
Recovering or Testing Extended-Affine Equivalence

Anne Canteaut, Alain Couvreur, Léo Perrin

February 26, 2021

Abstract

Extended Affine (EA) equivalence is the equivalence relation between two vectorial Boolean
functions 𝐹 and 𝐺 such that there exist two affine permutations 𝐴, 𝐵, and an affine function
𝐶 satisfying 𝐺 = 𝐴 ∘ 𝐹 ∘ 𝐵 + 𝐶. While a priori simple, it is very difficult in practice to test
whether two functions are EA-equivalent. This problem has two variants: EA-testing deals
with figuring out whether the two functions can be EA-equivalent, and EA-recovery is about
recovering the tuple (𝐴,𝐵,𝐶) if it exists.

In this paper, we present a new efficient algorithm that efficiently solves the EA-recovery
problem for quadratic functions. Though its worst-case complexity is obtained when dealing
with APN functions, it supersedes all previously known algorithms in terms of performance,
even in this case. This approach is based on the Jacobian matrix of the functions, a tool whose
study in this context can be of independent interest.

In order to tackle EA-testing efficiently, the best approach in practice relies on class in-
variants. We provide an overview of the literature on said invariants along with a new one
based on the ortho-derivative which is applicable to quadratic APN functions, a specific type
of functions that is of great interest, and of which tens of thousands need to be sorted into
distinct EA-classes. Our ortho-derivative-based invariant is both very fast to compute, and
highly discriminating.

1 Introduction

Affine equivalence, and its generalization named extended affine equivalence, are two equivalence
relations between vectorial Boolean functions defined as follows.

Definition 1 ((Extended) Affine Equivalence). Two vectorial Boolean functions 𝐹 : F𝑛
2 → F𝑚

2

and 𝐺 : F𝑛
2 → F𝑚

2 are affine equivalent if 𝐺 = 𝐴 ∘𝐹 ∘𝐵 for some affine permutations 𝐴 of F𝑛
2 and

𝐵 of F𝑚
2 . They are extended affine equivalent (EA-equivalent) if 𝐺 = 𝐴 ∘ 𝐹 ∘𝐵 + 𝐶 where 𝐴 and

𝐵 are as before and where 𝐶 : F𝑛
2 → F𝑚

2 is an affine function.

Determining whether two functions 𝐹,𝐺 : F𝑛
2 → F𝑚

2 are EA-equivalent is a problem which
appears in several situations, for instance when classifying vectorial Boolean functions (since most
relevant cryptographic parameters of the functions are invariant under EA-equivalence) or in crypt-
analysis. In this paper, we will focus on the following problem, named EA-recovery, and on its
variant.

Problem 1 (EA-recovery). Let 𝐹 and 𝐺 be two functions from F𝑛
2 into F𝑚

2 . Find, if they exist,
three affine mappings 𝐴,𝐵,𝐶 such that 𝐺 = 𝐴 ∘ 𝐹 ∘𝐵 + 𝐶.

In practice, the following variant of Problem 1 better captures some situations that occur in
particular when classifying vectorial Boolean functions with good cryptographic properties.

1

Problem 2 (EA-testing). Let {𝐹𝑖}06𝑖<ℓ be a large set of ℓ functions from F𝑛
2 into F𝑚

2 . Partition
this set in such a way that two functions in distinct subsets are not EA-equivalent.

For example, if a large number ℓ of quadratic APN functions are generated as was done
in [YWL14] and [BL20a], then we may want to check whether these can be clustered into EA-
equivalence classes. Of course, the second problem can be solved using a solution to the first one
as a subroutine. Thus, in order for a solution to be interesting, it should not be quadratic in ℓ.

1.1 State of the Art: Affine Equivalence Recovery in some Specific Cases

When 𝐶 ̸= 0, very few results are known. In [BK12], Budaghyan and Kazymyrov present algo-
rithms for solving several particular cases, when 𝐴, 𝐵 or 𝐶 have a specific form.

The case 𝐶 = 0 (corresponding to affine equivalence) has been solved when 𝐹 and 𝐺 are
permutations in the sense that we have algorithms capable of finding 𝐴 and 𝐵 in this context.
However, we can hope both to improve the efficiency of these algorithms and to solve the case where
𝐹 and 𝐺 are not permutations. Let us nevertheless recall the known results on affine equivalence.

1.1.1 Guess-and-Determine

The first such algorithm was proposed in [BDBP03]. It is based on a subroutine which returns
the “linear representative” of a permutation. Given a permutation 𝐹 , it returns the two linear
permutations 𝐿0 and 𝐿1 such that 𝐿1 ∘ 𝐹 ∘ 𝐿0 is the smallest in the lexicographic order. This
algorithm is based on a guess-and-determine approach. Its authors estimated its time complexity
to be O

(︀
𝑛32𝑛

)︀
if 𝐹 (0) ̸= 0 and O

(︀
𝑛322𝑛

)︀
otherwise.

We have implemented this algorithm and, in practice, it can be worse than this. Indeed, the
complexity analysis assumes that a contradiction in the guess-and-determine will occur fast enough.
It is usually true but, in some cases, it may happen that we end up having to loop through all
values for another variable. Performance is thus hit with another factor 2𝑛.

Using this algorithm, it is easy to recover 𝐴 and 𝐵 when they are linear. However, when they
are affine, we also need to brute-force the constants. In this case, we generate two lists containing
the linear representatives of 𝑥 ↦→ 𝐹 (𝑥⊕ 𝑎) and 𝑥 ↦→ 𝑏⊕𝐺(𝑥). We then look for a match in these
lists. The cost in this case is multiplied by 2𝑛 in both time and memory. The overall time is then
O
(︀
𝑛322𝑛

)︀
(assuming that the complexity estimation of the authors of [BDBP03] is correct).

The advantage of this method is that it works for all permutations. The downsides are that its
complexity can be underestimated and that it only works for permutations.

1.1.2 Rank Table

In a more recent paper [Din18], Dinur proposed a completely different approach based on so-
called “rank tables”. Paraphrasing the introduction of said paper, the main idea of the algorithm
is to compute the rank tables of both 𝐹 and 𝐺 and then use these tables to recover the affine
transformation 𝐵, assuming that 𝐺 = 𝐴 ∘ 𝐹 ∘ 𝐵. The rank tables of 𝐹 and 𝐺 are obtained as
follows. We derive from 𝐹 (resp. from 𝐺) several functions, each one defined by restricting its 2𝑛

inputs to an affine subspace of dimension 𝑛−1. Since each such derived function has an associated
rank, we assign to each possible (𝑛− 1)-dimensional subspace a corresponding rank. As there are
(2𝑛+1 − 2) possible affine subspaces, we obtain (2𝑛+1 − 2) rank values for 𝐹 (resp. for 𝐺). These
values are collected in the rank table of 𝐹 (resp. 𝐺), where a rank table entry 𝑟 stores the set of
all affine subspaces assigned to rank 𝑟. We then look for matches in these two rank tables.

This approach is faster as the computational time for solving the affine-equivalence case is
O
(︀
𝑛32𝑛

)︀
, i.e. it is 2𝑛 times faster than the algorithm of Biryukov et al. Unlike the latter, the rank

2

table-based approach works even if the functions are not bijective; but it does require that their
algebraic degree is high enough, i.e. 𝑛−1 or 𝑛−2 [Din18]. We have used an implementation of this
algorithm by its author and we have confirmed that it could very efficiently handle non-bijective
functions of degree 𝑛− 1. However, for functions of degree 𝑛− 2, we have found it to fail.

1.2 Our Results

While the two previously mentioned algorithms are dedicated to affine-equivalence recovery, i.e,
to the case 𝐶 = 0, we present here the first efficient algorithm for EA-equivalence recovery when
the involved functions 𝐹 and 𝐺 : F𝑛

2 → F𝑚
2 are quadratic. We prove that its complexity depends

on the differential spectrum of the function and is estimated to be of O
(︀
𝑅𝑠(𝑚2 + 𝑛2)𝜔

)︀
, where 𝜔

denotes the complexity exponent of operations in linear algebra and 𝑅 is the number of vectors
𝑣 ∈ F𝑛

2 ∖ {0} at which the rank of the Jacobian matrix is the smallest possible. The last parameter
𝑠 is a number of guesses which, when 𝑚 = 𝑛, can be chosen to be equal to 3. Hence, the estimated
complexity is O

(︀
𝑅3𝑛2𝜔

)︀
and it turns out that for random Boolean functions the quantity 𝑅 is

frequently very small. On the other hand, the most difficult case corresponds to the case of APN
functions where the complexity is of O

(︀
22𝑛(𝑚2 + 𝑛2)𝜔

)︀
.

The second part of the paper details several tools for solving the EA-testing problem for func-
tions of any degree. Most notably, we propose some new and very efficient EA-invariants for
quadratic APN functions, which is a major use-case for this problem. These techniques are then
used to partition the CCZ-classes of all the 6-bit quadratic APN functions into EA-classes. Also,
by applying it to 8-bit quadratic APN functions, we show that this method is by far the most
efficient one for solving Problem 2 in the case of quadratic APN functions.

It is worth noticing that, as detailed in Table 1, only some problems related to EA-equivalence
have been solved. In fact, finding a general and efficient algorithm for EA-recovery for functions of
degree strictly greater than two remains an open problem. Several simplified cases have been solved
in [BK12], where typically some affine functions are only constant additions. Some algorithms from
that paper involve more complex restrictions, and are not listed below.

Condition Complexity Reference

𝐶 = 0, 𝑚 = 𝑛, Permutation O
(︀
𝑛322𝑛

)︀
[BDBP03]

𝐶 = 0, deg(𝐹) > 𝑛− 1 O
(︀
𝑛32𝑛

)︀
[Din18]

𝐴(𝑥) = 𝑥⊕ 𝑎,𝐵(𝑥) = 𝑥⊕ 𝑏 O (𝑛2𝑛) [BK12]

𝐵(𝑥) = 𝑥⊕ 𝑏 O
(︀
𝑚23𝑛

)︀
[BK12]

deg(𝐹) = 2 O
(︀
𝑛2𝜔22𝑛

)︀
Section 3.4

Table 1: Algorithms solving the EA-recovery of 𝐹 : F𝑛
2 → F𝑚

2 and 𝐴 ∘ 𝐹 ∘𝐵 + 𝐶. See Section 4.1
for an overview of EA-testing.

Organization of the Paper. We first recall the basic concepts and definitions needed in Section 2.
The rest of the paper successively presents our algorithms that can efficiently tackle both

Problems 1 and 2. First, we show how to reduce EA-recovery to the resolution of a linear system
using the Jacobian matrix when the functions under consideration are quadratic. This approach
is described in Section 3. While it is only applicable to quadratic functions, the corresponding
algorithm is efficient and recovers the full triple (𝐴,𝐵,𝐶).

3

Then, we describe a general approach based on class invariants which can solve the EA-testing
(Problem 2). We list all the CCZ- and EA-class invariants we are aware of from the literature
and, in the case of quadratic APN functions, we introduce a new one based on ortho-derivatives.
While it is only defined for quadratic APN functions, this case is of great practical importance:
for instance, constructing quadratic APN functions is of interest for finding APN permutations
operating on an even number of variables, as the only known example of such a permutation is
derived from a quadratic APN function by CCZ-equivalence [BDMW10]. More importantly, the
corresponding CCZ-class invariants are very fine grained, and can efficiently prove that more than
20, 000 distinct quadratic APN functions of 8 variables fall into different CCZ-class in only a few
minutes on a regular desktop computer.

Our optimized implementations of all these invariants are available within the Sage package
sboxU.1

2 Preliminaries and Definitions

We consider vectorial Boolean functions, that is functions mapping F𝑛
2 to F𝑚

2 for some non-zero
𝑚 and 𝑛. Any such function is equivalently seen as a collection of 𝑚 Boolean functions F𝑛

2 → F2,
called its coordinates. The following notions will be extensively used thorough the paper.

Differential Properties. The resilience of a function to differential attacks depends on properties
of its derivatives.

Definition 2 (Derivative). Let 𝐹 be a function from F𝑛
2 into F𝑚

2 . The derivative of 𝐹 with respect
to 𝑎 ∈ F𝑛

2 is the function from F𝑛
2 into F𝑚

2 defined by

∆𝑎𝐹 : 𝑥 ∈ F𝑛
2 ↦→ 𝐹 (𝑥 + 𝑎) + 𝐹 (𝑥).

In practice, these properties are analyzed through the following values, corresponding to the
entries of its difference distribution table (DDT).

Definition 3. Let 𝐹 be a function from F𝑛
2 into F𝑚

2 . The DDT of 𝐹 is the 2𝑛×2𝑚 array consisting
of all elements

𝛿𝐹 (𝑎, 𝑏) = #{𝑥 ∈ F𝑛
2 : 𝐹 (𝑥 + 𝑎) + 𝐹 (𝑥) = 𝑏},∀(𝑎, 𝑏) ∈ F𝑛

2 × F𝑚
2 .

The differential uniformity of 𝐹 [Nyb94] is defined as

𝛿(𝐹) = max
�̸�=0,𝑏

𝛿𝐹 (𝑎, 𝑏) ,

and the differential spectrum is the multi-set

{𝛿𝐹 (𝑎, 𝑏), 𝑎 ∈ F𝑛
2 , 𝑏 ∈ F𝑚

2 } .

Obviously, 𝛿(𝐹) > 2𝑛−𝑚 and the functions for which equality holds are named Perfect Nonlinear
or bent. Such functions exist only when 𝑛 is even and 𝑚 6 𝑛/2 [Nyb91]. When 𝑚 > 𝑛, it satisfies
𝛿(𝐹) > 2 and the functions for which equality holds are named Almost Perfect Nonlinear (APN)
functions.

1sboxU is available for download at https://github.com/lpp-crypto/sboxU.

4

https://github.com/lpp-crypto/sboxU

Walsh Transform. Similarly, the resistance of a function to linear attacks is evaluated through
its Linear approximation table (LAT), whose entries are given by the Walsh transform.

Definition 4 (Walsh transform). Let 𝐹 be a function from F𝑛
2 into F𝑚

2 . Its Walsh transform at
(𝑎, 𝑏) ∈ F𝑛

2 × F𝑚
2 is the signed integer defined by

𝒲𝐹 (𝑎, 𝑏) =
∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥+𝑏·𝐹 (𝑥)

where 𝑦 · 𝑧 denotes the canonical inner product on F𝑛
2 , i.e. 𝑦 · 𝑧 :=

∑︀𝑛
𝑖=1 𝑦𝑖𝑧𝑖. The Walsh spectrum

of 𝐹 is then the multi-set
{𝒲𝐹 (𝑎, 𝑏), 𝑎 ∈ F𝑛

2 , 𝑏 ∈ F𝑚
2 } .

Degree. The degree of a vectorial function is then defined as follows.

Definition 5 (Degree). Let 𝐹 be a function from F𝑛
2 into F𝑚

2 . The degree of 𝐹 is the maximal
degree of the algebraic normal forms of its coordinates.

Quadratic functions, i.e. functions of degree 2, will play an important role in the paper.

CCZ-Equivalence. While this paper focuses on EA-equivalence, there exists a more general
notion of equivalence between vectorial Boolean functions defined by Carlet, Charpin and Zi-
noviev [CCZ98] and called CCZ-equivalence. This notion will be widely used in Section 4.

Definition 6. Two functions 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 → F𝑚

2 are CCZ-equivalent if there exists
an affine permutation 𝒜 of F𝑛

2 × F𝑚
2 such that

𝒜 ({(𝑥, 𝐹 (𝑥)), 𝑥 ∈ F𝑛
2}) = {(𝑥,𝐺(𝑥)), 𝑥 ∈ F𝑛

2} .

Obviously, two functions which are EA-equivalent are also CCZ-equivalent, but the converse
does not hold.

In general, given a function 𝐹 : F𝑛
2 → F𝑚

2 and an affine permutation 𝒜 of F𝑛
2 × F𝑚

2 , there is a
priori no function 𝐺 such that

𝒜
(︀
{(𝑥, 𝐹 (𝑥)),∀𝑥 ∈ F𝑛

2}
)︀

= {(𝑥,𝐺(𝑥)),∀𝑥 ∈ F𝑛
2} .

Indeed, it is necessary for 𝐺 to be well-defined that the left-hand side of the output of 𝑥 ↦→
𝒜(𝑥, 𝐹 (𝑥)) is a permutation. As a consequence, only a few permutations 𝒜 yield valid functions
𝐺. The following definition captures this intuition.

Definition 7 (Admissible affine permutations). Let 𝐹 be a function from F𝑛
2 to F𝑚

2 . We say that
the affine permutation 𝒜 of F𝑛

2 × F𝑚
2 is admissible for 𝐹 if we can define a function 𝐺 such that

𝒜 ({(𝑥, 𝐹 (𝑥)), 𝑥 ∈ F𝑛
2}) = {(𝑥,𝐺(𝑥)), 𝑥 ∈ F𝑛

2} .

3 Recovering EA-equivalence for Quadratic Functions

3.1 The Jacobian Matrix

Notation 8. In the sequel, the canonical basis of F𝑛
2 is denoted as (𝑒1, . . . , 𝑒𝑛).

5

Definition 9. Let 𝐹 be a function from F𝑛
2 into F𝑚

2 . The Jacobian of 𝐹 at 𝑥 ∈ F𝑛
2 is the

parameterised matrix defined by

Jac𝐹 (𝑥) :=

⎛⎜⎝∆𝑒1𝐹1(𝑥) · · · ∆𝑒𝑛𝐹1(𝑥)
...

...
∆𝑒1𝐹𝑚(𝑥) · · · ∆𝑒𝑛𝐹𝑚(𝑥)

⎞⎟⎠ · (1)

On the other hand, given an 𝑚–tuple of polynomials 𝑃 = (𝑃1, . . . , 𝑃𝑚) ∈ F2[𝑋1, . . . , 𝑋𝑛]𝑚, we
define the Jacobian matrix of 𝑃 as

J𝑃 (𝑥) :=

⎛⎜⎝
𝜕𝑃1

𝜕𝑥1
· · · 𝜕𝑃1

𝜕𝑥𝑛

...
...

𝜕𝑃𝑚

𝜕𝑥1
· · · 𝜕𝑃𝑚

𝜕𝑥𝑛

⎞⎟⎠ ∈ F2[𝑋1, . . . , 𝑋𝑛]𝑚×𝑛.

Remark 10. The two notions are strongly related to each other. In particular, for a Boolean
function 𝐹 : F𝑛

2 → F𝑛
2 , denote by 𝑃𝐹 ∈ F2[𝑋1, . . . , 𝑋𝑛]𝑚 the polynomial representation of 𝐹 in

algebraic normal form, then
Jac𝐹 (𝑥) = J𝑃𝐹 (𝑥).

This equality can be easily checked on monomials and then extended by linearity.
Note however the importance of being in algebraic normal form: for instance in one variable,

if 𝑃 (𝑥) = 𝑥2, then 𝜕𝑃
𝜕𝑥 = 0, while the algebraic normal form of 𝑃 is 𝑥 whose derivative is 1.

3.2 The Jacobian Matrices of EA-equivalent Functions

Suppose that 𝐺 = 𝐴 ∘ 𝐹 ∘𝐵 + 𝐶, for some affine permutations 𝐴 and 𝐵 and an affine function 𝐶,
respectively defined as

∀𝑥 ∈ F𝑛
2 , 𝐴(𝑥) = 𝐴0𝑥 + 𝑎, 𝐵(𝑥) = 𝐵0𝑥 + 𝑏, and 𝐶(𝑥) = 𝐶0𝑥 + 𝑐

where 𝐴0, 𝐵0 are non-singular matrices in F𝑛×𝑛
2 and F𝑚×𝑚

2 respectively, 𝑎, 𝑐 ∈ F𝑚
2 and 𝑏 ∈ F𝑛

2 .
Note that, after replacing 𝑎 by 𝑎 + 𝑐, one can suppose that 𝑐 = 0 and hence that 𝐶 is linear. We
always proceed this way in the sequel.

Denote by 𝑃𝐹 , 𝑃𝐺 some polynomial representations of 𝐹,𝐺. Then we also have

𝑃𝐺 = 𝑃𝐴 ∘ 𝑃𝐹 ∘ 𝑃𝐵 + 𝑃𝐶 .

Then, considering Jacobian matrices, one can apply the well–known chain rule formula for func-
tions of several variables, i.e. the formula for the Jacobian of compositions of functions, namely:

J𝑃𝐺(𝑥) = 𝐴0 · J𝑃𝐹 (𝐵(𝑥)) ·𝐵0 + 𝐶0 (2)

Indeed, the respective Jacobians of 𝐴,𝐵 and 𝐶 are 𝐴0, 𝐵0 and 𝐶0. Unfortunately, this chain
rule formula does not extend to Jacobians of Boolean functions because, as already observed in
Remark 10, the operations of derivation and of reduction to the algebraic normal form do not
commute. To clarify this issue, let us consider an elementary example.

Example 11. Let 𝑃𝐹 (𝑥1, 𝑥2) = 𝑥1𝑥2 be a polynomial representing a function 𝐹 : F2
2 → F2. Consider

the affine map 𝐵 : (𝑥1, 𝑥2) ↦→ (𝑥1 + 𝑥2, 𝑥2). Set 𝑃𝐺 = 𝑃𝐹 ∘𝐵 = 𝑥1𝑥2 + 𝑥2
2 whose algebraic normal

form is 𝐺 = 𝑥1𝑥2 + 𝑥2. Now, the Jacobian matrices of 𝐹 and 𝐺 are

Jac𝐹 (𝑥) = (𝑥2 𝑥1) and Jac𝐺(𝑥) = (𝑥2 𝑥1 + 1)

6

and

Jac𝐹 (𝐵(𝑥))

(︂
1 1
0 1

)︂
= (𝑥2 𝑥1 + 𝑥2)

(︂
1 1
0 1

)︂
= (𝑥2 𝑥1),

which differs from Jac 𝐺(𝑥). On the other hand, if we consider polynomials instead of Boolean
functions, we have

J𝑃𝐹 (𝐵(𝑥))

(︂
1 1
0 1

)︂
= (𝑥2 𝑥1) = J𝐺(𝑥).

In the sequel, we prove that, while we observed that the chain rule formula in several variables
is false in general, in the context of quadratic functions it is possible to get a very similar formula
using the so-called linear part of the Jacobian. This will be the crux of our algorithm to follow.

3.3 The Jacobian Matrix of a Quadratic Function

From now on, we suppose that 𝐹 is quadratic, i.e. its algebraic normal form has degree 2. In this
case, the entries of the associated Jacobian matrix, in the sense of Definition 9, are polynomials of
degree 1 and we will focus on their homogeneous parts.

Definition 12. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function. We denote by Jaclin 𝐹 (𝑥) the linear
part of Jac𝐹 (𝑥), i.e. the matrix whose entries are the homogeneous parts of degree 1 of the entries
of Jac𝐹 (𝑥):

∀𝑥 ∈ F𝑛
2 , Jac𝐹 (𝑥) = Jaclin 𝐹 (𝑥) + Jac𝐹 (0) .

Equivalently, Jaclin 𝐹 (𝑥) = (𝐽𝑖,𝑗(𝑥))𝑖,𝑗 with

𝐽𝑖,𝑗(𝑥) = ∆𝑒𝑗𝐹𝑖(𝑥) + ∆𝑒𝑗𝐹𝑖(0), (3)

where (𝑒1, . . . , 𝑒𝑛) denote the canonical basis of F𝑛
2 (Notation 8).

It is worth noticing that the linear part of the Jacobian of a quadratic function corresponds to
the coefficients of the quadratic monomials in the algebraic normal forms of the coordinates of 𝐹 .
Equivalently, Jaclin𝐹 (𝑥) is the Jacobian of the degree-2 homogeneous part of the algebraic normal
form of 𝐹 as explained by the following statement.

Proposition 13. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function. Let

𝐹𝑖(𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑘<ℓ

𝑄𝑖
𝑘,ℓ𝑥𝑘𝑥ℓ +

𝑛∑︁
𝑘=1

𝑐𝑖𝑘𝑥𝑘 + 𝜀𝑖

denote the algebraic normal form of the 𝑖-th coordinate of 𝐹 , 1 6 𝑖 6 𝑚, where all coefficients
𝑄𝑖

𝑘,ℓ, 𝑐
𝑖
𝑘, 𝜀

𝑖 lie in F2 and 𝑄𝑖
𝑘,ℓ = 0 when 𝑘 > ℓ. Then, the entries 𝐽𝑖,𝑗(𝑥) of Jaclin 𝐹 (𝑥) are

𝐽𝑖,𝑗(𝑥) =

𝑛∑︁
𝑘=1

(𝑄𝑖
𝑘,𝑗 + 𝑄𝑖

𝑗,𝑘)𝑥𝑘, 1 6 𝑖 6 𝑚, 1 6 𝑗 6 𝑛 .

Proof. For any 𝑖 and 𝑗, 1 6 𝑖 6 𝑚 and 1 6 𝑗 6 𝑛, we have

∆𝑒𝑗𝐹𝑖(𝑥) =
∑︁
𝑘<𝑗

𝑄𝑖
𝑘,𝑗𝑥𝑘 +

∑︁
𝑘>𝑗

𝑄𝑖
𝑗,𝑘𝑥𝑘 + 𝑐𝑗 .

We then deduce from (3) that

𝐽𝑖,𝑗(𝑥) = ∆𝑒𝑗𝐹𝑖(𝑥) + ∆𝑒𝑗𝐹𝑖(0) =

𝑛∑︁
𝑘=1

(𝑄𝑖
𝑘,𝑗 + 𝑄𝑖

𝑗,𝑘)𝑥𝑘 .

7

The linear part of the Jacobian of a quadratic function is a useful mathematical object since the
values of all derivatives of the function can be derived from this matrix, as shown in the following
proposition.

Proposition 14. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function and let Jaclin 𝐹 (𝑥) = (𝐽𝑖,𝑗(𝑥))16𝑖6𝑚
16𝑗6𝑛

denote the linear part of its Jacobian. Then, for any 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ F𝑛
2 , any 𝑖 ∈ {1, . . . ,𝑚}

and any 𝑥 ∈ F𝑛
2 , we have:

∆𝑎𝐹𝑖(𝑥) + ∆𝑎𝐹𝑖(0) =

𝑛∑︁
𝑗=1

𝑎𝑗𝐽𝑖,𝑗(𝑥) .

Hence, for any 𝑎 ∈ F𝑛
2 and any 𝑥 ∈ F𝑛

2 , we have:

∆𝑎𝐹 (𝑥) + ∆𝑎𝐹 (0) = Jaclin 𝐹 (𝑥) · 𝑎 .

Proof. We proceed by induction on the Hamming weight of 𝑎. The statement obviously holds when
𝑤𝑡(𝑎) = 1 since it corresponds to Equation (3). Suppose now that it holds for all words of weight
at most (𝑤 − 1) and consider a word 𝑎 of weight 𝑤 6 𝑛. Let ℓ ∈ {1, . . . , 𝑛} be such that 𝑎ℓ = 1,
and 𝑎′ = 𝑎 + 𝑒ℓ. Then,

∆𝑎𝐹 (𝑥) = 𝐹 (𝑥 + 𝑎′ + 𝑒ℓ) + 𝐹 (𝑥)

= 𝐹 (𝑥 + 𝑎′ + 𝑒ℓ) + 𝐹 (𝑥 + 𝑎′) + 𝐹 (𝑥 + 𝑎′) + 𝐹 (𝑥)

= ∆𝑒ℓ𝐹 (𝑥 + 𝑎′) + ∆𝑎′𝐹 (𝑥) .

Then, we have

∆𝑎𝐹 (𝑥) + ∆𝑎𝐹 (0) = ∆𝑒ℓ𝐹 (𝑥 + 𝑎′) + ∆𝑒ℓ𝐹 (𝑎′) + ∆𝑎′𝐹 (𝑥) + ∆𝑎′𝐹 (0)

= ∆𝑒ℓ𝐹 (𝑥) + ∆𝑒ℓ𝐹 (0) + ∆𝑎′𝐹 (𝑥) + ∆𝑎′𝐹 (0)

where the last equality is deduced from the fact that ∆𝑒ℓ𝐹 (𝑥) is affine. We deduce from the
induction hypothesis that, for any 𝑖,

∆𝑎𝐹𝑖(𝑥) + ∆𝑎𝐹𝑖(0) = ∆𝑒ℓ𝐹𝑖(𝑥) + ∆𝑒ℓ𝐹𝑖(0) +

𝑛∑︁
𝑗=1

𝑎′𝑗𝐽𝑖,𝑗(𝑥)

=

𝑛∑︁
𝑗=1

𝑎𝑗𝐽𝑖,𝑗(𝑥) .

As an immediate corollary which will be extensively used later, it appears that the roles of 𝑎
and 𝑥 in the previous proposition can be switched.

Corollary 15. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function. Then, for any 𝑎, 𝑥 ∈ F𝑛
2 , we have

Jaclin 𝐹 (𝑥) · 𝑎 = Jaclin 𝐹 (𝑎) · 𝑥 .

Proof. From Proposition 14, we have that, for any 𝑎, 𝑥 ∈ F𝑛
2 ,

Jaclin 𝐹 (𝑥) · 𝑎 = ∆𝑎𝐹 (𝑥) + ∆𝑎𝐹 (0) = ∆𝑥∆𝑎𝐹 (0) = ∆𝑎∆𝑥𝐹 (0) = Jaclin 𝐹 (𝑎) · 𝑥 .

8

Corollary 16. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function. Then, for any 𝑎 ∈ F𝑛
2 , we have

Jaclin 𝐹 (𝑎) · 𝑎 = 0.

Proof. Let 𝑖 ∈ {1, . . . ,𝑚}. From Proposition 14,

Jaclin 𝐹 (𝑎) · 𝑎 = ∆𝑎𝐹 (𝑎) + ∆𝑎𝐹 (0) = 𝐹 (𝑎 + 𝑎) + 𝐹 (𝑎) + 𝐹 (𝑎) + 𝐹 (0) = 0.

Using Proposition 14, we can exhibit the relation between the linear parts of the Jacobians
of two EA-equivalent quadratic functions. This relation is very close to the chain rule formula in
differential calculus. In addition it will be of particular interest for recovering the triple of functions
(𝐴,𝐵,𝐶) such that 𝐺 = 𝐴 ∘ 𝐹 ∘𝐵 + 𝐶 because it does not involve 𝐶.

Proposition 17. Let 𝐹 and 𝐺 be two EA-equivalent quadratic functions from F𝑛
2 into F𝑚

2 with
𝐺 = 𝐴 ∘ 𝐹 ∘𝐵 + 𝐶 for some affine permutations 𝐴 and 𝐵, and some affine function 𝐶. Then,

∀𝑥 ∈ F𝑛
2 , Jaclin 𝐺(𝑥) = 𝐴0 · Jaclin 𝐹 (𝐵(𝑥)) ·𝐵0 , (4)

where 𝐴0 and 𝐵0 denote the matrices corresponding to the linear parts of 𝐴 and 𝐵.

Proof. Let 𝐴0, 𝐵0 and 𝐶0 denote the matrices corresponding to the linear parts of 𝐴,𝐵 and 𝐶.
Then,

∆𝑒𝑗𝐺(𝑥) = 𝐴 ∘ 𝐹 ∘𝐵(𝑥 + 𝑒𝑗) + 𝐴 ∘ 𝐹 ∘𝐵(𝑥) + 𝐶(𝑥 + 𝑒𝑗) + 𝐶(𝑥)

= 𝐴0 [𝐹 (𝐵(𝑥) + 𝐵0𝑒𝑗) + 𝐹 (𝐵(𝑥))] + 𝐶0𝑒𝑗

= 𝐴0∆𝐵0𝑒𝑗𝐹 (𝐵(𝑥)) + 𝐶0𝑒𝑗 .

It follows that

∆𝑒𝑗𝐺(𝑥) + ∆𝑒𝑗𝐺(0) = 𝐴0∆𝐵0𝑒𝑗𝐹 (𝐵(𝑥)) + 𝐶0𝑒𝑗 + 𝐴0∆𝐵0𝑒𝑗𝐹 (𝐵(0)) + 𝐶0𝑒𝑗

= 𝐴0

[︀
∆𝐵0𝑒𝑗𝐹 (𝐵(𝑥)) + ∆𝐵0𝑒𝑗𝐹 (𝐵(0))

]︀
.

Let now Jaclin 𝐹 (𝑥) = (𝐽𝑖,𝑗(𝑥))16𝑖6𝑚
16𝑗6𝑛

, so that Proposition 14 implies the following for any 𝑖

satisfying 1 6 𝑖 6 𝑚:

∆𝐵0𝑒𝑗𝐹𝑖 (𝐵(𝑥)) + ∆𝐵0𝑒𝑗𝐹𝑖 (𝐵(0)) =

𝑛∑︁
𝑘=1

(𝐵0𝑒𝑗)𝑘𝐽𝑖,𝑘(𝐵(𝑥))

=

𝑛∑︁
𝑘=1

(𝐵0)𝑘,𝑗𝐽𝑖,𝑘(𝐵(𝑥)) = [Jaclin 𝐹 (𝐵(𝑥))𝐵0]𝑖,𝑗 .

Combining the last two equalities, we obtain:

[Jaclin 𝐺(𝑥)]𝑖,𝑗 = ∆𝑒𝑗𝐺𝑖(𝑥) + ∆𝑒𝑗𝐺𝑖(0) = [𝐴0Jaclin 𝐹 (𝐵(𝑥))𝐵0]𝑖,𝑗 .

It is worth noticing that, when 𝑚 = 𝑛, the linear part of the Jacobian of a quadratic homo-
geneous function is related to a special class of symmetric matrices over F2𝑛 called QAM and
introduced in [YWL14]. This notion of QAM arises by exhibiting a one-to-one correspondence
between quadratic homogeneous functions over F𝑛

2 and symmetric matrices over F2𝑛 with diagonal
elements equal to zero [YWL14]. This correspondence is detailed in the following definition.

9

Definition 18 ([YWL14]). Let ℬ = (𝛼1, 𝛼2, . . . , 𝛼𝑛) be a basis of F2𝑛 over F2 and 𝜙 : (𝑥1, . . . , 𝑥𝑛) ∈
F𝑛
2 ↦→

∑︀𝑛
𝑖=1 𝑥𝑖𝛼𝑖 ∈ F2𝑛 . Let 𝐹 : F𝑛

2 → F𝑛
2 be a quadratic homogeneous function and 𝑃 (𝑋) =∑︀

𝑘<ℓ 𝑞𝑘,ℓ𝑋
2𝑘−1+2ℓ−1

be the quadratic homogeneous polynomial in F2𝑛 [𝑋] such that

𝐹 (𝑥) = 𝜙−1 ∘ 𝑃 ∘ 𝜙(𝑥), ∀𝑥 ∈ F𝑛
2 .

Then the matrix associated with 𝐹 with respect to ℬ is

𝐻 = 𝑀𝑇𝐶𝑃𝑀

where 𝐶𝑃 is the 𝑛 × 𝑛 symmetric matrix over F2𝑛 defined by (𝐶𝑃)𝑘,ℓ = (𝐶𝑃)ℓ,𝑘 = 𝑞𝑘,ℓ for all

1 6 𝑘 < ℓ 6 𝑛, (𝐶𝑃)𝑘,𝑘 = 0, and 𝑀 is the Moore matrix associated to ℬ, i.e., 𝑀𝑖,𝑗 = 𝛼2𝑖−1

𝑗 .

The advantage of this construction is that for a quadratic homogeneous function, being APN
can be characterized by some algebraic properties of the associated matrix [YWL14]. We now
show that the matrix 𝐻 = 𝑀𝑇𝐶𝑃𝑀 is related to the linear part of the Jacobian of 𝐹 .

Proposition 19. Let 𝐹 : F𝑛
2 → F𝑛

2 be a quadratic homogeneous function and 𝐻 be the matrix
associated with 𝐹 with respect to the basis ℬ = (𝛼1, 𝛼2, . . . , 𝛼𝑛) in the sense of Definition 18.
Then, for all 𝑥 ∈ F𝑛

2 ,

Jaclin 𝐹 (𝑥) ·

⎛⎜⎝ 𝛼1

...
𝛼𝑛

⎞⎟⎠ = (𝑥1, . . . , 𝑥𝑛) ·𝐻 .

Proof. Theorem 1 in [YWL14] shows that, for all 𝑗, 1 6 𝑗 6 𝑛,

∆𝑒𝑗 (𝜙 ∘ 𝐹)(𝑥) = 𝑥𝐻𝑗

where 𝐻𝑗 denotes Column 𝑗 of 𝐻 and 𝜙 : 𝑥 ∈ F𝑛
2 ↦→ (

∑︀𝑛
𝑖=1 𝑥𝑖𝛼𝑖) ∈ F2𝑛 . Using that 𝐹 is

homogeneous, it follows that, for all (𝑖, 𝑗),

[Jaclin 𝐹 (𝑥)]𝑖,𝑗 = ∆𝑒𝑗𝐹𝑖(𝑥) .

It implies that
𝑛∑︁

𝑖=1

𝛼𝑖[Jaclin 𝐹 (𝑥)]𝑖,𝑗 = ∆𝑒𝑗 (𝜙 ∘ 𝐹)(𝑥) = 𝑥𝐻𝑗 ,

and the result directly follows.

In other words, Jaclin 𝐹 (𝑥) is three-dimensional in nature since all entries in the matrix are
𝑛-variable linear functions. The previous proposition shows that Matrix 𝐻 defined in [YWL14]
is another way to represent the same object with a 2-dimensional structure by using F2𝑛 as a
coefficient field. Characterizing the fact that 𝐹 is APN from the properties of 𝐻 can then be
reformulated in terms of Jacobians as we will prove in Section 3.4.2. However, our result is more
general since it applies even if 𝐹 is not homogeneous and also to functions from F𝑛

2 to F𝑚
2 with

𝑚 ̸= 𝑛. More importantly, the representation in terms of Jacobians is more convenient for analyzing
EA-equivalence.

10

3.4 Solving the EA-equivalence Problem for Quadratic Functions

Our algorithm takes as input two quadratic functions 𝐹,𝐺 : F𝑛
2 → F𝑛

2 and returns, if it exists, a
triple (𝐴,𝐵,𝐶) of affine functions such that 𝐴,𝐵 are permutations and 𝐺 = 𝐴∘𝐹 ∘𝐵+𝐶. Denote
by

𝐴(𝑥) = 𝐴0𝑥 + 𝑎 𝐵(𝑥) = 𝐵0𝑥 + 𝑏 and 𝐶(𝑥) = 𝐶0𝑥 + 𝑐,

where 𝐴0 ∈ F𝑚×𝑚
2 , 𝐵0 ∈ F𝑛×𝑛

2 , 𝐶0 ∈ F𝑚×𝑛
2 , 𝑎 ∈ F𝑚

2 , 𝑏 ∈ F𝑛
2 and 𝑐 ∈ F𝑚

2 .
As already noted before, replacing 𝑎 by 𝑎 + 𝑐 one can suppose that 𝑐 = 0 and hence that 𝐶 is

linear. In addition, since the functions are quadratic, one may also suppose that 𝑏 = 0. Indeed, it
suffices to observe that

∀𝑥 ∈ F𝑛
2 , 𝐹 (𝐵0𝑥 + 𝑏) = 𝐹 (𝐵0𝑥) + ∆𝑏𝐹 (𝐵(𝑥))

and, since 𝐹 is quadratic, then ∆𝑏𝐹 (𝐵(𝑥)) is affine and its linear part equals ∆𝑏𝐹 (𝐵0𝑥)+∆𝑏𝐹 (0).
Therefore, replacing 𝐶 by 𝑥 ↦→ 𝐶(𝑥) + ∆𝑏𝐹 (𝐵0𝑥) + ∆𝑏𝐹 (0) and 𝑎 by 𝑎+ ∆𝑏𝐹 (0), one can suppose
that both 𝐵 and 𝐶 are linear.

In summary, our objective is to find, if it exists, a 4–tuple (𝐴0, 𝐵0, 𝐶0, 𝑎) such that 𝐴0, 𝐵0 are
non-singular, and

∀𝑥 ∈ F𝑛
2 , 𝐺(𝑥) = 𝐴0 · 𝐹 (𝐵0𝑥) + 𝐶0𝑥 + 𝑎 .

The key of our algorithm rests on Proposition 17 which asserts that

∀𝑥 ∈ F𝑛
2 , Jaclin 𝐺(𝑥) = 𝐴0 · Jaclin 𝐹 (𝐵0𝑥) ·𝐵0 . (5)

This permits first to search for the pair (𝐴0, 𝐵0), and then, once it is computed, to deduce the
remainder of the 4–tuple. The search for this pair (𝐴0, 𝐵0) relies on two main ideas:

(i) If a pair (𝑣, 𝑤) is known to satisfy 𝐵0𝑣 = 𝑤, then the pair (𝐴−1
0 , 𝐵0) is a solution of the affine

system with unknowns (𝑋,𝑌) ∈ F𝑚×𝑚
2 × F𝑛×𝑛

2 :{︂
𝑋 · Jaclin 𝐺(𝑣) − Jaclin 𝐹 (𝑤) · 𝑌 = 0

𝑌 · 𝑣 = 𝑤.
(6)

(ii) Since 𝐴0, 𝐵0 are non-singular, then, according to (5), for any 𝑥 ∈ F𝑛
2 , the matrices Jaclin𝐺(𝑥)

and Jaclin 𝐹 (𝐵0𝑥) have the same rank.

3.4.1 Sketch of the Algorithm

The search for the pair (𝐴0, 𝐵0) will be done by trying to guess pairs (𝑣1, 𝑤1), . . . , (𝑣𝑠, 𝑤𝑠) of
elements of F𝑛

2 × F𝑛
2 such that for any 𝑖, 𝐵0𝑣𝑖 = 𝑤𝑖. For each such guess, we solve a concatenation

of systems of the form (6) and check whether it leads to a relevant solution. If not, we try with
another guess.

Therefore, the complexity analysis of the algorithm is directly related to the average number
of guesses we will have to do, which should be the smallest possible. This motivates the following
studies.

∙ Using (ii), any guess (𝑣𝑖, 𝑤𝑖) should be chosen so that rankJaclin 𝐺(𝑣𝑖) = rankJaclin 𝐹 (𝑤𝑖).
Therefore, the search is much easier if we seek elements 𝑣 ∈ F𝑛

2 (resp. 𝑤 ∈ F𝑛
2) such that

rankJaclin 𝐺(𝑣) (resp. rankJaclin 𝐹 (𝑤)) occurs rarely in the rank table of Jaclin 𝐺(𝑥) (resp.
Jaclin 𝐹 (𝑥)). This motivates the study of this rank table in Section 3.4.2.

11

∙ If the number 𝑠 of simultaneous guesses (𝑣1, 𝑤1), . . . , (𝑣𝑠, 𝑤𝑠) should be the smallest possible,
it should also be large enough so that the linear system:{︂

𝑋 · Jaclin 𝐺(𝑣𝑖) − Jaclin 𝐹 (𝑤𝑖) · 𝑌 = 0
𝑌 · 𝑣𝑖 = 𝑤𝑖

∀𝑖 ∈ {1, . . . , 𝑠}, (7)

has a unique solution or a “small enough” affine space of solutions. Thus, the rank of such
a system, which is nothing but a concatenation of 𝑠 systems of the form (6), is investigated
in Section 3.4.3.

∙ As soon as a possibly valid pair (𝐴0, 𝐵0) is found, there remains to recover 𝐶0, 𝑎. This boils
down to linear algebra and is detailed in Section 3.4.4.

3.4.2 Rank Table and Connection with the Differential Spectrum

As explained earlier, a part of the algorithm consists in guessing an 𝑠–tuple of vectors in F𝑛
2 , which

a priori requires O (2𝑠𝑛) trials. This number of trials can be drastically improved using the rank
tables.

Definition 20. The rank table ℛ(𝐹) of 𝐹 is a table with (min(𝑚,𝑛) + 1) entries indexed by
{0, . . . ,min(𝑚,𝑛)} and

∀𝑗 ∈ {0, . . . ,min(𝑚,𝑛)}, ℛ(𝐹)[𝑗] := {𝑥 ∈ F𝑛
2 | rank(Jaclin 𝐹 (𝑥)) = 𝑗}.

The rank distribution ℛdist(𝐹) of 𝐹 is defined as

∀𝑗 ∈ {0, . . . ,min(𝑚,𝑛)}, ℛdist(𝐹)[𝑗] := #ℛ(𝐹)[𝑗].

Lemma 21. The computation of the rank table can be performed in O (max(𝑛,𝑚)𝜔2𝑛) operations.

Remark 22. It is worth noticing that we denote as rank table an object which strongly differs
from that used by Dinur in [Din18], where another “rank table” is used to decide (non-extended)
affine equivalence. Dinur’s “rank table” consists in considering the symbolic ranks of 𝐹,𝐺 [Din18,
Section 2, page 418], which are completely different objects.

We now show that there is a one-to-one correspondence between the rank distribution of a
quadratic function and the distribution of its differential spectrum.

Proposition 23. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function and ℛdist(𝐹) be its rank distribution.
Let 𝒟dist(𝐹) denote the distribution of the differential spectrum of 𝐹 , i.e.,

𝒟dist(𝐹)[𝑘] = #
{︀

(𝑎, 𝑏) ∈ (F𝑛
2)2 | 𝛿𝐹 (𝑎, 𝑏) = 𝑘

}︀
.

Then, for any 𝑟, 0 6 𝑟 6 min(𝑚,𝑛),

ℛdist(𝐹)[𝑟] = 2−𝑟𝒟dist(𝐹)[2𝑛−𝑟] .

Proof. Let 𝑎 ∈ F𝑛
2 . Proposition 14 and Corollary 15 imply that

Jaclin 𝐹 (𝑎) · 𝑥 = Jaclin 𝐹 (𝑥) · 𝑎 = ∆𝑎𝐹 (𝑥) + ∆𝑎𝐹 (0) .

Then, the elements 𝑥 ∈ F𝑛
2 in the right kernel of Jaclin𝐹 (𝑎) are those such that ∆𝑎𝐹 (𝑥)+∆𝑎𝐹 (0) =

0. Since 𝐹 is quadratic, this second set is a linear space whose dimension equals 𝑖 where

𝛿𝐹 (𝑎, 𝑏) ∈ {0, 2𝑖}, ∀𝑏 ∈ F𝑛
2 .

12

Let 𝑟 denote the rank of Jaclin 𝐹 (𝑎). We then deduce that

#{𝑥 ∈ F𝑛
2 : Jaclin 𝐹 (𝑎) · 𝑥 = 0} = 2𝑛−𝑟

= #{𝑥 ∈ F𝑛
2 : ∆𝑎𝐹 (𝑥) + ∆𝑎𝐹 (0) = 0}

= 2𝑖 ,

where {𝛿𝐹 (𝑎, 𝑏), 𝑏 ∈ F𝑚
2 } = {0, 2𝑖}. Then, the entries in the row of the DDT defined by 𝑎 are 0

and 2𝑛−𝑟, and the value 2𝑛−𝑟 appears 2𝑟 times. It follows that

ℛdist(𝐹)[𝑟] = 2−𝑟𝒟dist(𝐹)[2𝑛−𝑟] .

Remark 24. It is worth noticing that the previous proposition implies that, for any quadratic
function 𝐹 , we have ℛdist(𝐹)[𝑛] = 0, since the values in the differential spectrum of a Boolean
function are always even.

As another consequence, we get that the differential spectrum of a quadratic function contains
two values only, 0 and 𝛿(𝐹), if and only if the matrices Jaclin 𝐹 (𝑥) for all nonzero 𝑥 ∈ F𝑛

2 have the
same rank. This includes for instance the case of bent functions from F𝑛

2 to F𝑚
2 , 𝑛 > 2𝑚, and the

case of APN functions.

Corollary 25. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function . Then, 𝐹 is APN if and only if
Jaclin 𝐹 (𝑥) has rank (𝑛− 1) for all nonzero 𝑥.

3.4.3 On the Rank of the Linear System (6)

Proposition 26. Let 𝐹,𝐺 be two quadratic functions and 𝑣, 𝑤 ∈ F𝑛
2 such that

rankJaclin 𝐺(𝑣) = rankJaclin 𝐹 (𝑤).

Denote by 𝑟 the above rank. Then the linear part of the system (6), i.e. the linear system with
unknowns (𝑋,𝑌) ∈ F𝑚×𝑚

2 × F𝑛×𝑛
2 :

𝑋 · Jaclin 𝐺(𝑣) − Jaclin 𝐹 (𝑤) · 𝑌 = 0 (8)

has 𝑚2 + 𝑛2 unknowns, 𝑚𝑛 equations and rank less than or equal to 𝑟(𝑚 + 𝑛 − 𝑟). Moreover,
the affine system (6) has 𝑚2 + 𝑛2 unknowns, (𝑚 + 1)𝑛 equations and rank less than or equal to
𝑟(𝑚 + 𝑛− 𝑟) + (𝑛− 𝑟).

Proof. The number of unknowns corresponds to the number of entries of 𝑋,𝑌 . The number of
linear equations equals the number of entries of the resulting matrix 𝑋 ·Jaclin𝐺(𝑣)−Jaclin𝐹 (𝑤) ·𝑌
which is 𝑚𝑛. Let us investigate the rank. Since Jaclin𝐺(𝑣) has rank 𝑟, there exists a non-singular
matrix 𝑈 ∈ F𝑛×𝑛

2 such that the 𝑛− 𝑟 rightmost columns of Jaclin 𝐺(𝑣) · 𝑈 are zero. Hence it has
the following shape:

Jaclin 𝐺(𝑣) · 𝑈 =

(︂
J1𝐺 (0)
J2𝐺 (0)

)︂
𝑟

𝑚−𝑟

𝑟 𝑛−𝑟

for some matrices J1𝐺, J2𝐺. Similarly, there exists a non-singular matrix 𝑉 ∈ F𝑚×𝑚
2 such that

𝑉 · Jaclin 𝐹 (𝑤) has the following shape:

13

𝑉 · Jaclin 𝐹 (𝑤) =

(︂
J1𝐹 J2𝐹
(0) (0)

)︂
𝑟

𝑚−𝑟

𝑟 𝑛−𝑟

for some matrices J1𝐹, J2𝐹 . Thus, setting 𝑋 ′ := 𝑉 𝑋 and 𝑌 ′ := 𝑌 𝑈 , we get a new and equivalent
linear system

𝑋 ′ · Jaclin 𝐺(𝑣) · 𝑈 − 𝑉 · Jaclin 𝐹 (𝑣) · 𝑌 ′ = 0. (9)

If we denote the block decompositions of 𝑋 ′, 𝑌 ′ as

𝑋 ′ =

(︂
𝑋 ′

1 𝑋 ′
2

𝑋 ′
3 𝑋 ′

4

)︂
and 𝑌 ′ =

(︂
𝑌 ′
1 𝑌 ′

2

𝑌 ′
3 𝑌 ′

4

)︂
𝑟

𝑚−𝑟

𝑟 𝑚−𝑟

𝑟

𝑛−𝑟

𝑟 𝑛−𝑟

Then, the block decomposition of the system (9) gives:(︂
𝑋 ′

1J1𝐺 + 𝑋 ′
2J2𝐺 + J1𝐹𝑌 ′

1 + J2𝐹𝑌 ′
3 J1𝐹𝑌 ′

2 + J2𝐹𝑌 ′
4

𝑋 ′
3J1𝐺 + 𝑋 ′

4J2𝐺 (0)

)︂
=

(︂
(0) (0)
(0) (0)

)︂
𝑟

𝑚−𝑟

𝑟 𝑛−𝑟

𝑟

𝑚−𝑟

𝑟 𝑛−𝑟

Each of the 𝑚𝑛 entries of the left-hand matrix yields a linear equation relating the entries of 𝑋 ′, 𝑌 ′.
Hence, one can forget the entries of the bottom right–hand corner yielding “0 = 0” equations, which
leaves 𝑟(𝑚 + 𝑛− 𝑟) equations. This yields the upper bound on the rank of System (9) and hence
that of System (8).

Concerning the whole System (6), including the affine equations 𝑌 · 𝑣 = 𝑤 consists in joining 𝑛
additional affine equations. However, these equations are never independent. Indeed, if (𝑋,𝑌) is
solution of (8), then 𝑋Jaclin 𝐺(𝑣) = Jaclin 𝐹 (𝑤)𝑌 and, according to Corollary 16, we deduce that
𝑌 ·𝑣 should lie in the right kernel of Jaclin𝐹 (𝑤) which has dimension 𝑛−𝑟. Thus, the 𝑛 additional
affine equations on the entries of 𝑌 given by 𝑌 · 𝑣 = 𝑤 impose at most 𝑛 − 𝑟 new independent
conditions on the entries of 𝑌 .

Our experimental observations show that for a fixed pair (𝑣, 𝑤) the upper bound on the rank
of (6) is sharp. On the other hand, when considering 𝑠–tuples of pairs (𝑣1, 𝑤1), . . . , (𝑣𝑠, 𝑤𝑠) and
solving the concatenation of 𝑠 systems of the form (6), i.e. a system of the form (7), does not in
general lead to a system of rank

𝑠∑︁
𝑖=1

(𝑟𝑖(𝑚 + 𝑛− 𝑟𝑖) + (𝑛− 𝑟𝑖)) , (10)

but to a slightly smaller rank and we did not succeed in getting a sharper estimate as soon as
𝑠 > 1, which is actually the use case of our algorithm to follow.

Example 27. Using SageMath [S+19], we computed the rank of the systems (8) (without the affine
equations) and (6) (including affine equations) for various values of 𝑚,𝑛. We also evaluated the
rank of Systems (7), i.e. the concatenation of 𝑠 distinct systems of the form (6). Results are
presented in Table 2. These observations show that as soon as 𝑠 > 1, the upper bound (10) is not
sharp enough. On the other hand, our experimental observations show that for many use cases,
the choice 𝑠 = 3 is relevant in order to have a system with few solutions.

For APN functions, the smallest rank occurring in the rank distribution is 𝑛 − 1. In this
situation the rank of a system of the form (8) is larger and in such a case, the choice 𝑠 = 2 might
be sufficient, as suggested by the following example.

14

𝑚 𝑛 𝑚2 + 𝑛2 𝑠 Jacobian ranks Expected ranks for (8) and (6) Observed ranks (intervals)

6 6 72 1 (3) (27, 30) (27, 30)

6 6 72 1 (4) (32, 34) (32, 34)

6 8 100 1 (4) (40, 44) (40, 44)

8 6 100 1 (4) (40, 42) (40, 42)

6 6 72 2 (3,3) (54, 60) (48. . . 53, 50. . . 54)

6 6 72 2 (3,4) (59, 64) (52. . . 56, 56. . . 57)

6 6 72 2 (4,4) (64, 68) (56. . . 60, 60. . . 61)

6 8 100 2 (4,4) (80, 88) (72. . . 80, 78. . . 82)

8 6 100 2 (4,4) (80, 84) (68. . . 72, 72. . . 73)

6 6 72 3 (3,4,4) (72, 72) (65. . . 72, 69. . . 72)

6 6 72 3 (4,4,4) (72, 72) (60. . . 72, 66. . . 72)

6 8 100 3 (4,4,4) (100, 100) (90. . . 100, 93. . . 100)

8 6 100 3 (4,4,5) (100, 100) (95. . . 96, 96)

Table 2: This table summarizes some experimental results. The column Jacobian ranks gives the
ranks of Jaclin 𝐺(𝑣𝑖) (or equivalently Jaclin 𝐹 (𝑤𝑖)) for the (𝑣𝑖, 𝑤𝑖)’s we tested.

Example 28. Consider the function {︂
F2𝑛 → F2𝑛

𝑥 ↦→ 𝑥2𝑖+1

with 𝑖 prime to 𝑛. Such a function is known to be APN and, when regarded as a function F𝑛
2 → F𝑛

2

it is quadratic. For 𝑛 = 5 and 𝑖 = 1, the choice 𝑠 = 2 provides a linear system whose solution space
has dimension 5, while 𝑠 = 3 provides a solution space of dimension 6 1. For 𝑛 = 7, choosing
𝑠 = 2 yields solutions spaces of dimension 7 while 𝑠 = 3 these spaces have dimension 6 1.

Therefore, for such functions, it seems unclear which choice for 𝑠 is the most relevant. On one
hand, choosing 𝑠 = 2 will imply a brute-force search over a set of size O

(︀
22𝑛

)︀
but each step will

require a second brute-force in the solution space of System (7), which is reasonable for 𝑛 = 5, 7
but non negligible. On the other hand, the brute-force search is performed on a set of guesses of
O
(︀
23𝑛

)︀
elements, but each step of the search is much less expensive.

3.4.4 Deducing the full extended-affine equivalence

Once a pair (𝐴0, 𝐵0) is computed, the remainder of the 4–tuple can be computed as follows.
Let 𝐺1 to be the function defined by ∀𝑥 ∈ F𝑛

2 , 𝐺1(𝑥) := 𝐴0𝐹 (𝐵0𝑥) and recall that 𝐺(𝑥) =
𝐴0𝐹 (𝐵0𝑥)+𝐶0𝑥+𝑎. Since 𝐺1 can be computed from the triple (𝐹,𝐴0, 𝐵0), then, one gets 𝑎 using

𝑎 = 𝐺(0) + 𝐺1(0).

Finally, 𝐶0 can be computed as the linear map satisfying

∀𝑥 ∈ F𝑛
2 , 𝐶0𝑥 = 𝐺(𝑥) + 𝐺1(𝑥) + 𝑎.

3.4.5 The Algorithm

The pseudo-code of the full algorithm for recovering extended-affine equivalence is summarized in
Algorithm 1. Below we give a description of the algorithm with several comments.

1. Compute the rank tables and the rank distributions of Jaclin 𝐹 (𝑥) and Jaclin 𝐺(𝑥). If these
distributions differ, then the functions are not equivalent.

2. Else, estimate a reasonable number of guesses 𝑠 yielding Systems (7) with few solutions. For
many parameters, the choice 𝑠 = 3 turns out to be relevant.

15

3. Choose 𝑠 reference vectors (𝑤1, . . . , 𝑤𝑠) ∈ F𝑛
2 for which the values rankJaclin𝐹 (𝑤𝑖) lie among

the rare values in the rank distribution.

4. By brute-force search, guess an 𝑠–tuple (𝑣1, . . . , 𝑣𝑠) such that rankJaclin𝐺(𝑣𝑖) = rankJaclin𝐹 (𝑤𝑖)
for any 𝑖 ∈ {1, . . . , 𝑠}. For each such guess, solve the system{︂

𝑋 · Jaclin 𝐺(𝑣𝑖) − Jaclin 𝐹 (𝑤𝑖) · 𝑌 = 0
𝑌 · 𝑣𝑖 = 𝑤𝑖.

, ∀𝑖 ∈ {1, . . . , 𝑠}.

5. If the above system has “too many solutions”, make another guess. A threshold 𝑇 for the
dimension of the space of solutions should have been chosen. In our experiments, we set it
to 10 in order to have at most 1024 solutions for the system. If the threshold is exceeded
too frequently, the choice of 𝑠 may be underestimated and relaunching the algorithm with a
larger 𝑠 would be relevant.

6. For each guess for which the space of solutions of the system is small enough, we perform
brute-force search in this solution space toward a pair of matrices (𝑋,𝑌) which are both
non-singular. Such a pair provides a relevant candidate for (𝐴−1

0 , 𝐵0). For such a candidate,
we use the calculations of Section 3.4.4 to deduce a 4–tuple (𝐴0, 𝐵0, 𝐶0, 𝑎). If it succeeds, we
get our equivalence, if not, we keep on searching.

Remark 29. The reference vectors (𝑤1, . . . , 𝑤𝑠) should be chosen linearly independent. Indeed, if
some 𝑤𝑖 is linearly linked with the other ones, then the contribution of 𝑤𝑖 in the linear system (7)
is useless, providing linear equations which are linked with the other ones.

Remark 30. It may happen that ℛdist(𝐹)[𝑟0] is smaller than 𝑠 or more generally that ℛ(𝐹)[𝑟0] does
not contain 𝑠 linearly independent elements. This situation is actually advantageous: suppose for
instance that 𝑠 = 3 and there are only 2 vectors 𝑤1, 𝑤2 in ℛ(𝐹)[𝑟0] and 2 vectors 𝑣1, 𝑣2 in ℛ(𝐺)[𝑟0].
In this situation, we choose 𝑟1 which is the index of the smallest entry larger than ℛdist(𝐺)[𝑟0] in
the rank distribution, choose 𝑣3 ∈ ℛ(𝐺)[𝑟1] and perform a brute-force search for a 𝑤3 ∈ ℛ(𝐹)[𝑟1]
such that either ((𝑣1, 𝑤1), (𝑣2, 𝑤2), (𝑣3, 𝑤3)) or ((𝑣1, 𝑤2), (𝑣2, 𝑤1), (𝑣3, 𝑤3)) is a relevant guess. The
number of guesses we should investigate is at most 2ℛdist(𝐹)[𝑟1] instead of ℛdist(𝐹)[𝑟0]3.

Remark 31. As written, the algorithm might fail to return the solution. Indeed, if for a given
guess (𝑣1, · · · , 𝑣𝑠), System (7) has a space of solutions whose dimension exceeds the threshold 𝑇 ,
this guess is not further investigated. For this reason, the equivalence might be missed. A manner
to address this issue would be to add some recursive call in this situation and brute forcing an
(𝑠 + 1)–th vector to guess in order to reduce the dimension of the solution space of (7).

3.4.6 Complexity

According to Lemma 21, the cost of the computation of the rank table is of O (max(𝑛,𝑚)𝜔2𝑛).
Next, we have to evaluate the cost of the searching part of the algorithm. For any guess 𝑣1, . . . , 𝑣𝑠,
we have to solve a linear system of 𝑚2 + 𝑛2 unknowns and O

(︀
𝑚2 + 𝑛2

)︀
equations; actually the

choice of 𝑠 is done so that this system has a small solution space and hence is close to be square.
The number of guesses we should perform is of O (𝑅1 · · ·𝑅𝑠), where for any 𝑖 ∈ {1, . . . , 𝑠},

𝑅𝑖 := ℛdist(𝐹)[𝑟𝑖] with 𝑟𝑖 := rankJaclin 𝐹 (𝑤𝑖), the 𝑤𝑖’s being the reference vectors defined in
Section 3.4.5. In summary, for a random quadratic function 𝐹 , denoting by 𝑅 = max𝑖{𝑅𝑖}, the
running time of the algorithm is of

O
(︀
max(𝑛,𝑚)𝜔2𝑛 + 𝑅𝑠(𝑚2 + 𝑛2)𝜔

)︀
,

16

Algorithm 1 Algorithm for EA-equivalence recovery.

∙ Input: A pair of Boolean functions 𝐹,𝐺 : F𝑛
2 −→ F𝑚

2 and a threshold 𝑇 (usually 𝑇 6 10).

∙ Output: A 4-tuple (𝐴0, 𝐵0, 𝐶0, 𝑎) such that

∀𝑥 ∈ F𝑛
2 , 𝐺(𝑥) = 𝐴0 · 𝐹 (𝐵0𝑥) + 𝐶0𝑥 + 𝑎

if it exists. Otherwise, returns “NOT EQUIVALENT” or “NO EQUIVALENCE FOUND”.

1: Compute ℛ(𝐹) and ℛ(𝐺) and the corresponding rank distributions.
2: if ℛdist(𝐹) ̸= ℛdist(𝐺) then
3: return “NOT EQUIVALENT”
4: end if
5: Let 𝑟0 be the least occurring nonzero rank value.
6: Determine the number 𝑠 of vectors to guess (in general 𝑠 = 3 is enough).
7: Choose 𝑠 linearly independent reference vectors 𝑤1, . . . , 𝑤𝑠 ∈ ℛ(𝐹)[𝑟0]𝑠.
8: for any 𝑠–tuple of linearly independent vectors (𝑣1, . . . , 𝑣𝑠) ∈ ℛ(𝐺)[𝑟0]𝑠 do
9: Compute the solution space 𝒮 of the system with variables (𝑋,𝑌) ∈ F𝑚×𝑚

2 × F𝑛×𝑛
2{︂

𝑋 · Jaclin 𝐺(𝑣𝑖) − Jaclin 𝐹 (𝑤𝑖) · 𝑌 = 0
𝑌 · 𝑣𝑖 = 𝑤𝑖.

, ∀𝑖 ∈ {1, . . . , 𝑠}.

10: if dim𝒮 6 𝑇 then
11: for (𝑋,𝑌) ∈ 𝒮 do
12: if both 𝑋 and 𝑌 are non-singular then
13: 𝐴0 := 𝑋−1 and 𝐵0 := 𝑌
14: if Some 4–tuple (𝐴0, 𝐵0, 𝐶0, 𝑎) may be deduced using Section 3.4.4 then
15: return (𝐴0, 𝐵0, 𝐶0, 𝑎)
16: end if
17: end if
18: end for
19: end if
20: end for
21: return “NO EQUIVALENCE FOUND”

and we recall that in general 𝑠 = 3 is a relevant choice. In practice, for random quadratic functions,
the vectors providing the minimal entries of the rank distribution are very rare, permitting a very
fast running of the algorithm (see Remark 30).

On the other hand, the situation where the algorithm is the least efficient is when the functions
are APN. Indeed, as proved in Corollary 25, APN functions are precisely the ones whose nonzero
ranks are all equal to 𝑛− 1. For such functions, the complexity of the algorithm is of

O
(︀
𝑛2𝜔2𝑠𝑛

)︀
.

Here again, the choice 𝑠 = 3 seems relevant. Note that, according to Remark 28, it may be possible
that the choice 𝑠 = 2 is sufficient and provides a number of guesses of 22𝑛 at the cost of some
overhead for each step of the brute-force search. We have not been able to estimate the asymptotic
behaviour of this overhead.

17

3.4.7 Examples of Running Times

The algorithm has been implemented using SageMath [S+19] and tested on a personal machine
equipped with an Intel R○ Core(TM) i5-8250U CPU @ 1.60GHz. The source code is available on
GitHub2 Since the behaviour and the running time highly depends on the rank distribution, we list
some examples of running time in Table 3. The examples take as input a pair (𝐹,𝐺) of quadratic
functions where 𝐹 is drawn at random and 𝐺 is extended affine equivalent to 𝐹 .

𝑚 𝑛 Rank distribution Number of tries Time (seconds)

6 6 [1, 0, 0, 2, 18, 43, 0] 21 0.68

6 6 [1, 0, 0, 1, 24, 38, 0] 386 5.36

6 6 [1, 0, 0, 0, 27, 36, 0] 4605 61.1

6 8 [1, 0, 0, 0, 9, 96, 150] 127 15.5

6 8 [1, 0, 1, 12, 98, 144] 24 13.8

8 6 [1, 0, 0, 0, 0, 63, 0] 11067 195.1

8 6 [1, 0, 0, 0, 3, 60, 0] 318 53.4

8 8 [1, 0, 0, 0, 0, 6, 93, 156, 0] 95 20.3

8 8 [1, 0, 0, 0, 1, 13, 104, 137, 0] 36 15.3

Table 3: This table lists some experiments launched on extended affine equivalent functions. All
of them consisted in guessing 𝑠 = 3 vectors (𝑣1, 𝑣2, 𝑣3). The fourth column gives the number of
iterations, i.e. the number of guesses we made before finding a good triple (𝑣1, 𝑣2, 𝑣3).

4 Testing EA-Equivalence for Functions of any Degree

In this section, we describe how it is possible to test EA-equivalence for functions of any degree,
while the algorithm described in the previous section was devoted to functions of degree 2. However,
unlike above, we will focus on EA-testing rather than EA-recovery. To this end, we present several
invariants in Section 4.1. With the exception of the one based on the properties of the ortho-
derivative, they were all known before.

We then show how these invariants can used for partitioning the CCZ-class of a given function
into EA-classes, and we detail two case-studies. First, Section 4.3 presents partitions of the CCZ-
classes of all the 6-bit APN quadratic functions into EA-classes. Then, in order to compare the
different invariants, we look at the various partitions that they define over the set of all known
8-bit known APN functions. Our results are in Section 4.5. As we will see, in the case of quadratic
APN functions, the invariants based on the ortho-derivative are by far the finest grained.

4.1 Solving the EA-testing Problem

The general approach in solving the EA-testing problem consists in computing some quantities
for each function that are invariant under EA-equivalence. The set of all these quantities is then
used as a bucket label: if two distinct functions fall in different buckets, then they cannot be
EA-equivalent. In the case where several functions are in the same bucket, we then need to solve
the EA-recovery problem for each pair of functions in order to sort them in different EA-classes.

This general approach could be applied to other forms of equivalence, but we focus here on
the cases of CCZ and extended affine equivalence. The invariants discussed in this paper are

2https://github.com/alaincouvreur/EA equivalence for quadratic functions

18

https://github.com/alaincouvreur/EA_equivalence_for_quadratic_functions

summarized in Table 4, along with their time complexities.3 Note that other ad hoc invariants can
be built, such as the one based on the presence of permutations in the EA-class that we apply to
the CCZ-class of the Kim mapping in Section 4.3. Those listed in Table 4 are the most general
ones.

Equivalence Invariant Condition Complexity Ref.

CCZ

Extended Walsh spectrum – 𝑛2𝑛+𝑚 –

Differential spectrum – 2𝑛+𝑚 –

Subspaces with dim = 𝑛 in 𝒵𝐹 – ? [CP19]

Γ-rank 𝑚 = 𝑛 2𝜔𝑛 [BDKM09]

∆-rank 𝑚 = 𝑛 2𝜔𝑛 [BDKM09]

EA

Algebraic degree – 𝑚2𝑛 –

Thickness spectrum – ? [CP19]

Σ𝑘-spectrum 𝑘 even 2𝑛(𝑘−1) [Kal20]

of subspaces in non-bent components deg(𝐹) = 2 ? [BCC+20]

Affine-equivalence class of 𝜋𝐹
deg(𝐹) = 2,

2𝑛+𝑚 Sec. 4.1.2APN, 𝑚 = 𝑛

Table 4: A summary of all the class invariants we are aware of.

4.1.1 Invariants from the Literature

CCZ-invariants. It is well-known that both the differential and the extended Walsh spectra are
constant within a CCZ-class, and hence within an EA-class. It is also the case of the Γ-rank and
the ∆-rank [BDKM09]. Let us define those quantities. First, for any set 𝑆 of elements of F𝑛

2 , we
let Mat(𝑆) be the |𝑆| × |𝑆| binary matrix defined by

Mat(𝑆)[𝑥, 𝑦] = 1 ⇔ 𝑥 + 𝑦 ∈ 𝑆 .

Definition 32 (Γ- and ∆-rank). Let 𝐹 : F𝑛
2 → F𝑛

2 be a function. We call Γ-rank of 𝐹 the rank of
the matrix

Mat ({(𝑥, 𝐹 (𝑥)) : 𝑥 ∈ F𝑛
2})

and we call ∆-rank the rank of the matrix

Mat ({(𝑎, 𝑏) : 𝑎, 𝑏 ∈ F𝑛
2 , 𝐹 (𝑥 + 𝑎) + 𝐹 (𝑥) = 𝑏 has 2 solutions}) .

Those two invariants are only defined when 𝑛 = 𝑚.

EA-invariants. While the previously mentioned quantities are invariant under CCZ-equivalence,
the algebraic degree is constant within an EA-class, but not a priori within a CCZ-class. Another
EA-invariant introduced in [CP19] is based on the linear subspaces which are contained in the
Walsh zeroes of the function.

3The number of subspaces, the thickness spectrum, and the subspaces among non-bent components all rely on a
vector space search which can be done using the algorithm from [BPT19]. However, as this algorithm is essentially
a highly optimized tree search, its time complexity is hard to predict.

19

Definition 33 (Walsh Zeroes). [CP19, Def. 5] Let 𝐹 : F𝑛
2 → F𝑚

2 be a function and let 𝒲𝐹 be its
Walsh transform, so that 𝒲𝐹 (𝑎, 𝑏) =

∑︀
𝑥∈F𝑛

2
(−1)𝑎·𝑥+𝑏·𝐹 (𝑥). We call Walsh zeroes of 𝐹 the set

𝒵𝐹 = {(𝑎, 𝑏) ∈ F𝑛
2 × F𝑚

2 ,𝒲𝐹 (𝑎, 𝑏) = 0} ∪ {(0, 0)} .

The thickness spectrum is then an EA-invariant defined in [CP19, Def. 9] which is derived from
the structure of the Walsh zeroes.

Definition 34 (Thickness Spectrum). Let 𝐹 : F𝑛
2 → F𝑚

2 be a function, and let 𝒵𝐹 be its Walsh
zeroes. Furthermore, let {𝑉𝑖}06𝑖<ℓ be the set of all ℓ vector spaces of dimension 𝑛 that are contained
in 𝒵𝐹 . The thickness spectrum of 𝐹 is the set of positive integers {𝑁𝑗}06𝑗6𝑛 which are such that
there are exactly 𝑁𝑗 spaces 𝑉𝑖 with a projection of dimension 𝑗 on {(0, 𝑥), 𝑥 ∈ F𝑚

2 }. This dimension
is the thickness of the space.

Recently, another multiset which is again an EA-invariant but not a CCZ-invariant was pre-
sented by Kaleyski [Kal20].

Definition 35 (Σ𝑘-spectrum). Let 𝐹 : F𝑛
2 → F𝑚

2 be a function, 𝑘 be an even integer, and let Σ𝐹
𝑘 (𝑡)

be defined for any 𝑡 ∈ F𝑛
2 as

Σ𝐹
𝑘 (𝑡) =

{︃
𝑘−1∑︁
𝑖=0

𝐹 (𝑥𝑖) : {𝑥0, ..., 𝑥𝑘−1} ⊆ F𝑛
2 , and

𝑘−1∑︁
𝑖=0

𝑥𝑖 = 𝑡

}︃
.

We then call Σ𝑘-spectrum of 𝐹 the sequence {(𝑗,𝑁𝑗)}𝑗∈𝐽 which is such that exactly 𝑁𝑗 distinct
values appear 𝑗 times in Σ𝐹

𝑘 (0).

As established in Proposition 1 of [Kal20], the Σ𝑘-spectrum is an EA-class invariant when 𝑘 > 2
is even. On the other hand, it is easy to verify experimentally that it is not a CCZ-class invariant.
The running time of the basic algorithm evaluating the Σ𝑘-spectrum is proportional to 2𝑛(𝑘−1),
meaning that the value of 𝑘 is highly constrained by efficiency considerations.

If the function under consideration has some bent components, then the number of vector
subspaces of a given dimension that are contained within the set of such components is also an
EA-invariant. Similarly, the number of subspaces contained in the set of non-bent components is
also constant within an EA-class, as mentioned in [BCC+20].

Functions computing all these invariants in the case where 𝑚 = 𝑛 have been added to the
public sboxU library.4

4.1.2 Invariants of Quadratic APN Functions Based on the Ortho-Derivative

A highly specific but very common case of EA-testing consists in determining whether two quadratic
APN functions are EA-equivalent. The EA-recovery algorithm described in Section 3 can then used
but we could hope for a faster algorithm which efficiently distinguishes most EA-classes without
recovering the involved triple of affine functions (𝐴,𝐵,𝐶). At this aim, we use a notion related
to the derivatives of a quadratic function. This concept has already been used in several works,
e.g. [CCZ98, Kyu07, Gor19, Gor20], but without a well-defined name.

Definition 36. Let 𝐹 : F𝑛
2 → F𝑛

2 be a quadratic function. We say that 𝜋 : F𝑛
2 → F𝑛

2 is an
ortho-derivative for 𝐹 if, for all 𝑥 and 𝑎 on F𝑛

2 ,

𝜋(𝑎) ·
(︀
𝐹 (𝑥) + 𝐹 (𝑥 + 𝑎) + 𝐹 (0) + 𝐹 (𝑎)

)︀
= 0 .

4https://github.com/lpp-crypto/sboxU

20

https://github.com/lpp-crypto/sboxU

Intuitively, the fact that 𝐹 is quadratic implies that ∇𝑎 : 𝑥 ↦→ 𝐹 (𝑥) + 𝐹 (𝑥 + 𝑎) + 𝐹 (0) + 𝐹 (𝑎)
is linear, and thus that its image set is a vector space with a well-defined orthogonal.

Since a quadratic function 𝐹 is APN if and only if the sets {𝐹 (𝑥)+𝐹 (𝑥+𝑎)+𝐹 (0)+𝐹 (𝑎), 𝑥 ∈ F𝑛
2}

are hyperplanes for all nonzero 𝑎 ∈ F𝑛
2 , we immediately deduce the following result.

Lemma 37. Let 𝐹 : F𝑛
2 → F𝑛

2 be a quadratic function. Then, 𝐹 is APN if and only if it has
unique ortho-derivative 𝜋 such that 𝜋(0) = 0 and 𝜋(𝑥) ̸= 0 for all nonzero 𝑥.

From now on, we will focus on quadratic APN functions and on the unique ortho-derivative de-
fined as in the previous lemma. This function is strongly related to the Jacobian matrix introduced
in Section 3 as explained in the following statement.

Proposition 38. Let 𝐹 : F𝑛
2 → F𝑛

2 be a quadratic APN function. For any 𝑎 ∈ F𝑛
2 ∖ {0}, the vector

𝜋𝐹 (𝑎) is the unique nonzero vector of the left kernel of Jaclin 𝐹 (𝑎).

Proof. From Definition 36 together with Proposition 14, we have

∀𝑥 ∈ F𝑛
2 , 𝜋𝐹 (𝑎) · (𝐹 (𝑥) + 𝐹 (𝑥 + 𝑎) + 𝐹 (0) + 𝐹 (𝑎)) = 𝜋𝐹 (𝑎) · (Jaclin 𝐹 (𝑥) · 𝑎) = 0

From Corollary 15, this identity becomes

∀𝑥 ∈ F𝑛
2 , (𝜋𝐹 (𝑎) · Jaclin 𝐹 (𝑎)) · 𝑥 = 0

Thus, the vector 𝜋𝐹 (𝑎) · Jaclin 𝐹 (𝑎) is orthogonal to any 𝑥 ∈ F𝑛
2 and hence is zero.

Proposition 39. Let 𝐹 : F𝑛
2 → F𝑛

2 be a quadratic APN function and let 𝜋𝐹 be its ortho-derivative.
Furthermore, let 𝐴 and 𝐵 be affine permutations of F𝑛

2 and 𝐶 : F𝑛
2 → F𝑛

2 be an affine function.
Finally, let 𝐴0 and 𝐵0 be the linear parts of 𝐴 and 𝐵 respectively. Then the ortho-derivative of
𝐺 : 𝑥 ↦→ (𝐴 ∘ 𝐹 ∘𝐵)(𝑥) + 𝐶(𝑥) is

𝜋𝐺 = (𝐴𝑇
0)−1 ∘ 𝜋𝐹 ∘𝐵0 .

Proof. Thanks to Proposition 38 we only have to prove that (𝐴𝑇
0)−1 ∘ 𝜋𝐹 ∘ 𝐵0(𝑎) is in the right

kernel of Jaclin 𝐺(𝑎) for any 𝑎 ∈ F𝑛
2 . Let 𝑎 ∈ F𝑛

2 ∖ {0}, we have(︀(︀
(𝐴𝑇

0)−1 ∘ 𝜋𝐹 ∘𝐵0

)︀
(𝑎)

)︀𝑇 · Jaclin 𝐺(𝑎) = 𝜋𝐹 (𝐵0𝑎)𝑇 ·𝐴−1
0 · Jaclin 𝐺(𝑎).

From Proposition 17, Jaclin 𝐺(𝑎) = 𝐴0 · Jaclin 𝐹 (𝐵0𝑎) ·𝐵0 and hence(︀(︀
(𝐴𝑇

0)−1 ∘ 𝜋𝐹 ∘𝐵0

)︀
(𝑎)

)︀𝑇 · Jaclin 𝐺(𝑎) = 𝜋𝐹 (𝐵0𝑎)𝑇 ·𝐴−1
0 ·𝐴0 · Jaclin 𝐹 (𝐵0𝑎) ·𝐵0

= 𝜋𝐹 (𝐵0𝑎)𝑇 · Jaclin 𝐹 (𝐵0𝑎) ·𝐵0,

and this last vector is zero by Definition 36 together with Proposition 14.

Remark 40. A first immediate use of Proposition 39 would consist in solving the EA-recovery
problem, i.e. in finding (𝐴,𝐵,𝐶) such that 𝐺 = 𝐴 ∘ 𝐹 ∘ 𝐵 + 𝐶, by using an algorithm solv-
ing the affine-equivalence-recovery problem between the ortho-derivatives 𝜋𝐹 and 𝜋𝐺. Several
affine-equivalence-recovery algorithms exist in the literature, namely in [BDBP03] and in [Din18].
The former only works for permutations, which means that we can use it efficiently to test EA-
equivalence when 𝑛 is odd, since 𝜋𝐹 and 𝜋𝐺 are bijective in this case [CCZ98]. However, the
ortho-derivative is not a bijection when 𝑛 is even, meaning that we cannot use it. While the al-
gorithm of [Din18] can efficiently handle non-bijective functions, and requires that their algebraic
degree be at least 𝑛−2, we have found in practice that for 𝑛 ∈ {6, 8, 10}, it in fact requires that the

21

degree be 𝑛−1. Indeed, the algorithm fails for functions of degree 𝑛−2 (be they ortho-derivatives
or not). As we have experimentally observed that ortho-derivatives are always of degree 𝑛− 2 (see
also [Gor20]), it is probably the reason why, in practice, this algorithm does not work either. Hence,
to the best of our knowledge, the algorithm we presented in Section 3.4 is the only one solving the
EA-recovery problem efficiently, even in the very specific case of quadratic APN functions.

Despite this limitation, Proposition 39 still gives us a very powerful tool to solve the EA-testing
problem. Indeed, it implies that if 𝐹 and 𝐺 are EA-equivalent quadratic APN functions, then their
ortho-derivatives have to be affine-equivalent. If 𝜋𝐹 and 𝜋𝐺 are not affine-equivalent, then 𝐹 and 𝐺
cannot be EA-equivalent (and thus CCZ-equivalent since both notions coincide when 𝐹 and 𝐺 are
quadratic [Yos11]). In practice, as discussed in Section 4.5, we have found that the differential and
extended Walsh spectra of the ortho-derivatives vary significantly, and in fact provide an EA-class
invariant that is both the finest grained (by far), and can be computed very efficiently.

Note that the algebraic degree of the ortho-derivative cannot be used as an EA-class invariant.
Indeed we have observed it be always equal to 𝑛− 2, as conjectured by Gorodilova [Gor20].

4.2 Partitioning CCZ-classes into EA-classes

A very common use-case of EA-testing is when we want to obtain information about the CCZ-
class of a function, especially when we want to partition a CCZ-class into EA-classes. Indeed, the
technique presented in [CP19] enables us to loop through representatives of all the EA-classes in a
CCZ-class. This method is derived from the following property related to the Walsh zeroes of the
functions.

Proposition 41 ([CP19]). A linear permutation 𝒜 of F2𝑛
2 is admissible for a function 𝐹 : F𝑛

2 → F𝑛
2

if and only if 𝒜𝑇 (𝒱) ⊆ 𝒵𝐹 where 𝒱 = {(𝑥, 0), 𝑥 ∈ F𝑛
2}.

As a consequence, it is possible to loop through representatives of all the EA-classes contained
in the CCZ-class of a function 𝐹 by identifying all the vector spaces of dimension 𝑛 contained in
𝒵𝐹 , deducing the admissible mapping corresponding to each of them, and then applying it to the
graph of 𝐹 . This theoretical approach can be implemented efficiently using the vector space search
algorithm presented in [BPT19]. However, while it allows a full exploration of the EA-classes
contained in the CCZ-class, it may return several representatives for a given EA-class. In other
words, several functions obtained with this method may lie in the same EA-class. This situation
can then be detected by using some of the previously mentioned EA-invariants.

We will now use our EA-testing algorithms for studying the EA-classes included in the CCZ-
classes of all 6-bit APN quadratic functions, with a particular focus on the EA-classes which contain
permutations.

We will then need the following result established in [CP19].

Proposition 42. A function 𝐹 : F𝑛
2 → F𝑛

2 is a permutation if and only if 𝒱 ⊂ 𝒵𝐹 and 𝒱⊥ ⊂ 𝒵𝐹 ,
where

𝒱 = {(𝑥, 0), 𝑥 ∈ F𝑛
2}, and 𝒱⊥ = {(0, 𝑥), 𝑥 ∈ F𝑛

2} .

4.3 Kim Mapping and Dillon et al.’s Permutation

Let 𝑛 = 𝑚 = 6. The Kim mapping is a quadratic APN function 𝜅 defined over F26 by 𝜅(𝑥) =
𝑥3 +𝑥10 +𝑤𝑥24, where 𝑤 is a root of the primitive polynomial used to define F26 . It is well-known
for being CCZ-equivalent to a permutation since it is the function which served as a basis for the
result of Dillon et al. [BDMW10].

22

We ran the bases extraction algorithm of [BPT19] on 𝒵𝜅 and found that it contains a total of
222 distinct vector spaces of dimension 6. We then deduce that the CCZ-class of the Kim mapping
contains at most 222 EA-classes. We generated representatives of these 222 possibly distinct EA-
classes and we computed their respective thickness spectra. We have found 8 different thickness
spectra, showing that at least 8 of these EA-classes are distinct.

Let us now focus on the EA-classes within the CCZ-class of the Kim mapping which contain
permutations. By calculating the dimension of the projection on 𝒱⊥ of each of these 222 spaces,
we obtain the thickness spectrum of 𝜅:

𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 126, 𝑁3 = 32 .

To enumerate the EA-classes that are containing permutations, it is necessary and sufficient to
find pairs (𝑈, 𝑉) of vector spaces such that 𝑈 ∪ 𝑉 spans the full space (F𝑛

2)2 (Proposition 42).
Indeed, we then simply need to construct a linear permutation 𝐿 of (F𝑛

2)2 such that 𝐿(𝑈) = 𝒱
and 𝐿(𝑉) = 𝒱⊥, and then to apply 𝐿𝑇 to the graph Γ𝐹 = {(𝑥, 𝐹 (𝑥)), 𝑥 ∈ F𝑛

2} to obtain the graph
Γ𝐺 = 𝐿𝑇 (Γ𝐹) of a permutation 𝐺.

As the dimension of 𝒱⊥ here is 6, the only spaces that could be used to construct such pairs
have a thickness of 3. In fact, there exist two families of 16 vector spaces of dimension 6 which we
denote {𝑉𝑖}𝑖<16 and {𝑈𝑖}𝑖<16, and which are such that ⟨𝑉𝑖∪𝑈𝑗⟩ = (F𝑛

2)2 for any 𝑖, 𝑗. The following
proposition will allow us to leverage these permutations to identify two distinct EA-classes among
the corresponding permutations.

Proposition 43. Let 𝐹 : F𝑛
2 → F𝑛

2 and 𝐹 ′ : F𝑛
2 → F𝑛

2 be two CCZ-equivalent functions, and
suppose that there exist two families {𝐿𝑖}06𝑖<ℓ and {𝐿′

𝑖}06𝑖<ℓ′ of linear functions such that:

∙ ℓ > 0 or ℓ′ > 0,

∙ 𝐹 + 𝐿𝑖 is a permutation for all 𝑖 < ℓ, and

∙ 𝐹 ′ + 𝐿′
𝑖 is a permutation for all 𝑖 < ℓ′.

Suppose moreover that the families {𝐿𝑖}06𝑖<ℓ and {𝐿′
𝑖}06𝑖<ℓ are maximal for this property, i.e.

any family of linear functions {𝑀𝑗}𝑗 (resp. {𝑀 ′
𝑗}𝑗) satisfying the above properties is contained in

{𝐿𝑖}06𝑖<ℓ (resp. {𝐿′
𝑖}06𝑖<ℓ). Then 𝐹 and 𝐹 ′ are EA-equivalent if and only if ℓ = ℓ′ and if there

exists a permutation 𝜎 of {0, ..., ℓ − 1} such that 𝐹 + 𝐿𝑖 is affine-equivalent to 𝐹 ′ + 𝐿′
𝜎(𝑖) for all

𝑖 < ℓ.

Proof. If 𝐹 and 𝐹 ′ are EA-equivalent then it is clear that ℓ = ℓ′ and that such a permutation
𝜎 exists. Let us then focus on the opposite, and suppose that ℓ = ℓ′ and that there exists a
permutation 𝜎 such that 𝐹 + 𝐿𝑖 is affine-equivalent to 𝐹 ′ + 𝐿′

𝜎(𝑖). Then in particular there exist

𝑖 and 𝑗 such that 𝐹 + 𝐿𝑖 is affine-equivalent to 𝐹 ′ + 𝐿′
𝑗 . As a consequence, there also exist affine

permutations 𝐴 and 𝐵 such that 𝐹 + 𝐿𝑖 = 𝐵 ∘ (𝐹 ′ + 𝐿′
𝑗) ∘𝐴, which is equivalent to

𝐹 = 𝐵 ∘ 𝐹 ′ ∘𝐴 + 𝐵 ∘ 𝐿′
𝑗 ∘𝐴 + 𝐵(0) + 𝐿𝑖⏟ ⏞

𝐶′

.

We then deduce that 𝐹 and 𝐹 ′ are EA-equivalent.

We generated the 256 permutations obtained by mapping (𝑉𝑖, 𝑈𝑗) to (𝒱,𝒱⊥) for all (𝑖, 𝑗) ∈
{0, ..., 15}2 and their inverses obtained by mapping (𝑈𝑖, 𝑉𝑗) to (𝒱,𝒱⊥). Using the algorithm of
Biryukov et al. [BDBP03], we found that these 512 permutations fall into only four distinct affine
equivalence classes. We denote these four affine equivalence classes by 𝒜𝑘 for 𝑘 ∈ {0, 1, 2, 3}.

23

Let us first exhibit the permutations living in these affine-equivalence classes. Recall that the
so-called generalized open butterfly as introduced in [CDP17] is a family of permutations which
contains in particular some APN permutations for 𝑛 = 6. It was obtained by generalizing the
structure first identified in [PUB16]. These permutations are parameterised by two finite-field
elements 𝛼 and 𝛽 of F23 . They are the involutions defined as H𝛼,𝛽 : (F23)2 → (F23)2, where

H𝛼,𝛽(𝑥, 𝑦) =
(︀
𝑇−1
𝑦 (𝑥), 𝑇𝑇−1

𝑦 (𝑥)(𝑦)
)︀

and 𝑇𝑦(𝑥) = (𝑥 + 𝛼𝑦)3 + 𝛽𝑦3 .

We experimentally found that the four affine equivalence classes 𝒜𝑘, 𝑘 ∈ {0, . . . , 3}, contain the
following representatives, where 𝛼 ̸= 0, Tr(𝛼) = 0:

∙ 𝒜0 contains H𝛼,1,

∙ 𝒜1 contains H𝛼,𝛽 with 𝛽 = 𝛼3 + 1/𝛼,

∙ 𝒜2 contains the permutations 𝑃 = H𝛼,1 + 𝐿 such that 𝐿 is linear and 𝑃 ̸∈ 𝒜0,

∙ 𝒜3 contains the permutations 𝑃 ′ = H𝛼,𝛽 + 𝐿 such that 𝐿 is linear and 𝑃 ′ ̸∈ 𝒜1.

Proposition 43 imposes the existence of at least two EA-classes containing permutations within the
CCZ-class of the Kim mapping: one that contains 𝒜0 and 𝒜2, and another one that contains 𝒜1

and 𝒜3. Indeed, if 𝒜0 and 𝒜1 were EA-equivalent, then any permutation of the form (H𝛼,1 +𝐿) in
𝒜0 ∪𝒜2 would be affine-equivalent to some (H𝛼,𝛽 +𝐿′), while all such functions belong to another
affine-equivalence class, included in 𝒜1 ∪ 𝒜3. Since our vector-space-based approach enumerated
all EA-classes (possibly multiple times), and since all the representatives of EA-classes containing
permutations ended up in one of these two EA-classes, we can conclude that there exists exactly
two EA-classes of permutations in this CCZ-class. Furthermore, we also found out that if 𝑃 ∈ 𝒜0

then 𝑃−1 ∈ 𝒜0. The same holds for 𝒜1. On the other hand, if 𝑃 ∈ 𝒜2 then 𝑃−1 ∈ 𝒜3, and
vice-versa.

Lemma 44. Up to extended-affine equivalence, all known APN permutations in even dimension
are generalized open butterflies in the sense of [CDP17]. All these known APN permutations in
even dimension belong to exactly two EA-classes.

We also remark that the thickness spectrum of the two EA-classes containing permutations is
the same, namely

𝑁0 = 1, 𝑁1 = 7, 𝑁2 = 14, 𝑁3 = 58, 𝑁4 = 42, 𝑁5 = 84, 𝑁6 = 16 .

Thus, while having different thickness spectra implies being in distinct EA-classes, the converse is
not true. They also share the same Σ4-spectrum, meaning that the same observation applies to
this invariant.

Picture Representation. All these results are summarized in Figure 1, which contains a graphical
representation of the CCZ-class of the Kim mapping. It is partitioned into 8 parts, each corre-
sponding to a different thickness spectrum. We also specified the algebraic degree 𝑑 in each of
these parts. The Kim mapping itself is in the only quadratic part. Further, using the main result
of [Yos11], we can claim that this part corresponds to a unique EA-class.

At this stage, we cannot know how many EA-classes are in each of the other parts, except
for the one containing permutations. As discussed above, it contains two distinct EA-classes: one
containing H𝛼,𝛽 , and one containing H𝛼,1. The border between these two EA-classes is represented
by a dashed line, while their affine-equivalence classes are represented with circles.

24

We used blue arrows to represent the mappings called 𝑡-twists (see [CP19]) that send the Kim
mapping to each part of the CCZ-class. The value of 𝑡 is given, and we use different lines for
different 𝑡 as well. For example, since the open butterflies are involutions, a 6-twist (which is the
same as an inversion) maps these functions to themselves. Similarly, each EA-class containing
permutations is obtained from a function EA-equivalent to the Kim mapping via a 3-twist.

𝑑 = 2
𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 126, 𝑁3 = 32

𝑑 = 4
𝑁0 = 1, 𝑁1 = 7, 𝑁2 = 14, 𝑁3 = 58, 𝑁4 = 42, 𝑁5 = 84, 𝑁6 = 16

𝑑 = 4
𝑁0 = 1, 𝑁1 = 3, 𝑁2 = 24, 𝑁3 = 78, 𝑁4 = 84, 𝑁5 = 32

𝑑 = 4
𝑁0 = 1, 𝑁1 = 3, 𝑁2 = 24, 𝑁3 = 94, 𝑁4 = 84, 𝑁5 = 16

𝑑 = 4
𝑁0 = 1, 𝑁1 = 7, 𝑁2 = 24, 𝑁3 = 90, 𝑁4 = 84, 𝑁5 = 16

𝑑 = 3
𝑁0 = 1, 𝑁1 = 9, 𝑁2 = 72, 𝑁3 = 108, 𝑁4 = 32

𝑑 = 3
𝑁0 = 1, 𝑁1 = 9, 𝑁2 = 72, 𝑁3 = 124, 𝑁4 = 16

𝑑 = 3
𝑁0 = 1, 𝑁1 = 9, 𝑁2 = 80, 𝑁3 = 116, 𝑁4 = 16

𝜅

H𝛼,𝛽

𝑃 𝑃 ′ H𝛼,1

6

6

6

3
3

2

2

2

1

1

1

Figure 1: The overall structure of the CCZ-class of the Kim mapping 𝜅. Each of the 7 upper parts
may contain several EA-classes. The circles correspond to the four affine-equivalence classes of
permutations, and arrows correspond to 𝑡-twists.

4.4 6-Bit Quadratic APN Functions.

We looked at the Banff list of the 13 different 6-bit quadratic APN functions (including the Kim
mapping) which can be found for instance in [BN15] and which is recalled in Table 5. In Table 6,
we list many properties of the Banff functions, namely their ∆-rank, Γ-rank, thickness spectra, as
well as upper and lower bounds on the number of EA-classes in their CCZ-classes.

The upper bound is simply the number of vector spaces of dimension 6 in their Walsh zeroes.
The lower bound is obtained for each function 𝐹 by iterating through all the vector spaces 𝑉𝑖 of
dimension 6 in its Walsh zeroes, generating a linear permutation ℒ such that ℒ(𝒱) = 𝑉𝑖, and then
computing the thickness spectrum of the function 𝐺 such that Γ𝐺 = ℒ(Γ𝐹). Since the thickness
spectrum is constant in an EA-class, two functions with different thickness spectra must be in
distinct EA-classes. Thus, the lower bound is the number of distinct thickness spectra obtained in

25

this fashion. For the Kim mapping (number 5 in the list), we increase this number by 1 because
we have established above that two distinct EA-classes share the same thickness spectrum.

There is a total of 7 distinct thickness spectra among these functions.

𝑖 Univariate representation

1 𝑥3

2 𝑥3 + 𝛼11𝑥6 + 𝛼𝑥9

3 𝛼𝑥5 + 𝑥9 + 𝛼4𝑥17 + 𝛼𝑥18 + 𝛼4𝑥20 + 𝛼𝑥24 + 𝛼4𝑥34 + 𝛼𝑥40

4 𝛼7𝑥3 + 𝑥5 + 𝛼3𝑥9 + 𝛼4𝑥10 + 𝑥17 + 𝛼6𝑥18

5 𝑥3 + 𝑥10 + 𝛼𝑥24

6 𝑥3 + 𝛼17𝑥17 + 𝛼17𝑥18 + 𝛼17𝑥20 + 𝛼17𝑥24

7 𝑥3 + 𝛼11𝑥5 + 𝛼13𝑥9 + 𝑥17 + 𝛼11𝑥33 + 𝑥48

8 𝛼25𝑥5 + 𝑥9 + 𝛼38𝑥12 + 𝛼25𝑥18 + 𝛼25𝑥36

9 𝛼40𝑥5 + 𝛼10𝑥6 + 𝛼62𝑥20 + 𝛼35𝑥33 + 𝛼15𝑥34 + 𝛼29𝑥48

10 𝛼34𝑥6 + 𝛼52𝑥9 + 𝛼48𝑥12 + 𝛼6𝑥20 + 𝛼9𝑥33 + 𝛼23𝑥34 + 𝛼25𝑥40

11 𝑥9 + 𝛼4𝑥10 + 𝛼9𝑥12 + 𝛼4𝑥18 + 𝛼9𝑥20 + 𝛼9𝑥40

12 𝛼52𝑥3 + 𝛼47𝑥5 + 𝛼𝑥6 + 𝛼9𝑥9 + 𝛼44𝑥12 + 𝛼47𝑥33 + 𝛼10𝑥34 + 𝛼33𝑥40

13 𝛼𝑥6 + 𝑥9 + 𝛼𝑥10 + 𝛼4𝑥17 + 𝛼𝑥24 + 𝛼𝑥33

Table 5: The Banff list of quadratic APN functions operating on 6 bits.

𝑖 Thickness Spectrum Linearity
rank # EA

Diff. Spec. of 𝜋𝐹
Γ Δ min max

1 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 126 16 1102 94 3 190 {0 : 2205, 2 : 1764, 8 : 63}
2 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 126 16 1146 94 3 190 {0 : 2583, 2 : 1008, 4 : 378, 8 : 63}
3 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 30 16 1158 96 4 94 {0 : 2454, 2 : 1176, 4 : 370, 6 : 30, 10 : 2}
4 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 42 16 1166 94 5 106 {0 : 2338, 2 : 1428, 4 : 210, 6 : 56}
5 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 126, 𝑁3 = 32 16 1166 96 8+1 222 {0 : 2373, 2 : 1428, 4 : 168, 8 : 63}
6 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 54 16 1168 96 9 118 {0 : 2442, 2 : 1229, 4 : 303, 6 : 51, 8 : 7}
7 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 30 32 1170 96 6 94 {0 : 2401, 2 : 1371, 4 : 195, 6 : 50, 14 : 15}
8 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 42 16 1170 96 8 106 {0 : 2426, 2 : 1255, 4 : 297, 6 : 49, 8 : 5}
9 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 54 16 1170 96 9 118 {0 : 2439, 2 : 1235, 4 : 297, 6 : 57, 8 : 4}

10 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 54 16 1170 96 9 118 {0 : 2422, 2 : 1271, 4 : 279, 6 : 53, 8 : 7}
11 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 42, 𝑁3 = 8 16 1172 96 20 114 {0 : 2385, 2 : 1339, 4 : 258, 6 : 45, 8 : 2, 12 : 3}
12 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 54, 𝑁3 = 8 16 1172 96 20 126 {0 : 2404, 2 : 1307, 4 : 261, 6 : 53, 8 : 7}
13 𝑁0 = 1, 𝑁1 = 63, 𝑁2 = 42 16 1174 96 9 106 {0 : 2414, 2 : 1271, 4 : 303, 6 : 37, 8 : 7}

Table 6: Several CCZ-class invariants for the functions in the Banff list and bounds on the number
of EA classes in their CCZ-classes.

Combining all the invariants listed in Table 4 that are not based on the ortho-derivative, we
still could not see that all these functions fit into different EA-classes as they are identical for
Functions 9 and 10. However, as we can see, the differential spectrum of the ortho-derivative is
sufficient on its own to show that they are indeed in different EA-classes. We could also look at
the extended Walsh spectra of the ortho-derivative for a finer grained view, but it is not necessary
here.

Interestingly, all ortho-derivatives have the trivial thickness spectrum (i.e. {𝑁0 = 1}), except
for the cube mapping and for the Kim mapping. We have that

thickness spectrum of 𝜋𝑥3 = 𝑁0 = 1, 𝑁3 = 9, 𝑁6 = 54

thickness spectrum of 𝜋𝜅 = 𝑁0 = 1, 𝑁6 = 5 ,

implying that both are EA-equivalent to permutations.

26

4.5 8-bit Quadratic APN functions

As Dillon et al. derived their APN permutation of 6 variables from a quadratic APN function,
several teams have tried to reproduce this general approach by finding ways to generate large
numbers of quadratic APN functions of an even number of variables, and then checking if they
are in fact CCZ-equivalent to a permutation. While the answer to the latter question has always
been no, we can now work with more than 20, 000 distinct 8-bit quadratic APN functions, the first
8, 000 having been obtained using the QAM [YWL14], and the next 12, 000 through an optimized
guess-and-determine approach focusing on functions with internal symmetries [BL20a, BL20b].

Combining both lists gave us 21, 102 distinct quadratic APN functions. It turns out that all of
these functions can be put into distinct buckets in a few minutes using the extended Walsh spectrum
and differential spectrum of their ortho-derivative as a discriminant. The fact that these functions
are thus in distinct CCZ-equivalence class5 is not a new result,6 but the speed of our method is
noteworthy. It has a time complexity which is linear in the number of functions considered, a low
memory complexity, and can handle tens of thousands of 8-bit functions in a few minutes on a
desktop computer. We thus claim that our ortho-derivative-based approach is the best solution to
the EA-testing problem in the case of quadratic APN functions. While this setting may be narrow,
it is arguably one of the most interesting ones.

We can still use the other invariants to learn more about these functions. First, there are only
6 distinct extended Walsh spectra in the whole list:

{0 : 16320, 16 : 43520, 32 : 5440}
{0 : 15600, 16 : 44544, 32 : 5120, 64 : 16}
{0 : 14880, 16 : 45568, 32 : 4800, 64 : 32}
{0 : 14160, 16 : 46592, 32 : 4480, 64 : 48}
{0 : 13440, 16 : 47616, 32 : 4160, 64 : 64}
{0 : 12540, 16 : 48640, 32 : 4096, 128 : 4} ,

meaning that there are many functions with identical extended Walsh spectra but distinct thickness
spectra. On the other hand, some functions have identical thickness spectra but different Walsh
ones (see the bottom of Table 7 for an example). There are 255 = 28 − 1 different thickness
spectra, a number which looks interesting in itself. Indeed, recall that there are 7 = 23−1 different
thickness spectra among all 6-bit quadratic APN functions.

We can also fit all these functions into 486 different buckets with distinct extended Walsh
spectrum/thickness spectrum pairs. However, the functions are not uniformly spread among said
buckets, in fact only 10 of these classes account for about a third of all functions (see the first
rows of Table 7). We remark that, for all these large classes, the number of spaces of thickness 2 is
always a multiple of 6, and that all such numbers comprised between 108 and 162 form the 10 most
common occurrences. However, it is not necessary for 𝑁2 to be a multiple of 6 as evidenced for
example by the function with thickness spectrum such that 𝑁2 = 104 ≡ 2 mod 6.

At the opposite end, 143 functions live in classes that contain only one function. For instance,
the function with the highest number of vector spaces of dimension 𝑛 in its Walsh zeroes (669 in
total) is alone in its bucket. Only two functions have spaces of thickness 4 in their Walsh zeroes.

All functions have 𝑁1 = 255, a quantity which was explained to be related to the derivatives of
quadratic functions in [CP19]. Interestingly, there are 22 functions for which there is nothing else
in the thickness spectrum. The most prominent function in this set is the cube mapping 𝑥 ↦→ 𝑥3.

5Recall that CCZ-equivalence and EA-equivalence coincide in the case of quadratic functions [Yos11].
6In fact, the authors of [BL20a] used our method based on the ortho-derivative—and indeed our implementation—

to solve this problem.

27

Cardinality Extended Walsh spectrum Thickness Spectrum

617 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 162

681 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 156

617 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 150

606 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 144

640 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 138

681 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 132

635 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 126

664 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 120

639 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 114

616 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 108

1 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 104

22 {0 : 15600, 16 : 46520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255

1 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 294, 𝑁3 = 56, 𝑁4 = 64

1 {0 : 16320, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 210, 𝑁3 = 56, 𝑁4 = 64

78 {0 : 15600, 16 : 43520, 32 : 5440} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 194

9 {0 : 15600, 16 : 44544, 32 : 5120, 64 : 16} 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = 194

Table 7: The properties of some interesting classes of 8-bit quadratic APN functions.

There is a wide variety of spectra of the shape 𝑁0 = 1, 𝑁1 = 255, 𝑁2 = ℓ as ℓ varies from 12 to
264. We give the number of functions with each such thickness spectrum in Figure 2 (the Walsh
spectra are not taken into account in this figure). As we can see, most functions verify 𝑁2 ≡ 0
mod 6, and the distribution of such functions seems to follow a Gaussian distribution with mean
132.06. There are fewer functions satisfying 𝑁2 ̸≡ 0 mod 6, and those seem to follow their own
Gaussian distribution with a different mean of 166.50.

Figure 2: The number of known 8-bit quadratic APN functions such that the spaces in their Walsh
zeroes have a maximum thickness of 2. Different symbols are used depending on whether 𝑁2 ≡ 0
mod 6 or not.

Finally, we remark that the ortho-derivatives of all the more than 20, 000 functions we investi-
gated have a trivial thickness spectrum, i.e. {𝑁0 = 1}.

28

5 Conclusion

We can efficiently solve both EA-recovery and EA-testing in a new set of cases that includes those
that are of the most importance to researchers working on the big APN problem. In particular,
our use of the ortho-derivative of quadratic APN functions for EA-testing has already enabled new
results in this area [BL20a].

However, a general solution to both problems that could be applied in all cases, without con-
ditions on the algebraic degree of the functions or on the shape of the affine mappings involved,
remains to be found.

References

[BCC+20] Lilya Budaghyan, Marco Calderini, Claude Carlet, Robert S. Coulter, and Irene
Villa. Constructing APN functions through isotopic shifts. IEEE Trans. Inf. The-
ory, 66(8):5299–5309, 2020.

[BDBP03] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Preneel. A toolbox
for cryptanalysis: Linear and affine equivalence algorithms. In Eli Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS, pages 33–50. Springer, Heidelberg, May
2003.

[BDKM09] K. A. Browning, J.F. Dillon, R.E. Kibler, and M. T. McQuistan. APN Polynomials
and Related Codes. J. of Combinatorics, Information and System Sciences, 34(1-
4):135–159, 2009.

[BDMW10] K. A. Browning, J.F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN permutation
in dimension six. In Post-proceedings of the 9-th International Conference on Finite
Fields and Their Applications, volume 518, pages 33–42. American Mathematical So-
ciety, 2010.

[BK12] Lilya Budaghyan and Oleksandr Kazymyrov. Verification of restricted EA-equivalence
for vectorial boolean functions. In Ferruh Özbudak and Francisco Rodŕıguez-
Henŕıquez, editors, Arithmetic of Finite Fields - WAIFI 2012, pages 108–118, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[BL20a] Christof Beierle and Gregor Leander. New instances of quadratic APN functions.
arXiv:2009.07204 [cs.IT], 2020. https://arxiv.org/abs/2009.07204.

[BL20b] Christof Beierle and Gregor Leander. New Instances of Quadratic APN Functions in
Dimension Eight, September 2020.

[BN15] Céline Blondeau and Kaisa Nyberg. Perfect nonlinear functions and cryptography.
Finite Fields and Their Applications, 32:120–147, 2015. Special Issue : Second Decade
of FFA.

[BPT19] Xavier Bonnetain, Léo Perrin, and Shizhu Tian. Anomalies and vector space search:
Tools for S-box analysis. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part I, volume 11921 of LNCS, pages 196–223. Springer, Heidelberg,
December 2019.

29

https://arxiv.org/abs/2009.07204

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions and
permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography,
15(2):125–156, 1998.

[CDP17] Anne Canteaut, Sébastien Duval, and Léo Perrin. A generalisation of Dillon’s APN
permutation with the best known differential and nonlinear properties for all fields of
size 24𝑘+2. IEEE Transactions on Information Theory, 63(11):7575–7591, Nov 2017.

[CP19] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine equivalence,
and function twisting. Finite Fields and Their Applications, 56:209–246, 2019.

[Din18] Itai Dinur. An improved affine equivalence algorithm for random permutations. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 413–442. Springer, Heidelberg, April / May 2018.

[Gor19] Anastasiya Gorodilova. On the differential equivalence of APN functions. Cryptogr.
Commun., 11(4):793–813, 2019.

[Gor20] Anastasiya Gorodilova. A note on the properties of associated boolean functions of
quadratic APN functions. arXiv:2005.10788 [cs.DM], 2020. https://arxiv.org/

abs/2005.10788.

[Kal20] Nikolay Kaleyski. Deciding EA-equivalence via invariants. SEquences and Their Appli-
cations 2020—SETA’20. Available online: https://seta-2020.org/assets/files/

program/papers/paper-44.pdf., 2020.

[Kyu07] Gohar M. M. Kyureghyan. Crooked maps in F2𝑛 . Finite Fields and Their Applications,
13(3):713–726, 2007.

[Nyb91] Kaisa Nyberg. Perfect nonlinear S-boxes. In Donald W. Davies, editor, EURO-
CRYPT’91, volume 547 of LNCS, pages 378–386. Springer, Heidelberg, April 1991.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor Helleseth,
editor, EUROCRYPT’93, volume 765 of LNCS, pages 55–64. Springer, Heidelberg,
May 1994.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a theorem: De-
composing the only known solution to the big APN problem. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages
93–122. Springer, Heidelberg, August 2016.

[S+19] W. A. Stein et al. SageMath, the Sage Mathematics Software System (Version 8.6),
2019. http://www.sagemath.org.

[Yos11] Satoshi Yoshiara. Equivalences of quadratic APN functions. Journal of Algebraic
Combinatorics, 35:461–475, September 2011.

[YWL14] Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A matrix approach for constructing
quadratic APN functions. Designs, Codes and Cryptography, 73(2):587–600, Nov 2014.

30

https://arxiv.org/abs/2005.10788
https://arxiv.org/abs/2005.10788
https://seta-2020.org/assets/files/program/papers/paper-44.pdf
https://seta-2020.org/assets/files/program/papers/paper-44.pdf
http://www.sagemath.org

	Introduction
	State of the Art: Affine Equivalence Recovery in some Specific Cases
	Guess-and-Determine
	Rank Table

	Our Results

	Preliminaries and Definitions
	Recovering EA-equivalence for Quadratic Functions
	The Jacobian Matrix
	The Jacobian Matrices of EA-equivalent Functions
	The Jacobian Matrix of a Quadratic Function
	Solving the EA-equivalence Problem for Quadratic Functions
	Sketch of the Algorithm
	Rank Table and Connection with the Differential Spectrum
	On the Rank of the Linear System (6)
	Deducing the full extended-affine equivalence
	The Algorithm
	Complexity
	Examples of Running Times

	Testing EA-Equivalence for Functions of any Degree
	Solving the EA-testing Problem
	Invariants from the Literature
	Invariants of Quadratic APN Functions Based on the Ortho-Derivative

	Partitioning CCZ-classes into EA-classes
	Kim Mapping and Dillon et al.'s Permutation
	6-Bit Quadratic APN Functions.
	8-bit Quadratic APN functions

	Conclusion

