
SNOW-Vi: an extreme performance
variant of SNOW-V for low-end CPUs

Patrik Ekdahl1, Thomas Johansson2, Alexander Maximov1 and Jing Yang2

1 Ericsson Research, Lund, Sweden
{patrik.ekdahl,alexander.maximov}@ericsson.com

2 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{thomas.johansson,jing.yang}@eit.lth.se

Abstract. In this paper we propose a faster variant of SNOW-V, called SNOW-Vi,
that can perform fast enough not only in cloud settings but also on low grade CPUs.
The increase in software performance is around 50% in average, up to 92 Gbps.
This makes the applicability of the cipher much wider and it covers more use cases.
SNOW-Vi differs in the way how the LFSR is updated and also introduces a new
location of the tap T 2 for a stronger security, while everything else is kept the same
as in SNOW-V. The security analyses previously done for SNOW-V are not affected
in most aspects, and SNOW-Vi provides the same 256-bit security level as SNOW-V.
Keywords: SNOW · Stream Cipher · 5G Mobile System Security.

1 Introduction and motivation
SNOW-V [EJMY19] is the most recent member of the SNOW family of stream ciphers
with the design goal to be fast in virtualised environments. However, on low grade CPUs
with limited instruction sets, SNOW-V may not perform as good. For example, there
might be the use case where the 5G encryption layer is not virtualised, but processed in
software on the base station, where typically there is a mixture of dedicated hardware and
general CPU resources. These CPUs are normally not server grade but lower grade CPUs
that are more suitable for embedding in a base station. By running the encryption layer
in software we are then forced to perform fast air encryption on low grade CPUs as well.
This possible use case was only partially covered by the SNOW-V design goals, and in this
work we found a way how to speed up SNOW-V and thus to extend its usage.

Here we propose SNOW-Vi1 – an extreme performance variant of SNOW-V, that
reaches much higher speeds on a wider variety of platforms, including lower grade CPUs.
The basis for SNOW-Vi is not only cloud hosting CPUs with SIMD registers of 256 bit
or wider, but covering platforms with only 128 bit registers much better. With this new
variant we can tackle the speed requirements also in lower grade CPUs.

The encryption speed of SNOW-Vi is around 50% faster than that of SNOW-V, in
average, while the security stands on the same level. And the minimum requirement for
the CPU is that it supports the AES round function as an instruction, and at least 128 bit
SIMD registers.

This paper is organised as follows. Firstly we present the new design of SNOW-Vi.
Secondly, we evaluate the security of SNOW-Vi by revisiting all known analyses for SNOW-
V and applying it to this new design, making sure it still fulfils the security goals. Finally,
we perform an extensive software evaluation.

1“Vi” stands for “Virtualisation, improved”.

mailto:{patrik.ekdahl, alexander.maximov}@ericsson.com
mailto:{thomas.johansson, jing.yang}@eit.lth.se


2 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

2 The design
The design of SNOW-Vi, in the parts of keystream generation and initialisation procedure,
is exactly the same as in SNOW-V, with the only difference in the LFSR update function
and the tap T2 moved to the higher half of LFSR-A – these changes dramatically improve
the speed in software implementations, and strengthen the security of the cipher. We refer
to the original paper of SNOW-V [EJMY19] for all other details of the design. The new
LFSR is depicted in Figure 1 and updates as follows:

a(t+16) = b(t) + αa(t) + a(t+7) mod gA(α),
b(t+16) = a(t) + βb(t) + b(t+8) mod gB(β),

where the two fields FA2 and FB2 have the generating polynomials:

gA(x) = x16 + x14 + x11 + x9 + x6 + x5 + x3 + x2 + 1 ∈ F2[x] (0x4a6d),
gB(x) = x16 + x15 + x14 + x11 + x10 + x7 + x2 + x+ 1 ∈ F2[x] (0xcc87).

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

Figure 1: LFSR construction in SNOW-Vi.

3 Security analysis
In this section we perform a step-by-step security re-evaluation of SNOW-Vi based on
previously known analyses of SNOW-V, given in [EJMY19, CDM20, JLH20].

3.1 The new tap position of T 2
While we propose a simplified update functions in the LFSR for a better performance, we
also have to ensure the security of the new proposal. By moving the tap T2 to the higher
half of the LFSR-A we believe the security of SNOW-Vi is strengthened. Below we give
more details on motivations for this particular design choice.

From linear analysis perspectives. Let us assume the content of the LFSR is
(A1|A0) and (B1|B0), four 128-bit words. Recall the expressions on three consecutive
keystream words z(t−1), z(t), and z(t+1):

z(t−1) = (S−1(L−1 · R̂2) �32 T1(t−1))⊕ S−1(L−1 · R̂3),
z(t) = (R̂1 �32 T1(t))⊕ R̂2,

z(t+1) = (σ(R̂2 �32 (R̂3⊕ T2(t))) �32 T1(t+1))⊕ L · S(R̂1).



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 3

Any choice of the LFSR update function, for that particular circular-LFSR construction,
would result in the following linear relations:

B1(t+1) = A0(t) ⊕ fβ(B0(t), B1(t)),
A1(t+1) = B0(t) ⊕ fα(A0(t), A1(t)),
B0(t+1) = B1(t),

A0(t+1) = A1(t),

where fα and fβ are two linear functions that correspond to the LFSR update procedure.
These expressions are generic for both SNOW-V and SNOW-Vi.

In SNOW-V, the taps are T1 = B1 and T2 = A0, which implies that in 3 consecutive
keystream expressions the contribution from the LFSR involves 3 out of 4 128-bit words:

T1(t) = B1(t),

T1(t−1) = B1(t−1) = B0(t),

T2(t) = A0(t),

T1(t+1) = B1(t+1) = A0(t) ⊕ fβ(B0(t), B1(t)).

Note that those 3 LFSR words appear in the 3 keystream expressions twice, thus there
is a chance for a biased noise expression by considering three consecutive 128-bit keystream
words.

We, however, believe that there is no immediate security threat for SNOW-V as it
is most likely that up to 48 SBoxes and arithmetical additions will be involved in a
hypothetical noise expression. The bias there is expected to be very small (e.g., only
SBoxes would already give the bias ε(48 × [x ⊕ S(x)]) ≈ 2−286.4), and not enough for
mounting a linear attack on SNOW-V.

On the other hand, we have noticed that if we take the pair of taps (T1, T2) from
either (A0, B0) or (A1, B1), then 3 consecutive keystream expressions would involve all
four 128-bit words of the LFSR, and, moreover, at least 256 bits of them (A1(t) and
A0(t)) will appear in the keystream expressions only once. E.g., the taps in SNOW-Vi
are T1 = B1 and T2 = A1, which implies: T1(t) = B1(t), T1(t−1) = B0(t), T2(t) = A1(t),
T1(t+1) = A0(t) ⊕ fβ(B0(t), B1(t)).

This means that in SNOW-Vi one has to collect at least 512 bits of the keystream in
order to have there some nonzero bias. That bias is expected to be even smaller than that
in SNOW-V since it would involve even more SBoxes and arithmetical additions.

From initialisation analysis perspectives. Now when we discovered that a new
tap position would suggest a strengthened security from the linear analysis arguments,
we then started to look on what would be the most promising combination, by trying all
possible variants and performing a brief MDM test for each of them.

Table 1: Number of nonrandom initialisation rounds (out of 16). MDM test with cube
size=3. The mixing effect is better for smaller values.

Taps #non-random
T1 T2 rounds
A1 B1 5.69-6.21
B1 A1 5.43-5.75
A0 B0 6.25-7.24
B0 A0 9.16-10.8

In Table 1, for each variant of tap positions, we have received the range of non-random
initialisation rounds (the range also depends on the key/iv-loading scheme). The smaller



4 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

the values the better the mixing effect. A good mixing effect also contributes to a better
mixing during the keystream generation phase. The obvious choice was to pick the variant
(B1, A1) for SNOW-Vi, while keeping key/iv-loading scheme unchanged.

From implementation perspectives. In addition to other implementation tricks,
the new tap position T2 = A1 makes it possible to first update the LFSR once, then
update the FSM twice, since then the two consecutive values of T1 and T2 become directly
available in the content of the LFSR.

3.2 Properties of the LFSR
The new LFSR has a maximum cycle length of 2512 − 1, that can be verified by the same
methods as in [EJMY19, CDM20]. The characteristic polynomial is primitive and has 209
terms: m(x) =

∑|T |
i=1 x

Ti , where:

T = [512, 496, 488, 480, 472, 462, 455, 448, 444, 439, 438, 437, 430, 426, 422, 421, 420, 419, 414,
412, 408, 404, 403, 402, 401, 399, 398, 394, 392, 390, 387, 386, 385, 384, 382, 381, 380, 373,
371, 369, 367, 366, 359, 358, 353, 351, 350, 349, 347, 346, 341, 340, 339, 336, 335, 334, 333,
329, 319, 318, 317, 316, 314, 313, 312, 311, 310, 309, 305, 304, 303, 302, 301, 300, 298, 297,
296, 295, 291, 290, 289, 287, 281, 280, 278, 277, 276, 275, 273, 272, 270, 267, 266, 263, 262,
261, 258, 257, 254, 252, 246, 245, 243, 235, 233, 231, 229, 228, 226, 225, 224, 223, 222, 221,
220, 219, 218, 216, 215, 214, 212, 211, 210, 207, 201, 199, 198, 197, 196, 195, 194, 192, 191,
190, 189, 185, 184, 181, 179, 175, 173, 170, 169, 168, 166, 160, 158, 156, 155, 152, 147, 146,
145, 143, 140, 137, 136, 134, 133, 132, 131, 128, 127, 125, 116, 111, 109, 108, 105, 103, 101,
100, 99, 98, 95, 94, 90, 86, 84, 82, 80, 79, 75, 74, 73, 70, 69, 68, 67, 57, 55, 52, 51, 50, 49, 48,
45, 43, 42, 36, 32, 23, 22, 21, 16, 14, 8, 7, 0].

Field polynomials both have weight 8 (excluding x16), so that if a reduction happens
then exactly half of the 16 bits will be flipped. Additionally, the base fields were selected
such that they have exactly 4 coinciding bits, 4 bits where flip not happening, and two
4-bit sets where only one of the two fields flip the bits.

3.3 Linear attacks
Assume that α and β are 16× 16 binary matrices that represent multiplication in corre-
sponding fields, then:

βa(t+16) = βb(t) + βαa(t) + βa(t+7),

a(t+24) = b(t+8) + αa(t+8) + a(t+15),

a(t+32) = b(t+16)︸ ︷︷ ︸
=a(t)

+αa(t+16) + a(t+23),

from where we derive the recurrence for a-terms in SNOW-Vi as:

0 = (x16 + x8 + β)(x16 + x7 + α) + 1
= x32 + x24 + x23 + (α+ β)x16 + x15 + αx8 + βx7 + (1 + βα),

to be compared with the feedback recurrence in SNOW-V:

0 = (x16 + α−1x8 + x1 + α)(x16 + β−1x8 + x3 + β) + 1.

I.e., in SNOW-Vi we have 8-weight recurrence and in SNOW-V it is 12-weight recurrence.



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 5

For standard linear distinguishing and correlation attacks one has to find a multiple of
the above recurrence of weight 3 or 4. Thus, we believe that 8 is also good enough to be
resistant against linear cryptanalysis. Since the FSM is not changed, the complexity of a
linear distinguishing attack remains around O(2645) for a 3-weight multiple, see [EJMY19]
for details.

3.4 Attacks on the initialisation
As done for SNOW-V, we use maximum degree monomial (MDM) test and cube attack
based on division property to check if the Key and IV bits are fully mixed after the
initialisation.

3.4.1 MDM tests

In a MDM test, each output keystream bit is regarded as a random Boolean function of
the Key and IV bits, and the MDM coefficient in the algebraic normal form (ANF) of the
Boolean function should follow a random uniform distribution between {0, 1}. However, in
the initial few rounds of the initialisation, the mixing effect is not enough and the MDMs
of the corresponding Boolean functions are much more likely to be zero than one, thus
resulting into a zero sequence before they become random-like. The MDM test checks
how long this zero sequence persists throughout the full initialisation rounds. As done for
SNOW-V, we start with a relatively small size of cube set under which the randomness
result deviates the most from the expected value (i.e., the longest zero sequence) and
gradually increase to a 24-bit set. For SNOW-V, we start with the worst 3-bit cube set,
while for SNOW-Vi, we try to be stricter and start with the worse 4-bit cube.

5 10 15 20 25
bit set sizes

4.0

4.5

5.0

5.5

6.0

6.5

7.0

No
n-

ra
nd

om
 in

iti
al

iza
tio

n 
ro

un
ds

 (o
ut

 o
f 1

6)

(4, 6.062)

(24, 5.453)

(3, 6.289)

(24, 5.477)

SNOW-Vi
SNOW-V

Figure 2: The number of rounds failing the MDM test.

Figure 2 shows the numbers of rounds failing the MDM test under different cube sizes
compared to SNOW-V. From the result, one can directly see that the randomness of the
initialisation output of SNOW-Vi is better than SNOW-V. Specifically, the randomness
under the worst cube of size four in SNOW-Vi is even better than that for SNOW-V of the
worst cube of size three. The difference might be larger if the worst cube set of a certain
larger size is explored instead of greedily adding the worst one bit to the existing subset.
However, this is computationally demanding. Next, we use a more fine-grained way using
division property to check the initialisation.



6 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

3.4.2 Cube attacks based on division property

Cube attacks based on division property evaluate the set of involved key bits J in the
superpoly given a certain cube I, and recover the superpoly if feasible. The propagation
rules of division property for different operations in a cipher can be modelled by some
(in)equalities of a MILP(Mixed Integer Linear Programming) problem. By solving the
MILP problem using some optimisation tools, one can get the involved key bits and the
upper bound of the algebraic degree d of the superpoly; the larger |J | and d are, the
better the mixing effect is. The time complexity for recovering the superpoly is given by
2|I| ×

(|J|
≤d
)
.

Table 2: Cube attacks on reduced-rounds of SNOW-Vi (|I|, d, |J |, and C denote the cube
size, the degree, the number of involved key bits, and attacking complexity, respectively).

Rounds 3 4 ≥ 5
Ciphers SNOW-Vi SNOW-V SNOW-Vi SNOW-V SNOW-Vi SNOW-V
|I| 4 15 128 40 128 128
d 28 17 242 145 256 256
|J | 100 131 256 256 256 256
C 286.7 284.9 > 2256 > 2256 > 2256 > 2256

The MILP model of SNOW-Vi is generally similar with that for SNOW-V, given in
Algorithm 5 in [EJMY19]; while only the modelling for the update of the LFSR should
be modified. We tried different cubes and tested the involved key bits and the maximum
degrees of the corresponding superpolies under different rounds. The results are presented
in Table 2 and one can see that the mixing effect of SNOW-Vi is better than SNOW-V.
Specifically, after four rounds, for a cube size 40 in SNOW-V, all key bits are involved and
the maximum degree is 145. When the cube size goes larger, the number of involved key
bits and degree would both reduce. However, in SNOW-Vi, for the cube of all IV bits, all
key bits are involved, and the maximum degree is 242. This can be expected since when
T2 is moved to the higher part of LFSR-A, the new update results of IV and key bits are
immediately fed to the FSM, making the mixing faster. After five rounds, all key bits and
IV bits are fully mixed just like SNOW-V. The results match well with the results from
the MDM test.

3.5 Algebraic attacks
In algebraic attacks one expresses the cipher output as algebraic equations over the
unknown key (or state) bits, and try to solve the resulting system of nonlinear equations.
The only source of non-linearity during a normal cipher update iteration of SNOW-Vi
is the FSM, and that is unchanged from SNOW-V. In the algebraic attack analysis of
SNOW-V in [CDM20], the authors make use of the fact that the tap values T1(t) and T2(t)

are linear combinations of the first values T1(−1), T1(0), T2(−1), T2(0) and each iteration
of the cipher can be written as

T1(t+1) = Linβ(T1(t−1), T1(t), T2(t−1), T2(t)),
T2(t+1) = Linα(T1(t−1), T1(t), T2(t−1), T2(t)),
R1(t+1) = σ(R2(t) �32 (R3(t) ⊕ T2(t)),
R2(t+1) = AESr(R1(t)),
R3(t+1) = AESr(R2(t)),
z(t+1) = (R1(t) �32 T1(t))⊕R2(t).



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 7

We can see that these equations are still valid in SNOW-Vi. Following the arguments
in [CDM20] we note that the linear parts of the cipher can be “effectively disregarded when
determining the number of nonlinear equations and the number of associated variables”.
Hence the proposed change in linear update functions for T1 and T2 does not affect the
complexity of mounting an algebraic attack using quadratic (or higher degree) equations.
The conclusion is that both linearisation methods and Gröbner basis algorithms remain
unfeasible for algebraic attacks on SNOW-Vi.

3.6 Guess-and-determine attacks
In guess-and-determine attacks one guesses part of the state and from the keystream
equations one determines other parts of the state. One guesses as few bits as possible and
then determines as many as possible through given equations. For the case of SNOW-Vi
the situation is very similar to SNOW-V. The equation z(t) = (R1(t) �32 T1(t))⊕R2(t)
involves three unknowns, each of size 128 bits. In order to determine state bits, one then
has to guess 256 bits. Looking at the equation for the next output block, it requires
guessing another 128 bits. This illustrates that a guess-and-determine attack on SNOW-Vi
is still of large complexity.

A straightforward guess-and-determine attack is given in [CDM20], which requires
guessing 512 bits within three consecutive keystream output words to recover the full 896
state bits. The attack there applies to SNOW-Vi exactly the same. Thus we could first get
an upper bound on the complexity of the guess-and-determine attack against SNOW-Vi,
which is 2512.

In January 2020, Jiao et al in [JLH20] gave a byte-based guess-and-detemine attack
against SNOW-V with complexity 2406 within seven keystream blocks. In their attack,
the registers in LFSR and FSM are split into bytes and the update operations are
correspondingly transformed with some carriers introduced. The attack first presets an
initial guessing set and run some algorithm to explore guessing paths and thus driving a
guessing basis. This process is repeated several times to remove possible redundant bytes.
Though the details of the guess-and-determine attacks against SNOW-V and SNOW-Vi
under their attack would be different, the general guessing route could be the same.

The final initial guessing set used in [JLH20] has 24 byte variables, and these variables
are all from the FSM registers or the higher halves of the LFSR registers, while the
variables which are tapped are not used. Thus we could use the same initial guessing set
and have similar guessing path. During the guessing process, 12 more bytes from the FSM
registers and 13 more bytes from LFSR are guessed. Since there are three taps for LFSR-A
and LFSR-B in SNOW-V while two in SNOW-Vi, we make the worst assumption that
when 13 bytes are required for guessing in SNOW-V, only around eight bytes are needed in
SNOW-Vi. In this case, there are still 24 + 12 + 8 = 44 bytes, which are 352 bits. Besides
this, some carriers must be guessed. Thus the complexity of the guess-and-determine
attack against SNOW-Vi is larger than 2352. We can make an even worse assumption that
the guessed variables in LFSR can be freely derived, resulting in guessing 24 + 12 = 36
bytes, i.e., 288 bits, for which the complexity is still larger than 2288.

3.7 Other analyses
From studying [CDM20], we note that most of the results received for SNOW-V are not
affected by the new LFSR: the transfer of key entropy (Section 2.1), the injectiveness of
initialisation (Section 2.4), time-memory-data trade-off attacks (Section 6), related Key-IV
attacks (Section 7), side-channel attacks (Section 8), AEAD mode (Section 9). In fact,
even derivations in Section 3.1 on correlation attacks remain true for SNOW-Vi, while in
this paper we reconsider some other aspects of linear analysis.



8 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

Hardware evaluations. We expect minor changes in hardware compared to SNOW-V
(see, e.g., [CBB20]). Our assessment is that the performance results should not be affected
at all, since the critical path is actually in the FSM that is unchanged. The area size
and the energy consumption in SNOW-Vi should be slightly better (i.e., lower) than in
SNOW-V, since the new LFSR has a reduced number of gates for its feedback update
function, and therefore also consumes less power.

4 Software evaluation
Performance of SNOW-Vi heavily depends on the ability to reduce the number of instruc-
tions, as well as careful consideration of hardware peculiarities, such as CPU interleaving
capabilities, use of registers, instructions latency and throughput characteristics. In
this section we analyse SNOW-Vi from the software point of view, consider different
implementation techniques and various target platforms.

4.1 Implementations and notations

Algorithms. We have done a number of different implementations in C/C++ of the
two ciphers, SNOW-V and SNOW-Vi, that we can use for relative comparison on various
platforms. We also used OpenSSL tools on test targets to measure the performance of
AES-256-CTR, for comparison purposes.

Registers. In both SNOW-V and SNOW-Vi we have implementations that utilise:
only 128-bits registers (e.g., XMM on Intel platforms), and up to 256-bit registers (e.g.,
YMM). ARM NEON only supports 128-bits registers.

Instruction sets. We have implementation version with different restrictions in
instruction sets. For Intel platforms, we start with the most restricted SSE4.1 set and
then add more capabilities as we try implementations utilising AVX2 and also AVX-512.
For ARM platforms, we only have the NEON instruction set. All implementations and
platforms uses an AES round function instruction. We present C/C++ versions using
Intel intrinsics below, but it’s relatively straight forward to convert to NEON, and our
test code will be shared upon request.

Code generation. In SSE-type of code generation the CPU can only handle instruc-
tions of the form x = x+ y, thus changing the value of one of the input registers to hold
the result. In AVX-type of code generation CPU instructions can have 3 arguments, i.e.
x = y + z, thus preserving the values of the input registers.

Unrolled versions. By design, both SNOW algorithms that we use in the performance
tests would simply have bulk encryption in a loop that process 16 bytes in each step (if
we ignore unaligned bytes). That is the same situation as with AES-256-CTR. These
implementations we call for 1-unrolled versions. However, there might be a performance
gain if each step of such an encryption loop would process 4× 16 bytes, instead, and where
the Key/IV initialisation is also partly or fully unrolled. These versions we call 4-unrolled
implementations.

Notation. We adopt the following notation to indicate a specific case that we were
testing: [Alg/Unroll/Regs-Inst], where: Alg is the algorithm name – {SNOW-V,
SNOW-Vi, AES-256-CTR}; Unroll determines if the implementation is a plain one or
unrolls 4 16-bytes blocks in the encryption loop – {1, 4}; Regs determines the maximum
size of the registers being used – {128, 256, 512}; Inst determines the type of code
generation and the maximum instruction sets being used – {SSE, AVX, AVX2, AVX512,
NEON}. For 128-SSE case we use up to SSE4.1 instructions.

Examples: SNOW-Vi/1/128-SSE, SNOW-V/4/256-AVX512.



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 9

4.2 New test environment
The test environment that we adopted in [EJMY19] was using Windows-specific calls and
thus it was not portable. In order to perform a much wider software evaluation on various
platforms we decided to make a new and more generic test environment where we utilise
the standard C function time(NULL). The granularity of time() is 1 second, so that before
each test we are waiting for the start of a “fresh” second, then in the loop we are waiting
for the start of the next second, while performing a lot of encryptions with a selected
algorithm in a loop and counting the number of encryptions processed. This, of course,
has some impact on the received performance numbers. We, however, tried to balance
it by calling the function time() only after 1024 encryptions. The total count is still
magnitudes higher so this approach should not affect the accuracy of the measurements,
but partly reduces the impact of the system calls of time().

Table 3: New test environment, previous and new benchmarks.
Encryption speed Plaintext length

(Gbps) 16384 4096 1024 256 64
P1(a): Work laptop, Win10, Intel Core i7-8650U @ 4.2GHz / AVX2

Previous benchmarks from [EJMY19]
AES-256-CTR/OpenSSL 1.1.1j 35.06 34.16 30.95 22.67 11.32

SNOW-V (C++) 58.25 54.60 45.28 26.37 9.85
New code in the new test environment

SNOW-V/1/256-AVX2 56.10 52.28 44.05 26.10 9.94
SNOW-Vi/1/256-AVX2 77.04 71.54 57.95 33.01 12.25

In Table 3 we present the previous results from [EJMY19] and the new results under
the new benchmarking system, so that a relative comparison can be made. The new
variant SNOW-Vi reaches the speed of 77 Gbps on that particular platform.

4.3 Impact of unrolling and code generations

Table 4: Impact of unrolling and SSE/AVX instruction encodings with 128-bit code.
Encryption speed Plaintext length

(Gbps) 16384 4096 1024 256 64
P1(b): Work laptop, Win10, Intel Core i7-8650U @ 4.2GHz / AVX2
SNOW-Vi/1/128-SSE 55.16 52.14 43.52 26.11 10.04
SNOW-Vi/4/128-SSE 68.85 65.93 55.42 33.60 13.12
SNOW-Vi/1/128-AVX 62.28 58.82 50.31 30.93 12.12
SNOW-Vi/4/128-AVX 70.33 66.71 56.59 34.36 13.31

In Table 4 we demonstrate the difference between a “usual” and “unrolled” implemen-
tations with basically the same 128-bit friendly code for SNOW-Vi. There we can see a
significant speedup when unrolling loops in SSE-type of code generation.

4.4 Performance results
In Table 5 we provide the reader with more performance benchmarks on a number of other
platforms and for various use cases.



10 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

Table 5: Performance measurements on various platforms.

Encryption speed Plaintext length
(Gbps) 16384 4096 1024 256 64

P1: Work laptop, Win10, Intel Core i7-8650U @ 4.2GHz / AVX2 (speed up +37%)
AES-256-CTR/OpenSSL 1.1.1j 35.06 34.16 30.95 22.67 11.32

SNOW-V/1/256-AVX2 56.10 52.28 44.05 26.10 9.94
SNOW-Vi/1/256-AVX2 77.04 71.54 57.95 33.01 12.25

P2: Home laptop, Win10, Intel Core i7-1065 G7 @ 3.9GHz / AVX512 (+58%)
AES-256-CTR/OpenSSL 3.0.0 68.09 66.07 57.85 38.73 16.42

SNOW-V/4/256-AVX512 58.52 55.57 45.92 27.16 10.33
SNOW-Vi/1/256-AVX512 92.34 85.97 69.16 38.60 14.12

P3: Work Station, Ubuntu, AMD Ryzen 5 3600 @ 4.2GHz / AVX2 (+44%)
AES-256-CTR/OpenSSL 1.1.1f 68.84 67.03 58.35 33.69 18.89

SNOW-V/1/256-AVX2 55.16 51.77 42.45 24.05 8.81
SNOW-Vi/4/128-AVX 79.79 75.77 64.65 40.88 16.56

P4: Remote VM, Ubuntu, Intel Xeon E3-12xx / AVX (+45%)
AES-256-CTR/OpenSSL 1.1.1 21.57 20.93 19.89 15.81 7.84

SNOW-V/1/128-SSE 22.01 20.87 17.84 11.13 4.37
SNOW-V/4/128-AVX 30.20 28.69 23.71 14.28 5.50
SNOW-Vi/1/128-SSE 33.55 31.57 25.85 16.06 6.18
SNOW-Vi/4/128-AVX 43.75 41.91 35.63 22.25 8.86

P5: Intel NUC7JY, Ubuntu, Intel Pentium Silver J5005 @ 2.8GHz / SSE4.2 (+59%)
AES-256-CTR/OpenSSL 1.1.1 22.46 21.81 20.12 15.08 7.29

SNOW-V/1/128-SSE 13.56 12.92 10.91 7.14 2.94
SNOW-V/4/128-SSE 16.24 15.23 12.60 7.41 2.82
SNOW-Vi/1/128-SSE 19.06 18.15 15.49 10.57 4.35
SNOW-Vi/4/128-SSE 25.90 24.60 21.05 13.43 5.54

P6: Older laptop, Win7, Intel i7-3540M @ 3GHz / AVX (+40%)
AES-256-CTR/OpenSSL 1.1.1i 26.33 25.62 23.25 16.77 7.41

SNOW-V/4/128-SSE 33.96 32.01 26.44 15.33 5.73
SNOW-V/4/128-AVX 38.52 36.57 30.30 17.96 6.79
SNOW-Vi/4/128-SSE 51.54 48.96 41.19 25.18 9.87
SNOW-Vi/4/128-AVX 53.96 51.14 43.08 26.19 10.18

P7: Mobile phone, iPhone X, ARM-based A11 Bionic @ 2.39GHz / NEON (+58%)
AES-256-CTR/OpenSSL 1.1.1i 19.74 19.53 17.86 13.74 8.94

SNOW-V/1/128-NEON 22.25 21.39 18.51 11.72 4.80
SNOW-V/4/128-NEON 24.46 23.54 19.85 12.47 5.19
SNOW-Vi/1/128-NEON 35.42 34.07 29.79 19.18 8.11
SNOW-Vi/4/128-NEON 38.70 37.42 32.69 21.66 10.12

P8: Apple Mini, macOS, ARM-based Apple M1 @ 3.2GHz / NEON (+64%)
AES-256-CTR/OpenSSL 1.1.1i 58.61 57.44 55.13 45.73 24.97

SNOW-V/1/128-NEON 32.48 30.97 26.47 16.74 6.80
SNOW-V/4/128-NEON 39.06 37.31 31.68 19.78 7.95
SNOW-Vi/1/128-NEON 50.47 48.15 41.21 26.09 10.84
SNOW-Vi/4/128-NEON 64.16 61.10 51.39 31.46 12.78

4.5 Reference implementation
A 128-SSE friendly C/C++ code of SNOW-Vi is given in Listing 1. It is not opti-
mised for performance benchmarking but rather it serves as an “easy-to-read” reference
implementation.



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 11

# define XOR(a, b) _mm_xor_si128 (a, b)
# define AND(a, b) _mm_and_si128 (a, b)
# define ADD(a, b) _mm_add_epi32 (a, b)
# define SET(v) _mm_set1_epi16 (( short )v)
# define SLL(a) _mm_slli_epi16 (a, 1)
# define SRA(a) _mm_srai_epi16 (a, 15)
# define TAP7(Hi , Lo) _mm_alignr_epi8 (Hi , Lo , 7 * 2)
# define SIGMA (a) _mm_shuffle_epi8 (a, _mm_set_epi64x (\

0 x0f0b07030e0a0602ULL , 0 x0d0905010c080400ULL ));
# define AESR(a, k) _mm_aesenc_si128 (a, k)
# define ZERO () _mm_setzero_si128 ()
# define LOAD(src) _mm_loadu_si128 (( const __m128i *)(src))
# define STORE (dst , x) _mm_storeu_si128 (( __m128i *)(dst), x)

struct SnowVi
{

__m128i A0 , A1 , B0 , B1; // LFSR
__m128i R1 , R2 , R3; // FSM

inline __m128i keystream (void)
{

// Taps
__m128i T1 = B1 , T2 = A1;

// LFSR -A/B
A1 = XOR(XOR(XOR(TAP7(A1 ,A0),B0),SLL(A0)),AND(SET (0 x4a6d ),SRA(A0)));
B1 = XOR(XOR(SLL(B0),A0),XOR(B1 ,AND(SET (0 xcc87 ),SRA(B0))));
A0 = T2;
B0 = T1;

// Keystream word
__m128i z = XOR(R2 , ADD(R1 , T1));

// FSM Update
T2 = ADD(XOR(T2 , R3), R2);
R3 = AESR(R2 , ZERO ());
R2 = AESR(R1 , ZERO ());
R1 = SIGMA (T2);

return z;
}

template <int aead_mode = 0> inline void keyiv_setup (
const unsigned char * key , const unsigned char * iv)

{
B0 = R1 = R2 = R3 = ZERO ();
A0 = LOAD(iv);
A1 = LOAD(key);
B1 = LOAD(key + 16);

if ( aead_mode )
B0 = LOAD(" AlexEkd JingThom ");

for (int i = 0; i < 15; ++i)
A1 = XOR(A1 , keystream ());

R1 = XOR(R1 , LOAD(key));
A1 = XOR(A1 , keystream ());
R1 = XOR(R1 , LOAD(key + 16));

}
};

Listing 1: Reference implementation of SNOW-Vi



12 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

4.6 Further optimisations
An even faster implementation can employ other tricks, such as the call of the AES round
function with T2 as the round key, thus XORing T2 with R3 “for free”. One can also
optimise the order of instructions for a better performance on a selected platform, see
Listing 2 as an example of such efforts for SSE-type of code generation.

# define SnowVi_MMX_ROUND (mode , offset )\
T1 = B1 , T2 = A1 ;\
A1 = XOR(XOR(XOR(TAP7(A1 ,A0),B0),AND(SRA(A0),SET (0 x4a6d ))),SLL(A0));\
B1 = XOR(XOR(B1 ,AND(SRA(B0),SET (0 xcc87 ))),XOR(A0 ,SLL(B0)));\
A0 = T2; B0 = T1 ;\
if (mode == 0) A1 = XOR(A1 , XOR(ADD(T1 , R1), R2));\
else STORE (out + offset , XOR(ADD(T1 , R1), XOR(LOAD(in + offset ), R2)));\
T2 = ADD(R2 , R3);\
R3 = AESR(R2 , A1);\
R2 = AESR(R1 , ZERO ());\
R1 = SIGMA (T2);

// Note: in this implementation the length must be 16- bytes aligned
inline void SnowVi_encdec (int length , u8 * out , u8 * in , u8 * key , u8 * iv)
{

__m128i A0 , A1 , B0 , B1 , R1 , R2 , R3 , T1 , T2;

// Key/IV loading
B0 = R1 = R2 = ZERO ();
A0 = LOAD(iv);
R3 = A1 = LOAD(key);
B1 = LOAD(key + 16);

// Initialisation
for (int i = -14; i < 2; ++i)
{ SnowVi_MMX_ROUND (0, 0);

if (i < 0) continue ;
R1 = XOR(R1 , LOAD(key + i * 16));

}

// Bulk encryption
for (int i = 0; i <= length - 16; i += 16)
{ SnowVi_MMX_ROUND (1, i);
}

}

Listing 2: A more efficient implementation of SNOW-Vi

A better optimisation may be achieved on the assembly level. At our best try, a single
encryption/decryption of a 16-byte block data may be done with as low as 15 assembly
instructions by utilising 12 XMM/YMM registers and up to AVX512 instruction sets. In
the initialisation loop the main code can be shrunk down to 13 assembly instructions, see
Listing 3; however, there we omit 2-3 extra instructions that are usually also needed to
organise the loop itself.
; Input State :
; Note: for a 256 - bit register the pair of two 128 - bit values are (Hi|Lo)
;ymm1 = hi = (B [128..255] | A [128..255])
;ymm2 = lo = (B [0..127] | A [0..127])
;xmm7 = R1
;xmm8 = R2
;xmm9 = R3 xor A [128..255]
;
; Constants & Derivatives :
;ymm5 = (A [0..127] | B [0..127]) = _mm256_permute4x64_epi64 (lo , 0x4e)
;ymm4 = _mm256_set_epi64x (0 xcc87cc87cc87cc87ULL , 0 xcc87cc87cc87cc87ULL ,



Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 13

; 0 x4a6d4a6d4a6d4a6dULL , 0 x4a6d4a6d4a6d4a6dULL );
; xmm10 = _mm_setzero_si128 ()
; xmm11 = _mm_set_epi64x (0 x0f0b07030e0a0602ULL , 0 x0d0905010c080400ULL )
;load the mask register k1 with 0 x0000ffff and keep it all the way , e.g.:
; mov eax , 65535
; kmovd k1 , eax
;
; Encryption / Decryption Loop for one 16- byte block :
1. vmovdqu ymm3 , ymm1 ; save new lo = hi
2. vpsraw ymm6 , ymm2 , 15 ; arithmetical shift to the right by 15
3. vpternlogd ymm6 , ymm4 , ymm5 , 106 ; ymm6 = (ymm6 & ymm4) ^ ymm5
4. vpalignr ymm1 {k1}, ymm1 , ymm2 , 14; upper half of ymm1 is preserved
5. vpsllw ymm2 , ymm2 , 1 ; logical shift to the left by 1
6. vpternlogd ymm1 , ymm2 , ymm6 , 150 ; ymm1 = ymm1 ^ ymm2 ^ ymm6
7. vmovdqu xmm2 , XMMWORD PTR[r8+rdx]; load xmm2 <= [in + i * 16]
8. vpermq ymm5 , ymm3 , 78 ; swap high/low halves of hi
9. vpaddd xmm12 , xmm7 , xmm5 ; xmm12 = R1 + T1 , zeroize upper half
10. vpternlogd ymm2 , ymm8 , ymm12 , 150; xmm2 = in ^ R2 ^ (R1 + T1)
11. vpaddd xmm12 , xmm8 , xmm9 ; xmm12 = R2 + (R3^T2)
12. vaesenc xmm9 , xmm8 , xmm1 ; R3 ' ^ T2 ' = AESR(R2 , A '[128..255])
13. vaesenc xmm8 , xmm7 , xmm10 ; R2 ' = AESR(R1 , 0)
14. vmovdqu XMMWORD PTR[rdx], xmm2; store [out + i * 16] <= xmm2
15. vpshufb xmm7 , xmm12 , xmm11 ; R1 ' = Sigma ( xmm12 )

; Output State : same registers as inputs , except that the new ymm2 is now
actually ymm3. One solution could be to add vmovdqu ymm2 , ymm3; but a
better way is to call the above code with swapped registers xmm2/ymm2
and xmm3/ymm3. I.e., a 2- unrolled loop would be more efficient .

; Initialisation Loop: remove steps 7 and 14, and in the step 10 change ymm2
to ymm1 (= hi). In the last 2 rounds one should XOR the Key to the
register xmm7 (= R1).

Listing 3: Sketch for an assembly implementation.

Implementation tricks. The presented sketch of an assembly code has just a single
256-bit “swap” instruction vpermq (step 8) and none of vextractf128 for extracting the
taps, thus saving CPU latency since these instructions are costly. There is only one register
copy vmovdqu (step 1), that we believe is the minimum and unavoidable. We use one of
the AES round calls (step 12) with the next clock’s value of the tap T2 as the “round
key”, thus we can skip one XOR instruction (R3 xor T2) during the next clock. We also
efficiently utilise the fact that XMM/YMM registers are shared (step 10 in the initialisation
loop) and we use AVX512’s mask register k1 (step 4) to avoid an extra vpblendd2. The
above code adopts AVX512’s ternary logic vpternlogd (steps 3, 6, 10) that effectively
removes 3 extra instructions if we would do these steps with AVX2 set, instead. We can
avoid the ending register copy (vmovdqu ymm2, ymm3) by implementing 2x-unrolled loops.
The above 15 assembly steps demonstrate all these tricks.

Nevertheless, we would like to note that the smallest number of assembly instructions
does not always mean the fastest speed in reality, due to there are other things to take care
about such as instructions interleaving and stitching techniques. For example, one could
utilise more than 12 register to convey a better instructions stitching and thus achieving a
higher performance.

2One may also try to use SSE-legacy instruction in step 4: palignr xmm1, xmm2, 14 – that would
modify the lower half of ymm1 while preserving it’s upper half, as we actually want here; however, we are
not sure about AVX-SSE switch penalty, and if there is any in case of assembly coding. This can be
studied further.



14 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

5 Conclusions
In this paper we present a slightly modified version of the SNOW-V stream cipher called
SNOW-Vi. The purpose of this change is to better accommodate a fast implementation in
software on lower grade CPUs which only supports 128 bit wide SIMD registers. The only
change made, is a small modification to the linear update functions of the taps T1 and
T2. We thoroughly investigate the security implications of this change and go through
all previously known analyses of SNOW-V, applying the changes to these security results.
The conclusion is that the high security provided by SNOW-V is still intact, and in some
cases even improved. Furthermore, we provide a more detailed software performance,
comparing SNOW-Vi to both SNOW-V and AES-256-CTR on various CPU architectures.
The results show that SNOW-Vi is significantly faster than SNOW-V on all platforms.

References
[CBB20] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Melting SNOW-V: improved

lightweight architectures. Journal of Cryptographic Engineering, 4 December
2020. https://doi.org/10.1007/s13389-020-00251-6.

[CDM20] Carlos Cid, Matthew Dodd, and Sean Murphy. A Security Evalua-
tion of the SNOW-V Stream Cipher. 4 June 2020. Quaternion Secu-
rity Ltd. https://www.3gpp.org/ftp/Inbox/LSs_from_external_bodies/
SAGE/SAGE-20-12LStoSA3onindependentevaluationofSNOWV.zip.

[EJMY19] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. A
new SNOW stream cipher called SNOW-V. IACR Transactions on Symmetric
Cryptology, 2019(3):1–42, Sep. 2019. https://tosc.iacr.org/index.php/
ToSC/article/view/8356.

[JLH20] Lin Jiao, Yongqiang Li, and Yonglin Hao. A Guess-And-Determine Attack On
SNOW-V Stream Cipher. The Computer Journal, 63(12):1789–1812, 03 2020.
https://doi.org/10.1093/comjnl/bxaa003.

https://doi.org/10.1007/s13389-020-00251-6
https://www.3gpp.org/ftp/Inbox/LSs_from_external_bodies/SAGE/SAGE-20-12 LS to SA3 on independent evaluation of SNOW V.zip
https://www.3gpp.org/ftp/Inbox/LSs_from_external_bodies/SAGE/SAGE-20-12 LS to SA3 on independent evaluation of SNOW V.zip
https://tosc.iacr.org/index.php/ToSC/article/view/8356
https://tosc.iacr.org/index.php/ToSC/article/view/8356
https://doi.org/10.1093/comjnl/bxaa003


Patrik Ekdahl, Thomas Johansson, Alexander Maximov and Jing Yang 15

A Test vectors

== SNOW -Vi test vectors #1:
key = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
iv = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Initialisation phase , z =

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5
4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f
7a 5b 5a 5a 79 5b 5a 5a 5a 5a 5a 5a 5b 5a 5a 5a
4d 51 be 6e 19 0a 0a a9 a4 fe fe ae f4 d6 d6 d6
7a 97 fb 47 d2 57 62 46 8a ca df 1e d1 48 4d 3c
8c 97 87 3e 90 00 38 d5 2d f3 46 c3 2f f7 97 0c
10 89 37 a1 02 46 61 0a 67 07 b5 4e 94 1e 0e 3b
94 36 b9 e3 3b 0f 10 9a dc 89 b3 d5 a3 ae f8 2d
ba ea 9f d0 68 b9 a1 1e 43 62 67 f8 7f 4a 05 ac
0c 15 12 c2 38 80 09 46 5a 55 ef f8 89 81 6c 97
75 82 9e c8 a8 73 70 38 cd 5e c5 7e 21 9d 98 16
ed 45 92 3c 43 7a d7 b0 e5 22 61 72 85 47 dc be
e9 38 ac 0b 70 5c b9 85 2a 42 49 ba 0e 87 37 c3
65 28 2c ef ab 7c a9 57 ae f8 d9 4e 29 38 c8 cd

Keystream phase , z =
50 17 19 e1 75 e4 9f b7 41 ba bf 6b a5 de 60 fe
cd a8 b3 4d 7e c4 c6 42 97 55 c1 9d 2f 67 18 71
89 57 d3 26 cb 46 50 2c eb 81 4c cd 6e a5 3a ae
dd 6c 92 fb f3 92 1e 8b d7 31 7b e2 20 15 31 bb
09 3e e8 72 e9 eb 40 34 e9 b7 1a 4a c2 b5 4b d9
f0 0f 5a dc 06 d2 e6 b5 9f b7 5a 01 be f6 13 14
1c 8a b2 02 ee 38 e2 85 0c ca 60 6a b8 75 cd 12
41 03 b3 2f a5 14 5d df 54 e7 a0 7b 0f 3e b7 7a

== SNOW -Vi test vectors #2:
key = ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
iv = ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Initialisation phase , z =

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c
cf 09 cc 09 d6 10 d7 10 cc 36 cd 36 d6 10 d7 10
e5 31 72 b0 e8 91 53 dd 75 b0 3e 31 54 dd d2 91
22 b3 31 da e5 05 d7 91 66 7b 7d fb 3f 84 a3 ff
cd d6 c9 02 9e 24 76 3a 19 82 bc 3c 79 d1 9d 62
e1 a3 fb ac ea 2b 6d 68 a1 a7 51 04 3a 46 0b db
b2 30 52 68 82 4b 88 09 ac 92 d5 7d 00 7e ad 0c
79 74 7c eb 01 95 02 a7 1a 2f f5 07 7c 89 96 ad
a1 06 eb d4 c1 d8 5f 12 61 81 e1 a9 55 1b 3b df
aa 5d ff 5a 66 a3 67 16 f7 dc c2 ec 3f da 64 3d
ad 4d ee 83 27 29 15 0a 3e f3 3c 9e d5 79 d9 79
50 a4 a0 dd 21 a0 1c 40 68 31 e6 2e 9d 38 ef 0d
d3 3c c5 72 1b 4d fa 2f 2c cd c9 1f b1 73 fb f3
e8 d0 e3 f1 14 e3 2a 20 ff 56 df 09 7c ab f8 04
1e 24 ae 32 56 9f 7b 08 82 30 4d 80 37 cb 23 b2

Keystream phase , z =
18 71 53 c0 88 1d 00 e8 bf a0 e2 fa fe 71 5e a3
8d e7 fd 87 a6 76 17 1c a1 5e 47 5b 4d a7 b8 7d
ad 86 fc fd 9e 0f bb be ef 6a f4 5f 39 29 c1 23
9b f3 e5 ef b7 d6 90 e6 9d 60 7d c5 c0 4f f4 77
4c 9f 06 a2 b6 36 3e 52 fc b3 0b 8f d3 9f e7 6e
11 64 a6 bd a4 73 4a 76 ee 5f e9 ff 28 ff c1 39
f9 c6 f1 7d 48 43 0c 18 df 3c f4 5d 23 5e dc b3
f6 d4 d1 0b f6 75 f4 ac c4 fb b0 88 cc 5e c4 90



16 SNOW-Vi: an extreme performance variant of SNOW-V for low-end CPUs

== SNOW -Vi test vectors #3:
key = 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
iv = 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
Initialisation phase , z =

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa
38 ee a4 da 77 24 62 90 a5 ff 09 e3 6c 85 50 29
c3 62 78 ce 97 43 29 97 7e b0 df 7c 2e 5b 9b a2
ea ba cd 10 4a 5f 1d dd 71 58 96 16 11 e9 59 6e
98 e8 c1 c4 30 18 9d f2 97 f0 0d ce 37 a1 69 bc
d9 82 ee 9c db 03 04 cc 23 22 5e d1 8b dc ae ab
30 00 67 12 44 dd 55 52 12 f4 ae 68 a0 da a3 d0
87 48 b7 ac f4 67 00 37 ce 67 a7 42 71 4e e1 18
91 27 9b f8 ca 8e a1 2d 82 6b 6c f7 b7 ef a9 ce
b4 f0 16 c9 9d d9 7a 3e 76 30 71 f0 99 24 01 a7
24 aa b3 0e d4 fc cf e8 41 8a c5 74 8f 53 c4 47
14 7b fa 54 f5 2f ad 01 ab 96 d6 cc da 01 ee 86
23 fd d5 4f 2b 8d d6 0d 6c d0 b3 de da 70 42 e1
0c 73 a0 0f e2 87 78 1f 5c 1b 92 0c 00 16 b8 0c
b1 49 b2 9c df da 0c 95 b9 d3 18 96 91 81 a2 ec
ea ba d3 84 90 c8 cf b6 a1 f5 80 e0 6f d7 74 33

Keystream phase , z =
3a 40 f5 40 f5 47 f0 0f 2d 6f e3 d0 01 c1 40 3a
c7 05 9a 39 19 78 4f ab 41 4b be f7 59 25 e5 23
7e 12 45 4a ea 9e 01 1c e4 46 29 ad f3 f7 a8 bb
7e 26 bd 6c 42 95 ce 62 6a 70 b6 4b 41 48 f7 b3
b4 e2 33 57 5a f9 ba 7a 76 34 a6 bb 22 c7 40 77
3e be eb ed 5a 94 94 d5 3a 2b 95 86 03 0d 68 7d
28 f9 7e c9 83 fd 76 41 3e d6 55 1b df 89 f1 eb
30 c2 4d 1c 61 2d 5a 93 14 d7 64 d8 22 7e 4d bf

Listing 4: Test vectors for SNOW-Vi.


	Introduction and motivation
	The design
	Security analysis
	The new tap position of T2
	Properties of the LFSR
	Linear attacks
	Attacks on the initialisation
	Algebraic attacks
	Guess-and-determine attacks
	Other analyses

	Software evaluation
	Implementations and notations
	New test environment
	Impact of unrolling and code generations
	Performance results
	Reference implementation
	Further optimisations

	Conclusions
	Test vectors

