
SNOW-Vi: An Extreme Performance Variant of SNOW-V for
Lower Grade CPUs

Patrik Ekdahl
Alexander Maximov

patrik.ekdahl@ericsson.com
alexander.maximov@ericsson.com

Ericsson Research
Lund, Sweden

Thomas Johansson
Jing Yang

thomas.johansson@eit.lth.se
jing.yang@eit.lth.se
Lund University
Lund, Sweden

ABSTRACT
SNOW 3G is a stream cipher used as one of the standard algorithms
for data confidentiality and integrity protection over the air inter-
face in the 3G and 4G mobile communication systems. SNOW-V is
a recent new version that was proposed as a candidate for inclu-
sion in the 5G standard. In this paper, we propose a faster variant
of SNOW-V, called SNOW-Vi, that can reach the targeted speeds
for 5G in a software implementation on a larger variety of CPU
architectures. SNOW-Vi differs in the way how the LFSR is updated
and also introduces a new location of the tap 𝑇2 for stronger se-
curity, while everything else is kept the same as in SNOW-V. The
throughput in a software environment is increased by around 50%
in average, up to 92 Gbps. This makes the applicability of the cipher
much wider and more use cases are covered. The security analyses
previously done for SNOW-V are not affected in most aspects, and
SNOW-Vi provides the same 256-bit security level as SNOW-V.

CCS CONCEPTS
• Security and privacy → Block and stream ciphers; Mobile
and wireless security.

KEYWORDS
SNOW, stream cipher, 5G mobile system security
ACM Reference Format:
Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang. 2021.
SNOW-Vi: An Extreme Performance Variant of SNOW-V for Lower Grade
CPUs. In Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’21), June 28–July 2, 2021, Abu Dhabi, United Arab Emirates. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3448300.3467829

1 INTRODUCTION
Symmetric ciphers play an important role in securing the transmit-
ted data in various generations of 3GPP mobile telephony systems.
The stream cipher SNOW 3G is one of the core algorithms for
integrity and confidentiality protection in both UMTS and LTE, to-
gether with AES and ZUC. In the current generation system, called
5G, we see fundamental changes in the system architecture and
new demands in security, which pose several challenges to existing
cryptographic algorithms [2].

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec ’21), June 28–July 2, 2021,
Abu Dhabi, United Arab Emirates, https://doi.org/10.1145/3448300.3467829.

Firstly, the 3GPP standardisation organisation is aiming at in-
creasing the security level to 256-bit key length [1]. Although there
exist academic attacks [3] (attacks faster than exhaustive key search,
but still beyond the practical capability or regulations), this change
is relatively straightforward for AES, as the 256-bit variant has
been known and used for a long time. For ZUC and SNOW 3G,
the situation is somewhat different: neither of the two ciphers was
originally specified for 256-bit key length. There are simple ways
to increase the key length of both ZUC and SNOW 3G (in fact
a 256-bit version of ZUC was announced in 2018), but they also
become susceptible to some academic attacks [11, 12].

Secondly, the changes in the radio and core network in the 5G
system will also introduce some challenges for the cryptographic
algorithms. It is expected that many network nodes in 5G will
become virtualised and thus the ability to use special hardware
(e.g., IP cores) for cryptographic primitives is limited. This might
not be a problem for AES, as many processors from Intel, ARM and
AMD have included special instructions to accelerate AES, and it
will be easy to reach encryption speeds of more than 20 Gbps, which
is the targeted speed of the downlink in 5G. Thus, one can expect
that AES could be kept in 5G. However, for SNOW 3G and ZUC,
such high rates cannot be achieved in a pure software environment.

In response to these challenges, a new member of the SNOW
family of stream ciphers, called SNOW-V [6], was developed, with
the design goal to be fast in virtualised environments and provide
256-bit security. It is proposed for consideration as a candidate
for inclusion in the 5G standard. The algorithm takes advantage
of the AES instructions in the CPU as well as vectorised SIMD
(Single Instruction Multiple Data) instructions, such as the AVX2
(Advanced Vector Extensions 2) set of instructions, and achieves
rates up to 58 Gbps for encryption.

However, SNOW-V may not perform as good on CPUs with
limited vector register widths or instruction sets. For example, there
might be a transitional network deployment scenario where the
5G encryption layer (PDCP) is not yet virtualised, but processed
in software on the base station, where typically there is a mixture
of dedicated hardware and general CPU resources. These CPUs
are normally not server-grade but something more suitable for
embedding in a base station. By running the encryption layer in
software we are then forced to perform fast air encryption on CPUs
with limited vector register widths and simpler SIMD instruction
sets (but enough capability to serve in a base station) as well. This
possible use case was only partially covered by the SNOW-V design
goals, and in this work we present a way to speed up SNOW-V and
thus to extend its usage.

https://doi.org/10.1145/3448300.3467829
https://doi.org/10.1145/3448300.3467829

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang

We propose SNOW-Vi1 – an extreme performance variant of
SNOW-V, that reaches much higher speeds on a wider variety of
platforms. The basis for SNOW-Vi are not only cloud hosting CPUs
with SIMD registers of 256 bits or wider, but also platforms with
only 128-bit registers. With this new variant we can tackle the speed
requirements also in these lower-grade CPUs. The encryption speed
of SNOW-Vi is increased by around 50% than that of SNOW-V, in
average, while the security stands on the same level. The minimum
requirement for the CPU is that it supports the AES round function
as an instruction, and at least 128-bit SIMD registers.

This paper is organised as follows. Firstly, we briefly present
the design of SNOW-V in Section 2 and in Section 3 we show the
modifications and design rationale to form SNOW-Vi. Secondly,
in Section 4 we evaluate the security of SNOW-Vi by revisiting
all known analyses for SNOW-V and applying them to this new
design, making sure that it still fulfils the security goals. Finally,
in Section 5 we perform an extensive software evaluation under
different platforms. We end the paper with a short conclusion in
Section 6.

2 THE SNOW-V STREAM CIPHER
The algorithm SNOW-V follows the design principles of the SNOW-
family. It consists of two parts – the LFSR (Linear Feedback Shift
Register) and FSM (Finite State Machine), but both are redesigned
in order to adapt to the higher performance demands in 5G. The
overall schematic of the algorithm is depicted in Figure 1.

C1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

R1 AES Enc
Round R2 R3

128 bit keystream output
z

FSM

C2

AES Enc
Round

σ

LFSR-A

LFSR-B

Figure 1: Overall schematic of SNOW-V [6].

The LFSR is a new circular construction consisting of two 256-bit
registers, namely LFSR-A and LFSR-B. Each sub-LFSR consists of
16 16-bit cells, where each cell holds an element of a finite field

1“Vi” stands for “Virtualisation, improved”.

𝐺𝐹 (216). These elements in LFSR-A and LFSR-B are respectively
generated according to the generating polynomials defined below:

𝑔𝐴 (𝑥) = 𝑥16 + 𝑥15 + 𝑥12 + 𝑥11 + 𝑥8 + 𝑥3 + 𝑥2 + 𝑥 + 1 ∈ F2 [𝑥],

𝑔𝐵 (𝑥) = 𝑥16 + 𝑥15 + 𝑥14 + 𝑥11 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1 ∈ F2 [𝑥] .

Denote the states of LFSR-A and LFSR-B at time clock 𝑡 as (𝑎 (𝑡)0 , . . . ,

𝑎
(𝑡)
15) and (𝑏 (𝑡)0 , . . . , 𝑏

(𝑡)
15), respectively. Every time when clocking,

a value in a cell is shifted to the next cell with a smaller index and
𝑎
(𝑡)
0 , 𝑏

(𝑡)
0 exit the LFSRs. The new values in cells 𝑎15, 𝑏15 are derived

as follows:

𝑎 (𝑡+16) = 𝑏 (𝑡) + 𝛼𝑎 (𝑡) + 𝑎 (𝑡+1) + 𝛼−1𝑎 (𝑡+8) mod 𝑔𝐴 (𝛼),

𝑏 (𝑡+16) = 𝑎 (𝑡) + 𝛽𝑏 (𝑡) + 𝑏 (𝑡+3) + 𝛽−1𝑏 (𝑡+8) mod 𝑔𝐵 (𝛽),

where 𝛼, 𝛽 are roots of 𝑔𝐴 (𝑥), 𝑔𝐵 (𝑥), respectively, and 𝛼−1, 𝛽−1 are
the corresponding inverses. The multiplications are operated over
the corresponding fields.

Every time when updating the LFSR part, the LFSRs are clocked
eight times, such that the two 128-bit values of the taps 𝑇 1 and 𝑇 2,
which are formed by considering (𝑏15, · · · , 𝑏8), and (𝑎7, · · · , 𝑎0) as
two 128-bit words, are “fresh” to update the FSM and generate a
keystream word.

The FSM part is 128-bit oriented and consists of three 128-bit
registers 𝑅1, 𝑅2, and 𝑅3. It takes 𝑇1,𝑇2 as inputs and produces a
128-bit keystream word as below:

𝑧 (𝑡) = (𝑅1(𝑡) ⊞32 𝑇 1(𝑡)) ⊕ 𝑅2(𝑡) .

The three registers in FSM are then updated as follows:

𝑅1(𝑡+1) = 𝜎 (𝑅2(𝑡) ⊞32 (𝑅3(𝑡) ⊕ 𝑇 2(𝑡))),

𝑅2(𝑡+1) = 𝐴𝐸𝑆𝑅 (𝑅1(𝑡) ,𝐶1),

𝑅3(𝑡+1) = 𝐴𝐸𝑆𝑅 (𝑅2(𝑡) ,𝐶2),

where 𝐴𝐸𝑆𝑅 () is one single AES round with the round key be-
ing set to zero, i.e., 𝐶1 = 𝐶2 = 0; ⊞32 is four parallel 32-bit
arithmetical additions; and 𝜎 is a byte-wise permutation – the
transposition of the mapped AES’s 4 × 4-byte matrix state, i.e.,
𝜎 = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15].

We skip other details, e.g. the initialisation procedure, AEAD
mode of operation, and refer to the original paper [6] for the com-
plete description.

The SNOW-V design has received internal and external evalua-
tions [5, 6, 8, 9], which show that there are no identified weaknesses
in the design resulting in attacks faster than exhaustive key search.

3 THE DESIGN OF SNOW-VI
The design of SNOW-Vi, in the parts of keystream generation and
initialisation procedure, is exactly the same as in SNOW-V, with the
only differences in the LFSR update function and the tap position
of 𝑇2, which is now moved to the higher half of LFSR-A – these
changes dramatically improve the speed in software implementa-
tions and strengthen the security of the cipher. The new LFSR is
depicted in Figure 2 and the new updates are as follows:

SNOW-Vi: An Extreme Performance Variant of SNOW-V for Lower Grade CPUs WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

𝑎 (𝑡+16) = 𝑏 (𝑡) + 𝛼𝑎 (𝑡) + 𝑎 (𝑡+7) mod 𝑔𝐴 (𝛼),

𝑏 (𝑡+16) = 𝑎 (𝑡) + 𝛽𝑏 (𝑡) + 𝑏 (𝑡+8) mod 𝑔𝐵 (𝛽),
where 𝛼 and 𝛽 are respectively the roots of two new fields’ gener-
ating polynomials, which are defined as follows:

𝑔𝐴 (𝑥) = 𝑥16 + 𝑥14 + 𝑥11 + 𝑥9 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 1 ∈ F2 [𝑥],

𝑔𝐵 (𝑥) = 𝑥16 + 𝑥15 + 𝑥14 + 𝑥11 + 𝑥10 + 𝑥7 + 𝑥2 + 𝑥 + 1 ∈ F2 [𝑥] .

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

T2 128 bits

T1 128 bits

Figure 2: LFSR construction in SNOW-Vi.

3.1 Design rationale
In this section we discuss the design rationale for SNOW-Vi in brief,
and some of the arguments are also valid for SNOW-V.

128-bit based design. For modern ciphers with intent to run
fast in software environments, implementation aspects are highly
important in order to reach a high throughput. SNOW 3G is a 32-bit
oriented design that produces a 32-bit keystream word per clock.
In order to speed up SNOW 3G, one could imagine producing four
such 32-bit keystream words in parallel, using a 128-bit register –
wide registers are supported by many CPUs. This means that the
FSM unit should also hold four parallel 32-bit words so that it can
produce 128 bits in its output. The LFSR can keep its size but should
be redesigned in order to update at least 128 bits at a time. This
effectively leads to the 128-bit based designs of original SNOW-V
and current SNOW-Vi variant, in which the FSM holds three 128-bit
words, LFSR can be split into four 128-bit words, and the generated
keystream word is 128-bit.

Cycle length. In the SNOW family of stream ciphers, LFSR is
a linear block of size 512 bits that serves as the source of pseudo-
randomness. One important security property is that the LFSR
should not have short cycles and, ideally, has the maximum cycle
length of 2512 − 1, excluding the zero state. The proposed LFSR has
such a maximum cycle length which can be verified by the same
methods as in [5, 6]. The characteristic polynomial is primitive and
has 209 terms, see Appendix A for details.

Note that the probability of at least one LFSR having a zero
state after initialisation, considering all possible (𝐾𝑒𝑦, 𝐼𝑉) pairs, is
negligibly low (i.e., 2−128) for both SNOW-V and SNOW-Vi.

Circular LFSR. It is well-known that in order to prevent trivial
linear attacks with multiple short keystreams, the number of taps 𝑡
to be used for the LFSR update function should be at least three, and

preferably even more (around 5-6) depending on how well one can
approximate the FSM. However, all the tap values must be extracted
and then processed in the LFSR update function, which means the
code and time complexity grows linearly with the number of taps.

In a circular LFSR construction we have two sub-LFSRs with
𝑡𝑎 and 𝑡𝑏 taps involved, respectively. The total number of taps is
𝑡𝑎 + 𝑡𝑏 , but there is a multiplicative effect for the number of taps
for an equivalent LFSR that can be used in a linear attack. The
equivalent LFSR can have up to (1 + 𝑡𝑎) · (1 + 𝑡𝑏) taps. Thus we can
reach the basic security goals by having a smaller number of taps,
and the time complexity to clock the LFSR is therefore smaller. I.e.,
if a classical LFSR has 𝑡 taps, a circular-LFSR may have as low as
2 × (

√
𝑡 − 1) taps to reach the same security goals, thus reducing

the implementation and time complexity for the update function.
For example, in SNOW-V the total number of taps is 3 + 3, but an
equivalent LFSR has 11 taps (see subsection 4.1 for more details),
so that instead of extracting and performing operations on 11 taps
in a classical LFSR, we only need to operate with six taps in the
circular construction.

Size and type of the base fields. In SNOW3G, the LFSR update
function is built over an extended 32-bit field𝐺𝐹 ((28)4), where the
ground element is an 8-bit subfield𝐺𝐹 (28). This particular choice
made it possible to implement the multiplication by 𝛼 ∈ 𝐺𝐹 ((28)4)
with a lookup table 28 → 232, two shifts and one XOR. Although
the LFSR in SNOW 3G can be parallelised to produce 128 bits of
the tap values, it is still hard to implement four multiplications in
that 32-bit base field by using only 128-bit registers, and without
lookup tables. Moreover, it is not desirable to use lookup tables in
modern ciphers since it may become a vulnerability to cache-based
side-channel attacks.

Considering the above, the extension field 𝐺𝐹 ((28)4) was aban-
doned and, instead, a binary field 𝐺𝐹 (2𝑛) for some smaller 𝑛 is
introduced in the design, which is more suitable for parallelisation,
i.e., we can perform a parallel multiplication of 128/𝑛 𝑛-bit elements
by the primitive element 𝛼 ∈ 𝐺𝐹 (2𝑛) using 128-bit registers and
only four SIMD instructions. In order to shuffle as many bits as
possible, 𝑛 should be rather small, and, ideally, the field size should
be 𝑛 = 8 bits – in this case there will be more “decisive” bits to
be involved in the update process. However, there is currently no
widely spread SIMD instruction, in lower grade CPUs, that can
perform an arithmetical shift to the right of 16 8-bit signed values,
needed for the implementation of the multiplication by 𝛼 in𝐺𝐹 (28).
Instead, there is an instruction _mm_srai_epi16() for eight 16-bit
signed values that we can use for implementation. Therefore, the
ground fields were selected to be 𝐺𝐹 (216).

LFSR update rate. Since the two sub-LFSRs are also the source
of 128-bit taps𝑇 1 and𝑇 2, to compute the keystream and update the
FSM, we would like to make sure that these tap values are “fresh” in
each clock. Therefore, we need to update 128 bits in both sub-LFSRs.
For 16-bit base fields this implies 8 clocks for a single LFSR update
step.

Base fields. Let us take an extreme situation – if the base fields
would flip only 1 bit of data during the reduction, an attacker may,
perhaps, use the fact that the bits of the LFSR elements are changed
rarely. On the other hand, if the reduction would flip 15 bits out of

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang

16, it is a similar situation since the attacker knows that almost all
bits are flipped in most of the reduction times.

Thus, the field generating polynomials proposed for SNOW-
Vi both have weights eight (excluding 𝑥16), so that if a reduction
happens, exactly half of the 16 bits will be flipped. Additionally, the
base fields are selected such that they have exactly four coinciding
bits, four bits where flips are not happening, and two 4-bit sets
where only one of the two fields flips the bits.

Taps positions for the LFSR update function. With a re-
duced number of taps in SNOW-Vi we should carefully select the
update tap positions to meet both an efficient implementation and
a good mixing effect. If the content of the LFSRs are denoted as four
128-bit registers (𝐴0, 𝐴1, 𝐵0, 𝐵1), where 𝐴0, 𝐴1(𝐵0, 𝐵1) are the low
and high 128 bits of LFSR-A (LFSR-B), respectively, and we want to
update 128 bits of each sub-LFSR in a single step, there should be
no taps taken from either (𝑎9, . . . , 𝑎15) or (𝑏9, . . . , 𝑏15).

The first clear choice for tap positions is from 𝐴0 and 𝐵0 since
these 128-bit values are already in the state’s 128-bit registers, and
we get them for free. Fields multiplications by 𝛼 and 𝛽 should be
placed “symmetrically” since then we can perform multiplications
in both fields in parallel, in case 256-bit registers are available:
we simply represent the LFSR state in a “butterfly” manner as
𝑙𝑜 = (𝐴0, 𝐵0) and ℎ𝑖 = (𝐴1, 𝐵1), where we then multiply 𝑙𝑜 by
(𝛼, 𝛽) with SIMD instructions in parallel, thus double the speed.
Besides, in such a 256-bit oriented data structure we only have to
compute the new value for the ℎ𝑖 part, while the new value for 𝑙𝑜
part is just a single register copy 𝑙𝑜 (𝑡+1) = ℎ𝑖 (𝑡) .

The middle state values (𝐴1, 𝐵1) would be good “free” taps
(𝑎8, 𝑏8) for the update function, but then it becomes impossible
to get a full-cycle LFSR. However, we can take one middle tap
as 𝐵1, and the second middle tap must be byte-unaligned, one of
{𝑎1, . . . , 𝑎7}.

When analysing the mixing effect, one can compare the tap
positions 𝑎1 vs. 𝑎7, where the latter tap would involve more bytes
in the update of the LFSR-A than the former tap. Therefore, we
conclude that the middle pair of tap positions (𝑎7, 𝑏8) seems the
best possible choice for a good overall mixing effect.

The final choice of the base fields. So far we have put a lot
of constrains and desired properties on the tap positions, field size,
placement of multiplications, full cycle length, etc. We coded a
search algorithm that first creates a list of 16-bit base field candi-
dates (primitive polynomials of degree 16 and weight 8+1), then
tries to select a pair of the base fields satisfying the other criteria
(that the intersection of the base fields is also statistically balanced),
and finally verifies that the LFSR has a full cycle. In the end, we
still received a number of options to choose from. Since we were
running out of more criteria, we made our final selection choice
intuitively, based on how well the bits of the base fields are spread
across the 16 bits.

3.2 The new tap position of 𝑇 2
While we propose a simplified update function in the LFSR for
better performance, we also have to ensure the security of the new
proposal. By moving the tap 𝑇2 to the higher half of LFSR-A, we
believe that the security is strengthened. Below we give more de-
tails on motivations for this particular design choice.

From linear analysis perspectives. Let us assume that the con-
tent of the LFSR is (𝐴1, 𝐴0) and (𝐵1, 𝐵0), which are four 128-bit
words. The three consecutive keystream words at clock 𝑡 − 1, 𝑡 and
𝑡 + 1 can be expressed as follows:

𝑧 (𝑡−1) = (𝐴𝐸𝑆−1𝑅 (𝑅2) ⊞32 𝑇 1(𝑡−1)) ⊕ 𝐴𝐸𝑆−1𝑅 (𝑅3),

𝑧 (𝑡) = (𝑅1 ⊞32 𝑇 1(𝑡)) ⊕ 𝑅2,

𝑧 (𝑡+1) = (𝜎 (𝑅2 ⊞32 (𝑅3 ⊕ 𝑇 2(𝑡))) ⊞32 𝑇 1(𝑡+1)) ⊕ 𝐴𝐸𝑆𝑅 (𝑅1),

where 𝑅1, 𝑅2, 𝑅3 are the values of the three registers in the FSM
at time clock 𝑡 . Any choice of the LFSR update function, for the
particular circular-LFSR construction, would result in the following
linear relations:

𝐵1(𝑡+1) = 𝐴0(𝑡) ⊕ 𝑓𝛽 (𝐵0(𝑡) , 𝐵1(𝑡)),

𝐴1(𝑡+1) = 𝐵0(𝑡) ⊕ 𝑓𝛼 (𝐴0(𝑡) , 𝐴1(𝑡)),

𝐵0(𝑡+1) = 𝐵1(𝑡) ,

𝐴0(𝑡+1) = 𝐴1(𝑡) ,

where 𝑓𝛼 and 𝑓𝛽 are two linear functions that correspond to the
LFSR update procedure. These expressions are generic for both
SNOW-V and SNOW-Vi.

In SNOW-V, the taps are 𝑇1 = 𝐵1 and 𝑇2 = 𝐴0, which implies
that in three consecutive keystream expressions the contribution
from the LFSR involves three out of four 128-bit words:

𝑇 1(𝑡) = 𝐵1(𝑡) ,

𝑇 1(𝑡−1) = 𝐵1(𝑡−1) = 𝐵0(𝑡) ,

𝑇 2(𝑡) = 𝐴0(𝑡) ,

𝑇 1(𝑡+1) = 𝐵1(𝑡+1) = 𝐴0(𝑡) ⊕ 𝑓𝛽 (𝐵0(𝑡) , 𝐵1(𝑡)) .

Note that those three LFSR words, i.e., 𝐵0(𝑡) , 𝐵1(𝑡) and𝐴0(𝑡) , ap-
pear in the three keystream expressions twice, thus there is a chance
to explore a biased noise expression by considering only these three
consecutive 128-bit keystream words in linear cryptanalysis.

We, however, believe that there is no immediate security threat
for SNOW-V as it is most likely that up to 48 SBoxes and many
arithmetical additions will be involved in a hypothetical noise ex-
pression. The bias there is expected to be very small (e.g., 48 SBoxes
would already give the bias 𝜖 (48 × [𝑥 ⊕ 𝑆 (𝑥)]) ≈ 2−286.4), and not
enough for mounting a linear attack on SNOW-V.

On the other hand, we have noticed that if we take the pair of
taps (𝑇1,𝑇2) from either (𝐴0, 𝐵0) or (𝐴1, 𝐵1), the three consecu-
tive keystream expressions would involve all four 128-bit words
of the LFSR, and, moreover, at least 256 bits of them (values from
𝐴1 and 𝐴0) will appear in the keystream expressions only once.
For example, if the taps are taken as 𝑇1 = 𝐵1 and 𝑇2 = 𝐴1, it
implies: 𝑇1(𝑡) = 𝐵1(𝑡) , 𝑇1(𝑡−1) = 𝐵0(𝑡) , 𝑇2(𝑡) = 𝐴1(𝑡) , 𝑇1(𝑡+1) =

𝐴0(𝑡) ⊕ 𝑓𝛽 (𝐵0(𝑡) , 𝐵1(𝑡)). In this case, one has to collect at least 512
bits of the keystream in order to have some nonzero bias. That bias
is expected to be even smaller than that in SNOW-V since it would
involve more SBoxes and arithmetical additions.

From initialisation analysis perspectives.Whenwe discovered
that a new tap position would suggest strengthened security from

SNOW-Vi: An Extreme Performance Variant of SNOW-V for Lower Grade CPUs WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

the linear analysis arguments, we then started to look on what
would be the most promising combination, by trying all possible
variants and performing a brief MDM (maximum degree mono-
mial) test [7] for each of them. The MDM test can examine the
non-random initialisation rounds by checking the distribution of
the coefficient of the maximum degree monomial in the Boolean
functions of the keystream bits.

Table 1: Number of nonrandom initialisation rounds (out of
16) when 𝑇1,𝑇2 are tapped at different positions under the
worst cubes of size three.

Taps #non-random
T1 T2 rounds
A1 B1 5.69 - 6.21
B1 A1 5.43 - 5.75
A0 B0 6.25 - 7.24
B0 A0 9.16 - 10.8

In Table 1, for each variant of the tap positions, we get the ranges
of non-random initialisation rounds under the worst cubes of size
three (the ranges also depend on the key/IV-loading scheme). The
smaller values indicate better mixing effect. A good mixing effect
also contributes to a better mixing during the keystream genera-
tion phase. The obvious choice is to pick the variant (𝐵1, 𝐴1) for
SNOW-Vi, while keeping key/IV-loading scheme unchanged.

From implementation perspectives. In addition to other imple-
mentation tricks, the new tap position𝑇 2 = 𝐴1makes it possible to
first update the LFSR once, then update the FSM twice, since then
the two consecutive values of 𝑇 1 and 𝑇 2 become directly available
in the content of the LFSR.

4 SECURITY ANALYSIS
In this section we perform a step-by-step security re-evaluation of
SNOW-Vi based on previously known analyses of SNOW-V, given
in [5, 6, 8, 9].

4.1 Linear attacks
Assume that 𝛼 and 𝛽 are 16× 16 binary matrices that represent mul-
tiplication in corresponding fields. Then we can have the following
expressions:

𝛽𝑎 (𝑡+16) = 𝛽𝑏 (𝑡) + 𝛽𝛼𝑎 (𝑡) + 𝛽𝑎 (𝑡+7) ,

𝑎 (𝑡+24) = 𝑏 (𝑡+8) + 𝛼𝑎 (𝑡+8) + 𝑎 (𝑡+15) ,

𝑎 (𝑡+32) = 𝑏 (𝑡+16) + 𝛼𝑎 (𝑡+16) + 𝑎 (𝑡+23) .

Since 𝑏 (𝑡+16) = 𝛽𝑏 (𝑡) + 𝑏 (𝑡+8) + 𝑎 (𝑡) , adding the three expressions
above, we could get the recurrence for 𝑎-terms in SNOW-Vi as
below:

0 = (𝑥16 + 𝑥8 + 𝛽) (𝑥16 + 𝑥7 + 𝛼) + 1

= 𝑥32 + 𝑥24 + 𝑥23 + (𝛼 + 𝛽)𝑥16 + 𝑥15 + 𝛼𝑥8 + 𝛽𝑥7 + (1 + 𝛽𝛼),

to be compared with the feedback recurrence in SNOW-V:
0 = (𝑥16 + 𝛼−1𝑥8 + 𝑥1 + 𝛼) (𝑥16 + 𝛽−1𝑥8 + 𝑥3 + 𝛽) + 1.

I.e., we have an 8-weight recurrence in SNOW-Vi and a 12-weight
one in SNOW-V.

For standard linear distinguishing and correlation attacks one
has to find a multiple of the above recurrence of weight 3 or 4.
Thus, we believe that 8 is also good enough to be resistant against
linear cryptanalysis. In [6] the complexity of a linear distinguishing
attack is around 2645 based on a 3-weight multiple. In [8], the au-
thors propose correlation attacks against three reduced variants of
SNOW-V, and for the closest variant SNOW-V⊞32,⊞8 the complexity
is 2377. Since these linear cryptanalyses focus on approximating
the non-linear FSM, these results would also apply to SNOW-Vi.
However, both attacks are far more complex than exhaustive key
search.

4.2 Attacks on the initialisation
As done for SNOW-V, we use the MDM test and cube attack based
on division property to check if the key and IV bits are fully mixed
after the initialisation.

4.2.1 MDM tests. In a MDM test, each output keystream bit is
regarded as a random Boolean function of the key and IV bits,
and the MDM coefficient in the algebraic normal form (ANF) of
the Boolean function should follow a random uniform distribution
between {0, 1}. However, in the initial few rounds of the initialisation,
the mixing effect is not enough and the MDMs of the corresponding
Boolean functions are much more likely to be zero than one, thus
resulting into a zero sequence before they become random-like. The
MDM test checks how long this zero sequence persists throughout
the full initialisation rounds. As done for SNOW-V, we start with
a relatively small set (size four) of Key/IV bits under which the
randomness result deviates the most from the expected value (i.e.,
the longest zero sequence) and greedily increase to a 24-bit set, i.e.,
in each step, we add the bit to the existing set which results in the
longest zero sequence among all the remaining bits. We also tried
adding two bits in each step.

Figure 3 shows the number of rounds failing the MDM test under
different bit set sizes compared to SNOW-V when greedily adding
one and two bits in each step. From the result, one can see that
the randomness of the initialisation output of SNOW-Vi is even
better than SNOW-V. Specifically, for the worst set of size four,
there are 6.06 rounds that are not random for SNOW-Vi, while 6.31
for SNOW-V. When adding two bits in each step, the difference
between SNOW-Vi and SNOW-V is smaller than that when adding
one bit. The difference might be larger if the worst bit set of a larger
size is explored, or more bits are considered during the greedy
steps. However, this is computationally demanding. Next, we use
a more fine-grained way based on division property to check the
initialisation.

4.2.2 Cube attacks based on division property. Cube attacks based
on division property evaluate the set of involved key bits 𝐽 in the
superpoly given a certain cube 𝐼 (the set of all the possible values of
some chosen IV bits while the values of other IV bits are fixed), and
recover the superpoly if feasible. The propagation rules of division
property for different operations in a cipher can be modelled by

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang

3 5 7 9 11 13 15 17 19 21 23 25
bit set sizes

4.0

4.5

5.0

5.5

6.0

6.5

7.0

No
n-

ra
nd

om
 in

iti
al

iza
tio

n
ro

un
ds

 (o
ut

 o
f 1

6)

(4, 6.06)

(24, 5.45)

(4, 6.31)

(24, 5.63)(16, 6.03)

(16, 6.08)

SNOW-Vi, adding 1 bit
SNOW-V, adding 1 bit
SNOW-Vi, adding 2 bits
SNOW-V, adding 2 bits

Figure 3: The number of rounds failing the MDM test.

some (in)equalities of a MILP (Mixed Integer Linear Programming)
problem. By solving the MILP problem using some optimisation
tools, one can get the involved key bit set 𝐽 and the upper bound
of the algebraic degree 𝑑 of the superpoly; the larger |𝐽 | and 𝑑 are,
the better the mixing effect is. The time complexity for recovering
the superpoly is given as 2 |𝐼 | ×

(| 𝐽 |
≤𝑑

)
[10].

Table 2: Comparison of cube attacks on reduced-round
SNOW-Vi and SNOW-V (|𝐼 |, 𝑑, |𝐽 |, and 𝐶 denote the cube size,
the degree, the number of involved key bits, and attacking
complexity, respectively).

Rounds 3 4 ≥ 5
Versions -Vi -V -Vi -V -Vi -V

|𝐼 | 4 15 128 40 128 128
𝑑 28 17 242 145 256 256
|𝐽 | 100 131 256 256 256 256
𝐶 286.7 284.9 > 2256 > 2256 > 2256 > 2256

The MILP model of SNOW-Vi is generally similar with that for
SNOW-V, given in Algorithm 5 in [6]; while only the modelling
for the update of the LFSR should be modified. We tried different
cubes and tested the involved key bits and the maximum degrees of
the corresponding superpolies under different rounds. The results
are presented in Table 2 and one can see that the mixing effect of
SNOW-Vi is better than SNOW-V. Specifically, after four rounds,
for a cube size 40 in SNOW-V, all key bits are involved and the
maximum degree is 145.When the cube size goes larger, the number
of involved key bits and degree would both reduce. However, in
SNOW-Vi, for the cube of all IV bits, all key bits are involved, and
the maximum degree is 242. This can be expected since when 𝑇 2 is
moved to the higher part of LFSR-A, the new update results of IV
and key bits are immediately fed to the FSM, making the mixing
faster. After five rounds, all key bits and IV bits are fully mixed just

like SNOW-V. These results match well with the results from the
MDM test.

4.3 Algebraic attacks
In algebraic attacks one expresses the cipher output as algebraic
equations over the unknown key (or state) bits, and tries to solve
the resulting system of nonlinear equations. The only source of
non-linearity during a normal update iteration of SNOW-Vi is from
the FSM, and that is unchanged from SNOW-V. In the algebraic
attack analysis of SNOW-V in [5], the authors make use of the fact
that the tap values 𝑇1(𝑡) and 𝑇2(𝑡) are linear combinations of the
first values 𝑇1(−1) ,𝑇1(0) ,𝑇2(−1) ,𝑇2(0) and each iteration of the
cipher can be written as

𝑇 1(𝑡+1) = 𝐿𝑖𝑛𝛽 (𝑇 1(𝑡−1) ,𝑇 1(𝑡) ,𝑇 2(𝑡−1) ,𝑇 2(𝑡)),

𝑇 2(𝑡+1) = 𝐿𝑖𝑛𝛼 (𝑇 1(𝑡−1) ,𝑇 1(𝑡) ,𝑇 2(𝑡−1) ,𝑇 2(𝑡)),

𝑅1(𝑡+1) = 𝜎 (𝑅2(𝑡) ⊞32 (𝑅3(𝑡) ⊕ 𝑇 2(𝑡)),

𝑅2(𝑡+1) = 𝐴𝐸𝑆𝑅 (𝑅1(𝑡)),

𝑅3(𝑡+1) = 𝐴𝐸𝑆𝑅 (𝑅2(𝑡)),

𝑧 (𝑡+1) = (𝑅1(𝑡) ⊞32 𝑇 1(𝑡)) ⊕ 𝑅2(𝑡) .
We can see that these equations are still valid in SNOW-Vi. Fol-

lowing the arguments in [5] we note that the linear parts of the
cipher can be “effectively disregarded when determining the num-
ber of nonlinear equations and the number of associated variables”.
Hence the proposed change in linear update functions for 𝑇1 and
𝑇 2 does not affect the complexity of mounting an algebraic attack
using quadratic (or higher degree) equations. The conclusion is that
both linearisation methods and Gröbner basis algorithms remain
unfeasible for algebraic attacks on SNOW-Vi.

4.4 Guess-and-determine attacks
In guess-and-determine attacks one guesses part of the state and
from the keystream equations determines the other parts. One
aims to guess as few bits as possible and then determines as many
bits as possible through given equations. For the case of SNOW-
Vi the situation is very similar to SNOW-V. The equation 𝑧 (𝑡) =

(𝑅1(𝑡) ⊞32𝑇 1(𝑡)) ⊕𝑅2(𝑡) involves three unknowns, each of size 128
bits. One has to guess two of them (256 bits) in order to determine
the remaining one. Looking at the equation for the next keystream
word, it requires guessing another 128 bits. This illustrates that a
guess-and-determine attack on SNOW-Vi is still of large complexity.

A straightforward guess-and-determine attack is given in [5],
which requires guessing 512 bits within three consecutive keystream
words to recover the full 896 state bits. The attack there applies
to SNOW-Vi exactly the same. Thus we could first get an upper
bound on the complexity of the guess-and-determine attack against
SNOW-Vi, which is 2512.

In January 2020, Jiao et al in [9] gave a byte-based guess-and-
determine attack against SNOW-Vwith complexity 2406 using seven
keystream words. In their attack, the registers in LFSR and FSM
are split into bytes and the update operations are correspondingly
transformed to byte-based, while with some carriers introduced.
The attack first presets an initial guessing set and runs some al-
gorithm to explore guessing paths and thus driving a guessing

SNOW-Vi: An Extreme Performance Variant of SNOW-V for Lower Grade CPUs WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

basis. This process is repeated several times to remove possible
redundant bytes. Though the details of the guess-and-determine
attacks against SNOW-V and SNOW-Vi under their attack would
be different, the general guessing route could be the same.

The final initial guessing set used in [9] has 24 byte variables,
and these variables are all from the FSM registers or the higher
halves of the LFSR registers, while the variables which are tapped
for update are not used. Thus we could use the same initial guessing
set and have a similar guessing path. During the guessing process,
12 more bytes from the FSM registers and 13 more bytes from LFSR
are guessed. Since there are three taps for LFSR-A and LFSR-B in
SNOW-V while two in SNOW-Vi, we make the worst assumption
that when 13 bytes in LFSR are required for guessing in SNOW-V,
only around eight bytes are needed in SNOW-Vi. In this case, one
still needs to guess 24 + 12 + 8 = 44 bytes, which are 352 bits. Besides
these bytes, some additional carriers must be guessed. Thus the
complexity of the guess-and-determine attack against SNOW-Vi
is larger than 2352. We can make an even worse assumption that
the guessed variables in LFSR can be freely derived, resulting in
guessing 24 + 12 = 36 bytes all from FSM registers, i.e., 288 bits, for
which the complexity is still larger than 2256.

Thus we conclude that the guess-and-determine attack would
not be faster than exhaustive key search against SNOW-Vi.

4.5 Other analyses
From studying [5], we note that most of the results received for
SNOW-V are not affected by the new LFSR:

• the transfer of key entropy (Section 2.1 in [5]), the injective-
ness of initialisation (Section 2.4 in [5]), and time-memory-
data trade-off attacks (Section 6 in [5]) are not affected since
the grounds for these types of analyses are the state size, the
key and IV lengths, which are not changed in SNOW-Vi;

• related key-IV attacks (Section 7 in [5]) is not affected since
the Key/IV loading scheme is the same as in SNOW-V, which
does not create additional entropy in the initial state that
could be used to search for collisions in Key/IVs;

• side-channel attacks (Section 8 in [5]) is not affected since
modifications in SNOW-Vi do not create anymessage-dependant
routines, and the construction is similar to SNOW-V;

• AEADmode (Section 9 in [5]) is not affected since it is exactly
the same as in SNOW-V;

• In fact, even derivations (Section 3.1 in [5]) on correlation
attacks remain true for SNOW-Vi, since the FSM part is not
changed in SNOW-Vi, and linear derivations in [5] were
performed for a circular-LFSR construction without consid-
eration of the exact positions of 𝑇 1 and 𝑇 2.

Hardware evaluations. In [4] the authors performed a thor-
ough hardware evaluation of SNOW-V, where they looked at three
different implementations and reached the throughput rate over
1 Tbps and the energy consumption as low as 12.7 pJ per 128 bits of
keystream. This can be compared with AES-256-CTRwhere the best
throughput received is only 80 Gbps and the energy consumption
is 952.5 pJ per 128 bits of an encryption block.

For SNOW-Vi, we expect minor changes in hardware compared
to SNOW-V. Our assessment is that the throughput rate should not
be affected at all, since the critical path is actually in the FSM which

is unchanged. The area size and the energy consumption in SNOW-
Vi should be slightly better (i.e., lower) than that in SNOW-V, since
the new LFSR has a reduced number of gates for its feedback update
function, and therefore consumes less power.

5 SOFTWARE EVALUATION
Performance of SNOW-Vi heavily depends on the ability to reduce
the number of instructions, as well as careful consideration of
hardware peculiarities, such as CPU interleaving capabilities, use
of registers, instructions latency and throughput characteristics.
In this section we analyse SNOW-Vi from the software point of
view, considering different implementation techniques and various
target platforms.

5.1 Implementations and notations
Algorithms.We have done a dozen of different implementations
in C/C++ of SNOW-V and SNOW-Vi, that we can use for relative
comparison on various platforms. We also used OpenSSL tools
on test targets to measure the performance of AES-256-CTR for
comparison. The notation AES-256-CTR/ver will refer to AES-
256-CTR in OpenSSL version ver.

Registers. In both SNOW-V and SNOW-Vi we have implemen-
tations that utilise: only 128-bit registers (e.g., XMM on Intel plat-
forms), and up to 256-bit registers (e.g., YMM). ARM NEON only
supports 128-bit registers.

Instruction sets. We have implementation versions with dif-
ferent restrictions in instruction sets. For Intel platforms, we start
with the most restricted SSE4.1 set and then add more capabili-
ties as we try implementations utilising AVX2 and AVX-512. For
ARM platforms, we only have the NEON instruction set. All imple-
mentations and platforms use the AES round function instruction.
We present C/C++ versions using Intel intrinsics below, but it is
relatively straightforward to convert to NEON.

Code generation. In SSE-type of code generation, the CPU can
only handle instructions of the form 𝑥 = 𝑥 +𝑦, i.e., the value of one
input register is changed to hold the result. In AVX-type of code
generation, CPU instructions can have 3 arguments, i.e. 𝑥 = 𝑦 + 𝑧,
thus the values of the input registers are preserved.

Unrolled versions. By design, both SNOW algorithms would
simply have bulk encryption in a loop that process 16 bytes in each
step (if we ignore unaligned bytes). That is the same situation as
with AES-256-CTR. We call these implementations as 1-unrolled
versions. However, there might be a performance gain if each step
of such an encryption loop would process 4 × 16 bytes instead, and
the key/IV initialisation is also partly or fully unrolled. We call
these implementations 4-unrolled versions.

Notation.We adopt the following notation to indicate a specific
case that we were testing: [Alg/Unroll/Regs-Inst], where: Alg is
the algorithm name – {SNOW-V, SNOW-Vi, AES-256-CTR}; Unroll
determines if the implementation is a plain one or unrolls four
16-bytes blocks in the encryption loop – {1, 4}; Regs determines
the maximum size of the registers being used – {128, 256, 512};
Inst determines the type of code generation and the maximum
instruction sets being used – {SSE, AVX, AVX2, AVX512, NEON}.
For 128-SSE case we use up to SSE4.1 instructions.

Examples: SNOW-Vi/1/128-SSE, SNOW-V/4/256-AVX512.

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang

0

10

20

30

40

50

60

70

80

90

64 256 1024 4096 16384

Sp
e

e
d

 (
G

b
p

s)

Plaintext length (bytes)

AES-256-CTR SNOW-V (previous) SNOW-V / 1 / 256-AVX2 SNOW-Vi / 1 / 256-AVX2

Figure 4: Previous and new benchmarks (platform:work lap-
top, Win10, Intel i7-8650U @ 4.2GHz / AVX2).

0

10

20

30

40

50

60

70

80

64 256 1024 4096 16384

Sp
e

e
d

 (
G

b
p

s)

Plaintext length (bytes)

SNOW-Vi / 1 / 128-SSE SNOW-Vi / 4 / 128-SSE SNOW-Vi / 1 / 128-AVX SNOW-Vi / 4 / 128-AVX

Figure 5: Impact of unrolling (platform:work laptop,Win10,
Intel i7-8650U @ 4.2GHz / AVX2).

5.2 New test environment
In order to perform a wide software evaluation on various platforms
we decided to make a simple, but generic test environment where
we utilise the standard C function time(NULL). The granularity of
time() function is 1 second, so that before each test we are waiting
for the start of a “fresh” second, then in the loop we are waiting for
the start of the next second, while performing a lot of encryptions
with a selected algorithm in a loop and counting the number of
encryptions processed. This, of course, has some impact on the
received performance numbers. We, however, tried to balance it by
calling the function time() only after 1024 encryptions. The total
count is still magnitudes higher so this approach should not affect
the accuracy of the measurements, but partly reduces the impact
of the system calls of time() function.

In Figure 4 we present the bar chart comparing previous results
from [6] and the new results under the new benchmarking system.
One can clearly see that SNOW-Vi can achieve higher speeds than
both AES-256 and SNOW-V, and the advantage is larger for longer
plaintexts. When the plaintext length is 16 Kbytes or larger, SNOW-
Vi can reach the speed of 77 Gbps on the given platform. The exact
values of the speeds are given in Appendix D, Table 3.

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3 P4 P5 P6 P7 P8

Sp
e

e
d

 (
G

p
b

s)

Platform

AES-256-CTR SNOW-V / 1 SNOW-V / 4 SNOW-Vi / 1 SNOW-Vi / 4

Figure 6: Performance measurements on various platforms
(P1∼P8) for plaintext with length 16 Kbytes.

5.3 Impact of unrolling and code generations
In Figure 5 we demonstrate the difference between a “usual” and
“unrolled” implementations with basically the same 128-bit friendly
core code for SNOW-Vi. We can see a significant speedup when
unrolling loops, especially in SSE-type of code generation. The
exact values of these speeds are given in Appendix D, Table 4.

5.4 Performance results
We also tested the performance of different algorithms on a num-
ber of other platforms and for various use cases. Figure 6 provides
an illustration of the performance comparison under these plat-
forms when the length of the plaintext is 16 Kbytes. We can see
that around +50% speed up in throughput of the fastest SNOW-Vi
with respect to the fastest SNOW-V is achieved, in average. The de-
tailed information of the eight different platforms P1∼P8 and more
comprehensive performance benchmarks under different plaintext
lengths are given in Appendix D, Table 5. We will see SNOW-Vi
generally achieves higher speeds on all the tested platforms.

5.5 Implementation optimisations
In Listing 1 we introduce a number of macros, in order to simplify
our further C++ listings.

Listing 1: SIMD macros.
#define XOR(a, b) _mm_xor_si128(a, b)

#define AND(a, b) _mm_and_si128(a, b)

#define ADD(a, b) _mm_add_epi32(a, b)

#define SET(v) _mm_set1_epi16 ((short)v)

#define SLL(a) _mm_slli_epi16(a, 1)

#define SRA(a) _mm_srai_epi16(a, 15)

#define TAP7(Hi, Lo) _mm_alignr_epi8(Hi, Lo, 7 * 2)

#define SIGMA(a) \

_mm_shuffle_epi8(a, _mm_set_epi64x(\

0x0f0b07030e0a0602ULL , 0x0d0905010c080400ULL));

#define AESR(a, k) _mm_aesenc_si128(a, k)

#define ZERO() _mm_setzero_si128 ()

#define LOAD(src) \

_mm_loadu_si128 ((const __m128i *)(src))

#define STORE(dst , x) \

_mm_storeu_si128 ((__m128i *)(dst), x)

SNOW-Vi: An Extreme Performance Variant of SNOW-V for Lower Grade CPUs WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

In Appendix B we give an “easy-to-read” reference implementa-
tion of SNOW-Vi, with test vectors given in Appendix C. However, a
faster implementation can employ additional tricks, such as the call
of the AES round function with 𝑇 2 as the round key, thus XORing
𝑇 2 with 𝑅3 is “for free”. One can also optimise the order of instruc-
tions for a better performance on a selected platform, see Listing 2
as an example of such efforts for SSE-type of code generation.

Listing 2: Optimised implementation of SNOW-Vi utilising
XMM registers for SSE platforms.
#define SnowVi_XMM_ROUND(mode , offset)\

T1 = B1, T2 = A1;\

A1 = XOR(XOR(XOR(TAP7(A1,A0), B0), AND(SRA(A0),\

SET(0x4a6d))), SLL(A0));\

B1 = XOR(XOR(B1, AND(SRA(B0), SET(0xcc87))),\

XOR(A0, SLL(B0)));\

A0 = T2; B0 = T1;\

if (mode == 0) A1 = XOR(A1, XOR(ADD(T1, R1), R2));\

else STORE(out + offset , XOR(ADD(T1, R1),\

XOR(LOAD(in + offset), R2)));\

T2 = ADD(R2, R3);\

R3 = AESR(R2, A1);\

R2 = AESR(R1, ZERO());\

R1 = SIGMA(T2);

// Note: here the length must be 16-bytes aligned

inline void SnowVi_encdec(int length , u8 * out ,

u8 * in, u8 * key , u8 * iv)

{ __m128i A0, A1, B0, B1, R1, R2, R3, T1, T2;

// key/IV loading

B0 = R1 = R2 = ZERO();

A0 = LOAD(iv);

R3 = A1 = LOAD(key);

B1 = LOAD(key + 16);

// Initialisation

for (int i = -14; i < 2; ++i)

{ SnowVi_XMM_ROUND (0, 0);

if (i < 0) continue;

R1 = XOR(R1, LOAD(key + i * 16));

}

// Bulk encryption

for (int i = 0; i <= length - 16; i += 16)

{ SnowVi_XMM_ROUND (1, i); }

}

A better optimisation may be achieved on the assembly level. At
our best try, a single encryption/decryption of a 16-byte block data
may be done with as low as 15 assembly instructions by utilising
12 XMM/YMM registers and up to AVX512 instruction sets. In
the initialisation loop the main code can be shrunk down to 13
assembly instructions, see Listing 3; however, there we omit 2-3
extra instructions that are usually also needed to organise the loop
itself.

Listing 3: Sketch for an assembly implementation.
;Note: for a 256-bit register the pair of two 128-bit

values are (Hi|Lo)

;Input State:

;ymm1 = hi = (B[128..255] | A[128..255])

;ymm2 = lo = (B[0..127] | A[0..127])

;xmm7 = R1

;xmm8 = R2

;xmm9 = R3 xor A[128..255]

;

;Constants & Derivatives:

;ymm5 = (A[0..127] | B[0..127])

; = _mm256_permute4x64_epi64(lo, 0x4e)

;ymm4 = _mm256_set_epi64x(

; 0xcc87cc87cc87cc87ULL , 0xcc87cc87cc87cc87ULL ,

; 0x4a6d4a6d4a6d4a6dULL , 0x4a6d4a6d4a6d4a6dULL);

;xmm10 = _mm_setzero_si128 ()

;xmm11 = _mm_set_epi64x(

; 0x0f0b07030e0a0602ULL , 0x0d0905010c080400ULL)

;Load the mask register k1 with 0x0000ffff , e.g.:

; mov eax , 65535

; kmovd k1, eax

;

;Encryption/Decryption Loop for one 16-byte block:

1. vmovdqu ymm3 , ymm1

2. vpsraw ymm6 , ymm2 , 15

3. vpternlogd ymm6 , ymm4 , ymm5 , 106

4. vpalignr ymm1 {k1}, ymm1 , ymm2 , 14

5. vpsllw ymm2 , ymm2 , 1

6. vpternlogd ymm1 , ymm2 , ymm6 , 150

7. vmovdqu xmm2 , XMMWORD PTR[r8+rdx]; load in[i*16]

8. vpermq ymm5 , ymm3 , 78

9. vpaddd xmm12 , xmm7 , xmm5

10. vpternlogd ymm2 , ymm8 , ymm12 , 150

11. vpaddd xmm12 , xmm8 , xmm9

12. vaesenc xmm9 , xmm8 , xmm1

13. vaesenc xmm8 , xmm7 , xmm10

14. vmovdqu XMMWORD PTR[rdx], xmm2; store out[i*16]

15. vpshufb xmm7 , xmm12 , xmm11

;Output State: same registers as inputs , except that the

new ymm2 is now actually ymm3. One solution could be

to add vmovdqu ymm2 , ymm3; but a better way is to

call the above code with swapped registers xmm2/ymm2

and xmm3/ymm3. I.e., a 2-unrolled loop would be

more efficient.

;Initialisation Loop: remove steps 7 and 14, and in step

10 change ymm2 to ymm1 (=hi). In the last 2 rounds

one should XOR the key to the register xmm7 (=R1).

Implementation tricks. The presented sketch of an assembly
code has just a single 256-bit “swap” instruction vpermq (step 8) and
no vextractf128 for extracting the taps, thus saving CPU latency
since these instructions are costly. There is only one register copy
vmovdqu (step 1), that we believe is the minimum and unavoidable.
We use one of the AES round calls (step 12) with the next clock’s
value of the tap 𝑇2 as the “round key”, thus we can skip one XOR
instruction (𝑅3 xor 𝑇 2) during the next clock. We also efficiently
utilise the fact that XMM/YMM registers are shared (steps 9 and
10 in the initialisation loop) and we use AVX512’s mask register
k1 (step 4) to avoid an extra vpblendd. 2 The above code adopts
AVX512’s ternary logic vpternlogd (steps 3, 6, 10) that effectively
removes three extra instructions if we would do these steps with the
AVX2 set, instead. We can avoid the ending register copy (vmovdqu
ymm2, ymm3) by implementing 2x-unrolled loops. The above 15
assembly steps demonstrate all these tricks.

Nevertheless, we would like to note that the smallest number
of assembly instructions does not always mean the fastest speed
in reality, since there are other things to take care about such as
instructions interleaving and stitching techniques. For example, one
2One may also try to use SSE-legacy instruction in step 4: palignr xmm1, xmm2, 14
– that would modify the lower half of ymm1 while preserving it’s upper half, as we
actually want here; however, there might be a timely AVX-SSE switch penalty.

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang

could utilise more than 12 registers to convey a better instructions
stitching and thus achieve a higher performance.

6 CONCLUSIONS
In this paper we present a slightly modified version of the SNOW-V
stream cipher called SNOW-Vi. The purpose of this change is to
better accommodate a fast implementation in software on CPUs
which only supports 128-bit wide SIMD registers or a limited SIMD
instruction set. The only change made, is a small modification to
the linear update function and the tap position for 𝑇2. We thor-
oughly investigate the security implications of this change and go
through all previously known analyses of SNOW-V, applying the
changes to these security results. The conclusion is that the high
security provided by SNOW-V is still intact, and in some cases even
improved. Furthermore, we provide a very detailed software eval-
uation, comparing SNOW-Vi to both SNOW-V and AES-256-CTR
on various CPU architectures. The results show that SNOW-Vi is
significantly faster than SNOW-V on all platforms.

ACKNOWLEDGMENTS
We would like to thank all anonymous reviewers for their highly
valuable comments and questions to us, which helped to improve
this article at a great extent.

This work was in part financially supported by the Swedish
Foundation for Strategic Research, grant RIT17-0005 and the ELLIIT
program. Jing Yang is also supported by the scholarship from the
National Digital Switching System Engineering and Technological
Research Center, China.

REFERENCES
[1] 3GPP. 2019. TS 33.841 (V16.1.0): 3rd Generation Partnership Project;

Technical Specification Group Services and Systems Aspects; Security as-
pects; Study on the support of 256-bit algorithms for 5G (Release 16).
(March 2019). https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3422.

[2] 3GPP. 2020. TS 33.501: 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Security architecture and procedures
for 5G system. (December 2020). https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3169.

[3] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. 2011. Bi-
clique cryptanalysis of the full AES. In International conference on the the-
ory and application of cryptology and information security. Springer, 344–371.
https://doi.org/10.1007/978-3-642-25385-0_19

[4] Andrea Caforio, Fatih Balli, and Subhadeep Banik. 2020. Melting SNOW-V:
improved lightweight architectures. Journal of Cryptographic Engineering (4
December 2020). https://doi.org/10.1007/s13389-020-00251-6

[5] Carlos Cid, Matthew Dodd, and Sean Murphy. 2020. A Security Evaluation of
the SNOW-V Stream Cipher. (4 June 2020). Quaternion Security Ltd. https:
//www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-202852.zip.

[6] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang. 2019. A
new SNOW stream cipher called SNOW-V. IACR Transactions on Symmetric
Cryptology 2019, 3 (Sep. 2019), 1–42. https://doi.org/10.13154/tosc.v2019.i3.1-42

[7] Håkan Englund, Thomas Johansson, and Meltem Sönmez Turan. 2007. A
Framework for Chosen IV Statistical Analysis of Stream Ciphers. In Progress
in Cryptology – INDOCRYPT 2007, K. Srinathan, C. Pandu Rangan, and Moti
Yung (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 268–281. https:
//doi.org/10.1007/978-3-540-77026-8_20

[8] XinxinGong and Bin Zhang. 2021. Resistance of SNOW-V against Fast Correlation
Attacks. IACR Transactions on Symmetric Cryptology 1 (March 2021), 378–410.
https://doi.org/10.46586/tosc.v2021.i1.378-410

[9] Lin Jiao, Yongqiang Li, and Yonglin Hao. 2020. A Guess-And-Determine Attack
On SNOW-V Stream Cipher. Comput. J. 63, 12 (03 2020), 1789–1812. https:
//doi.org/10.1093/comjnl/bxaa003

[10] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi
Meier. 2018. Improved division property based cube attacks exploiting algebraic

properties of superpoly. In Annual International Cryptology Conference. Springer,
275–305. https://doi.org/10.1109/TC.2019.2909871

[11] Jing Yang, Thomas Johansson, and Alexander Maximov. 2019. Vectorized linear
approximations for attacks on SNOW 3G. IACR Transactions on Symmetric
Cryptology (2019), 249–271. https://doi.org/10.13154/tosc.v2019.i4.249-271

[12] Jing Yang, Thomas Johansson, and Alexander Maximov. 2020. Spectral analysis
of ZUC-256. IACR Transactions on Symmetric Cryptology (2020), 266–288. https:
//doi.org/10.13154/tosc.v2020.i1.266-288

A CHARACTERISTIC POLYNOMIAL FOR
THE LFSR IN SNOW-VI

The characteristic polynomial𝑚(𝑥) for the proposed LFSR is
𝑚(𝑥) = ∑ |𝑇 |

𝑖=1 𝑥
𝑇𝑖 , where:

𝑇 = [512, 496, 488, 480, 472, 462, 455, 448, 444, 439, 438, 437, 430, 426,
422, 421, 420, 419, 414, 412, 408, 404, 403, 402, 401, 399, 398, 394, 392,
390, 387, 386, 385, 384, 382, 381, 380, 373, 371, 369, 367, 366, 359, 358,
353, 351, 350, 349, 347, 346, 341, 340, 339, 336, 335, 334, 333, 329, 319,
318, 317, 316, 314, 313, 312, 311, 310, 309, 305, 304, 303, 302, 301, 300,
298, 297, 296, 295, 291, 290, 289, 287, 281, 280, 278, 277, 276, 275, 273,
272, 270, 267, 266, 263, 262, 261, 258, 257, 254, 252, 246, 245, 243, 235,
233, 231, 229, 228, 226, 225, 224, 223, 222, 221, 220, 219, 218, 216, 215,
214, 212, 211, 210, 207, 201, 199, 198, 197, 196, 195, 194, 192, 191, 190,
189, 185, 184, 181, 179, 175, 173, 170, 169, 168, 166, 160, 158, 156, 155,
152, 147, 146, 145, 143, 140, 137, 136, 134, 133, 132, 131, 128, 127, 125,
116, 111, 109, 108, 105, 103, 101, 100, 99, 98, 95, 94, 90, 86, 84, 82, 80,
79, 75, 74, 73, 70, 69, 68, 67, 57, 55, 52, 51, 50, 49, 48, 45, 43, 42, 36, 32,
23, 22, 21, 16, 14, 8, 7, 0] .

B REFERENCE IMPLEMENTATION
A 128-SSE friendly C/C++ code of SNOW-Vi is given in Listing 4. It
is not optimised for performance benchmarking but rather serves
as an “easy-to-read” reference implementation.

Listing 4: Reference implementation of SNOW-Vi.
#include <intrin.h> // or <x86intrin.h> for gcc

#define XOR(a, b) _mm_xor_si128(a, b)

#define AND(a, b) _mm_and_si128(a, b)

#define ADD(a, b) _mm_add_epi32(a, b)

#define SET(v) _mm_set1_epi16 ((short)v)

#define SLL(a) _mm_slli_epi16(a, 1)

#define SRA(a) _mm_srai_epi16(a, 15)

#define TAP7(Hi, Lo) _mm_alignr_epi8(Hi, Lo, 7 * 2)

#define SIGMA(a) \

_mm_shuffle_epi8(a, _mm_set_epi64x(\

0x0f0b07030e0a0602ULL , 0x0d0905010c080400ULL));

#define AESR(a, k) _mm_aesenc_si128(a, k)

#define ZERO() _mm_setzero_si128 ()

#define LOAD(src) \

_mm_loadu_si128 ((const __m128i *)(src))

#define STORE(dst , x) \

_mm_storeu_si128 ((__m128i *)(dst), x)

struct SnowVi

{ __m128i A0, A1, B0, B1; // LFSR

__m128i R1, R2, R3; // FSM

inline __m128i keystream(void)

{ // Taps

__m128i T1 = B1, T2 = A1;

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3422
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3422
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/s13389-020-00251-6
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-202852.zip
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_101e/Docs/S3-202852.zip
https://doi.org/10.13154/tosc.v2019.i3.1-42
https://doi.org/10.1007/978-3-540-77026-8_20
https://doi.org/10.1007/978-3-540-77026-8_20
https://doi.org/10.46586/tosc.v2021.i1.378-410
https://doi.org/10.1093/comjnl/bxaa003
https://doi.org/10.1093/comjnl/bxaa003
https://doi.org/10.1109/TC.2019.2909871
https://doi.org/10.13154/tosc.v2019.i4.249-271
https://doi.org/10.13154/tosc.v2020.i1.266-288
https://doi.org/10.13154/tosc.v2020.i1.266-288

SNOW-Vi: An Extreme Performance Variant of SNOW-V for Lower Grade CPUs WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

// LFSR -A/B

A1 = XOR(XOR(XOR(TAP7(A1, A0), B0),\

SLL(A0)), AND(SET(0x4a6d), SRA(A0)));

B1 = XOR(XOR(SLL(B0), A0), XOR(B1 ,\

AND(SET(0xcc87), SRA(B0))));

A0 = T2;

B0 = T1;

// Keystream word

__m128i z = XOR(R2, ADD(R1, T1));

// FSM Update

T2 = ADD(XOR(T2, R3), R2);

R3 = AESR(R2, ZERO());

R2 = AESR(R1, ZERO());

R1 = SIGMA(T2);

return z;

}

template <int aead_mode = 0> inline void keyiv_setup(

const unsigned char * key , const unsigned char * iv)

{ B0 = R1 = R2 = R3 = ZERO();

A0 = LOAD(iv);

A1 = LOAD(key);

B1 = LOAD(key + 16);

if (aead_mode)

B0 = LOAD("AlexEkd JingThom");

for (int i = 0; i < 15; ++i)

A1 = XOR(A1, keystream ());

R1 = XOR(R1, LOAD(key));

A1 = XOR(A1, keystream ());

R1 = XOR(R1, LOAD(key + 16));

}

};

// ... some test program

#include <stdio.h>

int main()

{ SnowVi s;

unsigned char key [32] = { 0 }, iv[16] = { 0 };

s.keyiv_setup(key , iv);

for (int t = 0; t < 4; t++)

{ unsigned char ks[16];

STORE(ks, s.keystream ());

for (int i = 0; i < 16; i++)

printf("%02x ", (unsigned int)ks[i]);

printf("\n");

}

return 0;

}

In a standard stream cipher, the encryption (and decryption)
algorithm is an XOR of the keystreamwith the plaintext (ciphertext).
Unused bytes of the last keystream word are simply discarded.

C TEST VECTORS

Listing 5: Test vectors for SNOW-Vi.
== SNOW -Vi test vectors #1:

key =

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

iv =

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Initialisation phase , z =

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63

a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5 a5

4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f

7a 5b 5a 5a 79 5b 5a 5a 5a 5a 5a 5a 5b 5a 5a 5a

4d 51 be 6e 19 0a 0a a9 a4 fe fe ae f4 d6 d6 d6

7a 97 fb 47 d2 57 62 46 8a ca df 1e d1 48 4d 3c

8c 97 87 3e 90 00 38 d5 2d f3 46 c3 2f f7 97 0c

10 89 37 a1 02 46 61 0a 67 07 b5 4e 94 1e 0e 3b

94 36 b9 e3 3b 0f 10 9a dc 89 b3 d5 a3 ae f8 2d

ba ea 9f d0 68 b9 a1 1e 43 62 67 f8 7f 4a 05 ac

0c 15 12 c2 38 80 09 46 5a 55 ef f8 89 81 6c 97

75 82 9e c8 a8 73 70 38 cd 5e c5 7e 21 9d 98 16

ed 45 92 3c 43 7a d7 b0 e5 22 61 72 85 47 dc be

e9 38 ac 0b 70 5c b9 85 2a 42 49 ba 0e 87 37 c3

65 28 2c ef ab 7c a9 57 ae f8 d9 4e 29 38 c8 cd

Keystream phase , z =

50 17 19 e1 75 e4 9f b7 41 ba bf 6b a5 de 60 fe

cd a8 b3 4d 7e c4 c6 42 97 55 c1 9d 2f 67 18 71

89 57 d3 26 cb 46 50 2c eb 81 4c cd 6e a5 3a ae

dd 6c 92 fb f3 92 1e 8b d7 31 7b e2 20 15 31 bb

09 3e e8 72 e9 eb 40 34 e9 b7 1a 4a c2 b5 4b d9

f0 0f 5a dc 06 d2 e6 b5 9f b7 5a 01 be f6 13 14

1c 8a b2 02 ee 38 e2 85 0c ca 60 6a b8 75 cd 12

41 03 b3 2f a5 14 5d df 54 e7 a0 7b 0f 3e b7 7a

== SNOW -Vi test vectors #2:

key =

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

iv =

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Initialisation phase , z =

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c 9c

cf 09 cc 09 d6 10 d7 10 cc 36 cd 36 d6 10 d7 10

e5 31 72 b0 e8 91 53 dd 75 b0 3e 31 54 dd d2 91

22 b3 31 da e5 05 d7 91 66 7b 7d fb 3f 84 a3 ff

cd d6 c9 02 9e 24 76 3a 19 82 bc 3c 79 d1 9d 62

e1 a3 fb ac ea 2b 6d 68 a1 a7 51 04 3a 46 0b db

b2 30 52 68 82 4b 88 09 ac 92 d5 7d 00 7e ad 0c

79 74 7c eb 01 95 02 a7 1a 2f f5 07 7c 89 96 ad

a1 06 eb d4 c1 d8 5f 12 61 81 e1 a9 55 1b 3b df

aa 5d ff 5a 66 a3 67 16 f7 dc c2 ec 3f da 64 3d

ad 4d ee 83 27 29 15 0a 3e f3 3c 9e d5 79 d9 79

50 a4 a0 dd 21 a0 1c 40 68 31 e6 2e 9d 38 ef 0d

d3 3c c5 72 1b 4d fa 2f 2c cd c9 1f b1 73 fb f3

e8 d0 e3 f1 14 e3 2a 20 ff 56 df 09 7c ab f8 04

1e 24 ae 32 56 9f 7b 08 82 30 4d 80 37 cb 23 b2

Keystream phase , z =

18 71 53 c0 88 1d 00 e8 bf a0 e2 fa fe 71 5e a3

8d e7 fd 87 a6 76 17 1c a1 5e 47 5b 4d a7 b8 7d

ad 86 fc fd 9e 0f bb be ef 6a f4 5f 39 29 c1 23

9b f3 e5 ef b7 d6 90 e6 9d 60 7d c5 c0 4f f4 77

4c 9f 06 a2 b6 36 3e 52 fc b3 0b 8f d3 9f e7 6e

11 64 a6 bd a4 73 4a 76 ee 5f e9 ff 28 ff c1 39

f9 c6 f1 7d 48 43 0c 18 df 3c f4 5d 23 5e dc b3

f6 d4 d1 0b f6 75 f4 ac c4 fb b0 88 cc 5e c4 90

== SNOW -Vi test vectors #3:

key =

50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa

iv =

01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang

Initialisation phase , z =

0a 1a 2a 3a 4a 5a 6a 7a 8a 9a aa ba ca da ea fa

38 ee a4 da 77 24 62 90 a5 ff 09 e3 6c 85 50 29

c3 62 78 ce 97 43 29 97 7e b0 df 7c 2e 5b 9b a2

ea ba cd 10 4a 5f 1d dd 71 58 96 16 11 e9 59 6e

98 e8 c1 c4 30 18 9d f2 97 f0 0d ce 37 a1 69 bc

d9 82 ee 9c db 03 04 cc 23 22 5e d1 8b dc ae ab

30 00 67 12 44 dd 55 52 12 f4 ae 68 a0 da a3 d0

87 48 b7 ac f4 67 00 37 ce 67 a7 42 71 4e e1 18

91 27 9b f8 ca 8e a1 2d 82 6b 6c f7 b7 ef a9 ce

b4 f0 16 c9 9d d9 7a 3e 76 30 71 f0 99 24 01 a7

24 aa b3 0e d4 fc cf e8 41 8a c5 74 8f 53 c4 47

14 7b fa 54 f5 2f ad 01 ab 96 d6 cc da 01 ee 86

23 fd d5 4f 2b 8d d6 0d 6c d0 b3 de da 70 42 e1

0c 73 a0 0f e2 87 78 1f 5c 1b 92 0c 00 16 b8 0c

b1 49 b2 9c df da 0c 95 b9 d3 18 96 91 81 a2 ec

ea ba d3 84 90 c8 cf b6 a1 f5 80 e0 6f d7 74 33

Keystream phase , z =

3a 40 f5 40 f5 47 f0 0f 2d 6f e3 d0 01 c1 40 3a

c7 05 9a 39 19 78 4f ab 41 4b be f7 59 25 e5 23

7e 12 45 4a ea 9e 01 1c e4 46 29 ad f3 f7 a8 bb

7e 26 bd 6c 42 95 ce 62 6a 70 b6 4b 41 48 f7 b3

b4 e2 33 57 5a f9 ba 7a 76 34 a6 bb 22 c7 40 77

3e be eb ed 5a 94 94 d5 3a 2b 95 86 03 0d 68 7d

28 f9 7e c9 83 fd 76 41 3e d6 55 1b df 89 f1 eb

30 c2 4d 1c 61 2d 5a 93 14 d7 64 d8 22 7e 4d bf

D PERFORMANCE TABLES
The comprehensive performance benchmarks under different plain-
text lengths on various platforms are given in Table 3, Table 4 and
Table 5.

Table 3: New test environment, previous and new bench-
marks.

Encryption speed Plaintext length
(Gbps) 16384 4096 1024 256 64

P1(a):Work laptop, Win10, Intel i7-8650U @ 4.2GHz / AVX2
Previous benchmarks from [6]

AES-256-CTR/1.1.1j 35.06 34.16 30.95 22.67 11.32
SNOW-V (C++) 58.25 54.60 45.28 26.37 9.85

New code and test environment
SNOW-V/1/256-AVX2 56.10 52.28 44.05 26.10 9.94
SNOW-Vi/1/256-AVX2 77.04 71.54 57.95 33.01 12.25

Table 4: Impact of unrolling and SSE/AVX instruction encod-
ings with 128-bit code.

Encryption speed Plaintext length
(Gbps) 16384 4096 1024 256 64

P1(b):Work laptop, Win10, Intel i7-8650U @ 4.2GHz / AVX2
SNOW-Vi/1/128-SSE 55.16 52.14 43.52 26.11 10.04
SNOW-Vi/4/128-SSE 68.85 65.93 55.42 33.60 13.12
SNOW-Vi/1/128-AVX 62.28 58.82 50.31 30.93 12.12
SNOW-Vi/4/128-AVX 70.33 66.71 56.59 34.36 13.31

Table 5: Performance measurements on various platforms.

Encryption speed Plaintext length
(Gbps) 16384 4096 1024 256 64

P1:Work laptop, Win10, Intel Core i7-8650U
@ 4.2GHz / AVX2 (speed up +37%)
AES-256-CTR/1.1.1j 35.06 34.16 30.95 22.67 11.32

SNOW-V/1/256-AVX2 56.10 52.28 44.05 26.10 9.94
SNOW-Vi/1/256-AVX2 77.04 71.54 57.95 33.01 12.25
P2: Home laptop, Win10, Intel Core i7-1065 G7

@ 3.9GHz / AVX512 (+58%)
AES-256-CTR/3.0.0 68.09 66.07 57.85 38.73 16.42

SNOW-V/4/256-AVX512 58.52 55.57 45.92 27.16 10.33
SNOW-Vi/1/256-AVX512 92.34 85.97 69.16 38.60 14.12
P3:Work Station, Ubuntu, AMD Ryzen 5 3600

@ 4.2GHz / AVX2 (+44%)
AES-256-CTR/1.1.1f 68.84 67.03 58.35 33.69 18.89
SNOW-V/1/256-AVX2 55.16 51.77 42.45 24.05 8.81
SNOW-Vi/4/128-AVX 79.79 75.77 64.65 40.88 16.56

P4: Remote VM, Ubuntu, Intel Xeon E3-12xx / AVX (+45%)
AES-256-CTR/1.1.1 21.57 20.93 19.89 15.81 7.84
SNOW-V/1/128-SSE 22.01 20.87 17.84 11.13 4.37
SNOW-V/4/128-AVX 30.20 28.69 23.71 14.28 5.50
SNOW-Vi/1/128-SSE 33.55 31.57 25.85 16.06 6.18
SNOW-Vi/4/128-AVX 43.75 41.91 35.63 22.25 8.86

P5: Intel NUC7JY, Ubuntu, Intel Pentium Silver J5005
@ 2.8GHz / SSE4.2 (+59%)
AES-256-CTR/1.1.1 22.46 21.81 20.12 15.08 7.29
SNOW-V/1/128-SSE 13.56 12.92 10.91 7.14 2.94
SNOW-V/4/128-SSE 16.24 15.23 12.60 7.41 2.82
SNOW-Vi/1/128-SSE 19.06 18.15 15.49 10.57 4.35
SNOW-Vi/4/128-SSE 25.90 24.60 21.05 13.43 5.54

P6: Older laptop, Win7, Intel i7-3540M
@ 3GHz / AVX (+40%)

AES-256-CTR/1.1.1i 26.33 25.62 23.25 16.77 7.41
SNOW-V/4/128-SSE 33.96 32.01 26.44 15.33 5.73
SNOW-V/4/128-AVX 38.52 36.57 30.30 17.96 6.79
SNOW-Vi/4/128-SSE 51.54 48.96 41.19 25.18 9.87
SNOW-Vi/4/128-AVX 53.96 51.14 43.08 26.19 10.18

P7:Mobile phone, iPhone X, ARM-based A11 Bionic
@ 2.39GHz / NEON (+58%)

AES-256-CTR/1.1.1i 19.74 19.53 17.86 13.74 8.94
SNOW-V/1/128-NEON 22.25 21.39 18.51 11.72 4.80
SNOW-V/4/128-NEON 24.46 23.54 19.85 12.47 5.19
SNOW-Vi/1/128-NEON 35.42 34.07 29.79 19.18 8.11
SNOW-Vi/4/128-NEON 38.70 37.42 32.69 21.66 10.12
P8: Apple Mini, macOS, ARM-based Apple M1

@ 3.2GHz / NEON (+64%)
AES-256-CTR/1.1.1i 58.61 57.44 55.13 45.73 24.97

SNOW-V/1/128-NEON 32.48 30.97 26.47 16.74 6.80
SNOW-V/4/128-NEON 39.06 37.31 31.68 19.78 7.95
SNOW-Vi/1/128-NEON 50.47 48.15 41.21 26.09 10.84
SNOW-Vi/4/128-NEON 64.16 61.10 51.39 31.46 12.78

	Abstract
	1 Introduction
	2 The SNOW-V stream cipher
	3 The design of SNOW-Vi
	3.1 Design rationale
	3.2 The new tap position of T2

	4 Security analysis
	4.1 Linear attacks
	4.2 Attacks on the initialisation
	4.3 Algebraic attacks
	4.4 Guess-and-determine attacks
	4.5 Other analyses

	5 Software evaluation
	5.1 Implementations and notations
	5.2 New test environment
	5.3 Impact of unrolling and code generations
	5.4 Performance results
	5.5 Implementation optimisations

	6 Conclusions
	Acknowledgments
	References
	A Characteristic polynomial for the LFSR in SNOW-Vi
	B Reference implementation
	C Test vectors
	D Performance Tables

