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Abstract. In this paper, we show that OAEP transform is indistin-
guishable under chosen ciphertext attack in the quantum random oracle
model if the underlying trapdoor permutation is quantum partial-domain
one-way. The existing post-quantum security of OAEP (TCC 2016-B [11])
requires a modification to the OAEP transform using an extra hash
function. We prove the security of the OAEP transform without any
modification and this answers an open question in one of the finalists of
NIST competition, NTRU submission [5], affirmatively.

Keywords. Post-quantum Security, OAEP, Quantum Random Oracle
Model

1 Introduction

The rapid progress on quantum computing and the existence of quantum al-
gorithms like Shor’s algorithm [9] has sparked the necessity of replacing old
cryptography with post-quantum cryptography. Toward this goal, the National
Institute of Standards and Technology (NIST) has initiated a competition for
post-quantum cryptography. In this paper we address an open question in one
of the finalists of NIST competition, NTRU [5] submission. The security of
(unmodified) Optimal Asymmetric Encryption Padding (OAEP) in the quantum
random oracle model has been mentioned as an interesting open question in [5].
The existing post-quantum security proof of OAEP [11] requires a modification
to OAEP transform. (See details below.)

The random oracle model [1] is a powerful model in which the security of
cryptographic scheme is proven assuming the existence of a truly random function
that is accessible by all parties including the adversary. But in the real world
applications, the random oracle will be replaced with a cryptographic hash
function and the code of this function is public and known to the adversary.
Following [4], we use the quantum random oracle model in which the adversary can
make queries to the random oracle in superposition (that is, given a superposition
of inputs, he can get a superposition of output values). This is necessary since a
quantum adversary attacking a scheme based on a real hash function is necessarily
able to evaluate that function in superposition. Hence the random oracle model
must reflect that ability if one request post-quantum security.

Bellare and Rogaway [2] proposed OAEP transform, for converting a trapdoor
permutation into an encryption scheme using two random oracles. It was believed



that the OAEP-cryptosystem is provable secure in the random oracle model
based on one-wayness of trapdoor permutation, but Shoup [10] showed it is
an unjustified belief. Later, Fujisaki et al. [7] proved IND-CCA security of the
OAEP-cryptosystem based on a stronger assumption, namely, partial-domain
one-wayness of the underlying permutation.

Post-quantum security of OAEP transform has been studied in [11]. The
authors modified OAEP transform (called it Q-OAEP) using an extra hash
function that is length-preserving and show that Q-OAEP is IND-CCA secure in
the quantum random oracle model. The extra hash function in Q-OAEP is used
to extract the preimage of a random oracle queries in the security proof. In this
work, we show that this extra hash function is unnecessary. We use Zhandry’s
compressed oracle technique [12] to prove IND-qCCA security of OAEP transform
(without any modification) in the quantum random oracle model. IND-qCCA
notion introduced in [3] is an adaptation of IND-CCA in which the adversary
is allowed to make quantum decryption queries, but, the challenge query is
restricted to be classical. Since security in the sense of IND-qCCA implies IND-
CCA security, our result answers an open question in one of the finalists of NIST
competition, NTRU [5], affirmatively.

Note that in the IND-qCCA notion, the adversary’s challenge queries are
restricted to be classical. In [6], the authors define a quantum IND-CCA notion
in the real-or-random paradigm that grants the adversary the possibility of
submitting quantum challenge queries. We leave verifying the security of OAEP
in the sense of the definition in [6] as an open question.

Organization. In Section 2, we present some basics of quantum information and
computation, security definitions needed in the paper and a short explanation for
the Compressed Standard Oracle that has been introduced in [12] and we use it in
the paper. In Section 3, we present OAEP scheme and show that it is IND-qCCA
secure in the quantum random oracle model.

2 Preliminaries

Notations. Let MSP stands for the message space. The notation x $←− X means
that x is chosen uniformly at random from the set X. For a natural number
n, [n] means the set {1, · · · , n}. Pr[P : G] is the probability that the predicate
P holds true where free variables in P are assigned according to the program
in G. The function negl(n) is any non-negative function that is smaller than
the inverse of any non-negative polynomial p(n) for sufficiently large n. That is,
limn→∞ negl(n)p(n) = 0 for any polynomial p(n). For a function f , fx denotes
the evaluation of f on the input x, that is f(x).

2.1 Quantum Computing

We present basics of the quantum computing in this subsection. The interested
reader can refer to [8] for more information. For two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn)
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and |Φ〉 = (φ1, φ2, · · · , φn) in Cn, the inner product is defined as 〈Ψ,Φ〉 =∑
i ψ
∗
i φi where ψ∗i is the complex conjugate of ψi. Norm of |Φ〉 is defined as

‖ |Φ〉 ‖ =
√
〈Φ,Φ〉. The n-dimensional Hilbert space H is the complex vector

space Cn with the inner product defined above. A quantum system is a Hilbert
space H and a quantum state |ψ〉 is a vector |ψ〉 in H with norm 1. An unitary
operation over H is a transformation U such that UU† = U†U = I where U†
is the Hermitian transpose of U and I is the identity operator over H. The
computational basis for H consists of logn vectors |bi〉 of length logn with 1 in
the position i and 0 elsewhere. With this basis, the Hadamard unitary is defined
as

H : |b〉 → 1√
2

(
∣∣b̄〉+ (−1)b |b〉),

where b ∈ {0, 1}. The control-swap unitary is defined as

|b〉 |ψ0〉 |ψ1〉 → |b〉 |ψb〉 |ψb̄〉 ,

for b ∈ {0, 1}. The controlled-unitary U (cU) is define as:

cU |b〉 |Ψ〉 =
{
|b〉U |Ψ〉 if b = 1
|b〉 |Ψ〉 if b = 0

.

The bit-flip unitary X maps |b〉 to
∣∣b̄〉 for b ∈ {0, 1}. An orthogonal projection

P over H is a linear transformation such that P2 = P = P†. A measurement
on a Hilbert space is defined with a family of orthogonal projectors that are
pairwise orthogonal. An example of measurement is the computational basis
measurement in which any projection is defined by a basis vector. The output
of computational measurement on state |Ψ〉 is i with probability ‖〈 bi, Ψ〉‖2 and
the post measurement state is |bi〉. For a general measurement {Pi}i, the output
of this measurement on state |Ψ〉 is i with probability ‖Pi |Ψ〉 ‖2 and the post
measurement state is Pi|Ψ〉

‖Pi|Ψ〉‖ .
For two quantum systems H1 and H2, the composition of them is defined

by the tensor product and it is H1 ⊗ H2. For two unitary U1 and U2 defined
over H1 and H2 respectively, (U1 ⊗ U2)(H1 ⊗H2) = U1(H1)⊗ U2(H2). In this
paper, QFT over an n-qubits system is H⊗n. Any classical function f : X → Y
can be implemented as a unitary operator Uf in a quantum computer where
Uf : |x, y〉 → |x, y ⊕ f(x)〉. Note that it is clear that U†f = Uf . A quantum
adversary has “standard oracle access” to a classical function f if it can query
the unitary Uf .

2.2 Definitions

Definition 1. An asymmetric encryption scheme E consists of three polynomial
time (in the security parameter n) algorithms, E = (Gen,Enc,Dec), such that:

1. Gen, the key generation algorithm, is a probabilistic algorithm which on input
1n outputs a pair of keys, (pk, sk)← Gen(1n), called the public key and the
secret key for the encryption scheme, respectively.
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2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as
input a public key pk and a message m ∈ MSP and outputs a ciphertext
c← Encpk(m). The message space, MSP, may depend on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns the message m := Decsk(c). It
is required that the decryption algorithm returns the original message, i.e.,
Decsk(Encpk(m)) = m, for every (pk, sk) ← Gen(1n) and every m ∈ MSP.
The algorithm Dec returns ⊥ if ciphertext c is not decryptable.

In the following, we define IND-qCCA security notion [3] in the quantum
random oracle model. IND-qCCA security notion for an asymmetric encryption
scheme allows the adversary to makes quantum decryption queries but the
challenge query is classical. We define UDec as:

UDec |c, y〉 =
{
|c, y⊕ ⊥〉 if c∗ is defined and c = c∗

|c, y ⊕Decsk(c)〉 otherwise
,

where c∗ is the challenge ciphertext and ⊥ is a value outside of the output-space.
We say that the quantum algorithm A has quantum access to the random oracle
H if A can submit queries in superposition and the oracle H answers to these
queries by applying a unitary transformation that maps |x, y〉 to |x, y ⊕H(x)〉.
Definition 2 (IND-qCCA in the quantum random oracle model). An
asymmetric encryption scheme E = (Gen,Enc,Dec) is IND-qCCA secure if for
any quantum polynomial time adversary A∣∣∣Pr

[
b = 1 : b← ExpqCCA,qRO,0A,E (n)

]
−Pr

[
b = 1 : b← ExpqCCA,qRO,1A,E (n)

]∣∣∣ ≤ negl(n),

where ExpqCCA,qRO,bA,E (n) game is define as:
ExpqCCA,qRO,bA,E (n) game:
Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk) and
chooses random oracles.

Query: The adversary A is given the public key pk and with quantum oracle
access to UDec and quantum access to the random oracles chooses two classi-
cal messages m0,m1 of the same length and sends them to the challenger. The
challenger responds with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the random
oracles, but may not query the ciphertext c∗ in a decryption query. Finally, the
adversary A produces a bit b.

Definition 3 (Quantum partial-domain one-way function). We say a
function f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m is quantum partial-domain one-
way if for any polynomial time quantum adversary A,

Pr
[
s̃ = s : s $←− {0, 1}n+k1 , t

$←− {0, 1}k0 , s̃← A(f(s, t))
]
≤ negl(n).
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2.3 Compressed Standard Oracle
In this section, we present the high-level ideas of Compressed Standard Oracle
(CStO) that has been introduced in [12]. This explanation is informal and the
goal is to build the intuition behind CStO oracle. The interested reader can
refer to [12] for more details. In the standard quantum random oracle model, a
function H is chosen unifromly at random from the set of all functions (lets call
it ΩH) and a quantum algorithm A has quantum access to a random oracle H if
A can submit queries in superposition and the oracle answers to these queries
by applying a unitary transformation UH that maps |x, y〉 to |x, y ⊕H(x)〉.
The other way to consider this is to put the oracle state in superposition of all
functions. Then, a query is implemented as

StO : |x, y〉
∑
H

1
|ΩH |

|H〉 →
∑
H

1
|ΩH |

|x, y ⊕H(x)〉 |H〉 .

Note that if the oracle measures its internal state in the computational basis,
this corresponds to choosing H uniformly at random from ΩH and answer with
UH . So this two oracles are perfectly indistinguishable. Now if we apply QFT to
the output register before and after applying StO, we will get the Phase oracle
that operates as follows:

PhO : |x, y〉
∑
H

1
|ΩH |

|H〉 →
∑
H

1
|ΩH |

(−1)y·H(x) |x, y〉 |H〉 .

Let D represents the truth table of the function H and Px,y represents the truth
table of the point function that is y on input x and it is zero elsewhere. With
this notation we can write the the query above as follows:

PhO : |x, y〉
∑
D

1
|ΩH |

|D〉 →
∑
D

1
|ΩH |

(−1)Px,y·D |x, y〉 |D〉 .

Now if the oracle applies QFT to the oracle register after applying PhO, it will
get:

QFTDPhO : |x, y〉
∑
D

1
|ΩH |

|D〉 → |x, y〉 |Px,y〉 .

Note that QFTD only effects the oracle state and it is undetectable to the
adversary. Therefore, the oracle may learn which input/output have been queried
when the adversary does make a query. Informally, the oracle can move the entry
that is not zero in the database Px,y to the beginning of the oracle register. So,
the database after the query is not zero only in the first slot. So the oracle can
remove the zero slots to have a compressed database.

RmoVDMoVDQFTDPhO :
∑
x,y

αx,y |x, y〉
∑
D

1
|ΩH |

|D〉 →
∑
x,y

αx,y |x, y〉 |x, y〉 .

We only consider single query adversary in the presentation above. For general
case, reader can refer to CStO presented in [12]. Note that we do not present the
details of CStO here and only import the following lemma:
Lemma 1 (Lemma 4 in [12]). CStO and StO are perfectly indistinguishable.

5



3 Security of OAEP

Definition 4. Let G : {0, 1}k0 → {0, 1}k−k0 , H : {0, 1}k−k0 → {0, 1}k0 be
random oracles. The encryption scheme OAEP = (Gen,Enc,Dec) is defined as:

1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0, 1}n, the encryption algorithm computes

s := m||0k1 ⊕G(r) and t := r ⊕H(s),

where r $←− {0, 1}k0 , and outputs the ciphertext c := f(s, t)1.
3. Dec: Given a ciphertext (c, d), the decryption algorithm does the following:

Compute f−1(c) = (s, t) and then,
(a) query the random oracle G on input r and compute M := s⊕G(r).
(b) if the k1 least significant bits of M are zero then return the n most

significant bits of M , otherwise return ⊥.

Note that k0 and k depend on the security parameter n.

Theorem 1. If the underlying permutation is quantum partial-domain one-way,
then the OAEP scheme is IND-qCCA secure in the quantum random oracle model.

Proof. Let ΩH and ΩG be the set of all function H : {0, 1}k−k0 → {0, 1}k0 and
G : {0, 1}k0 → {0, 1}k−k0 , respectively. Let A be a polynomial time quantum
adversary that attacks the OAEP-cryptosystem in the sense of IND-qCCA in
the quantum random oracle model and makes at most qH and qG queries to the
random oracles H and G respectively and qdec decryption queries.

Game 0: This is IND-qCCA game in qROMwhen b = 0 or this is ExpqCCA,qRO,0A,OAEP (n).

Game 0:

let H $←− ΩH , G
$←− ΩG, r∗

$←− {0, 1}k0 , (pk, sk)← Gen(1n)
let m0,m1 ← AH,G,UDec(pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← AH,G,UDec(c∗)
return b′

Game 1: In this game, we consider H,G are being implemented in the com-
pressed standard oracles CStOH and CStOG . Since these are equivalent to the
uncompressed standard oracles by Lemma 1, this does not effect the adversary’s
success probability.

1Q-OAEP in [11] outputs the ciphertext c :=
(
f(s, t), H ′(s, t)

)
for a fresh random

oracle H ′.
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Game 1:

let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n)
let m0,m1 ← ACStOH ,CStOG,UDec(pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(c∗)
return b′

Game 2: In this game we change UDec oracle to UDec(1) oracle described
below. Let DG denotes the database of CStOG. Let Test be an unitary such
that on input (c,DG) checks if there exists a pair (r,Gr) ∈ DG such that
[[f−1(c)]n+k1 ⊕ Gr]k1 = 0k1 . If it finds such a pair, it returns 1, otherwise, it
returns 0. The output of Test is stored in an ancillary register Qb. For each
decryption query, first, UDec(1) applies the Test operator, then it executes UDec
and finally it applies Test†(= Test).

Game 2:

let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n)
let m0,m1 ← ACStOH ,CStOG,UDec(1) (pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(1) (c∗)
return b′

We show that Test and UDec almost commutes, so Game 1 and Game 2 are
indistinguishable. Note that to check if [[f−1(c)]n+k1 ⊕Gr]k1 = 0k1 , UDec algo-
rithm queries the random oracle G. So performing this check interfaces with DG

and therefore with Test. Let S ⊆ {0, 1}n+k1 be the set of all values s such that
[[f−1(c)]n+k1⊕s]k1 = 0k1 . It is clear that |S| = 2n. So we can consider UDec (Test)
checks if Gr ∈ S (Gr ∈ S in the Fourier domain). Now we can invoke Lemma 39
in [12] to show that these two unitaries are 1/2(k1/2)−3-almost commute.

Game 3: In this game we change UDec(1) oracle to UDec(2) . For each decryption
query, UDec(2) first applies the Test operator. Then if the result of the test is 1, it
executes UDec, otherwise, it XORs ⊥ to the output register:

|c, y〉 |b〉Qb
→


|c, y⊕ ⊥〉 |b〉 if c = c∗

|c, y⊕ ⊥〉 |b〉 if c 6= c∗ and b = 0∣∣c, y ⊕Decf−1(c)
〉
|b〉 if c 6= c∗ and b = 1

.

And finally it applies Test to undo Qb registers to zero.
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Game 3:

let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n)
let m0,m1 ← ACStOH ,CStOG,UDec(2) (pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(2) (c∗)
return b′

Note that UDec(1) and UDec(2) are exactly the same if b = 1. When b = 0,
the adversary can distinguish these two games by querying a ciphertext c with
non-negligible weight such that Decf−1(c) 6=⊥. Note that Decf−1(c) 6=⊥ implies
[[f−1(c)]n+k1 ⊕Gr]k1 = 0k1 . But when b = 0, Gr is a uniformly random element
from the adversary’s point of view. Therefore, the probability that adversary
finds a ciphertext c such that Decf−1(c) 6=⊥ and b = 0 is at most 1/2k1 . So these
two games are distinguishable with the probability at most qdec/2k1 .

Game 4: LetDH be the databases for CStOH . In this game, the decryption oracle
UDec(2) is changed to a new decryption oracle UDec(3) that uses the databases DH

and DG to decrypt. Let Search be a function that on input (c,DH ,DG) searches
for the pairs (s,Hs) in DH and (r,Gr) in DG such that c = f(s, r ⊕ Hs) and
[Gr ⊕ s]k1 = 0k1 . If it finds such pairs, it returns (1, [Gr ⊕ s]n), otherwise it
returns (0,⊥).

Let Qb′Qm be quantum registers of size (n+ 1) that are initiated with zero.
The unitary UDec(3) first applies the unitary USearch where its output is stored in
Qb′Qm registers. Then it does as the following:

|c, y〉 |b,m〉Qb′Qm
→


|c, y⊕ ⊥〉 |b,m〉 if c = c∗

|c, y⊕ ⊥〉 |b,m〉 if c 6= c∗ and b = 0
|c, y ⊕m〉 |b,m〉 if c 6= c∗ and b = 1

.

And finally it applies USearch to undo Qb′Qm registers to zero.

Game 4:

let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n)
let m0,m1 ← ACStOH ,CStOG,UDec(3) (pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(3) (c∗)
return b′

Note that when both Usearch and Test return b = 0, UDec(2) and UDec(3) XOR ⊥
to the output register. Also, it is clear that if Usearch sets Qb′ to 1, the unitary Test
sets Qb′ to 1 as well and therefore UDec(2) and UDec(3) return the same output.
(Both XOR [Gr ⊕ s]n to the output register.) So the adversary can distinguish
these two games if he submits a query c := f(s, t := r ⊕Hs) with non-negligible
weight such that Usearch returns b = 0 and Test returns b = 1. But this means
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that (s,Hs) is not in DH . So from the adversary’s point of view, Hs is an uni-
formly random value. Consequently, t = r ⊕Hs is uniformly at random. Since
f is a permutation, the probability of producing such a ciphertext c is at most
1/2k0 . so these two games are distinguishable with the probability at most qdec/2k0

Game 5: In this game, the oracle measures the input register of all queries to
CStOG conducted before the challenge phase with the projective measurements
Mr∗ = {P0,P1} where P1 = |r∗〉〈r∗| and P0 = I − P1. If the result of the
measurement on one of the queries is 0, it returns a random bit and it aborts.
Otherwise, it sends the query to CStOG oracle.

Game 5:

let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n),
Mr∗ = {P1 = |r∗〉〈r∗| ,P0 = I− P1}
run until there is an 1-output measurement withMr∗

ACStOH ,CStOG,UDec(3) (pk)
return a random bit if there is an 1-output measurement and abort
let m0,m1 ← ACStOH ,UDec(3) (pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,Dec

′(c∗)
return b′

The adversary A can distinguish Game 4 and Game 5 by submitting a query
to CStOG that has a non-negligible weight on the state |r∗〉. Assume that the
adversary makes qG1 queries to the CStOG before the challenge phase. Since r∗
is an uniformly random value that has not been used in the challenge phase yet,
the probability that the adversary can distinguish these two games is at most
qH1/2k0 .
Game 6: In this game, the oracle measures the input register of all queries to
CStOH conducted before the challenge phase with the projective measurements
Ms∗ = {P0,P1} where P1 = |s∗〉〈s∗| and P0 = I − P1. If the result of the
measurement on one of the queries is 0, it returns a random bit and it aborts.
Otherwise, it sends the query to CStOH oracle.

Game 6:

let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n),
Mr∗ = {P1 = |r∗〉〈r∗| ,P0 = I− P1},
Ms∗ = {P1 = |s∗〉〈s∗| ,P0 = I− P1}
run until there is an 1-output measurement withMr∗ orMs∗

ACStOH ,CStOG,UDec(3) (pk)
return a random bit if there is an 1-output measurement and abort
let m0,m1 ← AUDec(3) (pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(3) (c∗)
return b′
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The adversary A can distinguish Game 5 and Game 6 by submitting a query
to CStOH that has a non-negligible weight on the state |s∗〉. Assume that the
adversary makes qH1 queries to the CStOH before the challenge phase. Since r∗
has not been queried to CStOG, G(r∗) is an uniformly random value from the
adversary’s point of view. So s∗ := m0||0k1 ⊕G(r∗) is an uniformly random value.
This means that the probability that the adversary can distinguish these two
games is at most qH1/2n+k1 .

Game 7: This is identical to Game 6, except the oracle measures all the queries to
CStOH and CStOG with the projective measurementsMs∗ andMr∗ , respectively.
If there is an 1-output measurement, the oracle aborts and returns a random
bit. Let qH2 and qG2 be the number of queries to CStOH and CStOH after the
challenge phase, respectively.

Game 7:

let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n),
Mr∗ = {P1 = |r∗〉〈r∗| ,P0 = I− P1},
Ms∗ = {P1 = |s∗〉〈s∗| ,P0 = I− P1}
run until there is an 1-output measurement withMr∗ orMs∗

ACStOH ,CStOG,UDec(3) (pk)
return a random bit if there is an 1-output measurement and abort
run until there is an 1-output measurement withMr∗ orMs∗

let m0,m1 ← AUDec(3) (pk)
let s∗ := m0||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(3) (c∗)

return a random bit if there is an 1-output measurement and abort.
Otherwise, return b′

The adversary A can distinguish Game 6 and Game 7 by submitting a query
to CStOH that has a non-negligible weight on the state |s∗〉, after the challenge
phase. Or A can distinguish Game 6 and Game 7 by submitting a query to
CStOG that has a non-negligible weight on the state |r∗〉, after the challenge
phase. Let ε be the probability that A submits such a query. From A that
distinguishes Game 6 and Game 7, we can construct an adversary B that breaks
the quantum partial-domain one-wayness of f . In more details, B on input
c∗
(

:= f(s∗, t∗) for uniformly random s∗, t∗
)
, chooses a random element i from

[qH2+qG2], runs the adversary A using two compressed oracles CStOH , CStOG

and private compressed oracle CStOG′ . The random oracle G is define as follows:

|r, y〉 |DH〉 →

{
|r, y ⊕G′(r)〉 if Find(r, c∗,DH) = (0, 0)∣∣r, y ⊕ (m0||0k1 ⊕ s∗)

〉
if Find(r, c∗,DH) = (1, s∗)

,

where Find is an operator that on inputs r, c∗,DH , checks if there exists a pair
(s∗, Hs∗) in DH such that c∗ = f(s∗, r ⊕ Hs∗). If there exists such a pair it
returns (1, s∗). Otherwise, it returns (0, 0n+k1). We can implement the oracle G
as follows.
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1. First we initiate an ancillary register QbQs of (1 + n+ k1) qubits with zero.
These registers store the output of Find. Then we apply UFind to the input
register (r-register), DH and QbQs registers.

2. We apply controlled-unitary Um0||0k1⊕s∗ on registers QbQs and y-register.
Basically, if Qb is set to 1, it XORs y-register with m0||0k1 ⊕ s∗. Otherwise,
it is identity.

3. Next, we apply bit-flip unitary X to Qb.

4. Then, we apply controlled-unitary UG′ on registers Qb, r-register and y-
register where the control register is Qb.

5. Finally, we apply UFind to the input register (r register), DH and QbQs
register. This uncomputes QbQs register to zero.

Since the message m0 is not known to B before the challenge query, it seems
that CStOG defined above can not be sued to answer queries before the challenge
phase. However, before the challenge query, the adversary B forwards queries to
CStOG only if Find returns 0. Here, for each query on input |r, y〉, B invokes Find
on inputs r,DH , c

∗ and stores the result of check in QbQs. Then it measures Qb.
If the measurement outcome is 1, it aborts and returns a random bit. Otherwise,
it forwards the query to CStOG. Note that since f is a permutation and only one
r satisfies c∗ = f(s∗, r ⊕Hs∗), this is the same as we measure the input register
with {|r〉〈r| , I−|r〉〈r|} where c∗ = f(s∗, r⊕Hs∗). In addition, the measurement in
Qb is equivalent to measuring the database DH withMs∗ and this is equivalent
to measuring the input of queries to CStOH withMs∗ . Therefore, the adversary
simulates the queries in Game 3 and Game 4, before the challenge query.

Simulation of decryption queries. B uses the oracle UDec(3) on inputs DH

and DG′ for the decryption queries. Note that G and G′ only differ on the input r
in which c∗ = f(s∗, r ⊕Hs∗). Since UDec(3) on input c∗ does not use its database
and returns ⊥, the simulation of the decryption queries is perfect.

The adversary B measures the (i)-th random oracle query after the challenge
phase. If the (i)-th random oracle query is submitted to CStOH , B measures with
Ms∗ , otherwise, it measures withMr∗ . It returns the post-measurement state
and aborts. Since there exists a query with non-negligible weight on |s∗〉 or |r∗〉,
the adversary B can break the quantum partial-domain one-wayness of f with
probability ε

qH2+qG2
. (Note that when the post-measurement state is |r∗〉, the

adversary computes s∗ = m0||0k1 ⊕G(r∗) and returns s∗ as the partial inverse
of f on the input c∗.)

Game 8: In this game, we replace m0 with m1 in the definition of s∗.
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Game 8:

Let r∗ $←− {0, 1}k0 , (pk, sk)← Gen(1n),
Mr∗ = {P1 = |r∗〉〈r∗| ,P0 = I− P1},
Ms∗ = {P1 = |s∗〉〈s∗| ,P0 = I− P1}
run until there is an 1-output measurement withMr∗ andMs∗

ACStOH ,CStOG,UDec(3) (pk)
return a random bit if there is an 1-output measurement and abort
run until there is an 1-output measurement withMr∗ andMs∗

let m0,m1 ← AUDec(3) (pk)
let s∗ := m1||0k1 ⊕G(r∗), t∗ := r∗ ⊕H(s∗), c∗ := f(s∗, t∗)
let b′ ← ACStOH ,CStOG,UDec(3) (c∗)

return a random bit if there is an 1-output measurement and abort.
Otherwise, return b′

Note that Game 6 and Game 7 are indistinguishable since r∗ has not been
queried to CStOG and therefore we can replace G(r∗) with a random value. So
the distribution of m0||0k1 ⊕G(r∗) and m1||0k1 ⊕G(r∗) are the same.

Games 9-15: We can switch to ExpqCCA,qRO,1A,OAEP (n) game similar to what we have
done above to reach Game 5.

Since each two consecutive games are indistinguishable, we have shown that∣∣∣Pr
[
b = 1 : b← ExpqCCA,qRO,0A,OAEP (n)

]
−Pr

[
b = 1 : b← ExpqCCA,qRO,1A,OAEP (n)

]∣∣∣ ≤ negl(n).
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