ = 𝑐ℎ𝑎𝑖𝑛∥𝐵′, the newly created block𝐵′ = (ℎ𝑒𝑎𝑑𝑒𝑟 ′,
𝑑 ′) setsℎ𝑒𝑎𝑑𝑒𝑟 ′ = (𝑠𝑙 ′, 𝑠𝑡 ′,𝐺 (𝑑 ′), 𝑖𝑏 ′, 𝜋 ′) with 𝑠𝑡 ′ = 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟) and
𝑖𝑏 ′ = 𝐺 (𝑑 ′). Notice that in order to maintain the link relationships
between an edited block and its neighbouring blocks, inspired by
the work [21] we introduce 𝑖𝑏 to represent the initial and unedited
state of block, i.e., 𝑖𝑏 = 𝐺 (𝑑0) if original block data is 𝑑0 in the
edited block 𝐵 = (ℎ𝑒𝑎𝑑𝑒𝑟, 𝑑), where ℎ𝑒𝑎𝑑𝑒𝑟 = (𝑠𝑙, 𝑠𝑡,𝐺 (𝑑), 𝑖𝑏, 𝜋).

Generally, a blockchain 𝑐ℎ𝑎𝑖𝑛 = (𝐵1, · · · , 𝐵𝑚) can be redacted
by the following steps.
(1) Proposing a redaction. If a user wishes to propose an edit to

block 𝐵 𝑗 in 𝑐ℎ𝑎𝑖𝑛, he parses 𝐵 𝑗 = (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 , 𝑑 𝑗) with ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 =
(𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑 𝑗), 𝑖𝑏 𝑗 , 𝜋 𝑗), replaces 𝑑 𝑗 with the new data 𝑑∗𝑗 , and
then broadcasts the candidate block 𝐵∗𝑗 = (ℎ𝑒𝑎𝑑𝑒𝑟

∗
𝑗 , 𝑑
∗
𝑗) to the

network, where ℎ𝑒𝑎𝑑𝑒𝑟∗𝑗 = (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑∗𝑗), 𝑖𝑏 𝑗 , 𝜋 𝑗), and 𝑑
∗
𝑗 is

the empty data if the user wants to remove all data from 𝐵 𝑗 .
(2) Updating the editing pool. Upon receiving 𝐵∗𝑗 from the net-

work, every party P𝑖 first validates whether 𝐵∗𝑗 is a valid can-
didate editing block, and stores it in his own editing pool EP
if it is. Notice that each candidate editing block in the pool EP
has a period of validity 𝑡𝑝 . At the beginning of each new slot 𝑠𝑙 ,
every party P𝑖 tries to update his own editing pool EP. Specif-
ically, for every candidate editing block 𝐵∗𝑗 in EP: (i) P𝑖 checks
whether 𝐵∗𝑗 has expired or not, and if it is, P𝑖 removes 𝐵∗𝑗 from
EP; (ii) P𝑖 computes RP(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗 , 𝑠𝑙 𝑗), and if it outputs 1, P𝑖
removes 𝐵∗𝑗 from EP.

(3) Voting for candidate editing blocks. For each candidate edit-
ing block 𝐵∗𝑗 in EP, P𝑖 checks whether he has voting right in
the current voting period, which is determined by Cmt(𝑐ℎ𝑎𝑖𝑛,
⌊𝑠𝑙 ′/𝑤⌋∗𝑤 ,P𝑖 , 𝑝𝑎𝑟𝑎), where 𝑠𝑙 ′ is the current slot, and ⌊𝑠𝑙 ′/𝑤⌋∗
𝑤 denotes the first slot in the current voting period. If it out-
puts (𝑐, 𝑝𝑟𝑜𝑜 𝑓) and 𝑐 ≠ 0, P𝑖 broadcasts (𝑐, 𝑝𝑟𝑜𝑜 𝑓) and the
signature 𝑠𝑖𝑔 on 𝐻 (𝐵∗𝑗) as his votes.

(4) Proposing new blocks. The slot leader of 𝑠𝑙 ′ creates a block
and broadcasts 𝑐ℎ𝑎𝑖𝑛 in exactly the same manner as the ba-
sic blockchain, if his editing pool is empty. Otherwise, for the
candidate block 𝐵∗𝑗 in the editing pool, the leader tries to col-
lect and validate the votes on 𝐵∗𝑗 in the voting period by using

2The threshold value would be set according to different committee selectionmethods
such that it is more than the maximum number of votes the adversary can produce.

5

sub-protocol collectVote (Figure 2). If collectVote returns vote-
proof at slot 𝑠𝑙 ′, the leader of 𝑠𝑙 ′ adds vote-proof to his block
data, creates a new block and broadcasts 𝑐ℎ𝑎𝑖𝑛.

(5) Editing a block. For each candidate block 𝐵∗𝑗 in the editing
pool EP, the users check whether RP(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗 , 𝑠𝑙 𝑗) = 1. If
yes, they replace 𝑐ℎ𝑎𝑖𝑛[𝑗] with 𝐵∗𝑗 and remove 𝐵∗𝑗 from EP.

Redactable blockchain protocol offers public verifiability. Con-
cretely, to validate a redactable chain, users first check each block
exactly like in the underlying immutable blockchain protocol. Once
a “broken" link between blocks is found, users check whether the
link still holds for the old state information, and whether the redac-
tion policy RP is satisfied. By this way, the redaction operation of
blockchain can be verified. For example, in the blockchain 𝑐ℎ𝑎𝑖𝑛
= (𝐵1,· · · ,𝐵𝑚), if 𝑠𝑡 𝑗 ≠ 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗−1) for ℎ𝑒𝑎𝑑𝑒𝑟 𝑗−1 = (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1,
𝐺 (𝑑 𝑗−1), 𝑖𝑏 𝑗−1, 𝜋 𝑗−1), 𝑐ℎ𝑎𝑖𝑛 is valid only under the condition of 𝑠𝑡 𝑗
= 𝐻 (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1, 𝑖𝑏 𝑗−1, 𝑖𝑏 𝑗−1, 𝜋 𝑗−1) and RP(𝑐ℎ𝑎𝑖𝑛, 𝐵 𝑗−1, 𝑠𝑙 𝑗−1) = 1.

For presentation simplicity, we extend the structure of block
headers in the underlying blockchains, but it is straightforward
to perform engineering optimizations to maintain the same block
structure between the old and the new nodes. The idea behind the
“soft-fork" could be simple [42]: i) the upgraded blockchain node
maintains two separate storages for the original blockchain and
the modifications respectively, so the blockchain’s upgrade does
not have to change the structure of block headers at the end of
new nodes; ii) all modification requests and approvals are sent to
the blockchain by rephrasing existing script opcodes, for example,
through being attached to OP_RETURN in bitcoin-like script (e.g.,
Cardano’s settlement layer).

3.2 Redactable Blockchain Protocol
Before our protocol is described, we first define the format of valid
blocks, valid blockchains, and valid candidate editing blocks. Roughly
speaking, we need to ensure that for an edited block, its original
state before editing still can be accessible for verification.
Valid Blocks. To validate a block 𝐵, the validateBlock algorithm
(Algorithm 1) first checks the validity of data included in 𝐵 accord-
ing to the system rules. It then checks the validity of the leader by
eligible function. Finally, it verifies the signature𝜋 (on (𝑠𝑙, 𝑠𝑡,𝐺 (𝑑), 𝑖𝑏)
or on (𝑠𝑙, 𝑠𝑡, 𝑖𝑏, 𝑖𝑏)) with the public key 𝑝𝑘 of the leader or verifies
the nonce 𝜋 for the puzzle of PoW. In particular, for an edited block,
the signature 𝜋 is on the “old" state (𝑠𝑙, 𝑠𝑡, 𝑖𝑏, 𝑖𝑏). We say that 𝐵 is a
valid block iff validateBlock(𝐵) outputs 1.

Algorithm 1 Block validation algorithm validateBlock(𝐵)

1: Parse 𝐵 = (ℎ𝑒𝑎𝑑𝑒𝑟,𝑑) , where ℎ𝑒𝑎𝑑𝑒𝑟 = (𝑠𝑙, 𝑠𝑡,𝐺 (𝑑), 𝑖𝑏, 𝜋) ;
2: Validate data 𝑑 , if invalid return 0;
3: Validate the leader, if invalid return 0;
4: Validate data 𝜋 , if invalid return 0;
5: else return 1;

ValidBlockchains.To validate a blockchain 𝑐ℎ𝑎𝑖𝑛, the validateChain
algorithm (Algorithm 2) first checks the validity of every block 𝐵 𝑗 ,
and then checks its relationship to the previous block 𝐵 𝑗−1, which
has two cases depending on whether 𝐵 𝑗−1 is an edited block. If

𝐵 𝑗−1 has been redacted (i.e., 𝑠𝑡 𝑗 ≠ 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗−1), its check addi-
tionally depends on whether the redaction policy RP has been
satisfied. We say 𝑐ℎ𝑎𝑖𝑛 is valid iff validateChain(𝑐ℎ𝑎𝑖𝑛) outputs 1.

Algorithm 2 Chain validation algorithm validateChain(𝑐ℎ𝑎𝑖𝑛)

1: Parse 𝑐ℎ𝑎𝑖𝑛 = (𝐵1, · · · , 𝐵𝑚) , parse 𝐵 𝑗 = (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 , 𝑑 𝑗) where
ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 = (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑 𝑗), 𝑖𝑏 𝑗 , 𝜋 𝑗) , and set 𝑗 =𝑚;

2: while 𝑗 ≥ 2 do
3: if validateBlock(𝐵 𝑗) = 0,return 0;
4: else if 𝑠𝑡 𝑗 = 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗−1) , then 𝑗 = 𝑗 − 1;
5: else if 𝑠𝑡 𝑗 = 𝐻 (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1, 𝑖𝑏 𝑗−1, 𝑖𝑏 𝑗−1, 𝜋 𝑗−1) ∧
6: RP(𝑐ℎ𝑎𝑖𝑛, 𝐵 𝑗−1, 𝑠𝑙 𝑗−1) = 1, then 𝑗 = 𝑗 − 1;
7: else return 0.
8: end while
9: return validateBlock(𝐵 𝑗) .

Valid Candidate Editing Blocks. To validate a candidate editing
block 𝐵∗𝑗 for the j-th block of blockchain 𝑐ℎ𝑎𝑖𝑛, the validateCand al-
gorithm (Algorithm 3) first checks the validity of 𝐵∗𝑗 . It then checks
the link relationship with 𝐵 𝑗−1 and 𝐵 𝑗+1, where the link with 𝐵 𝑗+1
is “old", i.e., 𝑠𝑡 𝑗+1 = 𝐻 (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 , 𝑖𝑏 𝑗 , 𝑖𝑏 𝑗 , 𝜋 𝑗). We say that 𝐵∗𝑗 is a valid
candidate editing block iff validateCand(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗) outputs 1.

Algorithm 3 Candidate block validation algorithm validateCand(C, 𝐵∗𝑗)

1: Parse 𝐵∗𝑗 = (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 , 𝑑∗𝑗) , where ℎ𝑒𝑎𝑑𝑒𝑟 𝑗 = (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑∗𝑗), 𝑖𝑏 𝑗 , 𝜋 𝑗) ;
2: if validateBlock(𝐵∗𝑗) = 0 then return 0;
3: Parse 𝐵 𝑗−1 = (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗−1, 𝑑 𝑗−1) ,
4: where ℎ𝑒𝑎𝑑𝑒𝑟 𝑗−1 = (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1,𝐺 (𝑑 𝑗−1), 𝑖𝑏 𝑗−1, 𝜋 𝑗−1) ;
5: Parse 𝐵 𝑗+1 = (ℎ𝑒𝑎𝑑𝑒𝑟 𝑗+1, 𝑑 𝑗+1) ,
6: where ℎ𝑒𝑎𝑑𝑒𝑟 𝑗+1 = (𝑠𝑙 𝑗+1, 𝑠𝑡 𝑗+1,𝐺 (𝑑 𝑗+1), 𝑖𝑏 𝑗+1, 𝜋 𝑗+1) ;
7: if 𝑠𝑡 𝑗 = 𝐻 (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1, 𝑖𝑏 𝑗−1, 𝑖𝑏 𝑗−1, 𝜋 𝑗−1)
8: and 𝑠𝑡 𝑗+1 = 𝐻 (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 , 𝑖𝑏 𝑗 , 𝑖𝑏 𝑗 , 𝜋 𝑗) , then return 1;
9: else return 0.

We now present redactable blockchain protocol Γ in Figure 1,
where collectVote is used to collect the votes.
Collecting votes. The subroutine collectVote (Figure 2) collects
and validates the votes from the slot 𝑠𝑙 (where 𝑠𝑙 mod 𝑤 = 0) to
the slot 𝑠𝑙 + 𝑤 − 1. The collected votes are stored in 𝑚𝑠𝑔𝑠 buffer.
The algorithm first checks whether the number of votes on 𝐻 (𝐵∗𝑗)
is enough by RP(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗 , 𝑠𝑙 𝑗), and stops collecting if it is. Oth-
erwise, it begins to validate the vote. Specifically, it first verifies
the signature on𝐻 (𝐵∗𝑗) under the public key of the voter, and then
confirms the voting right and the voting number 𝑐 of the voter
determined by VerifyCmt(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙, 𝑐 , 𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑎𝑟𝑎′)3. Then the al-
gorithm generates an aggregate signature 𝑎𝑠𝑖𝑔 𝑗 on all these valid
vote signatures 𝑆𝐼𝐺 , aggregates corresponding proofs 𝑃𝑅𝑂𝑂𝐹 , and
returns them, where aggregate signature can reduce the communi-
cation complexity and storage overhead for blockchains.

4 SECURITY ANALYSIS
In this section, we analyze the security of redactable blockchain
protocol Γ as depicted in Figure 1. The security properties of redactable
3In this paper, we assume the identifier of the public key would be sent to receivers
associated with the signature, such that the corresponding public key can be located
for verification.

6

Redactable Blockchain Protocol Γ (of Node P)
/ * Initialization * /
Upon receiving init() from Z, P is activated to initialize as follows:

let (𝑝𝑘𝑝 , 𝑠𝑘𝑝) := Gen(1𝜆)
/ / For simpler presentation, VRF uses the same keys
let 𝑡𝑥𝑝𝑜𝑜𝑙 be an empty FIFO buffer
let 𝑐ℎ𝑎𝑖𝑛 := 𝐵0, where 𝐵0 is the genesis block
let EP be an empty set (to store editing candidates)
let VEP be an empty set (to store proof for voted editings)
let 𝑣𝑜𝑡𝑒_𝑚𝑠𝑔𝑠 be an empty FIFO buffer (to store votes)

/ * Receiving a longer chain * /
Upon receiving 𝑐ℎ𝑎𝑖𝑛′ for the first time, the (online) P proceeds as:

assert |𝑐ℎ𝑎𝑖𝑛′ | > |𝑐ℎ𝑎𝑖𝑛 | and validateChain(𝑐ℎ𝑎𝑖𝑛′) = 1;
let 𝑐ℎ𝑎𝑖𝑛 := 𝑐ℎ𝑎𝑖𝑛′ and broadcast 𝑐ℎ𝑎𝑖𝑛

/ * Receiving transactions * /
Upon receiving transactions(𝑑′) fromZ (or other nodes) for the first time,
the (online) P proceeds as:

let 𝑡𝑥𝑝𝑜𝑜𝑙 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑑′) and broadcast 𝑑′

/ * Receiving candidate blocks for editing * /
Upon receiving edit(𝐵∗𝑗) from Z (or other nodes) for the first time, the
(online) P proceeds as:

let EP := EP ∪ {𝐵∗𝑗 }, if validateCand(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗) = 1
/ * Receiving vote information * /
Upon receiving vote(𝑐𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖 , 𝑝𝑘𝑖 , 𝐻 (𝐵∗𝑗), 𝑠𝑖𝑔𝑗) for the first time, the
(online) P proceeds as:

let 𝑣𝑜𝑡𝑒_𝑚𝑠𝑔𝑠.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 ((𝑐𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖 , 𝑝𝑘𝑖 , 𝐻 (𝐵∗𝑗), 𝑠𝑖𝑔𝑗))
/ * When collectVote subroutine returns * /
Upon receiving vote-proof(𝑣) from collectVote(𝑠𝑙, . . .) through the sub-
routine tape, the (online) P proceeds as:

letVEP := VEP∪𝑣, where 𝑣 is in form of (𝐻 (𝐵∗𝑗), 𝑎𝑠𝑖𝑔𝑗 , 𝑃𝑅𝑂𝑂𝐹)

/ * Main procedure * /
for each slot 𝑠𝑙′ ∈ {1, 2, . . . }, the (online) P proceeds as:

for each 𝐵∗𝑗 in EP:
if 𝐵∗𝑗 is expired, let EP := EP \ {𝐵∗𝑗 }
if RP(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗 , 𝑠𝑙 𝑗) = 1, let 𝑐ℎ𝑎𝑖𝑛 [𝑗] := 𝐵∗𝑗 , EP := EP \ {𝐵∗𝑗 }

if EP ≠ ∅:
let 𝑠𝑙 := ⌊𝑠𝑙′/𝑤 ⌋ ∗ 𝑤
activate collectVote(𝑠𝑙, 𝑣𝑜𝑡𝑒_𝑚𝑠𝑔𝑠 , . . .) subroutine
let (𝑐, 𝑝𝑟𝑜𝑜 𝑓) := Cmt(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙, P, 𝑝𝑎𝑟𝑎)
if 𝑐 is non-zero:

for each 𝐵∗𝑗 in EP, broadcast vote(𝑐, 𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑘P ,
𝐻 (𝐵∗𝑗), 𝑠𝑖𝑔𝑗) , where 𝑠𝑖𝑔𝑗 = Sign(𝑠𝑘P ;𝐻 (𝐵∗𝑗))

if eligible(P, 𝑠𝑙′) = 1:
let 𝑑′ := 𝑡𝑥𝑝𝑜𝑜𝑙 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ∪ VEP
let (ℎ𝑒𝑎𝑑𝑒𝑟,𝑑) := Head(𝑐ℎ𝑎𝑖𝑛)
let ℎ𝑒𝑎𝑑𝑒𝑟 ′ := (𝑠𝑙′, 𝑠𝑡 ′,𝐺 (𝑑′), 𝑖𝑏′, 𝜋 ′) , where 𝑠𝑡 ′ := 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟)
and 𝜋 ′ is the output of P (the signature or the nonce)
let 𝑐ℎ𝑎𝑖𝑛 := 𝑐ℎ𝑎𝑖𝑛 ∥ (ℎ𝑒𝑎𝑑𝑒𝑟 ′, 𝑑′)
let VEP := ∅
broadcast 𝑐ℎ𝑎𝑖𝑛

output extract(𝑐ℎ𝑎𝑖𝑛) to Z, where extract outputs an ordered list of
each block in 𝑐ℎ𝑎𝑖𝑛

Figure 1. Redactable Blockchain Protocol Γ

blockchain are same as that of basic blockchain, except for the com-
mon prefix property (c.f. Appendix B).

subroutine collectVote(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙,𝑚𝑠𝑔𝑠, 𝑤,𝑇 , 𝜂) invoked by P
/ /𝑚𝑠𝑔𝑠 is a FIFO buffer keeping on receiving votes from the network
/ / 𝑠𝑙 is the number of the first slot in this 𝑤-slot voting period
let 𝑆𝐼𝐺 be a dictionary of hash-set pairs;
let 𝑃𝑅𝑂𝑂𝐹 be a dictionary of hash-set pairs;
Upon𝑇𝑖𝑚𝑒1 ≥ 𝑠𝑙 + 𝑤:

halt
Upon𝑚𝑠𝑔𝑠 not empty:

assert 𝑠𝑙 ≤ 𝑇𝑖𝑚𝑒 < 𝑠𝑙 + 𝑤
for each𝑇𝑖𝑚𝑒

for each (𝑐, 𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑘,𝐻 (𝐵∗𝑗), 𝑠𝑖𝑔𝑗) ←𝑚𝑠𝑔𝑠.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
if RP(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗 , 𝑠𝑙 𝑗) = 1 continue;
if 𝑆𝐼𝐺 [𝐵∗𝑗] and 𝑃𝑅𝑂𝑂𝐹 [𝐵∗𝑗] not initialized yet

let 𝑆𝐼𝐺 [𝐵∗𝑗] := ∅, 𝑃𝑅𝑂𝑂𝐹 [𝐵∗𝑗] := ∅;
if 𝑠𝑖𝑔𝑗 on 𝐻 (𝐵∗𝑗) cannot be validated by 𝑝𝑘 continue;
if VerifyCmt(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙, 𝑐, 𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑎𝑟𝑎′) = 0 continue;
𝑆𝐼𝐺 [𝐻 (𝐵∗𝑗)] := 𝑆𝐼𝐺 [𝐻 (𝐵∗𝑗)] ∪ {𝑠𝑖𝑔𝑗 };
𝑃𝑅𝑂𝑂𝐹 [𝐻 (𝐵∗𝑗)] := 𝑃𝑅𝑂𝑂𝐹 [𝐻 (𝐵∗𝑗)] ∪ {𝑝𝑟𝑜𝑜 𝑓 };

compute aggregate signature 𝑎𝑠𝑖𝑔𝑗 on 𝐻 (𝐵∗𝑗) from 𝑆𝐼𝐺 [𝐻 (𝐵∗𝑗)]
send vote-proof(𝐻 (𝐵∗𝑗), 𝑎𝑠𝑖𝑔𝑗 , 𝑃𝑅𝑂𝑂𝐹 [𝐻 (𝐵∗𝑗)]) to P
let 𝑆𝐼𝐺 [𝐻 (𝐵∗𝑗)] := ∅ and 𝑃𝑅𝑂𝑂𝐹 [𝐻 (𝐵∗𝑗)] := ∅

1𝑇𝑖𝑚𝑒 represents to invoke the global clock to get the latest slot number
Figure 2. Collecting Votes

Redactable Common Prefix. We observe that our protocol Γ
inherently does not satisfy the original definition of common pre-
fix due to the (possible) edit operation. In detail, consider the case
where the partyP1 is honest at time slot 𝑠𝑙1 and the partyP2 is hon-
est at time slot 𝑠𝑙2 in view, such that 𝑠𝑙1 < 𝑠𝑙2. For a candidate block
𝐵∗𝑗 to replace the original 𝐵 𝑗 , whose votes are published at slot 𝑠𝑙
such that 𝑠𝑙1 < 𝑠𝑙 < 𝑠𝑙2, the edit request has not been proposed in
chain𝑠𝑙1P1 (view) but may have taken effect in chain𝑠𝑙2P2 (view). As a
result, the original 𝐵 𝑗 remains unchanged in chain𝑠𝑙1P1 (view) while
it is replaced with the candidate 𝐵∗𝑗 in chain𝑠𝑙2P2 (view). Therefore,
prefix𝑘 (view) ≠ 1, which violates Definition B.1 in Appendix B.

The main reason lies in the fact that the original definition of
common prefix does not account for edits in the chain, while any
edit may break the common prefix property. To address this issue,
we introduce an extended definition called redactable common pre-
fix and consider the effect of each edit operation, which is suit-
able for redactable blockchains. Roughly speaking, the property of
redactable common prefix states that if the common prefix prop-
erty is violated, it must be the case that there exist edited blocks
satisfying the redaction policy RP.

Let redactprefix𝑘 (view) = 1 if for all time 𝑡 ≤ 𝑡 ′, and for all
parties P𝑖 , P𝑖′ such that P𝑖 is honest at 𝑡 and P𝑖′ is honest at 𝑡 ′ in
view, one of the following conditions is satisfied:

(1) the prefixes of chain𝑡P𝑖 (view) and chain
𝑡 ′
P𝑖′ (view) consisting of

the first |chain𝑡P𝑖 (view) | − 𝑘 records are identical, or
(2) for each 𝐵∗𝑗 in the prefix of chain

𝑡 ′
P𝑖′ (view) but not in the prefix

of chain𝑡P𝑖 (view) consisting of the first |chain𝑡P𝑖 (view) | − 𝑘
records, it must be the case that RP(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗 , 𝑡 𝑗) = 1 where
𝑡 𝑗 < 𝑡 < 𝑡

′.
7

Definition 4.1. (Redactable CommonPrefix).We say a blockchain
protocol Π satisfies 𝑘0-redactable common prefix, if for all (A,Z),
there exists a negligible function negl such that for every suffi-
ciently large 𝜆 ∈ N and every 𝑘 ≥ 𝑘0 the following holds:

Pr[view← EXECΠ (A,Z, 𝜆) : redactprefix𝑘 (view) = 1] ≥ 1−negl(𝜆) .

Essentially, Γ behaves just like the underlying immutable blockchain
protocol in Appendix C if there is no edit in the chain, and oth-
erwise each edit must be approved by the redaction policy RP.
Therefore, we prove Γ preserves the same properties (or a variation
of the property) of the underlying immutable blockchain protocol
under the redaction policy RP.

Theorem 4.2. (Security of Γ).Assume that the signature scheme
SIG is EUF-CMA secure, the aggregate signature scheme ASIG is
unforgeable, the hash function 𝐻 is collision-resistant, the function
Cmt ensures the fraction of honest users (in terms of computational
power or stake) in the committee is at least 𝜂, and the underlying
immutable blockchain protocol in Appendix C satisfies 𝑘0-common
prefix, (𝑘0, 𝜇)-chain quality, and 𝜏-chain growth. Then, redactable
blockchain protocol Γ satisfies the𝑘0-redactable common prefix, (𝑘0, 𝜇)-
chain quality, and 𝜏-chain growth.

Proof roadmap. We first consider an ideal-world protocol Πideal
having access to an ideal functionality F𝑡𝑟𝑒𝑒 , and prove that Πideal
satisfies redactable common prefix, chain quality, and chain growth
in Section 4.1. Then we show that the real-world protocol Γ se-
curely emulates the ideal-world protocol Πideal in Section 4.2.

4.1 Security of Ideal Protocol Πideal

We first define an ideal functionality F𝑡𝑟𝑒𝑒 (Figure 3) and analyze
an ideal-world protocol Πideal (Figure 4) parameterized with F𝑡𝑟𝑒𝑒 .

The ideal functionality F𝑡𝑟𝑒𝑒 keeps track of the set (denoted by
tree) of all abstract blockchains mined so far. Initially, the only
blockchain in the set tree is genesis. F𝑡𝑟𝑒𝑒 decides whether a party
P is the elected leader for every time step 𝑡 with probability𝜙 (𝑠, 𝑝)
or the committee member with probability 𝜙 (𝑠, 𝑝 ′), where 𝜙 is a
general function whose output is proportional to the stake (or the
computational power) 𝑠 of P, and the parameter 𝑝 (or 𝑝 ′, resp.)
provides the randomness. An adversary A can know which party
is elected as the leader (or voting committee member, resp.) in time
𝑡 using the F𝑡𝑟𝑒𝑒 .leader (or F𝑡𝑟𝑒𝑒 .committee, resp.) query. Further,
honest and corrupted parties can extend known chains with new
block by calling F𝑡𝑟𝑒𝑒 .extend, if they are elected as leaders for spe-
cific time steps. Specifically, honest parties always extend chains
in the current time, while corrupted parties are allowed to extend
a malicious chain in a past time step 𝑡 ′ as long as 𝑡 ′ complies
with the strictly increasing rule. In addition, the voting commit-
tee member can call F𝑡𝑟𝑒𝑒 .redact to redact the blockchain, if the
votes during one voting period are more than the number of cor-
rupted committee members. Finally, F𝑡𝑟𝑒𝑒 keeps track of all valid
chains, and parties can check if any chain they received is valid by
calling F𝑡𝑟𝑒𝑒 .verify.

Theorem 4.3. (Security of Πideal). If the underlying immutable
ideal protocol in Appendix D satisfies𝑘0-common prefix, (𝑘0, 𝜇)-chain
quality, and 𝜏-chain growth, then Πideal satisfies the 𝑘0-redactable
common prefix, (𝑘0, 𝜇)-chain quality, and 𝜏-chain growth.

F𝑡𝑟𝑒𝑒 (𝑝, 𝑝′)
Upon receiving init(): tree := genesis, time(genesis) := 0
Upon receiving leader(P, 𝑡) from A or internally:
let 𝑠 be the stake (or computational power) of P at time 𝑡

if Γ [P, 𝑡] has not been set, let Γ [P, 𝑡] =
{1 with probability 𝜙 (𝑠, 𝑝)
0 otherwise

return Γ [P, 𝑡]
Upon receiving extend(chain,B) from honest party P:
let 𝑡 be the current time
assert chain ∈ tree, chain∥B ∉ tree, and leader(P, 𝑡) = 1
append B to chain in tree, record time(chain∥B) := 𝑡
return “succ"

Upon receiving extend(chain,B, 𝑡 ′) from corrupted party P∗:
let 𝑡 be the current time
assert chain ∈ tree, chain∥B ∉ tree, leader(P, 𝑡) = 1, and
time(chain) < 𝑡 ′ < 𝑡
append B to chain in tree, record time(chain∥B) := 𝑡 ′
return “succ"

Upon receiving committee(P, 𝑡) from A or internally:
let 𝑠 be the stake of P at time ⌊𝑡/𝑤 ⌋ ∗ 𝑤
or the computational power of P at time 𝑡

if Γ′ [P, 𝑡] has not been set,

let Γ′ [P, 𝑡]=
{1 with probability 𝜙 (𝑠, 𝑝′)
0 otherwise and return Γ′ [P, 𝑡]

Upon receiving redact(chain, 𝑖, 𝐵∗) from 𝜉 distinct parties P𝑗 :
assert chain ∈ tree and committee(P𝑗 , 𝑡 𝑗) = 1 for every P𝑗
assert all of ⌊𝑡 𝑗 /𝑤 ⌋ are equal
assert 𝜉 is more than the number of corrupted parties P𝑗 with
committee(P𝑗 , 𝑡 𝑗) = 1

redact chain[𝑖] := 𝐵∗ and return “succ"
Upon receiving verify(chain) from P: return (chain ∈ tree)

Figure 3. Ideal Functionality F𝑡𝑟𝑒𝑒

Ideal Protocol Πideal
Upon receiving init(): chain := genesis
Upon receiving chain′:
if |chain′ | > |chain | and F𝑡𝑟𝑒𝑒 .verify(chain′) = 1
chain := chain′ and broadcast chain
for every slot:
for the input B (or B∗) from Z:
–if F𝑡𝑟𝑒𝑒 .extend(chain,B) outputs “succ", let chain := chain∥B
–if F𝑡𝑟𝑒𝑒 .redact(chain, i,B∗) outputs “succ", let chain[i] := B∗

–output chain to Z
Figure 4. Ideal Protocol Πideal

Proof Sketch. Note that if there is no edit in chain, then Πideal
behaves exactly like the underlying immutable ideal protocol in
Appendix D, and thus 𝑘0-common prefix, (𝑘0, 𝜇)-chain quality, and
𝜏-chain growth can be preserved directly. Thus we mainly prove
the security of Πideal with any edit satisfying the redaction policy
RP. We defer the security proof in Appendix E.

4.2 Real-world Emulates Ideal-world
We next show that the real-world protocol Γ as depicted in Figure
1 emulates the ideal-world protocol Πideal.

Theorem 4.4. (Γ emulatesΠideal). For any probabilistic polynomial-
time (p.p.t.) adversary A of the real-word protocol Γ, there exists a
p.p.t. simulator S of the ideal protocol Πideal, such that for any p.p.t.

8

environmentZ, for any 𝜆 ∈ N, we have:

view(𝐸𝑋𝐸𝐶Π𝑖𝑑𝑒𝑎𝑙 (S,Z, 𝜆)) 𝑐≡ view(𝐸𝑋𝐸𝐶Γ (A,Z, 𝜆)),

where
𝑐≡ denotes computational indistinguishability.

Proof Sketch. The proof process can be shown by a standard
simulation argument. Specifically, for any adversaryA in the real
world, we can construct a simulator S in the ideal world such that
no p.p.t. environment Z can distinguish an ideal execution with
the simulatorS andΠideal from a real executionwith the adversary
A and Γ under the security assumption of the underlying primi-
tives including the digital signature scheme, aggregate signature
scheme and verifiable random function.We defer the (security) def-
initions of the corresponding primitives and security proof of the
theorem in Appendix A and Appendix F respectively.

5 INSTANTIATION
Following the generic construction, we now present two concrete
instantiations of redactable PoS blockchain and PoW blockchain.

5.1 Redactable Proof-of-Stake Blockchain
In proof-of-stake blockchain, we assume 𝑆 is total stakes in the
system,𝑇 is the expected number of stakes in committee for voting,
and the fraction of stakes held by honest users in the committee is
at least 𝜂. The committe members are selected only at the first slot
𝑠𝑙 of each voting period between 𝑠𝑙 and 𝑠𝑙 + 𝑤 − 1, and 𝑤 can be
set based on specific network environment to guarantee the votes
received by all users after𝑤 slots with a greater probability.
Checking committee members Cmt. The function Cmt (Algo-
rithm 4) checks whether a party P𝑖 (with secret key 𝑠𝑘𝑖 and stake
𝑠𝑖) is the committee member at the slot 𝑠𝑙 and outputs (𝑐, 𝑝𝑟𝑜𝑜 𝑓).
Inspired by the idea of Algorand [26], Cmt uses VRFs to randomly
select voters in a private and non-interactive way4. Specifically, P𝑖
computes (ℎ𝑎𝑠ℎ, 𝜋) ← 𝑉𝑅𝐹𝑠𝑘𝑖 (𝑠𝑒𝑒𝑑 ∥𝑠𝑙) with his own secret key
𝑠𝑘𝑖 , where 𝑠𝑙 mod 𝑤 = 0, 𝑠𝑒𝑒𝑑 is identical to that in the underly-
ing proof-of-stake blockchain, and the pseudo-random ℎ𝑎𝑠ℎ deter-
mines how many votes of P𝑖 are selected. In order to select voters
in proportion to their stakes, we regard each unit of stakes as a dif-
ferent “sub-user". For example,P𝑖 with stakes 𝑠𝑖 owns 𝑠𝑖 units, each
unit is selected with probability 𝑝 = 𝑇

𝑆 , and the probability that 𝑞
out of the 𝑠𝑖 sub-users are selected follows the binomial distribu-
tion 𝐵(𝑞; 𝑠𝑖 , 𝑝) = 𝐶 (𝑠𝑖 , 𝑞)𝑝𝑞 (1 − 𝑝)𝑠𝑖−𝑞 , where 𝐶 (𝑠𝑖 , 𝑞) = 𝑠𝑖 !

𝑞!(𝑠𝑖−𝑞)!
and Σ𝑠𝑖𝑞=0𝐵(𝑞; 𝑠𝑖 , 𝑝) = 1. To determine how many sub-users of 𝑠𝑖
in P𝑖 are selected, the algorithm divides the interval [0,1) into con-
secutive intervals of the form 𝐼𝑐 = [Σ𝑐𝑞=0𝐵(𝑞; 𝑠𝑖 , 𝑝), Σ

𝑐+1
𝑞=0𝐵(𝑞; 𝑠𝑖 , 𝑝))

for 𝑐 ∈ {0, 1, · · · , 𝑠𝑖−1}. If ℎ𝑎𝑠ℎ
2ℎ𝑎𝑠ℎ𝑙𝑒𝑛 falls in the interval 𝐼𝑐 , it means

that 𝑐 sub-users (i.e., 𝑐 votes) of P𝑖 are selected, where ℎ𝑎𝑠ℎ𝑙𝑒𝑛 is
the bit-length of ℎ𝑎𝑠ℎ.
Verifying committeemembersVerifyCmt.The functionVerifyCmt
(Algorithm 5) verifies P𝑖 (with public key 𝑝𝑘𝑖) is the committee
member with the weight 𝑐 using 𝑝𝑟𝑜𝑜 𝑓 (i.e., (ℎ𝑎𝑠ℎ, 𝜋)). Specifically,
it first verifies 𝑝𝑟𝑜𝑜 𝑓 by VerifyVRF𝑝𝑘𝑖 (ℎ𝑎𝑠ℎ, 𝜋, 𝑠𝑒𝑒𝑑 ∥𝑠𝑙), and then
verifies ℎ𝑎𝑠ℎ

2ℎ𝑎𝑠ℎ𝑙𝑒𝑛 falls in the interval 𝐼𝑐 .

4In a similar way, hash function can also be used to select committee members in a
public way [18], which is secure against static adversary.

Algorithm 4 Checking committee members
Cmt(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙, 𝑠𝑘𝑖 , 𝑠𝑖 , 𝑠𝑒𝑒𝑑, P𝑖 ,𝑇 , 𝑆)
1: (ℎ𝑎𝑠ℎ, 𝜋) := 𝑉𝑅𝐹𝑠𝑘𝑖 (𝑠𝑒𝑒𝑑 ∥𝑠𝑙) ;
2: 𝑝 := 𝑇

𝑆 ; 𝑐 := 0;
3: while ℎ𝑎𝑠ℎ

2ℎ𝑎𝑠ℎ𝑙𝑒𝑛
∉ [Σ𝑐𝑞=0𝐵 (𝑞; 𝑠𝑖 , 𝑝), Σ𝑐+1𝑞=0𝐵 (𝑞; 𝑠𝑖 , 𝑝)) do

4: 𝑐 := 𝑐 + 1.
5: end while
6: 𝑝𝑟𝑜𝑜 𝑓 := (ℎ𝑎𝑠ℎ, 𝜋) ;
7: return (𝑐, 𝑝𝑟𝑜𝑜 𝑓) .

Algorithm 5 Verifying committee members
VerifyCmt(𝑐ℎ𝑎𝑖𝑛, 𝑝𝑘𝑖 , 𝑠𝑙, 𝑠𝑖 , 𝑠𝑒𝑒𝑑, 𝑐, 𝑝𝑟𝑜𝑜 𝑓 ,𝑇 , 𝑆)

1: (ℎ𝑎𝑠ℎ, 𝜋) := 𝑝𝑟𝑜𝑜 𝑓 ;
2: if VerifyVRF𝑝𝑘𝑖 (ℎ𝑎𝑠ℎ, 𝜋, 𝑠𝑒𝑒𝑑 ∥𝑠𝑙) = 0, then return 0;
3: 𝑝 := 𝑇

𝑆 ; 𝜒 := 0;
4: while ℎ𝑎𝑠ℎ

2ℎ𝑎𝑠ℎ𝑙𝑒𝑛
∉ [Σ𝜒𝑞=0𝐵 (𝑞; 𝑠𝑖 , 𝑝), Σ

𝜒+1
𝑞=0𝐵 (𝑞; 𝑠𝑖 , 𝑝)) do

5: 𝜒 := 𝜒 + 1.
6: end while
7: if 𝜒 = 𝑐 , then return 1;
8: else return 0.

Parameter Selection.Asmentioned earlier, we consider each unit
of stakes as a different “sub-user", for example, if user 𝑈𝑖 with
𝑠𝑖 stakes owns 𝑠𝑖 units, then 𝑈𝑖 is regarded as 𝑠𝑖 different “sub-
users". We assume the total stakes 𝑆 in the system is arbitrarily
large. When a redaction is proposed, a committee for voting will
be selected from all sub-users. The expected number of committee,
𝑇 , is fixed, and thus the probability 𝜌𝑠 of a sub-user to be selected
is 𝑇𝑆 . Then the probability that exactly 𝐾 sub-users are sampled is(

𝑆

𝐾

)
𝜌𝐾𝑠 (1 − 𝜌𝑠)𝑆−𝐾 =

𝑆!
𝐾 !(𝑆 − 𝐾)! (

𝑇

𝑆
)𝐾 (1 − 𝑇

𝑆
) (𝑆−𝐾)

=
𝑆 · · · (𝑆 − 𝐾 + 1)

𝑆𝐾
𝑇𝐾

𝐾 !
(1 − 𝑇

𝑆
) (𝑆−𝐾)

If 𝐾 is fixed, we have
lim
𝑆→∞

𝑆 · · · (𝑆−𝐾+1)
𝑆𝐾

= 1

and

lim
𝑆→∞

(1 − 𝑇𝑆)
(𝑆−𝐾) = lim

𝑆→∞
(1−𝑇𝑆)𝑆

(1−𝑇𝑆)𝐾
= 𝑒−𝑇

1 = 𝑒−𝑇

Then the probability of sampling exactly𝐾 sub-user approaches:

𝑇𝐾

𝐾 !
𝑒−𝑇 (1)

Denote by #𝑔𝑜𝑜𝑑 and #𝑏𝑎𝑑 the number of honest and malicious
committee members respectively. If we set the majority of comm-
mitee members are honest (i.e., 𝜂 > 1/2), the following conditions
should be satisfied.

(1): #𝑔𝑜𝑜𝑑 ≥ 1/2 ·𝑇 . The condition is violated when the number
of honest committee members is < 1/2 ·𝑇 . From (1), the probability
that we have exactly𝐾 honest committee members is (ℎ ·𝑇)

𝐾

𝐾 ! 𝑒−ℎ ·𝑇 ,
where honest stakes ratio in the system is ℎ (ℎ > 1/2). Thus, the
probability of violating the condition is given by the formula:

1/2·𝑇−1∑
𝐾=0

(ℎ𝑇)𝐾
𝐾 !

𝑒−ℎ𝑇 .

9

60 65 70 75 80 85 90

% of Honest Users

0

200

400

600

800

1000

1200

1400

1600

C
om

m
itt

ee
 S

iz
e

5*10-9

Figure 5. The x-axis specifies ℎ, the stakes fraction of honest
users. The y-axis specifies 𝑇 , the committee size.

(2): #𝑏𝑎𝑑 < 1/2·𝑇 . As above, the probability thatwe have exactly
𝐿 malicious committee members is ((1−ℎ) ·𝑇)

𝐿

𝐿! 𝑒−(1−ℎ) ·𝑇 . Thus, the
probability that satisfying the condition is given by the formula:

1/2·𝑇−1∑
𝐿=0

((1 − ℎ)𝑇)𝐿
𝐿!

𝑒−(1−ℎ)𝑇 .

𝐹 is a parameter which marks a negligible probability for failure
of either condition, and our experience sets 𝐹 = 5×10−9. Our goal is
to minimize 𝑇 , while maintaining the probability that conditions
(1) or (2) fails to be at most F. If some value of 𝑇 satisfies both
conditions with probability 1 − 𝐹 , then any larger value of 𝑇 also
does with probability at least 1−𝐹 . Based on the above observation,
to find the optimal𝑇 , we firstly let𝑇 be an arbitrary large value, for
example 104, and then check whether both conditions are satisfied.
If both conditions are satisfied, we decrease 𝑇 and check whether
both conditions are still satisfied. We continue this process until
finding the optimal𝑇 that ensures both conditions satisfied. In this
way, we can get Figure 5, plotting the expected committee size 𝑇
satisfying both conditions, as a function of ℎ, with a probability of
violation of 5× 10−9. A similar approach to compute the threshold
of committee size can be referred to [26].

In the implementation of our system, we assume the fraction
of honest stakes is 0.65, and thus we select 𝑇 = 1000 according to
Figure 5. A valid editing block is approved only when it obtains
more than 1/2 · 𝑇 votes, that is, the threshold value in Definition
3.1 is equal to 1/2 ·𝑇 = 500.
Fraction of Honest Users. According to Theorem 5.2, we only
need to prove the fraction (in terms of stakes) of honest users in
the committee is at least 𝜂. If A can “presciently" ensure which
user would become the member of the voting committee, he can
adaptively corrupt and impersonate this user, such that the fraction
of honest users in the committee is less than 𝜂. However, according
to the uniqueness property of the underlying VRF, the adversary
has only a negligible probability 1/2ℎ𝑎𝑠ℎ𝑙𝑒𝑛 to win. In detail, the

function value ℎ𝑎𝑠ℎ of VRF is random and unpredictable, the ad-
versary without the secret key can only predict whether an honest
user is chosen as the committee member with a negligible proba-
bility 1/2ℎ𝑎𝑠ℎ𝑙𝑒𝑛 . In addition, A is allowed to corrupt the known
committee members only after the corresponding 𝑤 slots, which
would not bring any non-negligible advantage since the committee
would be reselected in the next voting period.

5.2 Redactable Proof-of-Work Blockchain
We also give an instantiation for PoW in asynchronous network.
To get sufficient numbers of committee according to computational
power distribution and ensure honest majority in the committees,
we just need to collect sufficient PoW puzzle solutions. This can
be easily realized by creating a “virtual selection” procedure using
PoW with a bigger difficulty parameter 𝐷 .

However, the adversary may be able to find “virtual puzzle so-
lutions” in advance by the withholding attack. Specifically, if the
adversary is lucky to produce a longer chain before 𝑠𝑙 that is likely
to be the longest valid chain of slot 𝑠𝑙 , it temporarily withholds the
chain and starts to find “virtual puzzle solutions”. Then at slot 𝑠𝑙 ,
the adversary releases its chain and solutions, thus he has more
time to find solutions. To thwart this attack, we elect the commit-
tee in 𝑟 consecutive slots such that the majority of committee is
honest even under the withholding attack. Like in the PoS instan-
tiation, we use the network related parameter𝑤 to ensure all users
would receive the votes with large probability, where𝑤 ≥ 𝑟 .
Checking committee members Cmt. In the function Cmt (Al-
gorithm 6), if P can find some “virtual puzzle solutions” for PoW
with difficulty parameter 𝐷 between 𝑠𝑙 and 𝑠𝑙 + 𝑟 − 1, P is elected
as the committee and the weight 𝑐 of P in the committee is the
number of puzzle solutions. The committee member proof 𝑝𝑟𝑜𝑜 𝑓
includes the corresponding puzzle solutions.

Algorithm 6 Checking committee members Cmt(𝑐ℎ𝑎𝑖𝑛, 𝑠𝑙, 𝑝𝑘, 𝐷, P, 𝑟)
1: 𝑐 := 0;
2: 𝑝𝑟𝑜𝑜 𝑓 := ∅;
3: 𝑇𝑖𝑚𝑒 := 𝑠𝑙 ;
4: while𝑇𝑖𝑚𝑒 ≤ 𝑠𝑙 + 𝑟 − 1 do
5: Parse 𝑐ℎ𝑎𝑖𝑛 = (𝐵1, · · · , 𝐵𝑚) ;
6: Parse 𝐵𝑇𝑖𝑚𝑒 = (𝑇𝑖𝑚𝑒, 𝑝𝑘, 𝑠𝑡,𝐺 (𝑑), 𝑖𝑏, 𝜋,𝑑) ;
7: if P finds 𝑛𝑜𝑛𝑐𝑒 such that 𝐻 (𝑇𝑖𝑚𝑒, 𝑝𝑘, 𝑠𝑡,𝐺 (𝑑), 𝑛𝑜𝑛𝑐𝑒) < 𝐷 ,
8: then 𝑐 := 𝑐 + 1, 𝑝𝑟𝑜𝑜 𝑓 := 𝑝𝑟𝑜𝑜 𝑓 ∪ (𝑇𝑖𝑚𝑒, 𝑝𝑘, 𝑠𝑡,𝐺 (𝑑), 𝑛𝑜𝑛𝑐𝑒) ;
9: end while
10: return (𝑐, 𝑝𝑟𝑜𝑜 𝑓) .

Verifying committeemembersVerifyCmt.The functionVerifyCmt
(Algorithm 7) verifies whether P with the public key 𝑝𝑘 is the
committee member by computing hash with the puzzle solutions,
which is similar to Algorithm 6.
Parameter Selection. We assume the adversary is able to find
“virtual puzzle solutions” at most 𝑡 slots earlier than honest nodes
and we elect the committee in 𝑟 slots. Suppose that ℎ = 1

2 + 𝜖
fraction of nodes in the underlying blockchain are honest, where
𝜖 ∈ (0, 12). Let 𝛼 = 𝐷

2ℓ ℎ𝑛 and 𝛽 = 𝐷
2ℓ (1 − ℎ)𝑛 denote the expected

number of “virtual puzzle solutions” found by honest nodes and
corrupt nodes in each slot respectively, where ℓ is the output length
of the hash function 𝐻 (·) and 𝑛 is the total number of nodes.

10

Algorithm 7 Verifying committee members
VerifyCmt(𝑐ℎ𝑎𝑖𝑛, 𝑝𝑘, 𝑠𝑙, 𝐷, 𝑐, 𝑝𝑟𝑜𝑜 𝑓 , 𝑟)

1: Parse 𝑐ℎ𝑎𝑖𝑛 = (𝐵1, · · · , 𝐵𝑚) , where 𝐵𝑖 = (ℎ𝑒𝑎𝑑𝑒𝑟𝑖 , 𝑑𝑖) , 𝑖 ∈ [1..𝑚];
2: if the number of set member in 𝑝𝑟𝑜𝑜 𝑓 is not 𝑐 then return 0;
3: for every proof in 𝑝𝑟𝑜𝑜 𝑓 do
4: if𝑇𝑖𝑚𝑒 ≥ 𝑠𝑙 + 𝑟 or𝑇𝑖𝑚𝑒 < 𝑠𝑙 , then return 0;
5: if 𝐻 (𝑇𝑖𝑚𝑒, 𝑝𝑘, 𝑠𝑡,𝐺 (𝑑), 𝑛𝑜𝑛𝑐𝑒) ≥ 𝐷 or 𝑠𝑡 ≠ 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟𝑇𝑖𝑚𝑒−1) ,
6: then return 0;
7: end for
8: return 0.

We denote the maximum number of “virtual puzzle solutions”
found by the adversary from the slot 𝑠𝑙 − 𝑡 to 𝑠𝑙 + 𝑟 − 1 by 𝑁𝐴 ,
and the minimum number of “virtual puzzle solutions” found by
honest nodes from the slot 𝑠𝑙 to 𝑠𝑙 + 𝑟 − 1 by 𝑁𝐻 , respectively. Due
to the Chernoff bound [17], for any 𝛿 > 0, except with a negligible
probability 𝑝1 = exp(−𝛿 ·min{𝛿,1}·𝛽 (𝑡+𝑟)

3), it holds that 𝑁𝐴 ≤ (1 +
𝛿)𝛽 (𝑡 + 𝑟). Similarly, for any 𝛿 ∈ (0, 1), except with a negligible
probability 𝑝2 = exp(−𝛿2𝛼𝑟2), it holds that𝑁𝐻 ≥ (1−𝛿)𝛼𝑟 . If we set
the majority of committee members are honest (i.e., 𝜂 > 1/2), then
we need to guarantee 𝑁𝐻 > 𝑁𝐴 and thus the following condition
should be satisfied:

(1 + 𝛿)𝛽 (𝑡 + 𝑟) < (1 − 𝛿)𝛼𝑟 .

Therefore, we have 𝑟 > 𝑡
(1−𝛿)ℎ
(1+𝛿) (1−ℎ) −1

.

According to “no long block withholding” lemma [37, Lemma
6.10], we set 𝑡 to be the longest number of slots that the adversary
can withhold a block 𝐵. Consider the case that 𝑘0 new blocks are
mined in the longest valid chain when the adversary withholds
some blocks, where 𝑘0 is the common prefix parameter. Accord-
ing to the common prefix property, these withholding blocks will
never appear in the chains of honest nodes. Therefore, 𝑡 should
be less than the minimum time the longest valid chain increases
by at least 𝑘0 blocks. According to the chain growth property [37,
Theorem 4.1], 𝑡 ≈ 𝑘0/𝛼 ′, where 𝛼 ′ = 𝐷′

2ℓ ℎ𝑛 and 𝐷 ′ is the difficulty
parameter for the underlying PoW blockchain such that at least
one party can find a puzzle solution at each slot (i.e., 𝐷

′

2ℓ 𝑛 = 1).
For instance, let 𝑘0 = 6 as in Bitcoin, ℎ = 0.65 and 𝛿 = 0.1,

then we have 𝑟 > 1.93𝑡 and without loss of generality we set 𝑟 =
2𝑡 . Then we can compute 𝑡 = 10 and 𝑟 = 20. Further, if we set
𝑝1 = 𝑒𝑥𝑝 (−13) and 𝑝2 = 𝑒𝑥𝑝 (−25), then 𝐷 = 5000

ℎ𝑟 𝐷
′ ≈ 385𝐷 ′. An

editing block would be approved only when it obtains more than
(1 + 𝛿)𝛽 (𝑡 + 𝑟) = (1 − ℎ) (1 + 𝛿) 5000ℎ𝑟 (𝑡 + 𝑟) ≈ 4443 votes, which
are distributed among 𝑟 = 20 slots, that is, the threshold value in
Definition 3.1 is equal to (1 + 𝛿)𝛽 (𝑡 + 𝑟) ≈ 4443.

6 IMPLEMENTATION AND EVALUATION
To demonstrate the feasibility of our approach, we choose redactable
proof-of-stake blockchain just as an example and develop a proof-
of-concept (PoC) implementation that simulates Cardano Settle-
ment Layer (Cardano SL) [5]. We conduct extensive experiments
on it, and reveal this non-optimized PoC implementation is already
efficient. In particular, we showcase, even if in some extremely pes-
simistic cases (having tremendous redactions), the overhead of our
approach remains acceptable (relative to an immutable chain).

6.1 Setup
Execution environment. We write in standard C language (C11
version) to implement a proof-of-stake chain that simulates Car-
dano SL (i.e., generating a valid local Cardano replica without ex-
ecuting consensus). The chain supports a subset of Cardano SL’s
bitcoin-style scripts, thus allowing to record basic ledger opera-
tions such as transacting coins and so on. Furthermore, we build
our redaction protocol in it, thus enabling each block to include
a special redaction transaction to solicit votes on editing earlier
blocks. All tests are measured on a low-profile personal laptop in-
stalled with Ubuntu 16.04 (64bits) system, and equipped with a
2.20GHz Intel Core i5-5200U CPU and 8GB main memory.
Cryptographic building blocks.Our PoC implementation adopts
ECDSA over secp256k1 for all digital signatures in both editing
votes and block proposals, which is a widely adopted approach by
PoC tests in the blockchain community [43]. For VRF, we adopt a
generic approach due to deterministic “ECDSA” in the random or-
acle model [36]. We import the VRF’s concrete instantiation over
secp256k1 in C language from [2].
Other parameters.We set ℎ = 0.65, namely, the adversary might
control up to 35% of stakes in the system, which corresponds to
the committee with expected size 𝑇 = 1000. Moreover, when im-
plementing Ouroboros Praos [19] (for simulating Cardano SL), we
only consider one epoch, thus omitting the dynamic change of
stakes.Wemight fix the block size in experiments. For example, we
can specify that each block contains up to 10 transactions, which
is enough to capture the number of transactions in nowadays Car-
dano. In addition, we also assume that each redaction request of
editing a block only aims to modify a single transaction.

6.2 Experiments and measurements
Then we conduct extensive experiments in the above PoC “sand-
box” to tell the small overhead of our redaction protocol relative
to an immutable chain through various performance metrics.
Votes and proofs on redaction. As shown in Table 2, we begin
with some preliminary experiments to understand (i) the generat-
ing time, the validating time, and the size of each vote on redac-
tion as well as (ii) the validating time and the size of each proof
on approved redaction. In general, these votes and proofs incur lit-
tle computational burden and are also small in size, which at least
flatters the necessary conditions of efficient redactions.

Table 2: Preliminary tests of votes and proofs on redaction

Vote on redaction
candidate

Time to generate vote ∼ 9 ms
Time to validate vote ∼ 1 ms
Size of each vote ∼ 0.2 KB

Proof on approved
redaction

Time to validate proof ∼ 560 ms
Size of each proof ∼ 109 KB

Proposing/receivingnewblockswith redactionproof.To eval-
uate how redactions would impact the performance of consensus,
we consider two key metrics in the online nodes’ critical path: (i)
the latency of producing new blocks with redaction and (ii) the la-
tency of appending new blocks with redaction to the local replica.

11

Block without proof for editings Block with proof for editings

0.20

0.30

0.80

0.90

La
te

nc
y

of
 a

pp
en

di
ng

 a
 n

ew
co

m
in

g
bl

oc
k

(s
ec

)

is the average; each box shows statistics on 500 blocks

Figure 6. The latency of appending a newcoming block (without
or with proof on redaction) to the local replica.

First, we consider the latency of producing blocks with redac-
tion proof(s) and without redaction proof(s), respectively. For both
cases, we test 500 blocks (with fixed size up to 10 transactions),
and do not realize any statistic differences. Nevertheless, this is
not surprising, because we explicitly decouple the generation of
blocks and the voting on redaction, so the generation of blocks in
the two cases would execute the exactly same code.

Second, wemeasure the time spent on appending newly received
blocks to the local storage, for the cases with redaction proof(s) and
without redaction proof(s) respectively. As illustrated in Figure 6,
we compare appending a block with a redaction proof to the bench-
mark case of appending a block without any redaction proof. For
each case, we conduct extensive tests to get statistics on 500 blocks
(at distinct slots but with fixed block size up to 10 transactions) and
visualize the statistics. It reveals that the extra overhead (incurred
by validating redaction proof and editing earlier block) is small and
nearly constantly. In particular, compared to the immutable case,
the node only needs an extra time of 0.7 second to (i) validate a
redaction proof and (ii) edit an earlier block accordingly.
Validating a chain consisting of edited blocks. Then, we con-
duct a series of experiments to measure the extra cost of validating
an entire chain with edited blocks. Comparing to validating the im-
mutable chain, validating an edited chain further requires to fetch
and validate the proof on redaction for each edited block (besides
validating block headers). This could be another critical metric to
reflect how efficient our scheme is regarding re-spawning nodes.

To this end, we evaluate the time needed to validate a redactable
chain, with respect to the varying portion of edited blocks. In the
experiments, we generate redactable chains consisting of 1000 blocks
and each block contains 10 transactions, and measure the time
to validate them. As shown in Figure 7, the latency of validating
chains is almost increasing linearly in the number of redactions,
especially when the percentage of edited blocks is small or moder-
ately large (e.g., smaller than 25%). For example, when the percent-
age of edited blocks is 6.25% and 12.5%, the extra latency to verify
the chain is about 10 seconds and 30 seconds, respectively. Even if
in the extremely pessimistic case (i.e., 50% blocks are edited), the
cost is still acceptable (i.e., about 5x the immutable case).

0 6.25% 12.5% 25% 50%
0

100

200

300

400

500

600

La
te

nc
y

of
 v

al
id

at
in

g
a

10
00

-b
lo

ck
 c

ha
in

 (s
ec

)

Percentage of edited blocks in the chain

Figure 7. The latency of validating 1000-block redactable chains
(respect to various percentages of editings).

6.3 More discussions
Minimal impact on consensus. When proposing and receiving
(new) blocks with proofs on redaction, there is only small over-
head in our design. That means it places little burden on the online
blockchain nodes, and more importantly, it causes minimal over-
head to the critical path of consensus. In particular, when propos-
ing new blocks with redaction, there is no extra cost to slow down
the consensus; while receiving new blocks with redaction, the ex-
tra latency is as small as 0.8 second.
Efficiency for re-spawning nodes. When some nodes are re-
spawning, they have to bootstrap to sync up to the current longest
chain. Our extensive experiments reveal it would be feasible for the
re-spawning node to download and then verify the entire chain
despite of a few editable blocks. Especially, in the normal cases
that edited blocks are rare (e.g., less than 6.25%), the extra cost in-
curred by redaction is overwhelmed by the original cost of validat-
ing chain headers and transactions.
Instant redaction (close to actual network delay). Our design
dedicates to decouple voting from consensus: all votes are diffused
across the network via the underlying gossip network; once the
votes are successfully diffused, any honest block proposer can in-
clude a proof on redaction in its block, which would be confirmed
immediately after the block becomes stable. This typically costs
only a couple of minutes in Cardano. In contrast, prior art [21] lets
the node proposing a block to embed its own vote in the block, re-
sulting in a latency liner to a large security parameter. For example,
[21] requires about 1024 consecutive blocks to collect votes, which
means about 6 hours in Cardano and 7 days in Bitcoin. To sum
up, our construction achieves significant improvement by greatly
reducing the latency of confirming redactions.
Possible storage optimizations. Different from the immutable
blockchain, our redaction protocol has to store the collected votes
on each redaction, which is the most significant storage overhead
relative to an immutable blockchain. Currently, our PoC implemen-
tation requires about 110 KB to store the votes for each redaction.
We remark that various optimizations can be explored to further re-
duce the storage overhead. For example, we can use pairing-based

12

multi-signature scheme [13] to aggregate signatures of votes in-
stead of trivially concatenating secp256k1 ECDSA, which can re-
duce the size of votes to only about 60 KB.

7 CONCLUSION
It is crucial and even legally required to design redactable blockchain
protocols with instant redaction.We propose a generic approach to
construct redactable blockchain protocols with instant redaction,
where redactable blockchain inherits the same security assump-
tion from the underlying blockchain. We also define the first ideal
functionality of redactable blockchain following the language of
universal composition, and prove the security of our construction.
Moreover, we present concrete instantiations of redactable PoS and
PoWblockchains. Finally, we develop a PoC implementation of our
PoS instantiation, and the experimental results demonstrate the
high efficiency of our design. Our work makes a step forward in
understanding of redactable blockchain protocols.

REFERENCES
[1] https://www.lovemoney.com/news/91297/sent-money-to-the-wrong-account-

get-money-back-after-misdirected-payment.
[2] https://github.com/aergoio/secp256k1-vrf.
[3] Akasha. https://akasha.world.
[4] All about the bitcoin cash hard fork. https://www.investopedia.com/news/all-

about-bitcoin-cash-hard-fork.
[5] Cardano. https://cardano.org/.
[6] Ethereum project. https://www.ethereum.org/.
[7] The EU general data protection regulation. https://gdpr-info.eu/.
[8] The hard fork: what’s about to happen to ethereum and the DAO.

https://www.coindesk.com/hard-fork-ethereum-dao.
[9] The illinois blockchain initiative. https://illinoisblockchain.tech.
[10] Steem. https://steem.
[11] Giuseppe Ateniese, Michael T Chiaramonte, David Treat, Bernardo Magri, and

Daniele Venturi. 2018. Rewritable blockchain. uS Patent 9,967,096.
[12] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton Andrade.

2017. Redactable blockchain - or - rewriting history in bitcoin and friends. In
IEEE European Symposium on Security and Privacy, EuroS&P 2017. 111–126.

[13] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-
signatures for Smaller Blockchains. In ASIACRYPT 2018, Vol. 11273. Springer,
435–464.

[14] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and
verifiably encrypted signatures from bilinear maps. In Proceedings of Eurocrypt
2003. Springer, 416–432.

[15] Jan Camenisch, David Derler, Stephan Krenn, Henrich C.Pohls, Kai Samelin, and
Daniel Slamanig. 2017. Chameleon-hashes with ephemeral trapdoors. In IACR
International Workshop on Public Key Cryptography. Springer, 152–182.

[16] CBinsights. 2018. Banking is only the beginning: 50 big industries blockchain
could transform. https://www.cbinsights.com/research/ industries-disrupted-
blockchain/.

[17] Herman Chernoff. 1952. A measure of the asymptotic efficiency for tests of a
hypothesis based on the sum of observations. Annals of Mathematical Statistics
23 (1952), 493–509.

[18] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: robustly reconfig-
urable consensus and applications to provably secure proof of stake. In Financial
Cryptography and Data Security 2019. Springer, 23–41.

[19] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Proceedings of Eurocrypt 2018. Springer, 66–98.

[20] David Derler, Kai Samelin, Daniel Slamanig, and Christoph Striecks. 2019.
Fine-grained and controlled rewriting in blockchains: chameleon-hashing gone
attribute-based. In Network and Distributed Systems Security (NDSS) Symposium
2019.

[21] Dominic Deuber, Bernardo Magriy, Sri Aravinda, and Thyagarajan Krishnan.
2019. Redactable blockchain in the permissionless setting. In IEEE Symposium
on Security and Privacy 2019. 124–138.

[22] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A verifiable random function
with short proofs and keys. In 8th International Workshop on Theory and Practice
in Public Key Cryptography. 416–431.

[23] The Economist. 2017. Governments may be big backers of the blockchain.
https://goo.gl/uEjckp.

[24] Accenture files patent for editable blockchain. 2016. Business Insider Deutsch-
land. https://tinyurl.com/yblq9zdp.

[25] Juan A Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin back-
bone protocol: Analysis and applications. 9057 (2015), 281–310.

[26] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[27] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. 1988. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17
(1988), 281–308.

[28] Steve Hargreaves and Stacy Cowley. 2013. How porn links and ben bernanke
snuck into bitcoin’s code. http://money.cnn.com/2013/05/02/technology/
security/bitcoin-porn/index.html

[29] O’Hara Kieron Ibanez, Luis-Daniel and Elena Simperl. 2018. On blockchains
and the general data protection regulation. In Network and Distributed Systems
Security (NDSS) Symposium 2019.

[30] Michael Isard and Martĺłn Abadi. Falkirk wheel: rollback recovery for dataflow
systems. https://arxiv.org/abs/1503.08877.

[31] Christoph Jentzsch. Decentralized autonomous organization to automate gov-
ernance. https://download.slock.it/public/DAO/WhitePaper.pdf.

[32] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. 2016. Fair and robust
multi-party computation using a global transaction ledger. In Eurocrypt (2) 2016.
Springer, 705–734.

[33] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Pa-
pamanthou. 2016. Hawk: the blockchain model of cryptography and privacy-
preserving smart contracts. In IEEE Symposium on Security and Privacy 2016.
839–858.

[34] Jerin Mathew. 2015. Bitcoin: Blockchain could become ‘safe haven’ for host-
ing child sexual abuse images. http://www.dailydot.com/business/bitcoinchild-
porn-transaction-code/.

[35] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random func-
tions. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS). 120–130.

[36] Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan
Včelák, Leonid Reyzin, and Sharon Goldberg. 2017. Making NSEC5 Practical for
DNSSEC. Cryptology ePrint Archive, Report 2017/099. (2017). https://eprint.
iacr.org/2017/099.

[37] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain
protocol in asynchronous networks. In Eurocrypt 2017, Vol. 10211. Springer, 643–
673.

[38] Rafael Pass and Elaine Shi. 2017. The sleepy model of consensus. In ASIACRYPT
2017, Vol. 10625. Springer, 380–409.

[39] Ivan Puddu, Alexandra Dmitrienko, and Srdjan Capkun. 2017. 𝜇 chain: how to
forget without hard forks. In IACR Cryptology ePrint Archive, 2017/106.

[40] Matzutt R, Hiller J, and Henze M. 2018. A quantitative analysis of the impact
of arbitrary blockchain content on bitcoin. In Financial Cryptography and Data
Security 2018. Springer, 420–438.

[41] Ken Shirriff. 2014. Hidden surprises in the bitcoin blockchain and how
they are stored: Nelson mandela, wikileaks, photos, and python software.
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photog raphs.html.

[42] S A Krishnan Thyagarajan, Adithya Bhat, Bernardo Magriz, Daniel Tschudix,
and Kate Aniket. Reparo: publicly verifiable layer to repair blockchains.
https://arxiv.org/abs/2001.00486.

[43] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2018. Hotstuff: Bft consensus in the lens of blockchain. arXiv preprint
arXiv:1803.05069 (2018).

A PRELIMINARIES AND DEFINITIONS
In this paper, we say a function 𝑛𝑒𝑔𝑙 (·) : N → (0, 1) is negligible,
if for every constant 𝑐 ∈ N, 𝑛𝑒𝑔𝑙 (𝑛) < 𝑛−𝑐 for sufficiently large 𝑛.
Hereafter, we use 𝑛𝑒𝑔𝑙 (𝜆) to refer to a negligible function in the
security parameter 𝜆.

A.1 Signature Scheme
A digital signature scheme SIG = (Gen, Sign, Verify) with mes-
sage spaceM(𝜆) consists of the standard algorithms: key gener-

ation Gen
(
1𝜆
) $→ (𝑝𝑘, 𝑠𝑘), signing Sign(𝑠𝑘 ;𝑚) → 𝜎 , and verifica-

tion Verify(𝑝𝑘 ;𝑚,𝜎) → {0, 1}. It is said to be correct if Verify(𝑝𝑘 ;

𝑚, Sign(𝑠𝑘 ;𝑚)) = 1 for all (𝑝𝑘, 𝑠𝑘) $←Gen
(
1𝜆
)
and𝑚 ∈ M(𝜆).

13

To define security [27], we consider the following game between
an adversary A and a challenger.

(1) Setup Phase. The challenger chooses (𝑝𝑘, 𝑠𝑘) $←Gen
(
1𝜆
)
.

(2) Signing Phase. The adversary A sends signature query 𝑚𝑖 ∈
M and receives 𝜎𝑖 = Sign(𝑠𝑘 ;𝑚𝑖).

(3) Forgery Phase.A outputs a message𝑚 and its signature 𝜎 . If𝑚
is not queried during the Signing Phase and Verify(𝑝𝑘 ; 𝑚, 𝜎)
= 1, the adversary wins.

Definition A.1. (EUF-CMA).We say that a signature scheme SIG
is existentially unforgeable under adaptive chosen-message attacks
(EUF-CMA), if for all adversariesA, there exists a negligible func-
tion negl(𝜆) such that

AdvEUF-CMA
SIG = Pr[A 𝑤𝑖𝑛𝑠] ≤ negl(𝜆).

A.2 Aggregate Signature Scheme
An aggregate signature scheme [14] allows aggregating multiple
individual signatures into a single short signature in a non-interactive
way.

An aggregate signature schemeASIG consists of five algorithms:
KeyGen, Sign, Ver, Agg and AggVer. The key generation algorithm

KeyGen(1𝜆) $→(𝑝𝑘𝑖 , 𝑠𝑘𝑖) generates the public/secret key pair for
each participant. The signing algorithm Sign(𝑠𝑘,𝑚) → 𝜎 gener-
ates a signature 𝜎 on the message𝑚 using the secret key 𝑠𝑘 . The
verification algorithm Ver(𝑝𝑘,𝑚, 𝜎) outputs 1 if 𝜎 is a valid signa-
ture on𝑚 under 𝑝𝑘 , otherwise outputs 0. Given multiple individ-
ual signatures (𝜎1, ..., 𝜎𝑛), where 𝜎𝑖 is a signature on the message
𝑚𝑖 under 𝑝𝑘𝑖 for 𝑖 ∈ [𝑛], the aggregation algorithm Agg((𝑝𝑘1,𝑚1,
𝜎1),...,(𝑝𝑘𝑛 , 𝑚𝑛 , 𝜎𝑛))→ 𝑎𝑠𝑖𝑔 aggregates these signatures into one
signature 𝑎𝑠𝑖𝑔. The aggregate verification algorithm AggVer({(𝑝𝑘1,
𝑚1), ... ,(𝑝𝑘𝑛 ,𝑚𝑛)}, 𝑎𝑠𝑖𝑔) outputs 1 if 𝑎𝑠𝑖𝑔 is a valid aggregate signa-
ture on (𝑚1, ...,𝑚𝑛) under (𝑝𝑘1, ..., 𝑝𝑘𝑛), otherwise outputs 0.

An aggregate signature scheme should satisfy completeness, which
means that for any 𝑛, {(𝑝𝑘1, 𝑠𝑘1), ..., (𝑝𝑘𝑛, 𝑠𝑘𝑛)} ← KeyGen(1𝜆),
any distinct messages {𝑚1, , ...,𝑚𝑛}, 𝜎𝑖 ← Sign(𝑠𝑘𝑖 ,𝑚𝑖) for 𝑖 ∈ [𝑛],
and 𝑎𝑠𝑖𝑔← Agg((𝑝𝑘1,𝑚1, 𝜎1), ..., (𝑝𝑘𝑛,𝑚𝑛, 𝜎𝑛)), we have AggVer
({(𝑝𝑘1,𝑚1),...,(𝑝𝑘𝑛,𝑚𝑛)}, 𝑎𝑠𝑖𝑔) = 1 if Ver(𝑝𝑘𝑖 ,𝑚𝑖 , 𝜎𝑖) = 1 for 𝑖 ∈
[𝑛].

An aggregate signature scheme should also satisfy unforgeabil-
ity. To define unforgeability, we consider the following game be-
tween an adversary A and a challenger.
(1) Setup Phase. The challenger generates the challenge public/secret

key pair (𝑝𝑘∗, 𝑠𝑘∗) ← KeyGen(1𝜆), and sends 𝑝𝑘∗ to A.
(2) Signing Phase.A can make signature queries on any message

𝑚 under 𝑝𝑘∗, and the challenger returns 𝜎 ← Sign(𝑠𝑘∗,𝑚).
(3) Forgery Phase.A outputs a public key set 𝑃𝐾 = {𝑝𝑘1, ..., 𝑝𝑘𝑛−1},

a message set 𝑀 = {𝑚∗,𝑚1, ...,𝑚𝑛−1} and an aggregate signa-
ture 𝑎𝑠𝑖𝑔. If 𝑝𝑘∗ ∈ 𝑃𝐾 , 𝑚∗ is not queried to Sign(𝑠𝑘∗, .), and
AggVer({(𝑝𝑘∗,𝑚∗), (𝑝𝑘1,𝑚1), ..., (𝑝𝑘𝑛−1,𝑚𝑛−1)}, 𝑎𝑠𝑖𝑔) = 1, the
adversary wins.

Definition A.2. (Unforgeability). We say that an aggregate sig-
nature scheme ASIG is unforgeable, if for all adversaries A, there
exists a negligible function negl(𝜆) such that

AdvASIG = Pr[A 𝑤𝑖𝑛𝑠] ≤ negl(𝜆).

A.3 Verifiable Random Functions
The concept of verifiable random functions is introduced by Micali
et al.[35]. Informally, it is a pseudo-random function that provides
publicly verifiable proofs on outputs correctness.

Definition A.3. (Verifiable Random Functions)[22]. A function
family 𝐹 (·) (·) : {0, 1}𝑙 → {0, 1}𝑙𝑉𝑅𝐹 is a family of VRFs if there ex-
ist algorithms (Gen,VRF,VerifyVRF) such that Gen outputs a pair
of keys (𝑝𝑘, 𝑠𝑘); VRF𝑠𝑘 (𝑥) outputs a pair (𝐹𝑠𝑘 (𝑥), 𝜋𝑠𝑘 (𝑥)), where
𝐹𝑠𝑘 (𝑥) is the output value of the function and 𝜋𝑠𝑘 (𝑥) is the proof
for verifying correctness; andVerifyVRF𝑝𝑘 (𝑥,𝑦, 𝜋) verifies that𝑦 =
𝐹𝑠𝑘 (𝑥) using the proof 𝜋 , return 1 if 𝑦 is valid and 0 otherwise. For-
mally, we require the following properties:
• Uniqueness: no values (𝑝𝑘 , 𝑥 , 𝑦1, 𝑦2, 𝜋1, 𝜋2) can satisfy

VerifyVRF𝑝𝑘 (𝑥,𝑦1, 𝜋1) = VerifyVRF𝑝𝑘 (𝑥,𝑦2, 𝜋2) unless 𝑦1 = 𝑦2.
• Provability: if (𝑦, 𝜋) = VRF𝑠𝑘 (𝑥), then VerifyVRF𝑝𝑘 (𝑥,𝑦, 𝜋) = 1.
• Pseudorandomness: for any probabilistic polynomial time al-

gorithm 𝐴 = (𝐴𝐸 , 𝐴𝐽), which executes for a total of 𝑠 (𝜆) steps
when its first input is 1𝜆 , and does not query the oracle on 𝑥 ,

Pr


𝑏 = 𝑏′

�����������
(𝑝𝑘, 𝑠𝑘) ← Gen(1𝜆) ;

(𝑥, 𝑠𝑡) ← 𝐴𝑉𝑅𝐹 (.)𝐸 (𝑝𝑘) ;

𝑦0 = VRF𝑠𝑘 (𝑥) ; 𝑦1 ← {0, 1}𝑙VRF ;

𝑏 ← {0, 1};𝑏′ ← 𝐴𝑉𝑅𝐹 (.)𝐽 (𝑦𝑏 , 𝑠𝑡)


≤ 1

2
+ 𝑛𝑒𝑔𝑙 (𝜆) .

Intuitively, the pseudorandomness property states that no func-
tion value can be distinguished from random, even after seeing any
other function values together with corresponding proofs.

B SECURITY PROPERTIES OF BLOCKCHAIN
We recall common security properties that blockchain protocols
should satisfy as follows.
Common Prefix. Informally speaking, the common prefix prop-
erty requires that all honest parties’ chains should be identical ex-
cept for roughly O(𝜆) number of trailing blocks that have not sta-
bilized.

Let prefix𝑘 (view) = 1 iff for all times 𝑡 ≤ 𝑡 ′, and for all parties
𝑖, 𝑗 such that 𝑖 is honest at 𝑡 and 𝑗 is honest at 𝑡 ′ in view, we have
that the prefixes of chain𝑡𝑖 (view) and chain𝑡

′
𝑗 (view) consisting of

the first |chain𝑡𝑖 (view) | − 𝑘 records are identical.

Definition B.1. (Common Prefix). We say that a blockchain pro-
tocol Π satisfies 𝑘0-common prefix, if for all (A,Z), there exists a
negligible function negl such that for every sufficiently large 𝜆 ∈ N
and every 𝑘 ≥ 𝑘0 the following holds:
Pr[view← EXECΠ (A,Z, 𝜆) : prefix𝑘 (view) = 1] ≥ 1 − negl(𝜆) .

Chain Quality. Informally speaking, the chain quality property
requires that the ratio of adversarial blocks in any segment of a
chain held by an honest party is not too large.

We say that a block 𝐵 = chain[𝑗] is honest w.r.t. view and prefix
chain[: 𝑗 ′] where 𝑗 ′ < 𝑗 , if there exists some honest party 𝑖 at
some time 𝑡 < |view| who received 𝐵 as input, and its local chain
chain𝑡𝑖 (view) contains the prefix chain[: 𝑗 ′].

Let quality𝑘 (view, 𝜇) = 1 iff for every time 𝑡 and every party 𝑖
such that 𝑖 is honest at 𝑡 in view, among any consecutive sequence

14

of 𝑘 blocks chain[𝑗+1.. 𝑗+𝑘] ⊆ chain𝑡𝑖 (view), the fraction of blocks
that are honest w.r.t. view and prefix cℎ𝑎𝑖𝑛[: 𝑗] is at least 𝜇.

Definition B.2. (Chain Quality). We say that a blockchain proto-
col Π satisfies (𝑘0, 𝜇)-chain quality, if for all (A,Z), there exists a
negligible function negl such that for every sufficiently large 𝜆 ∈ N
and every 𝑘 ≥ 𝑘0 the following holds:

Pr[view← EXECΠ (A,Z, 𝜆) : quality𝑘 (view, 𝜇) = 1] ≥ 1−negl(𝜆).

ChainGrowth.The chain growth property requires that the chain
grows proportionallywith the number of time slots. Let growth𝜏 (view)
= 1 iff for every time 𝑡 ≤ |view| − 𝑡0 and every two parties 𝑖, 𝑗
such that in view 𝑖 is honest at time 𝑡 and 𝑗 is honest at 𝑡 + 𝑡0,
|chain𝑡+𝑡0𝑗 (view) | − |chain𝑡𝑖 (view) | ≥ 𝜏 · 𝑡0.

Definition B.3. (Chain Growth). We say that a blockchain proto-
col Π satisfies 𝜏-chain growth, if for all (A,Z), there exists a neg-
ligible function negl such that for every sufficiently large 𝜆 ∈ N
the following holds:

Pr[view← EXECΠ (A,Z, 𝜆) : growth𝜏 (view) = 1] ≥ 1 − negl(𝜆) .

C IMMUTABLE BLOCKCHAIN PROTOCOL
We now recall the immutable blockchain protocol Γ′ in Figure 8.
Compared with the redactable protocol Γ as depicted in Figure 1,
the redaction operations are pruned and the original block struc-
ture is adopted.

Immutable Blockchain Protocol Γ′ (of Node P)

/ * Initialization * /
Upon receiving init() from Z, P is activated to initialize as follows:

let (𝑝𝑘𝑝 , 𝑠𝑘𝑝) := Gen(1𝜆)
let 𝑡𝑥𝑝𝑜𝑜𝑙 be an empty FIFO buffer
let 𝑐ℎ𝑎𝑖𝑛 := 𝐵0, where 𝐵0 is the genesis block

/ * Receiving a longer chain * /
Upon receiving 𝑐ℎ𝑎𝑖𝑛′ for the first time, the (online) P proceeds as:

assert |𝑐ℎ𝑎𝑖𝑛′ | > |𝑐ℎ𝑎𝑖𝑛 | and validateChain(𝑐ℎ𝑎𝑖𝑛′) = 1;
let 𝑐ℎ𝑎𝑖𝑛 := 𝑐ℎ𝑎𝑖𝑛′ and broadcast 𝑐ℎ𝑎𝑖𝑛

/ * Receiving transactions * /
Upon receiving transactions(𝑑′) from Z (or other nodes) for the first
time, the (online) P proceeds as:

let 𝑡𝑥𝑝𝑜𝑜𝑙 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑑′) and broadcast 𝑑′

/ * Main procedure * /
for each slot 𝑠𝑙′ ∈ {1, 2, . . . }, the (online) P proceeds as:
if eligible(P, 𝑠𝑙′) = 1:

let 𝑑′ := 𝑡𝑥𝑝𝑜𝑜𝑙 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
let (ℎ𝑒𝑎𝑑𝑒𝑟,𝑑) := Head(𝑐ℎ𝑎𝑖𝑛)
let ℎ𝑒𝑎𝑑𝑒𝑟 ′ := (𝑠𝑙′, 𝑠𝑡 ′,𝐺 (𝑑′), 𝜋 ′) , where 𝑠𝑡 ′ := 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟) and 𝜋 ′
is the output of P (the signature or the nonce)
let 𝑐ℎ𝑎𝑖𝑛 := 𝑐ℎ𝑎𝑖𝑛 ∥ (ℎ𝑒𝑎𝑑𝑒𝑟 ′, 𝑑′) and broadcast 𝑐ℎ𝑎𝑖𝑛

output extract(𝑐ℎ𝑎𝑖𝑛) to Z, where extract outputs an ordered list of
each block in 𝑐ℎ𝑎𝑖𝑛

Figure 8. Immutable Blockchain Protocol

D IDEAL IMMUTABLE BLOCKCHAIN
PROTOCOL

We present the corresponding ideal functionality F ′𝑡𝑟𝑒𝑒 (Figure 9)
and the ideal immutable protocol Π′

𝑖𝑑𝑒𝑎𝑙
(Figure 10) for Γ′, by prun-

ing the redaction operations from F𝑡𝑟𝑒𝑒 (c.f. Figure 3) and Π𝑖𝑑𝑒𝑎𝑙
(c.f. Figure 4), respectively.

F′𝑡𝑟𝑒𝑒 (𝑝, 𝑝′)
On init: tree := genesis, time(genesis) := 0
On receive leader(P, 𝑡) from A or internally:

if Γ [P, 𝑡] has not been set, let Γ [P, 𝑡] =
{1 with probability 𝜙 (𝑝)
0 otherwise

return Γ [P, 𝑡]
On receive extend(chain,B) from honest party P:
let 𝑡 be the current time
assert chain ∈ tree, chain∥B ∉ tree, and leader(P, 𝑡) outputs 1
append B to chain in tree, record time(chain∥B) := 𝑡
return “succ"

On receive extend(chain,B, 𝑡 ′) from corrupt party P∗:
let 𝑡 be the current time
assert chain ∈ tree, chain∥B ∉ tree, leader(P, 𝑡) outputs 1, and
time(chain) < 𝑡 ′ < 𝑡
append B to chain in tree, record time(chain∥B) := 𝑡 ′
return “succ"

On receive verify(chain) from P: return (chain ∈ tree)

Figure 9. Ideal functionality F ′𝑡𝑟𝑒𝑒

Ideal Protocol Π′ideal
On init : chain := genesis
On receive chain′:
Assert |chain′ | > |chain | and F′𝑡𝑟𝑒𝑒 .verify(chain′) = 1
For every slot:
–receive input B from Z
–if F𝑡𝑟𝑒𝑒 .extend(chain,B) outputs “succ", then let chain := chain∥B and
broadcast chain

–output chain to Z

Figure 10. Ideal Blockchain Protocol

E SECURITY PROOF OF THEOREM 4.3
Redactable common prefix. Assume that there exists 𝐵∗𝑗 in the
prefix of chain𝑡

′
P𝑖′ (view) but not in the prefix of chain

𝑡
P𝑖 (view) con-

sisting of the first |chain𝑡P𝑖 (view) | − 𝑘0 records, where 𝑡 ≤ 𝑡
′, and

a party P𝑖 is honest at 𝑡 and a party P𝑖′ is honest at 𝑡 ′ in view,
which means 𝐵 𝑗 is redacted with 𝐵∗𝑗 in chain𝑡

′
P𝑖′ (view) but not in

chain𝑡P𝑖 (view). Then it must be the case that the party P𝑖′ receives
enough votes (more than the number of corrupt committee mem-
bers) for 𝐵∗𝑗 according to the ideal protocol specification. Therefore,
the redaction policy RP is satisfied, and we conclude Πideal satis-
fies the 𝑘0-redactable common prefix.
Chain quality. If an honest block 𝐵 𝑗 is replaced with a malicious
block 𝐵∗𝑗 (e.g., containing illegal or harmful data), the adversaryA
can increase the proportion of adversarial blocks in chain and fi-
nally break the chain quality property. However, according to the
ideal protocol specification, an edited block can only be adopted

15

when the votes aremore than the number of adversarial committee
members. Since only those adversarial committee members would
vote for the malicious block 𝐵∗𝑗 , chain cannot be redacted. There-
fore, we conclude Πideal satisfies the (𝑘0, 𝜇)-chain quality.
Chain growth. Note that any edit operation would not alter the
length of chain, since it is not possible to remove any blocks from
chain according to the ideal protocol specification. Moreover, the
new block issue process in current time slot is not influenced by
votes for any edit request. No matter whether a party P has re-
ceived enough votes, P always extends chain at time slot 𝑡 as long
as leader(P, 𝑡) = 1. Therefore, we conclude Πideal satisfies the 𝜏-
chain growth. □

F SECURITY PROOF OF THEOREM 4.4
Consider a p.p.t. adversaryA in the real-world protocol Γ. We con-
struct the simulator S in the ideal protocol Πideal as follows:
(1) At the beginning of the protocol execution, S generates pub-

lic/secret key pair (𝑝𝑘P , 𝑠𝑘P) for each honest party P, and
stores the party P and public key 𝑝𝑘P mapping.

(2) For the leader selection process, we consider two common cases.
• The leader selection function eligible is modeled as the ran-
dom oracle 𝐻 (·). Whenever A sends a hash query 𝐻 (P, 𝑡), S
checks whether this query has been asked before and returns
the same answer as before if so. Otherwise, S checks whether
the identifier P corresponds to this protocol instance. If not, S
samples a random number of the length |𝐻 (·) | and returns it to
A. Else if the check succeeds, S calls 𝑏 ← F𝑡𝑟𝑒𝑒 .leader(P, 𝑡),
and returns 𝑏.
• The random oracle is replaced with normal function such as
PRF𝑘 (·). In this case, PRF𝑘 (·) is used by both S and A. Most
of the simulation proof is identical to the random oracle case
presented above, except that when S learns 𝑘 from F𝑡𝑟𝑒𝑒 , it
simply gives𝑘 toA, andS no longer needs to simulate random
oracle queries for A.

(3) S keeps track of the real-world 𝑐ℎ𝑎𝑖𝑛 for every honest partyP𝑖 .
Whenever it sends 𝑐ℎ𝑎𝑖𝑛 to A on behalf of P𝑖 , it updates this
state for P𝑖 . Whenever A sends 𝑐ℎ𝑎𝑖𝑛 to honest party P𝑖 , S
checks the simulation validity of 𝑐ℎ𝑎𝑖𝑛. If it is valid and more-
over 𝑐ℎ𝑎𝑖𝑛 is longer than the current real-world chain for P𝑖 ,
S also saves 𝑐ℎ𝑎𝑖𝑛 as the new real-world 𝑐ℎ𝑎𝑖𝑛 for P𝑖 .

(4) Whenever an honest party P sends chain to S, S looks up the
current real-world state 𝑐ℎ𝑎𝑖𝑛 for P.
• If the editing pool EP is empty,S computes a new 𝑐ℎ𝑎𝑖𝑛′ us-
ing the real-world algorithm. Specifically, let 𝑠𝑙 be the current
slot, and if eligible(P, 𝑠𝑙) = 1, then S sets 𝐵 := (ℎ𝑒𝑎𝑑𝑒𝑟 ′, 𝑑 ′)
withℎ𝑒𝑎𝑑𝑒𝑟 ′ = (𝑠𝑙, 𝑠𝑡 ′,𝐺 (𝑑 ′), 𝑖𝑏 ′, 𝜋 ′) such that 𝑠𝑡 ′ = 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟)
and 𝜋 ′ is the output of P (the signature for Head(𝑐ℎ𝑎𝑖𝑛) =
(ℎ𝑒𝑎𝑑𝑒𝑟, 𝑑) or the nonce). Finally, S sets 𝑐ℎ𝑎𝑖𝑛′ := 𝑐ℎ𝑎𝑖𝑛∥𝐵
and sends 𝑐ℎ𝑎𝑖𝑛′ to A.
• If the editing pool EP is not empty (e.g., one candidate edited
block 𝐵∗𝑗 for 𝐵 𝑗 is included in EP), S starts to collect the votes
for 𝐵∗𝑗 and simulates the vote process using the real-world al-
gorithm. Specifically, for any party P𝑖 who sends the candi-
date 𝐵∗𝑗 to S in 𝑠𝑙 , if Cmt(𝑐ℎ𝑎𝑖𝑛, ⌊𝑠𝑙/𝑤⌋ ∗ 𝑤,P𝑖 , 𝑝𝑎𝑟𝑎) returns
(𝑐𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖), S votes for 𝐵∗𝑗 in the name of P𝑖 by computing
𝑣𝑖 = Sign (𝑠𝑘𝑖 , 𝐻 (𝐵∗𝑗)), and then sends (𝑐𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖 , 𝑣𝑖) to A.

If S receives votes for 𝐵∗𝑗 , S computes (𝑎𝑠𝑖𝑔, 𝑃𝑅𝑂𝑂𝐹) for 𝐵∗𝑗
by the aggregation of 𝑣𝑖 and (𝑐𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖). If eligible(P, 𝑠𝑙 ′) =
1, S sets 𝑑 ′ := 𝑑 ′∥𝑎𝑠𝑖𝑔∥𝑃𝑅𝑂𝑂𝐹 and 𝐵 := (ℎ𝑒𝑎𝑑𝑒𝑟 ′, 𝑑 ′) with
ℎ𝑒𝑎𝑑𝑒𝑟 ′ = {𝑠𝑙 ′, 𝑠𝑡 ′,𝐺 (𝑑 ′), 𝑖𝑏 ′, 𝜋 ′}, such that 𝑠𝑡 ′ = 𝐻 (ℎ𝑒𝑎𝑑𝑒𝑟)
and 𝜋 ′ is the output of P (the signature for Head(𝑐ℎ𝑎𝑖𝑛) =
(ℎ𝑒𝑎𝑑𝑒𝑟, 𝑑) or the nonce). Finally, S sets 𝑐ℎ𝑎𝑖𝑛′ := 𝑐ℎ𝑎𝑖𝑛∥𝐵
and sends 𝑐ℎ𝑎𝑖𝑛′ to A.

(5) Whenever A sends a message 𝑐ℎ𝑎𝑖𝑛 to an honest party P, S
intercepts the message and checks the validity of 𝑐ℎ𝑎𝑖𝑛 by exe-
cuting the real-world protocol’s checks (i.e., validateChain(.)).
If the checks do not pass, S ignores the message. Otherwise,
• For the candidate edited block 𝐵∗𝑗 , S abort outputting vote-
failure if RP(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗 , 𝑠𝑙) = 1 for some slot 𝑠𝑙 however S has
never received enough votes for 𝐵∗𝑗 .
• Else, let chain := extract(𝑐ℎ𝑎𝑖𝑛), and let chain[: 𝑙] be the
longest prefix of chain such that F𝑡𝑟𝑒𝑒 .verify(chain[: 𝑙]) = 1.
If any block in 𝑐ℎ𝑎𝑖𝑛[𝑙 + 1 :] is signed by an honest party P, S
aborts outputting sig-failure. Else, for each 𝑙 ′ ∈ [𝑙 + 1, |chain|],
S calls F𝑡𝑟𝑒𝑒 .extend(chain[: 𝑙 ′ − 1], chain[𝑙 ′], 𝑡 ′) acting as a
corrupted stakeholder P∗, where 𝑡 ′ = 𝑇𝑖𝑚𝑒 . Then S forwards
𝑐ℎ𝑎𝑖𝑛 to P.

Lemma F.1. If the signature scheme SIG is EUF-CMA secure and
the hash function 𝐻 is collision-resistant, the simulated execution
never aborts with sig-failure except with negligible probability.

Proof.Note that the adversaryA cannot produce a malicious block
𝐵∗𝑗 such that 𝐻 (𝐵∗𝑗) = 𝐻 (𝐵∗𝑗) for the candidate edited block 𝐵∗𝑗 ,
since the hash function 𝐻 is collision-resistant. Then, if sig-failure
ever happens, the adversary A must have forged a signature on
a new message that S never signed. Thus, we can immediately
construct a reduction that breaks the EUF-CMA security of the un-
derlying signature scheme SIG. Specifically, S simulates forA the
protocol executing just as the above specification, and guesses a
random party P𝑖 whose signature security is broken. S generates
the public/secret key pair for all other parties and produces the cor-
responding signatures. S also calls the signing oracle to generate
signatures for P𝑖 . Eventually, ifA outputs a valid signature 𝜎 and
𝜎 has never been previously output by the signing oracle, 𝜎 can be
used as a forgery and EUF-CMA security of SIG is broken. □

Lemma F.2. If the aggregate signature schemeASIG is unforgeable
and the functionCmt ensures the fraction (in terms of computational
power or stake) of honest users in the committee is at least𝜂, the simu-
lated execution never aborts with vote-failure except with negligible
probability.

Proof. If vote-failure ever happens, the adversarySmust have forged
an aggregate signature𝑎𝑠𝑖𝑔 on the individualmessages in the name
of the 𝜉 parties, among which there is at least one honest stake-
holder. Then we can construct a reduction that breaks the security
of the underlying aggregate signature scheme ASIG. Specifically,
S simulates the protocol executing for A as the above specifica-
tion, and guesses a random party P𝑖 as the honest party among
the 𝜉 parties. We denote by (𝑝𝑘∗, 𝑠𝑘∗) the public/secret key pair of
P𝑖 . S generates the public/secret key pair for all other parties and
produces the corresponding signatures. S also calls the signing or-
acle Sign(𝑠𝑘∗, .) to generate any signature for P𝑖 as specified in the

16

security experiment. Eventually, ifA outputs a valid aggregate sig-
nature 𝑎𝑠𝑖𝑔 on the message set 𝑀 = {𝑚∗,𝑚1, ...,𝑚𝑛−1} under the
public key set {𝑝𝑘∗, 𝑝𝑘1, ..., 𝑝𝑘𝑛−1} and𝑚∗ has never been queried
to the signing oracle Sign(𝑠𝑘∗, .), where 𝑛 = 𝜉 , then 𝑎𝑠𝑖𝑔 can be
used as a forgery and the security of ASIG is broken. □

Conditioned on the fact that all of the above failure events do not
happen, the simulated execution is identically distributed as the
real-world execution from the perspective ofZ. We thus complete
the proof of theorem. □

G EXTENSION FOR MULTIPLE REDACTIONS
We extend the redactable protocol of Figure 1 to accommodatemul-
tiple redactions for each block. Intuitively, each redaction of one
blockmust contain the entire history of previous redactions of that
block, and can only be approved if all previous redactions (includ-
ing the current one) are approved. In this extension, the history
information is stored in the initial state component 𝑖𝑏. We now
sketch the main protocol changes.

Proposing an edit. To propose a redaction for block 𝐵 𝑗 =
(𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑 𝑗), 𝑖𝑏 𝑗 , 𝜋 𝑗 , 𝑑 𝑗), the user replaces 𝑑 𝑗 with the new data
𝑑∗𝑗 and replaces 𝑖𝑏 𝑗 with 𝑖𝑏∗𝑗 = 𝑖𝑏 𝑗 | |𝐺 (𝑠𝑡 𝑗 , 𝑑 𝑗) if 𝑖𝑏 𝑗 ≠ 𝐺 (𝑠𝑡 𝑗 , 𝑑 𝑗). It
then generates a candidate block 𝐵∗𝑗 = (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑∗𝑗), 𝑖𝑏

∗
𝑗 , 𝜋 𝑗 , 𝑑

∗
𝑗).

Note that, if𝐵 𝑗 has never been redacted before, then 𝑖𝑏 𝑗 = 𝐺 (𝑠𝑡 𝑗 , 𝑑 𝑗)
and thus 𝑖𝑏∗𝑗 = 𝐺 (𝑠𝑡 𝑗 , 𝑑 𝑗).

ValidBlocks.To validate a block, the users run the validateBlockExt
algorithm (Algorithm 8). Intuitively, the validateBlockExt algorithm
performs the same operations as the validateBlock algorithm (Al-
gorithm 1), except that it consider the case where the block can
be redacted multiple times. Note that 𝑖𝑏 stores the history infor-
mation of the previous redactions, and thus can be parsed as 𝑖𝑏 =
𝑖𝑏 (1) | |...| |𝑖𝑏 (𝑙) if the block has been redacted 𝑙 times, where 𝑖𝑏 (1)
denotes the original state information of the unredacted block ver-
sion.

Algorithm 8 Extended block validation algorithm validateBlockExt(𝐵)

1: Parse 𝐵 = (𝑠𝑙, 𝑠𝑡,𝐺 (𝑑), 𝑖𝑏, 𝜋,𝑑) ;
2: Parse 𝑖𝑏 = 𝑖𝑏 (1) | |... | |𝑖𝑏 (𝑙) , where 𝑖𝑏 (𝑖) ∈ {0, 1}∗ ∀𝑖 ∈ [𝑙];
3: Validate data 𝑑 , if invalid return 0;
4: Validate the leader, if invalid return 0;
5: Validate data 𝜋 , if invalid return 0;
6: else return 1;

ValidBlockchains.To validate a chain, the users run the validateChainExt
algorithm (Algorithm 9). The only difference from the original Al-
gorithm 2 is that now 𝑖𝑏 = 𝑖𝑏 (1) | |...| |𝑖𝑏 (𝑙) where 𝑖𝑏 (1) denotes the
original state information of the unredacted block version.

Valid Candidate Editing Blocks. To validate a candidate edit-
ing block, the users run validateCandExt algorithm (Algorithm 10).
If a block 𝐵 𝑗 has been redacted more than once, then validation of
a candidate block 𝐵∗𝑗 should account for the previous redactions.
That is, the proof of each redaction must exist in the chain.

Algorithm 9 Extended chain validation algorithm
validateChainExt(𝑐ℎ𝑎𝑖𝑛)

1: Parse 𝑐ℎ𝑎𝑖𝑛 = (𝐵1, · · · , 𝐵𝑚) and set 𝑗 =𝑚;
2: while 𝑗 ≥ 2 do
3: parse 𝐵 𝑗 = (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑 𝑗), 𝑖𝑏 𝑗 , 𝜋 𝑗 , 𝑑 𝑗) ;
4: parse 𝐵 𝑗−1 = (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1,𝐺 (𝑑 𝑗−1), 𝑖𝑏 𝑗−1, 𝜋 𝑗−1, 𝑑 𝑗−1) ;
5: Parse 𝑖𝑏 𝑗 = 𝑖𝑏

(1)
𝑗 | |... | |𝑖𝑏

(𝑙)
𝑗 , where 𝑖𝑏 (𝑖)𝑗 ∈ {0, 1}∗;

6: Parse 𝑖𝑏 𝑗−1 = 𝑖𝑏
(1)
𝑗−1 | |... | |𝑖𝑏

(𝑙′)
𝑗−1 , where 𝑖𝑏

(𝑖)
𝑗−1 ∈ {0, 1}∗;

7: if Γ′.validateBlock(𝐵 𝑗) = 0 then return 0;
8: else if 𝑠𝑡 𝑗 = 𝐻 (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1,𝐺 (𝑠𝑡 𝑗−1, 𝑑 𝑗−1), 𝑖𝑏 𝑗−1, 𝜋 𝑗−1) ,
9: then 𝑗 = 𝑗 − 1;
10: else if 𝑠𝑡 𝑗 = 𝐻 (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1, 𝑖𝑏 (1)𝑗−1, 𝑖𝑏

(1)
𝑗−1, 𝜋 𝑗−1) ∧

11: RP(𝑐ℎ𝑎𝑖𝑛, 𝐵 𝑗−1, 𝑠𝑙 𝑗−1) = 1, then 𝑗 = 𝑗 − 1;
12: else return 0.
13: end while
14: return Γ′.validateBlockExt(𝐵 𝑗) .

Algorithm 10 Extended candidate block validation algorithm
validateCandExt(𝑐ℎ𝑎𝑖𝑛, 𝐵∗𝑗)

1: Parse 𝐵∗𝑗 = (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 ,𝐺 (𝑑∗𝑗), 𝑖𝑏∗𝑗 , 𝜋 𝑗 , 𝑑∗𝑗) ;;
2: Parse 𝑖𝑏 𝑗 = 𝑖𝑏

(1)
𝑗 | |... | |𝑖𝑏

(𝑙)
𝑗 , where 𝑖𝑏 (𝑖)𝑗 ∈ {0, 1}∗ ∀𝑖 ∈ [𝑙];

3: if Γ′.validateBlock(𝐵∗𝑗) = 0 then return 0;
4: Parse 𝐵 𝑗−1 = (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1,𝐺 (𝑑 𝑗−1), 𝑖𝑏 𝑗−1, 𝜋 𝑗−1, 𝑑 𝑗−1) ;
5: Parse 𝑖𝑏 𝑗−1 = 𝑖𝑏

(1)
𝑗−1 | |... | |𝑖𝑏

(𝑙′)
𝑗−1 , where 𝑖𝑏

(𝑖)
𝑗−1 ∈ {0, 1}∗ ∀𝑖 ∈ [𝑙′];

6: Parse 𝐵 𝑗+1 = (𝑠𝑙 𝑗+1, 𝑠𝑡 𝑗+1,𝐺 (𝑑 𝑗+1), 𝑖𝑏 𝑗+1, 𝜋 𝑗+1, 𝑑 𝑗+1) ;
7: if 𝑠𝑡 𝑗 ≠ 𝐻 (𝑠𝑙 𝑗−1, 𝑠𝑡 𝑗−1, 𝑖𝑏 (1)𝑗−1, 𝑖𝑏

(1)
𝑗−1, 𝜋 𝑗−1)

8: or 𝑠𝑡 𝑗+1 ≠ 𝐻 (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 , 𝑖𝑏 (1)𝑗 , 𝑖𝑏 (1)𝑗 , 𝜋 𝑗−1), then return 0;
9: for 𝑖 ∈ {2, ..., 𝑙 } do
10: if there is no valid (𝑎𝑠𝑖𝑔, 𝑃𝑅𝑂𝑂𝐹) for hash of the candidate block
11: 𝐻 (𝑠𝑙 𝑗 , 𝑠𝑡 𝑗 , 𝑖𝑏 (𝑖)𝑗 , 𝑖𝑏 (1)𝑗 | |... | |𝑖𝑏

(𝑖−1)
𝑗) in the chain, then return 0.

12: end for
13: return 1.

17

