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LL-ORAM: A Forward and Backward Private
Oblivious RAM

Zhiqiang Wu, Xiaoyong Tang, Jin Wang, and Tan Deng

Abstract—Oblivious RAM (ORAM) enables a user to read/write her outsourced cloud data without access-pattern leakage. Not all
users want a fully functional ORAM all the time since it always creates inefficiency. We show that forward-private/backward-private
(FP/BP) ORAMs are also good alternatives for reducing the search-pattern leakage of dynamic searchable encryption (DSE). We
introduce the FP/BP-ORAM definitions and present LL-ORAM, the first FP/BP-ORAM that achieves near-zero client storage,
single-round-trip read/write, worst-case sublinear search time, and an extremely simple implementation. LL-ORAM consists of a set of
switchable protocols whose security can be switched among forward privacy, backward privacy, and perfect security at any time. The
construction involves a novel tree data structure named LL-tree, whose advantage is that it supports fast computation in the cloud with
an access-pattern-reduced leakage profile. LL-ORAM security is formally proven under forward and backward privacy. The
experimental results demonstrate that LL-ORAM is efficient and can be practically employed by DSE applications.
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1 INTRODUCTION

1.1 Background and Motivation

For infinite computing and storage resources, most compa-
nies outsource their private data to the cloud. However, the
cloud is perhaps insecure since many hackers can exploit
system vulnerabilities or backdoors to break into the cloud
systems and obtain considerable private data. Data contents
are easy to be protected by using standard randomized
encryption. To protect data-query privacy, the user gener-
ally relies on two modern techniques, dynamic searchable
encryption, and oblivious RAM.

Dynamic searchable encryption (DSE) allows the user to
store her encrypted documents on the untrusted cloud with
efficient search and update capability. Assuming the user is
trusted and the cloud is untrusted, all data outsourced to the
cloud should remain secret. When the user wants to retrieve
a document containing a specific keyword, the user only
needs to send an encrypted token related to the searched
keyword. Then, a set of matched documents are returned.
When the user wants to insert, modify, or delete a keyword-
identifier pair from the documents, the user also sends an
encrypted update token. Most of the recent studies show
that a DSE scheme should achieve at least forward-update
privacy, which guarantees that the insertion/modification
is strong, or backward-update privacy, which ensures that
the deletion is also robust [1]. Otherwise, the scheme is
vulnerable to hackers who can perform some attacks, such
as the powerful nonadaptive and adaptive file-injection
attacks [2].
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Oblivious RAM (ORAM) is a cryptographic primitive
for performing oblivious read and write operations on
outsourced data through reencrypting each data item and
confusing the data storage location in every access. From
a logical view, an ORAM can be viewed as a DSE scheme
to some extent, where each document consists of only one
unique keyword. Assuming security is considered, ORAMs
protect the full data-query privacy, but most DSE schemes
trade-off some security for efficiency. From the above analy-
sis, it can be concluded that an ORAM still has forward and
backward privacy.

Informally, a forward-private ORAM (FP-ORAM) guar-
antees that the write operation reveals nothing to the cloud,
but the read operation can reveal the access pattern. A
backward-private ORAM (BP-ORAM) guarantees that its
read is oblivious, but its write can be nonoblivious. Since
at least one of the operations, the read or the write reveals
no access patterns, the FB/BP-ORAM is still strong enough.
Our target is to study and set up the FP/BP-ORAM that can
be employed by DSE schemes for enhancing DSE security.

1.2 The Need for Forward and Backward Private
ORAMs

The need for building a forward-private or a backward-
private ORAM comes from two aspects, efficiency and
security.

Since ORAMs always create many defects, such as large
client-side storage, highly interactive protocols, or heavy
computational overhead, not all users like an ORAM all
the time. In a write-intensive application, the user is con-
cerned more with write access patterns, such as monitoring
systems, where data are frequently written but infrequently
read. A forward-private ORAM satisfies the user’s require-
ments. In a read-intensive application, the user concerns
more read access patterns, such as network disks, where
the documents are rarely updated after the user uploads the
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data. A backward-private ORAM can satisfy this require-
ment.

FP(BP)-ORAMs can improve the security of DSE
schemes. The search pattern is fully revealed on most
DSE applications even if they have achieved weak forward
search privacy in [3]. Type-I DSE backward privacy pro-
posed in [1] still allows a full search pattern. Note that
the search-pattern leakage is the core issue of DSE since
the same keyword always leads to the same search token.
Adopting an FP(BP)-ORAM will contribute to addressing
this issue.

1.3 Proposed Approach

We design an FP(BP)-ORAM that achieves single-round-trip
read/write efficiency and near-zero client-side storage with
the following approaches.

Figure 1 presents an overview of the scheme. The cloud
initially stores L encrypted binary trees called LL-trees.
Given the address a, to read A[a], the user and the cloud
use the following steps. 1) The user encrypts a into a token
Token and sends it to the cloud (Step A). 2) The cloud
sequentially accesses Tree 1, Tree 2, · · · , and Tree L (Steps B,
C , D). Unlike a recursive Path ORAM [4], [5], the input of
the i-th tree directly comes from the computational result of
the (i− 1)-th tree. Every input does not need to be sent back
to the user for decryption. In this process, a partial shuffle
history is exposed to the cloud. Fortunately, this leakage
is minimal in reality, as is stated in the security analysis.
3) All accessed tree nodes and the desired encrypted data
are packed into one package named RLL (Step E). 4) The
user decrypts the RLL and obtains the final result A[a].
The user should reencrypt all the accessed tree nodes to
reduce access-pattern leakage. 5) The user reencrypts RLL
into RLL′ and sends it to the cloud (Step F ). 6) The cloud
uses RLL′ to overwrite all the accessed tree nodes (Step G).
Since Steps F and G can be folded into the next request,
the read operation can be implemented in a single-round-
trip user-cloud interaction. The above approach can be com-
bined with other oblivious client-computation approaches
to achieving forward privacy or backward privacy.
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read other 
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Fig. 1: Single-round-trip ORAM workflow

Randomized linked list (RLL): A randomized linked
list is a sequence of accessed tree nodes. The RLL in each
tree is called a randomized accessed path, which is a leaf-
to-root path. To fetch a block that belongs to the leaf-to-root
path, the user downloads all the nodes in the path. Each
data block is related to a randomly allocated leaf identifier

that is encrypted and stored in the tree node. Every time the
data block is disclosed, the user generates a new random
leaf identifier for the data block. Therefore, the RLLs are in
random distribution.

Any user’s read/write access can be viewed as a simple
operation: downloading a fixed-length RLL and uploading a
fixed-length RLL. The RLL is a very compact design whose
encryption consists of only pseudorandom functions and
symmetric encryption.

1.4 Key Contributions

1) New security definitions for forward-private
ORAMs and backward-private ORAMs are given
from a new perspective. These definitions are
mainly designed for quantifying the query leakage.

2) We propose LL-ORAM, the first FP(BP)-ORAM that
achieves single-round-trip read/write efficiency,
near-zero local storage, worst-case sublinear search
time, and an extremely simple implementation. LL-
ORAM can help DSE solutions reduce search pat-
tern leakage. The core procedure Algorithm 10 in
Section IV consists of only several lines of pseu-
docode. The encryption primitives involve only
Blake2b and AES.

3) LL-ORAM consists of a set of protocols that can be
switched at any time for different security levels.

2 RELATED WORK

All ORAMs are classified into large-client schemes [6], [7],
[8], [9], [10], and small-client schemes [4], [5], [11], [12],
[13], [14], according to storage consumed at the client side.
Large-client constructions require local storage space of
O(N c), 0 < c < 1, and small-client constructions usually
consume local space of O(log2N) or even less. A large-
client scheme can be converted into a small-client scheme
by recursively invoking itself at the cost of high client-server
interactions [4]. An approach to reducing both client-side
storage and client-server interactions is to adopt server-
computation encryption primitives, such as garbled circuits
[12]. However, the garbled circuits bring heavy computa-
tional overhead, which limits their potential in practice.

There are still some studies on write-only ORAMs [15],
which say that the write is data-oblivious, and read-only
ORAMs [16], which ensure only read security. Their ORAM
definitions do not quantify all the possible leakages in either
the read or the write. Flat ORAM [15] is a large-client
application that is unscalable for large datasets. There are
some studies on differentially private RAM [17], which is
weaker than the traditional ORAMs, yet it is a new choice
for secure data-outsourcing.

Most ORAMs have a single server, yet there are many
multiserver ORAMs [18], [19], whose limitation is that they
require all servers to have no collusions with each other.
Sherman et al. proposed a multiclient ORAM in [20]. ORAM
can be executed in parallel for more efficiency [21], and can
be combined with secure hardware to improve efficiency
[22], [23]. ORAMs are used in secure multiparty computa-
tion (SMC), such as [24], [25], and searchable symmetric en-
cryption (SSE)/dynamic searchable encryption [26] (DSE).
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SSE provides more features than ORAM. SSE construc-
tions [26], [27], [28] support efficient Boolean searches,
and [29] support fuzzy searches. Many SSE schemes [30],
[31] provide fast range queries. Lai and Chow proposed a
forward-private scheme for labeled-bipartite-graph queries
in [32], which has a multidimensional leakage function for
high-dimensional data. SSE encrypts outsourced data in a
way that still allows the search and access pattern leakage.
However, many works [33] show that the leakage can be
exploited by hackers to disclose private data. Thus, we
should build an efficient ORAM to reduce SSE/DSE leakage.
Many recent DSE solutions focus their work on forward and
backward privacy, such as [1], [27], [34], [35], [36], [37], [38],
[39], [40]. Most of the works have a large-client-side storage
that acts as a local index. A good approach to eliminating
the storage is to employ a small-client forward-/backward-
private ORAM.

3 DATA STRUCTURES AND DEFINITIONS

In this section, we introduce perfect ORAM security, for-
ward ORAM privacy, backward ORAM privacy, and re-
lated definitions. Cryptographic primitives and LL-ORAM-
related data structures are also given.

3.1 Privacy definitions
Full Frequency Pattern. LetQ be the list of all queries issued
so far and (j, a) be the j-th entry of Q to access the logical
address a. The full frequency pattern of a is defined as

fp(a) = {j|(j, a) ∈ Q}.

If Q belongs to a DSE scheme, fp(.) is called the search
pattern. If Q belongs to an ORAM, fp(.) is called the access
pattern.

Shuffle History. In an ORAM, to avoid the access fre-
quency pattern in the logical block address a, one data
block that stores the value A[a] is usually moved from
one physical address to another by shuffling algorithms.
Assuming the ORAM has been accessed l times, the shuffle
history ShuHis(a) to a is defined as

ShuHis(a) = {p1, p2, · · · , pl},

where each pj is the physical address for block a at the j-th
ORAM-access time. Thus, the ORAM is designed to protect
not only fp(a) but also ShuHis(a).

Stop History. Let Q′ be the list of all queries issued so
far, and whose j-th entry is (j, k, pj , a), where k denotes the
k-th time to access block a, and pj is the physical address
of block a. Assuming the ORAM has been accessed l times,
the stop history to a is defined as

StopHis(a) = {(j, pj)|∀j, r : (j, k, pj , a) ∈ Q′

∧ (r, k − 1, pr, a) ∈ Q′

∧ pj = pr},

where pj = pr means that the data block has not been
moved before the j-th ORAM access. Obviously, if the stop
history always be full, this implies that the data blocks are
not well shuffled with a large probability. Let Q′ be the list
defined above, the full frequency pattern is also written as

fp′(a) = {(j, pj)|∀j : (j, k, pj , a) ∈ Q′}.

Immediate-update ORAM. Assuming the data block a
has been accessed k times (k is large), an ORAM is said to be
immediate-update if and only if for any block a, it holds that
|StopHis(a)| << |fp′(a)|. The immediate-update ORAM
says that the block will be moved to another place with a
large probability after accessing the block.

3.2 ORAM security
Assuming all the data blocks are encrypted by random-
ized encryption algorithms, we analyze only the accessed
addresses from the ORAM.
Perfectly secure ORAM. Let

→
Y l = ((op1, a1, data1),

(op2, a2, data2), · · · , (opl, al, datal)) denote an array of op-
erations performed by the user after ORAM initialization,
where each opj denotes a read at a logical address aj or a
write at aj with dataj . Let the symbol

c≡ denote computa-
tional indistinguishability. The ORAM construction is said

to be L-secure if and only if for any data sequences
→
Y l,

there exists a probabilistic polynomial-time (PPT) simulator
S such that

Info(
→
Y l)

c≡ S(L(
→
Y l)),

where Info(
→
Y l) contains all the accessed physical ad-

dresses from the ORAM, and L(.) is the predefined leakage
function. The ORAM is said to be perfectly secure if and

only if the function can be written as L(
→
Y l) = L′(N, l),

where N is the ORAM size, l is the number of ORAM
operations, and L′ is a stateless function.

Intuitively, a perfectly secure ORAM guarantees that no
access frequency for any logical address is revealed during
a sequence of operations. However, the perfectly secure
ORAM always creates some inefficiency in reality. We study
other ORAM definitions that still satisfy user requirements
on some occasions.
Forward-private ORAM (FP-II). Let

→
Y l be the operation

array defined above. For any logical address a ∈ [0, N − 1]

of
→
Y l, the leakage induced by a read or a write is de-

scribed as LRead(a) or LWrite(a), respectively. Let L =
{LRead,LWrite}. An L-secure ORAM is said to be forward-
private (FP-II) if and only if the leakage function can be
written as

LRead(a) = L′(fp(a))
LWrite(a) = {op},

(1)

where L′ is a stateless function.
An ORAM with FP-II forward privacy says that the

read reveals the full frequency pattern with a nonnegligible
probability, and the write is still oblivious. The FP-II ORAM
has two vital properties. One is that the write is data-
oblivious, which can be exploited by update-sensitive appli-
cations. The other is that there are no logical addresses are
revealed. However, the FP-II ORAM has the full-frequency-
pattern read leakage, which perhaps comes from the usage
of repetitive read tokens.

Forward-private ORAM (FP-I). Let
→
Y l be the operation

array defined above. For any logical address a ∈ [0, N − 1]

of
→
Y l, the leakage induced by a read or a write is de-

scribed as LRead(a) or LWrite(a), respectively. Let L =
{LRead,LWrite}. An L-secure immediate-update ORAM is
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said to be forward-private (FP-I) if and only if the leakage
function can be written as

LRead(a) = L′(His(a))

LWrite(a) = {op},
(2)

where L′ is a stateless function, and His(a) ⊂ ShuHis(a).
This definition guarantees that all the write operations

are oblivious and the reads can be nonoblivious, where
His(a) ⊂ ShuHis(a) denotes that only partial shuffle-
history addresses are revealed in the read operation. An
immediate-update ORAM will contribute to reduce the fre-
quency pattern leakage if partial shuffle-history addresses
are revealed. A forward-private ORAM implies that the
write operation obliviously modified the value that will be
nonobliviously read in the future. If an ORAM achieves FP-I
privacy, it still has FP-II privacy, but not vice versa. We also
give the backward-private ORAM definitions.

Backward-private ORAM (BP-II). Let
→
Y l be the opera-

tion array defined above. For any logical address a ∈
[0, N − 1] of

→
Y l, the leakage induced by a read or a write

is described as LRead(a) or LWrite(a), respectively. Let
L = {LRead,LWrite}. An L-secure ORAM is said to be
backward-private (BP-II) if and only if the leakage function
can be written as

LRead(a) = {op}
LWrite(a) = L′(fp(a)),

(3)

where L′ is a stateless function.
A backward-private ORAM implies that the read op-

eration is always oblivious even if the value has been
nonobliviously written in history. The BP-II ORAM says that
the read is oblivious, and the write is allowed to reveal the
full frequency-pattern leakage, but no logical addresses are
revealed.
Backward-private ORAM (BP-I). Let

→
Y l be the operation

array defined above. For any logical address a ∈ [0, N − 1]

of
→
Y l, the leakage induced by a read or a write is de-

scribed as LRead(a) or LWrite(a), respectively. Let L =
{LRead,LWrite}. An L-secure immediate-update ORAM is
said to be backward-private (BP-I) if and only if the leakage
function can be written as

LRead(a) = {op}
LWrite(a) = L′(His(a)),

(4)

where L′ is a stateless function, and His(a) ⊂ ShuHis(a).
The BP-I ORAM says that the read is oblivious, and

the write is allowed to reveal only partial shuffle-history
addresses. An immediate-update ORAM with backward
privacy means the write addresses for the logical block are
frequently updated.

3.3 Cryptographic Primitives

One-time random oracle. Assuming there is a random
oracle H(.), a one-time random oracle (OTRO) is de-
fined as a tuple (H, (x1, · · · , xn)) denoted H(.)(n), where
(x1, · · · , xn) is an array of unique access keys performed on
the oracle so far. We say H(.)(n) is a one-time random oracle
only if for any i ∈ [1, n], j ∈ [1, n], and i 6= j, then xi 6= xj .

The concept OTRO guarantees that there are no same access
keys before the current time.

OTRO appears sound since it is straightforward that
the outputs of the OTRO are always random values. Since
encryption always involves two or more parties, it is rec-
ommended that the OTRO be instantiated with two-party
(or multi-parties) encryption protocols. One party (the user)
generates the unique access keys with precomputed one-
time values, and the other party (the cloud) receives these
keys for querying the random oracle.

One-time value. Assuming the existence of OTRO
H(.)(n), a one-time value is defined as H(xi) (i ∈ [1, n]).
From the definition, we can conclude that 1) the one-time
value is indistinguishable from random by any probabilistic
polynomial-time (PPT) adversary, and 2) H(xi) appears
only one time among {H(xi)}i∈[1,n].

The one-time value is an ideal concept, and it exists only
on the condition that there is a random oracle. However, we
assume that well-defined collusion-resistant hash functions
can create one-time values. This concept plays a vital role
in LL-ORAM since the overall construction consists of one-
time values. The concept is not isolated, and it is always
related to the OTRO.

3.4 LL-ORAM

LL-ORAM involves a set of full binary trees labeled with
(T1, T2, · · · , TL), where each Ti is an i-height full binary tree
that consists of (2i − 1) LL-tree nodes.

LL-tree: TL is called the data LL-tree, and each Ti (i ∈
[1, L − 1]) is the position LL-tree. Given an N -block data
array A[.], TL stores the data chunks in each tree node with
a random order, where each chunk contains two contiguous
data blocks. To save the data chunk locations, the (L − 1)
position trees {T1, · · · , TL−1} are used.

Figure 2 gives a design overview of the LL-ORAM. To
read a value A[a], instead of scanning the full array, the
algorithm only retrieves the leaf-to-root nodes of TL. Since
the algorithm does not know where the leaf identifier is,
it should first search the position trees. Thus, the search
begins from the first tree T1. Since T1 contains only one
tree node, the user knows how to search T1. The input of
the i-th tree xi comes from the (i − 1)-th tree, where xi is
the leaf identifier of the i-th tree. If the cloud is given the
token, the query will be processed by the cloud from T1
to TL sequentially. A read/write operation induces a set of
accessed leaf identifiers (x1, x2, · · · , xL). We can see that LL-
trees’ advantages are 1) access completes in a single-round-
trip interaction, and 2) the number of accessed tree nodes is
sublinear in N .

3.5 LL-tree Node

Node/leaf identifiers: Assuming there is a full binary tree,
for any tree node with identifier x, its left-child identifier is
encoded as (2x+1), and its right-child identifier is encoded
as (2x+ 2). The advantage of the node-encoding method is
that all the tree nodes share the same encoding rule.
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Fig. 2: A logical view of an LL-ORAM

Node structure: An LL-tree node is a composite structure
consisting of two complex parts: head and tail. Each part is
defined as follows:

LL− treenode = (head, tail)

head = (m, emaps)

tail = (M, chunks)

emaps = (emap1, emap2, · · · , emapz)

chunks = (chunk1, chunk2, · · · , chunkz)
emapk = (k1, v1, k2, v2), (k ∈ [1, z])

chunkk = (a, data0, data1, leaf), (k ∈ [1, z]).

The header head contains (m, emaps), and the tail
tail contains (M, chunks), where m and M are encrypted
values that are detailed in the next section, and emaps
and chunks are vectors containing z items. Each en-
crypted map (EMap) in emaps has two key-value pairs
(k1, v1, k2, v2), (k ∈ [1, z]), and each chunk in chunks has
four parts (a, data0, data1, leaf), where a is the address of
data data0, (a + 1) is the address of data data1, and leaf
is the leaf identifier whose leaf -to-root path contains this
chunk. head is used by the cloud for computations but tail
is used only by the user to rebuild the randomized linked
list (RLL). tail is always in encrypted form at the cloud side,
and head.emaps is decrypted by the cloud only when the
token matches the block.

Encrypted map (EMap): An encrypted map is a hash
table that supports two types of efficient operations, writing
a key-value pair (K,V ) and reading a key-value pair (K,V )
by the K , where K and V are fixed-size values. We use
EMap.write(K,V ) and V ← EMap.read(K) to denote a
write and a read, respectively, as shown in Equations 5 and
6. The operation EMap.write(K,V ) has two steps: 1) K is
split into two parts (Kl,Kh), and 2) EMap[Kl] = Kh ⊕ V ,
assuming Kh and V share the same bit size. The operation
V ← EMap.read(K) also has two steps: 1) K is split into
two parts (Kl,Kh), and 2) V = EMap[Kl] ⊕ Kh. The
advantage of EMap is that it takes only one pseudorandom
computation to encrypt or decrypt one record.

EMap.write(K,V ) :

{
K → (Kl,Kh)

EMap[Kl]← Kh ⊕ V
(5)

V ← EMap.read(K) :

{
K → (Kl,Kh)

V ← Kh ⊕ EMap[Kl]
(6)

If the accessing key K is a one-time value, the value V
is encrypted by K . Since K can be used only once after V is
disclosed, we rebuild the whole EMap. To easily reencrypt

the EMap in every data access, we put only one chunk that
contains only two data blocks in one EMap.

Data chunk: The data chunk, which belongs to the tail
part of the node, has two key-value pairs and a leaf iden-
tifier. Each data chunk saves two contiguous data blocks.
We call data0 the first data block with address a and data1
the second data block with address (a + 1). Each chunk
is related to a leaf, whose identifier is leaf . The leaf -to-
root path always contains this data chunk since the user
initializes the value. The value leaf is only reserved for
node shuffling at the user side. Before the LL-tree node is
outsourced, the whole tree node is encrypted by RCPA-
secure algorithms, such as the counting-mode AES. In the
next section, we show how to put the data chunks into the
EMaps.

There are three tree node states: 1) empty, 2) padded with
dummy values and encrypted, and 3) full and encrypted.
Initially, all the tree nodes are in State 1. After several data
accesses, many accessed nodes turn into State 2. Since an L-
height tree is allowed to hold 2L−1 real data blocks at most,
there are still many dummy blocks. For security concerns,
States 2 and 3 cannot turn into State 1.

3.6 Address Encoding

Intuitively, a small ORAM, in general, is more efficient
than a large ORAM. For efficiently accessing the ORAM,
an address is converted into a set of smaller values.

Given an address a, the algorithm Convert is defined as
follows:

ai = ai+1/2,

bi = ai+1%2 for all i ∈ [1, L],
(7)

where ai is an integer, bi is a bit, and aL+1 = a.
Through Equation 7, address a is converted into a set
of L pairs. We write the algorithm as Convert(a) →
{(a1, b1), (a2, b2), · · · , (aL, bL)}, where each (ai, bi) is called
a block address, an integer of (2ai + bi).

3.7 Stash

A stash is a storage structure to hold or evict retrieved
data chunks. There are two types of stashes. One is the
temporary stash that is stored at the user side, and the other
is the root stash that is the root node of the trees. LL-ORAM
uses only a temporary stash to shuffle returned blocks, and
all the blocks are reencrypted and sent back to the cloud
immediately. The temporary stash is a hash table using the
following data structure,

Stash = (sblock1, sblock2, · · · )
sblockj = (a′, (data0, data1, leaf)).

Each block in Stash can be accessed by the address a′

and one bit b, and a block (datab, leaf) is matched. If b is
zero, data0 is selected, otherwise data1 is used. data0 and
data1 are arbitrary data, and leaf denotes a leaf identifier
whose corresponding leaf -to-root nodes contain the block.
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4 LL-ORAM: DETAILS AND IMPLEMENTATIONS

This section presents the tree-encryption algorithm, the
data-access algorithm, the shuffle algorithm, and four com-
munication protocols, including the single-round-trip access
oblivious-access protocol, the forward-private protocol, and
the backward-private protocol.

4.1 An overview

Data distribution. In the initial stage, all the trees are empty.
After any query, for any chunk (a′, data0, data1, leaf) in
any position LL-tree Ti (i > 1), the value leaf is always
stored in the prior small tree Ti−1, whose corresponding
chunk is (a′/2, data∗0, data

∗
1, leaf

∗). If a′%2 = 0, then
data∗0 = leaf is selected, else data∗1 = leaf . Note that even
if the tree has been shuffled, the above rule always holds.

Roadmap. Subsection B gives the tree-node encryption
algorithm, which happens on the client side. Subsection C
shows how to search for an address. Since any chunk can
be located by applying the above rule recursively, the cloud
can always find the correct leaf-to-root path containing the
final data block. Subsection D elaborates on the client-side
eviction algorithm and the client-side data read/write. Sub-
section E details four LL-ORAM communication protocols.

4.2 LL-tree Encryption

Node mask: An LL-tree node mask is a random value
generated by the user for encrypting the LL-tree node. Each
LL-tree node has a unique mask that is encrypted and stored
in the node’s tail part. Given an LL-tree node d, the mask is
denoted by d.tail.M . In our experiments, the mask is a 20-
byte random value. After any access to the data block, the
user will entirely rebuild the whole tree node and its mask.
Note that the mask is secret, and it does not exist alone in
the cloud. It is not revealed to the cloud all the time.

Encrypted mask (EMask): If two masks are XORed with
each other, we call the XORed mask EMask. For any LL-tree
node d, assuming its father-node mask is Mf , we denote
d.head.m the EMask, where d.head.m = d.tail.M ⊕ Mf .
EMask is the core design of the LL-tree.

Block key: A block key is a key to encrypting the data
block. Let the data block be data with the block address
(ai, bi), where i corresponds to the i-th LL-tree. Let F be
a keyed hash function modeled as a random oracle, K be
the user’s secret key, and M be the current node mask. The
block key is computed by FK(i||ai||bi)⊕M . The BlockKey
algorithm is shown in Algorithm 1. From this, we can
conclude that for any LL-tree, any tree node, and any data
block, the block key is unique. Since each chunk has two
blocks, then a chunk has two block keys.

Algorithm 1 Block key generation.
BlockKey(i, (ai, bi), M ):

1) return bk ← FK(i||ai||bi)⊕M

Node encryption: The LL-tree node encryption pseu-
docode is shown in Algorithm 2. Let i denote the i-th tree.
Given an unencrypted tree node d, whose mask is M , and
whose father-node mask is Mf , the algorithm outputs an

encrypted tree node d, assuming all the unencrypted chunks
have been put into d.tail.chunks in advance.

First, the algorithm encrypts d.head. Since
d.head.m ← M ⊕ Mf , M and Mf are encrypted.
The structure d.head.emaps stores Z EMaps, and
each Emap saves two contiguous data blocks. The
k-th EMap is denoted as d.head.emaps[k]. To put
a data block into d.head.emaps[k], the user should
generate the corresponding block key first. For each
unencrypted chunk chunk in d.tail.chunks, the user
builds the block keys bk0 ← BlockKey(i, (chunk.a, 0),M)
and bk1 ← BlockKey(i, (chunk.a, 1),M). With the
block keys, the blocks can be written into the EMaps
with d.head.emaps[k].write(bk0, chunk.data0) and
d.head.emaps[k].write(bk1, chunk.data1). Through the
above method, 2Z data blocks are put into d.head.emaps.

Second, the algorithm encrypts d.tail. The user puts
M into d.tail.M , which is reserved for node rebuilding.
The user utilizes an RCPA-secure private-key algorithm to
encrypt the whole part d.tail that is always hidden from the
cloud.

Tree-root encryption differs from that of its children. We
assume that the root still has a father, and its mask is held
by the user as the secret value, called the user mask. If the
user always stores a global variable Counter to save the
total number of reads/writes performed on the LL-ORAM,
the user masks are generated with the following approach.
Let Mi be the i-th user mask, i.e., the father mask of the
root of the i-th tree, K be the user’s secret key, and G
be a keyed collusion-resistant pseudorandom function. The
set of user secret masks is {M1,M2, · · · ,ML}, where each
Mi = GK(i||Counter).

Algorithm 2 LL-tree node encryption.
NodeEncrypt(d, i, M , Mf ):

1) d.tail.M ←M
2) d.head.m←M ⊕Mf

3) for k = 0 to d.tail.chunks.size()− 1

a) chunk ← d.tail.chunks[k]
b) bk0 ← BlockKey(i, (chunk.a, 0),M)
c) d.head.emaps[k].write(bk0, chunk.data0)
d) bk1 ← BlockKey(i, (chunk.a, 1),M)
e) d.head.emaps[k].write(bk1, chunk.data1)

4) encrypt d.tail
5) return d

Encrypted linked list (EL): All the tree nodes of the xi-
to-root path form a list named the encrypted list, denoted
ELi

x, which is a set of (leaf x)-to-root tree nodes in Ti. Note
that the encrypted list is just a logical concept.

Figure 3 shows an example of the encrypted linked list,
which is part of the LL-tree (T4). There are four nodes
{dA, dB , dC , dD} in the linked list, with the corresponding
node masks {MA,MB ,MC ,MD}. Note that the masks are
personal values, and the cloud does not learn them forever.
Assume dC contains an encrypted block with the block
address (ai, bi), and the block is the first position of dC .
The cloud wants to obtain a value that corresponds to the
address (ai, bi).
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T4
v
0
A

NodeKeyC= FK(𝒊||ai||bi) ⊕𝑴C

B

C

D

MB ⊕𝑴𝑨

MC⊕𝑴𝑩

MD⊕𝑴𝑪

t4 = FK(𝒊||ai||bi) ⊕𝑴𝟒

MA ⊕𝑴𝟒

𝑴𝟒

Fig. 3: Encrypted linked list in an LL-tree (L=4).

The user sends a token t4 ← FK(4||ai||bi) ⊕ M4

to the cloud. The cloud computes t4 ⊕ (dA.head.m) =
FK(4||ai||bi)⊕M4⊕MA⊕M4 = FK(4||ai||bi)⊕MA, and this
is, in fact, one of the block keys of dA for searching (ai, bi).
Since dA does not contain the address, the cloud continues
to search dB . It computes t4 ⊕ (dA.head.m)⊕ (dB .head.m),
and it obtains nothing from dB . Then, it searches dC , and
computes t4⊕(dA.head.m)⊕(dB .head.m)⊕(dC .head.m) =
FK(4||ai||bi) ⊕ MC . It continues to access dC ’s EMap,
and computes V ← dC .head.emaps[0].read(FK(4||ai||bi)⊕
MC). Fortunately, the cloud obtains the final value V . As it
is hoped, V equals dC .tail.chunks[0].databi .

The cloud can access any encrypted list ELi
x with the

tree number i and the leaf identifier x. However, without
the user’s tokens for any chunks, ELi

x cannot be decrypted
by the cloud. A user’s token reveals exactly only one block
address in each tree.

Cloud computing: Let ti be the user’s token of the i-
th tree, i.e., ti = FK(i||ai||bi) ⊕ Mi. An encrypted linked
list ELi

x can be efficiently computed with the following
algorithm. Algorithm 3 takes as input ELi

x and ti, and it

Algorithm 3 Computation in the cloud

Compute(ELi
x, ti):

1) initialize bk ← ti
2) for all d in ELi

x

a) bk ← bk ⊕ (d.head.m)
b) for all EMap in d.head.maps

i) y ← EMap.read(bk)
ii) if y is empty, continue;

iii) else, return y.

outputs y ← Compute(ELi
x, ti). This algorithm contains

only two loops: 1) accessing each tree node of ELi
x, and 2)

generating the block key bk that is used for accessing the
encrypted map in each node.

Sibling encrypted linked list (SL): Given a tree node d,
the sibling node of d is written as sn(d). In the special case,
the sibling node of the root is empty. A sibling encrypted
linked list is defined as SLi

x = {sn(d)|d ∈ ELi
x}.

Consider an internal tree node d. When d has been
rebuilt, two children nodes whose EMasks are related to
d should also be rebuilt. Thus, ELs and SLs should be
downloaded and reencrypted by the user. Figure 4 shows an
SL that contains only three nodes {E,F,G}. If {A,B,C,D}
are accessed and rebuilt, nodes {E,F,G} should also be
updated.

Randomized linked list (RLL): To access an address a
on an LL-ORAM, all accessed tree nodes along with their

T4
v
0
A

B

C

D

𝑴𝟒

v
0

v
0

v
0

E

F

G

Fig. 4: Sibling encrypted linked list in an LL-tree (L=4).

siblings in the query form a long linked list called a ran-
domized linked list. The user’s token is (t1, t2, · · · , tL−1),
where each ti = FK(i||ai||bi) ⊕ Mi. We define
RLL={(EL1

x1
, SL1

x1
), · · · , (ELL−1

xL−1
, SLL−1

xL−1
), (ELL

xL
, {})},

where each xi+1 = Compute(ELi
xi
, ti), (i ∈ [1, L − 1]).

Note that the token of the last tree tL cannot be sent to the
cloud; otherwise, the cloud learns the final result, which
is the private user’s data A[a]. Since ELL

xL
has not been

disclosed, SLL
xL

does not need to be rebuilt.
An RLL contains len=

∑L−1
i=1 (i+ i− 1) + L=L2 − L+ 1

LL-tree nodes. All the RLLs are a fixed length.

4.3 Searching for an Address

LL-trees can be efficiently searched by the user’s token that
encodes an address into a set of one-time values. The cloud
sends back all the accessed tree nodes to the user for node
shuffling and reencrypting.

One-time token: A one-time token is a set of one-time
values that can be sent by the user only once. Figure 4 shows
how to create a one-time token from the address a. If Mi is a
randomized one-time number of Ti, the user’s token of the
i-th tree can be written as ti = FK(i||ai||bi) ⊕Mi. The full
token tk for (T1, T2, · · · , TL−1) equals (t1, t2, · · · , tL−1).

Algorithm 4 Building a one-time token
BuildToken(a):

1) Convert(a)→ ((a1, b1), (a2, b2), · · · , (aL, bL))
2) for i = 1 to L− 1

a) ti ← FK(i||ai||bi)⊕Mi.

3) tk ← (t1, t2, · · · , tL−1)
4) return tk

Searching for an address: When the cloud owns the
one-time token, the cloud can individually access each tree
with the algorithm Search shown in Algorithm 5. The
cloud sequentially touches {T1, · · · , TL} using the function
Compute. All the accessed ELs and SLs are packed into rll
and reserved for rebuilding the corresponding tree nodes
later.

The search algorithm outputs an RLL and a set of
randomly-accessed addresses {x1, x2, · · · , xL}. The ran-
domness comes from the following RLL-rebuilding algo-
rithm.

4.4 RLL Rebuilding

We present the client-side shuffle algorithm for RLL re-
building. Rebuilding all accessed tree nodes is necessary.
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Algorithm 5 Searching for an address
Search(tk):

1) initialize rll← {}
2) x← 0
3) for all i = 1 to L− 1

a) x← Compute(ELi
x, tk.ti)

b) rll← rll ∪ {(ELi
x, SL

i
x)}

4) rll← rll ∪ {(ELL
x , {})}

5) return rll

Otherwise, the full frequency pattern leakage is induced.
Algorithms 6, 7, and 8 show how to rebuild an EL, an SL,
and an RLL, respectively.

EL rebuilding: Rebuilding an EL takes as input the
old EL ELi

x, op ‘write’ or ‘read’, (a∗, b∗) a block address,
x∗ a newly allocated randomized leaf identifier, and y the
arbitrary data to write. RebuildEL has three purposes: 1) to
rebuild the EL to avoid the full frequency pattern leakage,
2) to write data y with the block address (a∗, b∗) into the
ORAM, and 3) to read data with address (a∗, b∗).

The algorithm consists of eight steps, as shown in Algo-
rithm 6. In Step 1, ELi

x is delivered back to the user with
the leaf identifier x and the tree number i. The cloud will
use x to shuffle the returned tree nodes and use (i, x) to
overwrite the tree nodes. In Step 2, the user renews a new
one-time value Mi, one of the user’s values for the i-th tree
Ti. In Step 3, all chunks in ELi

x are decrypted and put into
the local stash Stash, which uses a local hash table to hold
all chunks indexed by key (a′, b′), where a′ is the block
address, and b′ is the choice of the first or the second. Note
that each chunk has a leaf identifier to shuffle. In Step 4,
the user writes the new data y as well as its leaf identifier
x∗ into Stash, i.e., Stash.write((a∗, b∗), (x∗, y)). Note that
the user cannot overwrite the existing block whose address
is (a∗, NOT b∗). In Step 5, the user creates an empty EL el
to hold the returned result. In Step 6, the user generates L
random masks {Mi,1, · · · ,Mi,L} for L nodes in el of the i-th
tree. The user stores these masks into the tree nodes. In Step
7, the user shuffles the chunks by using an algorithm.P(x, l)
denotes an l-level-node-to-root path that is a substring of
the x-to-root path. From level L to level 1, sequentially
shuffle the chunks. For each chunk s in the stash at level l,
P(x, l) = P(s.x, l) means that these chunks will be moved
to the new level l. Each tree node can hold Z chunks, yet the
root can hold S chunks. If the node is full, the remains will
be evicted into the upper levels. In level 1, all the remaining
chunks in Stashwill be evicted into the root node. Note that
after the eviction, the user saves nothing blocks in Stash. If
the number of encrypted chunks in the root is less than S,
the root should be padded with dummy chunks to size S. In
Step 8, the new EL el with the address (a∗, b∗) and the data
(x∗, y) is generated. Since the el is encrypted by the RCPA-
secure algorithm and the pseudorandom function, EL leaks
no privacy.

An EL has a sibling SL. If the EL masks have been
updated, rebuilding the SL is necessary since all the SL
EMasks have been changed. Otherwise, the linked lists do
not work.

SL rebuilding: Rebuilding the SL involves only the op-

Algorithm 6 EL rebuilding

RebuildEL(ELi
x, op, (a∗, b∗), x∗, y):

1) parse ELi
x as (EL, i, x);

2) Counter ← Counter + 1;
3) Mi = GK(i||Counter); assume Mi,0 = Mi

4) Stash← Read all chunks from ELi
x

5) if op = ‘write′, Stash.write((a∗, b∗), (x∗, y));
6) initialize el← {}
7) for l = L to 1, Mi,l ← Random();
8) for l = L to 1

a) S′ ← {}
b) for all s in Stash

i) if P(x, l) = P(s.x, l), S′ ← S′ ∪ s

c) if l > 1, S′ ← Select min(|S′|, Z) chunks from
S′

d) else, use entire S′;
e) Stash← Stash− S′

f) create a new l-level node d, and put S′ into d
g) el← el ∪NodeEncrypt(d, i,Mi,l,Mi,l−1)

9) return el

eration to update the EMasks, as shown in Algorithm 7. The
father-mask values come from Step 6) of Algorithm 6. For
each node d in SL, d.head.m is updated to the new EMask,
i.e., d.head.m ← (d.tail.M) ⊕Mi,j−1, where Mi,j−1 is the
father mask of node d. The tail information d.tail remains
unchanged. Note that since the SL is always undisclosed
in the cloud, the node masks in the EL do not need to be
updated.

Algorithm 7 SL rebuilding

RebuildSL(SLi
x):

1) parse SLi
x as (SL, i, x)

2) sl← {}
3) for all d ∈ SL

a) read the level of d, i.e., j ← d.level
b) Assume the new mask Mi,j−1 has been globally

stored by the user
c) decrypt d.tail
d) d.head.m← (d.tail.M)⊕Mi,j−1

e) encrypt d.tail
f) sl← sl ∪ d

4) return sl

RLL rebuilding: Rebuilding an RLL requires the follow-
ing parameters: the old RLL, op ‘write’ or ‘read’, an address
a, and data∗, the arbitrary data to write. RLL rebuilding has
three purposes:

• To rebuild the RLL to reduce access pattern leakage;
• To write data∗ with address a into the ORAM;
• To read data with address a.

Rebuilding the RLL contains the operations to reencrypt
all the ELs and SLs of the original RLL. As shown in
Algorithm 8, the algorithm includes seven steps. In Step
1, address a is converted into a set of block addresses.
In Step 2, the user searches from ELL

xL
that contains

the final data data with the block address (aL, bL). If
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op = ‘read′, data is returned. In Step 3, L new random
leaf addresses {x∗1, x∗2, · · · , x∗L} are allocated by invoking
RandomLeaf(i), which outputs the random leaf identifier
for the i-th tree with the node-encoding method. These
addresses are the new leaf identifiers for the next oblivious
read/write query for address a, yet currently, the identifiers
are still hidden from the cloud. In Step 4, the user builds
an empty RLL∗ to hold the results. In Step 5, the user
invokes RebuildEL to rebuild the EL in the data tree TL,
puts (x∗L, data

∗) into TL, invokes RebuildEL to rebuild the
EL in the position trees {TL−1, TL−2, · · · , T1}, and stores
the new leaves {x∗L−1, x∗L−2, · · · , x∗1}. In Step 6, the user
rebuilds all SLs {SL1

x, · · · , SLL
x}. Since the user renewed

all the masks in the ELs, the user can reencrypt SLs locally.
In Step 7, the user obtains the result data and rll′, which is
the new RLL.

Algorithm 8 Reencrypting an RLL
RebuildRLL(RLL, op, a, data∗):

1) Convert(a)→ ((a1, b1), · · · , (aL, bL))
2) data← Read data by (aL, bL) from RLL.ELL

xL

3) for i = 1 to L, x∗i ← RandomLeaf(i);
4) initialize RLL∗ ← {}
5) for i = L to 1

a) el← RLL.ELi
xi

b) if i = L,
c) el′ ← RebuildEL(el, op, (aL, bL), x

∗
i , data

∗)
d) else,
e) el′ ← RebuildEL(el, ‘write′, (ai, bi), x

∗
i , x
∗
i+1).

f) RLL∗.ELi
xi
← el′

6) for i = L to 1

a) RLL∗.SLi
xi
← RebuildSL(RLL.SLi

xi
)

7) return (RLL∗, data)

Overwriting nodes: After node regeneration, the cloud
puts all the new tree nodes into the original paths. As shown
in Algorithm 9, for any LL-tree Ti, all the tree nodes from the
original xi-to-root path are overwritten, where Ti denotes
the i-th tree, Ti[x, l] denotes an l-level node at the x-to-root
path in the i-th tree, and d.level denotes the level of node
d. Note that in the overwriting procedure, since the RLL is
fixed-length (L2 − L+ 1), no leakage is induced.

Algorithm 9 Overwriting an RLL
Overwrite(RLL):

1) for i = 1 to L

a) parse RLL.ELi
x as (EL, i, x)

b) for all d in EL

i) overwrite Ti[x, d.level]← d

c) parse RLL.SLi
x′ as (SL, i, x′)

d) for all d′ in SL

i) overwrite Ti[x
′, d′.level]← d′

4.5 LL-ORAM protocols
We set up four protocols: a single-round-trip protocol,
an oblivious protocol, a forward-private protocol, and a

backward-private protocol. The user has four options to
interact with the cloud at any time.

LL-SR-ORAM: LL-SR-ORAM is a single-round-trip ac-
cess protocol denoted LL-SR-ORAM={Access}. Algorithm
10 provides the single-round-trip API to access one data
block. The protocol sequentially invokes the subroutines
BuildToken, Overwrite, Search, and RebuildRLL. If
op =‘read’, the input is (‘read’, a, 0), and returns A[a]. If
op =‘write’, the input is (‘write’, a, data∗). The small trick
in Algorithm 10 is that the user creates a cache to hold rll′,
which is the last RLL to overwrite the original tree nodes. In
the next query, the user sends the token and rll′ to the cloud.
Before any tree access, the cloud overwrites the existing tree
nodes with rll′ first.

Algorithm 10 Single-round-trip access protocol (LL-SR-
ORAM)
Access(op, a, data∗):

1) User:

a) tk ← BuildToken(a)
b) send (tk, rll′) to the cloud

2) Cloud:

a) Overwrite(rll′)
b) rll← Search(tk)

3) User:

a) (rll′, data)← RebuildRLL(rll, op, a, data∗)
b) save rll′ locally.
c) if op = ‘read’, return data

Algorithm 11 Oblivious access protocol (LL-OB-ORAM)
ObAccess(op, a, data∗)

1) User:

a) {t1, · · · , tL−1} ← BuildToken(a)
b) initialize rll← {}
c) x← 0
d) send the cached rll′ to the cloud

2) Cloud: Overwrite(rll′)
3) for i = 1 to L− 1

a) User: send x and i to the cloud
b) Cloud: send ELi

x and SLi
x to the user

c) User: x← Compute(ELi
x, ti)

d) User: rll← rll ∪ {(ELi
x, SL

i
x)}

4) User:

a) rll← rll ∪ {(ELL
x , {})}

b) (rll′, data)← RebuildRLL(rll, op, a, data∗)
c) save rll′ locally.
d) if op = ‘read’, return data

LL-OB-ORAM: LL-OB-ORAM is an oblivious-access
protocol denoted LL-OB-ORAM={ObAccess}, as shown in
Algorithm 11. In the protocol, instead of sending the token
to the cloud, the user sends only the leaf identifiers x = xi
(i ∈ [1, L]) in every step. Since each ELi

x is computed by
the user, Compute incurs no leakage. Except for O(logN)
interactions, network latency, and security, the efficiency
of LL-OB-ORAM is almost the same as LL-SR-ORAM. LL-
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OB-ORAM achieves obliviousness at the cost of O(logN)
interactions.

Algorithm 12 Forward-private ORAM protocol (LL-FP-
ORAM)
FpRead(a):

1) return Access(‘read’, a, ⊥)

FpWrite(a, data∗):

1) ObAccess(‘write’, a, data∗)

Algorithm 13 Backward-private ORAM protocol (LL-BP-
ORAM)
BpRead(a):

1) return ObAccess(‘read’, a, ⊥)

BpWrite(a, data∗):

1) Access(‘write’, a, data∗)

LL-FP-ORAM/LL-BP-ORAM: LL-FP-ORAM is a
forward-private ORAM protocol denoted LL-FP-ORAM=
{FpRead, FpWrite}, whose pseudocode is shown in
Algorithm 12. LL-BP-ORAM is a backward-private ORAM
protocol denoted LL-BP-ORAM={BpRead,BpWrite},
whose pseudocode is shown in Algorithm 13. A forward-
private ORAM or a backward-private ORAM appears if the
single-round-trip protocol and the oblivious access protocol
are combined.

5 IMPROVEMENTS AND APPLICATIONS

In this section, we adjust the block size to reduce the com-
munication bandwidth and improve the search efficiency.
We also study the applications to dynamic searchable en-
cryption.

5.1 Communication Bandwidth

Equation 8 shows the communication bandwidth band,
which approximately equals the bit size of an RLL. In a
read/write operation, the communication bandwidth con-
sists of two parts. One is the RLL, and the other is the one-
time token. The token size is only O(L) bytes, which can be
ignored compared with the RLLs. Let us consider only the
RLL.

Assuming N = (2L − 1) real blocks exist in the ORAM,
except for the root, each node has Z chunks including the
dummy nodes, each chunk has two blocks, each data block
has B bits, each position block has B′ bits, and each root
has O(BS) bits, the size of the RLL is computed by:

bandd = (L− 1)O(BZ) +O(BS)

bandp =

L−1∑
i=1

((i− 1)O(B′Z) +O(B′S))

band = bandd + bandp,

(8)

where bandd is the bit size of (ELL
xL
, {}), and bandp is the

bit size of {(EL1
x1
, SL1

x1
), · · · , (ELL−1

xL−1
, SLL−1

xL−1
)}.

5.2 Stash Size
In our experiments, the root-stash size exceeding S can be
negligible, only if Z and S are large enough. In general, Z
is set to 3, S is set to 7, and B′ ≈ logN . Equation 8 can be
written as R = O(B logN + log3N) bits. If B = Ω(log2N)
is adopted, the bandwidth overhead equals O(B logN),
which is the asymptotically optimal bandwidth.

5.3 Block Size and Cloud Storage
We adjust the data block size B to obtain more data in each
access. There are two types of blocks: data blocks in TL and
position blocks in Ti(i ∈ [1, L − 1]). Assuming there are N
data blocks, each tree node (except for the root) contains Z
chunks, each root has S chunks, each chunk has two blocks,
each position block has B′ bits, and each data block has B
bits that are a set of r contiguous records, the storage space
of the LL-ORAM is computed by

sized = (N − 1)O(BZ) +O(BS),

sizep =

logN−1∑
i=1

((2i − 1)O(B′Z) +O(B′S)),

size = sized + sizep

(9)

where sized is the storage size of the data LL-tree, and
sizep is the size of the position LL-trees. Therefore, the data
array A[.] stores N · r data records in total. Note that the
data record is an arbitrary fixed-size data structure.

In reality, we set Z = 2, B′ = logN , and S = 7. We
have size = O(BN + log3N) bits. If B = Ω(log2N), the
LL-ORAM cloud storage is of size = O(BN) bits.

5.4 Client Storage and Access Time
The user stores the permanent secret key K and a temporary
RLL. If B = Ω(log2N) is adopted, the communication
bandwidth for each query is O(B logN) bits. When the user
is busy, the client storage is O(B logN) bits since the user
always holds the last RLL for the next data access. Note that
when the cloud and the user are free, the user can upload
the last RLL to the cloud. Therefore, client storage is O(1).
The access time is O(log2N), which is determined by the
number of noncontiguous memory accesses.

5.5 Applications to Dynamic Searchable Encryption
One can easily implement an inverted index for dynamic
searchable encryption by making black-box use of an
FP(BP)-ORAM. The approaches are introduced in many
works, such as [23]. Since the partial shuffle-history pattern
is smaller than the full frequency pattern, LL-ORAM can
improve the DSE security.

6 SECURITY ANALYSIS

6.1 Security Components
Masks. The user’s masks are one-time values. If G is
modeled as a random oracle, the i-th mask Mi =
GK(i||Counter) is indistinguishable from random after ev-
ery data access. In our settings, Mi is a 20-byte integer that
is enough to protect the user’s privacy. The node mask,
which is related to the tree node, is also a random number
generated by the user every time the node is accessed.
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From the above, we conclude that all the masks are random
numbers.

Tokens. The user’s tokens are one-time values. If F
and G are modeled as random oracles, the token ti =
FK(i||ai||bi)⊕Mi is a one-time value. In the token, Mi does
not exist alone. It is XORed by the value FK(i||ai||bi), which
is the one-time key to obtain the data block (ai, bi) that
is stored in the cloud. Without ti, the cloud cannot locate
where the data block (ai, bi) is. After the cloud accesses
this data block, the user renews Mi with another random
number. Next, we show that all the masks in all the trees are
secure enough.

ELs and SLs. An encrypted linked list (EL) is a set of
leaf-to-root LL-tree nodes, denoted ELi

x. In the i-th tree,
since a user query discloses only one data block, other
tree nodes remain untouched. The node mask Mi,j , which
belongs to the i-th tree and the j-level node d, is always
XORed by the father-node mask Mi,j−1 with the encrypted
form d.head.m. The cloud learns only the (node x)-to-root
EMasks (mL,mL−1, · · · ,m1) and ti,

mL = Mi,L ⊕Mi,L−1

· · ·
m1 = Mi,1 ⊕Mi

ti = FK(i||ai||bi)⊕Mi

(10)

In Equation 10, there are (L + 2) variables in the right
part, yet the cloud learns only (L + 1) numbers in the left
part. The only way to learn one of the variables is to learn
one of the other variables first, which is a paradox. To hide
the access pattern of this leaf identifier x, after accessing
ELi

x, the user rebuilds ELi
x and resets the masks to other

random values. In the next query, the cloud still faces the
same paradox of ‘seeking (n+1) variables from n numbers’.
From the above analysis, we conclude that the ELs leak
nothing of access patterns.

To enable the EL to work well in the next query, all
pointers that point to the EL should be rebuilt. This is the
work of rebuilding SL. An SL SLi

x is the set of sibling tree
nodes of the nodes in ELL

x . In the rebuilding process, the
tail does not need to be rebuilt. For a node d in SLi

x, the
user rebuilds only d.head.m in the next query. d.tail.M
is always encrypted by an RCPA-secure algorithm, which
guarantees that the outputted value cannot be distinguished
from random by any PPT adversary. To learn the node mask
from d.head.m, the cloud still faces the paradox of Equation
10. From the above, we conclude that all node masks are
hidden from the cloud.

EMaps. EMap security is guaranteed by the randomness
of the key. An EMap is a hash table that maps a key K to
a value V for storing data EMap.write(K,V ), or for re-
trieving data V → EMap.read(K), as shown in Equations
5 and 6. The key K is used to XOR the other part value and
to play the role of the accessing key. Assuming the node d
contains a position block (ai, bi) encrypted by an EMap, K
is, in fact, the block key FK(i||ai||bi)⊕Md, where Md is the
mask of d. Without K , no PPT adversary can obtain V from
the EMap.

LL-trees and RLLs. The node encryption algorithms
guarantee LL-tree security. In a tree node d, d.tail is always
undisclosed in the cloud, and the tail is only reserved for

node rebuilding. The cloud touches only d.head, which
consists of d.head.maps and d.head.m.

An RLL is a set of ELs and SLs, {(EL1
x1
, SL1

x1
), · · · ,

(ELL−1
xL−1

, SLL−1
xL−1

), (ELL
xL
, {})}. Each data access generates

a set of leaf identifiers (x1, x2, · · · , xL) that is computed by
the cloud. The strength of the RLL is that (x1, x2, · · · , xL)
are random values that are the user’s predefined leaf posi-
tions in each query.

6.2 Leakage Analysis
We define the leakage function only for Access(.) since
LL-SR-ORAM, LL-FP-ORAM, and LL-BP-ORAM use this
API. Let

→
Ql = (ai,1, ai,2, · · · , ai,l) be a sequence of logical

addresses to access the position LL-tree Ti. For simplicity,
let a = ai,l, which denotes the l-th logical address that
corresponds to a block address. The leakage function of
Access(.) for Ti is defined as

L(Ti, a) = {(xi,a, yi,a)}, (11)

where (xi,a, yi,a) is the last shuffle address for storing block
a, xi,a is the leaf identifier, and yi,a is the height of the
stored block in Ti. Given a logical address a to access Ti,
L(Ti, a) reveals the last shuffled position of block a, but
not all the shuffle-history positions for a are revealed. The
shuffle history for block a is defined as

ShuHis(a) = {(x1, y1), (x2, y2), · · · , (xl, yl)},

where each (xj , yj) is the physical address for storing block
a at the j-th ORAM accesses after data shuffling, xj is the
leaf identifier, and yj is the block height. It is clear that

{(xi,a, yi,a)} ⊂ ShuHis(a). (12)

Theorem 6.1: Let His(a) = {(xi,a, yi,a)} be the partial
shuffle history for block a in tree Ti. It holds that His(a)
is smaller than the full frequency pattern fp(a).
Proof: Given the leakage His(a), an adversary can observe
the appearances by testing how many times the last matched
block is in the paths, x1-to-root, x2-to-root, · · · , and xl−1-to-
root. Let the number of appearances be X . If the block exists
in only one path, i.e., X = 1, the adversary will successfully
output the correct access sequence of a. However, if X > 1,
which denotes that the block has been frequently shuffled,
and the adversary can output the correct access sequence of
a with a probability of approximately 1

X . Therefore, His(a)
is smaller than the full frequency pattern fp(a).

Theorem 6.1 and the above analysis hold that the
frequently-accessed logical address is secure compared to
the infrequently-accessed address. Fortunately, in reality,
most of the attacks show that even if the full frequency
pattern is given, only the frequently-accessed address is
vulnerable, and the infrequently-accessed addresses are rel-
atively strong [41]. Therefore, the leakage of the FP/BP-
ORAM is practically acceptable in DSE applications.
Theorem 6.2: LL-ORAM is an immediate-update ORAM.
Proof: Consider a data block a′ in a position LL-tree. If this
block has been matched by the user’s token, the block will
be mapped into a new leaf ′-to-root path, where leaf ′ is a
randomly-generated leaf identifier. Therefore, the probabil-
ity of the block staying still is small, and |StopHis(a′)| <<
|fp′(a′)|, i.e., the immediate-update ORAM.
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6.3 Discussions

Where is the next accessing node for the same address? For
ease of understanding, let us consider only one position LL-
tree Ti. If a set of x-to-root nodes have been retrieved back
from Ti, this means that a node key, which is for the address
(ai, bi), has been used. The user randomly allocates a new
leaf identifier x′ for this block (ai, bi). The next accessing
node for (ai, bi) will be put into the y-to-root path, where y
is the first overlapped node of the x-to-root path and the x′-
to-root path. Since the whole x-to-root path has been rebuilt,
x′ is still hidden from the cloud, and only x is revealed.

Is the next accessing leaf disclosed? After the eviction,
the next accessing leaf value x′ is stored in Ti and Ti−1. In
Ti, x′ is stored in the tail part of one LL-tree node, which is
encrypted by the RCPA-secure algorithm. Thus, it is secure
enough. In Ti−1, x′ is stored in an EMap that is encrypted by
a one-time value. No efficient adversary can break the EMap
without the one-time value. Therefore, x′ is still hidden now.

Note that the next physical access address for the same
logical address is always hidden from the cloud after any
query, even if the logical address’s shuffle history has been
revealed. This feature helps LL-ORAM achieve the claimed
forward privacy and backward privacy.

6.4 LL-ORAM Security

Theorem 6.2: Assume the probability of the root stash ex-
ceeding S is negligible. Assuming F and G are pseudoran-
dom functions, and there exists an RCPA-secure algorithm,
then 1) LL-FP-ORAM is level-1 forward-private (FP-I), 2)
LL-BP-ORAM is level-1 backward-private (BP-I), and 3) LL-
OB-ORAM is perfectly secure.
Proof: From the above analysis, it holds that all the security
components are secure enough. Let us analyze the following
two protocols.

Consider the protocol ObAccess(.). Since the algorithm
Compute(.) is handled by the client, no shuffle history is
revealed. The cloud observes only an array of randomly-
chosen leaf identifiers. Thus, LL-OB-ORAM is perfectly
secure with only the leakage of the ORAM size and the
number of ORAM accesses.

Consider the protocol Access(.). The only security con-
cern is the algorithm Compute since it is handled by the
cloud now. The computational result reveals the matched
data block’s physical address, which is the last shuffled
address of the desired block, but no more physical addresses
are revealed.

According to Theorem 6.1, the algorithm Access(.)
leaks no full frequency pattern. According to Theorem 6.2,
LL-ORAM is always immediate-update. Because His(a)
cannot be expressed as fp(a), His(a) ⊂ ShuHis(a),
and ObAccess(.) is always data-oblivious, LL-FP-ORAM
is level-1 forward-private, and LL-BP-ORAM is level-1
backward-private. Even if a shuffle-history address for block
a has been revealed, the next physical address for block a
is still hidden from the cloud. Thus, the user can switch
LL-ORAM’s security among forward privacy, backward pri-
vacy, and perfect security at any time.

7 EXPERIMENTAL EVALUATIONS

7.1 Experimental Methodology
The experiments are conducted on a desktop computer run-
ning Windows 10 with one Intel(R) Core(TM) i7-6700 CPU
@ 3.40 GHz processor and 40 GB DDR4 memory. The core
encryption of LL-ORAM consists of only pseudorandom
computations and symmetric encryption. Blake2b acts as
the pseudorandom function, and counting-mode AES acts
as symmetric encryption. All experimental testing cases and
LL-ORAM procedures are entirely implemented in C++.

In the following experiments, for simplicity, the com-
munication time is ignored. Since there is no account-
ing for client-server interactions, the APIs Access(.) and
ObAccess(.) have almost the same computational complex-
ity. We employ a hash table to hold all the tree nodes since
the hash table has the advantage of dynamical memory
allocation. To obtain the real performance of LL-ORAM, we
use only one thread to perform the experiments.

7.2 Root stash size
The experimental results in Table 1 show that the root-stash
size is small. Given an L-height LL-ORAM, we can insert
(2L − 1) real blocks into the ORAM at most. Repeatedly
performing reads/writes, we observe how many times the
roots exceed size S (in chunks). In an L-height ORAM, the
probability of the root-stash size exceeding S is written as
α(S,L, Z), where Z is the number of chunks in each tree
node. After millions of reads and writes with the worst-
case access-pattern sequence {1, 2, · · · , N, 1, 2, · · · , N, · · · },
α(4, 15, 3), α(4, 20, 3), and α(4, 25, 3) are always zero,
which means that no root-stash size is equal to or above 5
in the tests. α(3, 15, 3) is approximately 1.36E−5, α(3, 20, 3)
is approximately 2.11E−6, and α(3, 25, 3) is approximately
2.66E−6. The conclusion implies that one of the recom-
mended settings for the LL-ORAM is S = 4 and Z = 3.

Another recommended setting is (S = 7, Z = 2). Since Z
is directly related to communication bandwidth, we attempt
to reduce Z = 3 to Z = 2. If Z = 2 is adopted, α(7, 10, 2),
α(7, 20, 2), and α(7, 25, 2) are always zero, yet α(6, 155, 2)
equals 4.19E−7 and α(6, 20, 2) is 1.99E−7. We can conclude
that (S = 7, Z = 2) is one of the good choices in reality.
If Z = 1, S should be set to 24 or higher to avoid stash
exceedance in our experiments. However, a large S usually
means poor access efficiency.

TABLE 1: Probability of stash exceeding

α (S,Z) =
(3, 3)

(S,Z) =
(4, 3)

(S,Z) =
(6, 2)

(S,Z) =
(7, 2)

L = 15 1.36E−5 0 4.19E−7 0
L = 20 2.11E−6 0 1.99E−7 0
L = 25 2.66E−6 0 2.52E−7 0

7.3 Block size
The experimental results in Figure 7 demonstrate that 1)
LL-ORAM can be applied to dynamic searchable encryption
without sacrificing much efficiency, and 2) the bulk insertion
efficiency of LL-ORAM can be very high if B ∈ [64L, 64L2]
is adopted. Assume each data block has r records, and each
record is a 64-bit integer to hold a value, an SE file identifier.
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Figure 7 shows the relationship between insertion speed
(the number of insertion identifiers per second) and block
size (in records), where L = 25 denotes an ORAM whose
capacity is 225, and so on. If r = 16, the insertion speed is
not high. If r ≈ L2, the batch insertion speed reaches the
maximum value. For example, if L = 20 and r = 512, a 20-
height LL-ORAM can insert 3.5E4 file identifiers per second
in bulk insertion mode, assuming each identifier occupies 64
bits. It is easy to imagine that all data transferred in bulk are
more efficient than sequential order.

However, the larger the block size is, the more blocks
should be encrypted, transferred, and shuffled in each ac-
cess. This implies that a large block (e.g., B = 300 KB when
L = 22) is not suitable for LL-ORAM. Therefore, we choose
r ∈ [L,L2] that means B ∈ [64L, 64L2] bits.
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7.4 Communication Bandwidth

The communication bandwidth of LL-ORAM is the optimal
value O(B logN) bits, only if B = Ω(log2N) bits. As
shown in Figure 5, if Z = 2 and r = 200 are set, and if the
LL-ORAM ideally contains 263 real blocks with 200 records
each, to read or write a record, the user will receive 1.9 MB
data in the worst case; if Z = 3 is adopted, 2.9 MB data
will be transferred back to the user since more blocks are
in each tree node. More practically, if L = 30, which means
there are 230 blocks, the user should download 712-KB data
to obtain one block that contains 200 records if Z = 2 and
r = 200. We note that this result is acceptable on practical
occasions since the user requires making only one request
and receiving only one response.

7.5 Access time

Figure 6 shows that the access time is in milliseconds, even
if the ORAM capacity reaches 260 blocks. Assuming the
memory is sufficient, all the trees exist in the memory. If
we set Z = 2, L = 60, and r = 60, to search one block
over 260 addressing space, it takes only 92 ms. In a smaller
addressing space of L = 16, any access consumes 3.58 ms in
the worst case with r = 16 matched records. The efficiency
comes from the compact design: downloading an RLL and
uploading an RLL. Since RLL encryption consists of only the
Blake2b algorithm and AES that are practically efficient, the
RLLs are easy to construct in milliseconds. Building an RLL
takes only O(log2N) time. Assuming communication time
is not considered, the access time is appropriate O(log2N).

7.6 Compared with OMap

LL-ORAM is still competitive, compared with the state-of-
the-art ORAM, OMap (ODS) in [11], which consists of a
nonrecursive Path ORAM and a balanced AVL tree. The
main defect of OMap is that it suffers from O(logN)-round-
trip client-server interactions all the time.

The experimental data in Figure 8 demonstrate that LL-
ORAM is more efficient than OMap in terms of access time.
In both the experiments, a tree node containing four blocks
with each block 64 bits, and all communication times is
not captured. The efficiency of LL-ORAM comes from the
compact design of the data structures, such as the EMap.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the forward-/backward-private
ORAM definitions and gave LL-ORAM, a new ORAM that
consists of a set of switchable protocols. The ORAM has
the following advantages: 1) a single-round-trip read/write
with forward privacy or backward privacy; 2) near-zero
client storage; 3) low computational overhead; 4) O(log2N)
read/write time complexity; 5) O(BN) cloud-side storage
if B = Ω(log2N) bits with addressing space [0, BN ] in
bits; and 6) O(B logN)-bit communication bandwidth if
B = Ω(log2N) bits.

Future work includes the following: 1) algorithmic im-
provements on FP/BP-ORAMs, 2) the reviews on encrypted
Boolean queries and high dimensional queries with an
FP/BP-ORAM, 3) multiclient ORAMs and oblivious parallel
RAMs, 4) FP/BP-ORAMs in secure hardware and appli-
cations, and 5) the studies on FP/BP-ORAM-based DSE
schemes.
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Doerner, David Evans, and Jonathan Katz. Revisiting square-root
ORAM: efficient random access in multi-party computation. In
2016 IEEE Symposium on Security and Privacy (S&P), pages 218–
234. IEEE, 2016.

[26] Zhiqiang Wu, Kenli Li, Keqin Li, and Jin Wang. Fast boolean
queries with minimized leakage for encrypted databases in cloud
computing. IEEE Access, 7:49418–49431, 2019.

[27] Zhiqiang Wu and Kenli Li. Vbtree: forward secure conjunctive
queries over encrypted data for cloud computing. The VLDB
Journal, 28(1):25–46, 2019.

[28] Seny Kamara and Tarik Moataz. Boolean searchable symmetric
encryption with worst-case sub-linear complexity. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pages 94–124. Springer, 2017.

[29] Zhangjie Fu, Xinle Wu, Chaowen Guan, Xingming Sun, and Kui
Ren. Toward efficient multi-keyword fuzzy search over encrypted
outsourced data with accuracy improvement. IEEE Transactions on
Information Forensics and Security (TIFS), 11(12):2706–2716, 2016.

[30] Jialin Chi, Cheng Hong, Min Zhang, and Zhenfeng Zhang. Fast
multi-dimensional range queries on encrypted cloud databases.
In International Conference on Database Systems for Advanced Appli-
cations, pages 559–575. Springer, 2017.

[31] Rui Li, Alex X. Liu, Ann L. Wang, Bezawada Bruhadeshwar, Rui
Li, Alex X. Liu, Ann L. Wang, and Bezawada Bruhadeshwar. Fast
and scalable range query processing with strong privacy protec-
tion for cloud computing. IEEE/ACM Transactions on Networking
(TON), 24(4):2305–2318, 2016.

[32] Russell WF Lai and Sherman SM Chow. Forward-secure search-
able encryption on labeled bipartite graphs. In International Confer-
ence on Applied Cryptography and Network Security, pages 478–497.
Springer, 2017.
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