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Abstract. CRAFT is a lightweight tweakable Substitution-Permutation-Network (SPN)
block cipher optimized for efficient protection of its implementations against Differen-
tial Fault Analysis (DFA) attacks. In this paper, we present an equivalent description
of CRAFT up to a simple mapping on the plaintext, ciphertext and round tweakeys.
We show that the new representation, for a sub-class of keys, leads to a new structure
which is a Feistel network, i.e., with half state non-linear operation and half state
key addition. This has two interesting consequences: First, the new structure of the
cipher is less resistant against differential and linear cryptanalyses. Second, it allows
a more efficient implementation of the cipher.
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1 Introduction

CRAFT is a tweakable block cipher presented at FSE 2019 and designed by Beierle, Leander,
Moradi, and Rasoolzadeh [BLMR19]. The cipher follows the SPN design with 32 rounds
and iterates 4 round tweakeys as of the tweakey schedule. The main goal of CRAFT was to
efficiently provide protection of its implementations against DFA attacks [BS97] while to
provide decryption on top of the encryption with minimum overhead was considered as a
side goal in the design criteria. The encryption-only implementation of the cipher needs
949 GE (using the IBM 130nm ASIC library), which is less than of the any reported round-
based implementation of a lightweight block cipher. Besides, considering the protected
against DFA implementation of the cipher, under the same settings with respect to the
employed error-detection code, its area overhead (even with decryption and tweak support)
is smaller than all block ciphers considered in [BLMR19] with compatible state and key
size.

The designers of CRAFT provided a detailed security analysis of the cipher in their
proposal paper which their analysis covers differential, linear, impossible differential, zero-
correlation linear hull, meet-in-the-middle, time-data-memory trade-offs; integral (and
division property), and invariant attacks. Overall, they claimed 124 bit security in the
related-tweak attacker model. After the publication of the design, some other follow-up
cryptanalysis has been published [HSNT19, MA19, EY19, GSS*20] and in the following,
we briefly explain results of these analyses.

Known Results on CRAFT

Hadipour et al. [HSNT19] presented a detailed security analysis on CRAFT. In particular,
they presented 14-round related-tweak zero-correlation linear hull distinguishers. Using
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the same distinguishers and following the connection between zero-correlation and integral
distinguisher, they also presented a 14-round related-tweak integral distinguisher. Fur-
thermore, using the automated search model based on CRYPTOSMT [K6114] and MILP
tool, they found the mistake reported on the differential probability and on the maximum
number of rounds for single-tweak differential distinguishers.

Moghaddam and Ahmadian [MA19] used a MILP-based tool to find truncated differ-
entials distinguishers for CRAFT, MIDORI, and SKINNY block ciphers. In the case of CRAFT,
they reported a 12-round distinguisher.

ElSheikh and Youssef [EY19] presented a related-key differential attack that recovers
the whole 128-bit key in a full-round CRAFT with querying corresponding ciphertext for
about 235 chosen plaintexts and time complexity of about 236 encryptions using a negligible
memory. Note that the designers did not claim any secuirty for CRAFT in the related-key
model.

More recently, and most relevant for our work, Guo et al. [GSST20] studied the
combination of the involuntary S-box and the simple tweakey schedule used in the CRAFT
block cipher. They found that some input difference at a particular position can be
preserved through any number of rounds if the input pair follows certain truncated
differential trails. They use this property to construct weak-key truncated differential
distinguishers of round-reduced CRAFT. As a result, they found some 16-round and one
18-round truncated differential distinguishers of CRAFT that the later one can be extended
to a 20-round distinguisher with probability 2763, Moreover, they presented a key recovery
attack on the 19-round CRAFT with 26! data, 2% memory, 2946 time complexity and success
probability of about 80%.

1.1 Our Contribution

In this paper, we first study the round operations used in CRAFT in detail. Using properties
of these operations, we redefine the round function of the cipher which leads to an
equivalent description of CRAFT up to a simple mapping on the plaintext, ciphertext and
round tweakeys. In a weak-key scenario, mainly thanks to the involuntary S-box and the
special choice of MixColumns, used in CRAFT, the equivalent representation of the cipher
makes a Feistel network that the non-linear operation (S-box layer) only applied on half of
the state.

We analyze the security of the new weak-key structure of the cipher and show that
comparing to the original structure of CRAFT, the new structure is less resistant against
differential and linear cryptanalyses. This part of our results in particular gives another
explanation of the results in [GSST20] and explain the weak-keys identified there.

In [GSST20], the authors focused on the differential weakness caused by those weak
keys while. Our representation reveal a general weak-key structure that could be exploited
by an attacker also with other techniques.

Finally, we focus on an interesting constructive side of the new structure. We show that
when decryption is added on top of the encryption, the area overhead of the implementation
is almost zero. Besides, to protect against fault analysis attacks, the area overhead for
implementing the countermeasure is about half of the case for CRAFT original structure.
Therefore, by probably increasing number of rounds and applying an appropriate tweakey
schedule, it is possible to use the new structure as a new block cipher with more efficiency
in hardware implementation.

1.2 Outline

First in Section 2, we specify the design of CRAFT. Then in Section 3, we present an
equivalent definition for CRAFT round function and using the new representation, we
introduce a weak-key structure for the cipher. In Section 4, we use a MILP tool to find all
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the activity patterns with the minimum number of active S-boxes in differential and linear
trails of the weak-key CRAFT structure. We estimate the expected differential probability
(EDP) for the differential effect within these differential activity patterns and we show
that the actual weak-key space in the differential activity patterns can be larger than the
weak-key space for the weak-key structure. Later in Section 5, we show that the new
structure allows an even better implementation of the cipher specially when the encryption
is combined with decryption and also when it is combined with the countermeasures against
fault analysis. Finally, we conclude our paper in Section 6.

2 CRAFT Specification

CRAFT is a lightweight tweakable block cipher consisting of a 64-bit block, a 128-bit key,
and a 64-bit tweak. The state is viewed as a 4 x 4 array of nibbles. The notation X[, j]
denotes the nibble located at row ¢ and column j of the state. By concatenating the rows
of the state, one can denote the state as a vector of nibbles that X[i] denotes the nibble in
i-th position of this vector, i.e., X|[i, j] = X[4i + j].

The 128-bit key is split into two 64-bit keys Ky and K;. Together with the 64-bit
tweak input T', four 64-bit round-tweakeys T Ky, TK;, TKy and T K3 are derived. The
cipher uses 31 identical round functions R; with 0 < i < 30 together with a linear round
Rs31. CRAFT makes use of the following five operations:

e SB: The 4-bit involutory S-box S is applied to each nibble of the state. This S-box
is the same as the S-box used in the block cipher MIDOR [BBIT15].

e MC: Each column of the state is multiplied with the following involutory binary

matrix :
1011

0101
0010
0001

e PN: Using an involutory permutation P, the position of the nibbles in the state
changes. Particularly, X[i] is replaced with X [P(4)], where

P =[15,12,13,14, 10,9,8,11, 6,5,4,7, 1,2,3,0] .

e Aprc,: One 4-bit and one 3-bit round-constant value is XORed with the forth and
the fifth state nibbles, respectively.

e Arg,: The cipher uses four 64-bit tweakeys T Ky, TK1, TKs and T K3 from the
tweak T and the key (K || K1) as

TKy=Ko@ T, TK, =K, &T, TKy =Ko & QN(T) , TK3 = K, & QN(T) ,
where QN(T') applies the permutation
Q = [12,10,15,5, 14,8,9,2, 11,3,7,4, 6,0,1, 13]

on the position of tweak nibbles which T'[i] is replaced by T[Q(¢)]. Then in each
round ¢, without any key update, the tweakey T K; moq 4 is XORed to the state that
for the simplicity, we will use T'K; notion.
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Figure 1: One full round of CRAFT.

The round functions R;, with 0 < ¢ < 31, are defined as
Ri =SBoPNoArg, oArc, oMC
and the last round R3; as
Rs1 = Ark, 0o Agc,, oMC.

One full-round function of CRAFT is depicted in Figure 1.

3 CRAFT Weak-Key Structure

In the following, based on the given properties, first, we present an equivalent definition
for CRAFT round function. Then, using the new representation, we introduce a weak-key
structure for the cipher.

We use X’ and X" to denote the left half and right half of the state X, i.e., X' =
(X[0],...,X[7]) and X" = (X[8],..., X[15]). We use the same notation to denote each
halves of the key, tweak, and tweakey, e.g., we use TK/ and T K for the latter case.

Property 1. In MC operation, for each column index j € {0,...,3}, we have

X{OJ} XF),J} X[ZJ][GB)?BJ]

X1, X[1,j X[3,5

M x| | = x| @ 0
X[3,]] X[3,7] 0

That is, a linear combination of the right half is XORed with the left half; i.e.,
MC(X' || X") = (X' @M/ (X") || X"),

where MC’ is the corresponding linear operation with binary matrix M’ to each column of
the right half:

=[] e [S] - [Fedg e

Property 2. PN operation replaces the left half of the state with a nibble permutation of
the right half and vice verse; i.e.,

PN(X' || X7) = (PN"(X") [ PN'(X"))
with PN’ using the following P’ permutation to replace X[i] by X [P’ (i)]:
P =1[6,5,4,7,1,2,3,0] .

Moreover, since PN is an involutive operation, we have PN" = PN/~!.
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Figure 2: Representation and equivalent round functions of CRAFT.

Using Property 1 and Property 2, it is possible to represent the round function of CRAFT
as the function shown in Figure 2(a) where we use SB’ operation to denote the application
of the S-box S to each of eight nibbles. Besides, we use A’ to denote the tweakey or round
constant addition in each half of the state.

Proposition 1. CRAFT encryption is equivalent (up-to a nibble-permutation and an S-box
operation on the right half of the plaintext/ciphertext and a nibble-permutation on the right
half of the round tweakeys) to the encryption with the round function

Riy(X' || X") = (SB" 0 Al g 0 SB'(X") || A gs 0 g, oMC' o PN/ 0 SB'(X") @ X')

that TK[" = PN"(TK!), except in the last round, similar to the Feistel network, the final
swapping between the right and left halves are omitted. The equivalent round function is
shown in Figure 2(b).

Proof. For CRAFT round function, we have:

Ri(X'|| X") = SBoPNoArk, o Apc, o MC(X' || X"
=PNoSBoArg, oAgc, o MC(X' || X"
=PNoSBoArg, oAgc, (X @MC'(X") || X")

)
)
)
=PNoSBoArgk, (ARC (X' @mc' (X)) |l X”)
fPNoSB<ATK, 0 A, (X' @ MC'(X")) || Apgcr X”))
_PN(SB o A1 0 Npe, (X" @ MUC(X")) || B’ oATK,,(X”)>
= (PN” 0 8B 0 Ay (X") || PN 0 SB' 0 Apes 0 A, (X' @ MC’(X”))) .

This is the same representation of CRAFT round function in Figure 2(a). Similarly for the
last linear round, we have:

R (X' [| X") = (M ey (X' ©NC'(X") & RCYy ) || ey (X))

Consider now a bijective function G. By iterating R, = G o R; o G~! instead of R;
round functions, we reach to an encryption equivalent to the CRAFT encryption.

Riyo...oRjoRy=GoR310G to...0GoR0G 1 oGoRyoG*
:g0R310...OR10ROOg_1.
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Precisely, for the plaintext X and the corresponding ciphertext Y in the CRAFT encryption,
the plaintext G(X) will be encrypted to the ciphertext G(Y') in the equivalent cipher with
R} round functions. By choosing G as

(X' X") = (X'||sB o PN"(X")) = G71(X'|| X") = (X' || PW o SB'(X")),

it is possible to simplify the equivalent round functions:

RUX' || X") =GoRi0G (X" || X") = GoR;(X'||PN o SB'(X"))

= g(PN” 0SB’ 0 A 0 PN’ 0 SB'(X") || PN’ 0 SB' 0 A% 1/ 0 Al (X' @ MC' 0 PN 0 SB’(X”)))

= G(SB" 0 Ay o PN o PN’ 0 SB'(X") || PN’ 0 SB' 0 A%js 0 A (X @ MC' o PN 0 SB/ (X
TK! TK! RC;

=g (SB’ 0 A 0SB (X") || PN 0 SB' 0 Al 0 A, (X @ MC o PN 0 SB’(X”)))

- (SB’ o Al e 0SB (X") || SB' o PN” 0 PN’ 0 SB' 0 A 0 A (X' @ MC' o PN 0 SB’(X”)))

= (SB’ o Al e 0 SB'(X") || SB' 0 SB' 0 A% ps 0 Az (X' @ MC o PN’ 0 SB’(X”)))

= (SB’ o A 0 SB'(X") || A s 0 Ao, (X' @MC" o PN o SB’(X”))) ,

where TK]" = PN’(TK/"). Note that this is the same round function as in Figure 2(b).
Similarly for the last round, we have:

LX) = (A’TKé 0 A, (X' @MC" o PN 0 SB'(X")) || SB 0 A7 © SB’(X”)> ,

which is same as the other round functions R} without the final swapping between the left
and the right halves of the state. O

The equivalent representation of CRAFT encryption is quite similar to the Feistel network.
The only difference is in the transition of the right half of the state which is through
SB’ o Ay 0SB’ function while in the case of a Feistel network, this functions is the identity
function.

On the other hand, this suggests a weak-key structure for CRAFT. If SB’ o Ay g o SB’
is equal to the identity function, CRAFT will be a Feistel network which includes 7partial
nonlinear round and partial key-addition.

Lemma 1. SB' o A, 0SB’ is equal to the identity function if and only if TK"' = 0.
Proof. SB' o ALy, 0 SB is the identity function if and only if for any X’ € F32,
SB 0 e 0 SB(X') = X' & Ny (X') = X' & X'@TK! =X' & TK} =0.
O

The round function in the weak-key CRAFT encryption is shown in Figure 3(a) which
by using an equivalent tweakey schedule, changes to the Feistel round function shown in
Figure 3(b).

Proposition 2. If all the right halves of the tweakeys in CRAFT encryption are equal to
zero, i.e. all TK]' =0 with 0 < i < 4, then the encryption is equivalent to the Feistel
network with the following round function

Ri(X', X") = (X", X" ® F;(X" ® ETK;)) with F; := Agcs oMC' o PN’ 0 SB',
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(a) (b)

Figure 3: Feistel round function of weak-key CRAFT.

where ETK; is an equivalent tweakey. Moreover, the equivalent round tweakeys are

ETKy =0 ., ETK,=K,eT , ETK,=K|&T , ETK;=T &T",
ETKy=T &T", ETKs=K,®T", ETK¢=K &T", ETK;=0

while for i > 8, we have ETK; = ETK,; moas. Besides, T denotes the left half of QN(T'),
i.e., T" = (QN(T)[0], ..., QN(T)[7]).

Proof. The behavior of key addition in the Feistel network is already studied well and
it is known in the literature that the Feistel cipher with round functions defined by
Ri(X', X") = (X”, RK;® X' @}}(X”)) is equal to the Feistel cipher with round functions
of RI(X', X") = (X", X' ® F;(X" & ERK;)) where for i > 1,

ERK; = RK; 1 ® ERK,; o with FRKy =0, ERK; = RK),

together with a whitening key in the ciphertext. And the whitening key is ERK,._1 on
the right half and ERK; on the left half.

The CRAFT tweakey schedule uses four 32-bit round tweakey, T K|, TK{,TK) and TK},
repeatedly. For the equivalent round tweakeys, we would have the following eight round
tweakeys:

ETKy = = = 0 ,
ETK, =TK]| Ko T |,
ETKy; = ETKy®TK] =TK; KieT
ETK; =ETK1®TK,=TK, e TK, =T &T"

ETK, =ETK:®TK,=TK,oTK; =T &T"
ETKs; = ETK3; ®TK) =TKj), =K,eT",
ETK¢ = ETK,®TK] =TK}, =KjoT",
ETK; =FETKs;®TK} = = 0 ,
that are uses repeatedly. For the whitening keys we have ERK3; = FERK35 = 0. O

As you see, half of the round tweakeys in the equivalent tweakey schedule are indepen-
dent of the key value. More important, ET Ky = ETK7; = 0 makes the first and the last
rounds of the weak-key structure of CRAFT to be key-less rounds. This means, the security
of the 32-round CRAFT cipher with Feistel network structure is based on the middle 30
rounds and the other two rounds are actually useless.

4 Differential and Linear Analysis

In this section, first we use an MILP tool to find all the activity patterns with the minimum
number of active S-boxes in reduced-round differential and linear trails of the weak-key
CRAFT structure. We apply the methods introduced in [ELR20] to estimate the EDP for
the differential effect within these differential activity patterns. Later, we show that the
actual weak-key space in the differential activity patterns can be larger than the weak-key
space for the weak-key structure (with size of 264 weak keys).
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Table 1: The minimum number of active S-boxes in differential and linear activity patterns
in up to 31 rounds of CRAFT. n; and no denote the numbers for the original and the
weak-key structures, resp.

rl1 2 3 4 5 6 7 8 9<r
ny|1 2 4 6 10 14 20 26 4-(r—1)
ng |0 1 2 3 4 7 10 13 2-(r—1)

4.1 Minimum Number of Active S-boxes

To compare the resistance of CRAFT cipher in its original structure and in the weak-key
structure against the differential and linear attacks, we compute the minimum number of
active S-boxes in the single-tweak model.' In order to compute these bounds, similar to the
one in the CRAFT proposal paper [BLMR19], we use the MILP as explained in [MWGP11].
It is noteworthy that this approach is independent of the specification of the S-box and it
takes only the properties of the linear layer into account.

While for computing the minimum number of active S-boxes in the original structure of
the cipher, in the MILP codes, in each round, we need to consider all the 16 corresponding
variables to the S-box layer as objective variables, in the case for the weak-key structure,
we must consider the 8 corresponding variables to the right half variables in the S-box layer.
Beyond this difference in the two structures of CRAFT, by taking benefit of the Feistel-like
design of the cipher, we slightly improved the MILP codes used in [BLMR19] to reduce
the number of variables.

As it is already mentioned in [MWGP11], to find the the minimum number of active
S-boxes for linear activity patterns, it is enough to replace the matrix of MC layer, M,
by the corresponding inverse of transpose matrix, (M ~)7 (which equals to M7T). The
current choice for M causes that solving the equation to find the minimum number of
active S-boxes with matrix M, to be the same as solving with M”*. This means that for a
given number of rounds, the minimum number of active S-boxes in differential activity
patterns is the same as the minimum number of active S-boxes in linear activity patterns.

Table 1 shows the minimum number of active S-boxes in the single-tweak model for
1 up to 31 rounds in both differential and linear activity patterns. We use n; and ns
to denote the numbers for the original and the weak-key structures, respectively. One
interesting observation from Table 1 is that for most of the number of rounds, ns is exactly
half of n;. Intuitively saying, this makes sense because in the weak-key structure, each left
half of the state is considered once, while in the original structure, each left half-state is
considered twice: first in the left half-state of the current round and second in the right
half-state of the next round.

While for the original structure, after 9 rounds, all the numbers of active S-boxes are
higher than 32, for the weak-key structure, this happens after 17 rounds. Note that having
at least 32 active S-boxes is important because the maximum differential probability (resp.
absolute linear correlation) for an active S-box is 272 (resp. 27!) and this makes the
probability (resp. absolute correlation) of a differential (resp. linear) characteristic to be
less than or equal to 2% (resp. 2732). Therefore, such a characteristic cannot distinguish
the (reduced-round) cipher from a random permutation.

4.2 Differential Effects

Finding the minimum number of active S-boxes considers only a single characteristic in the
analysis. Therefore, the differential or linear distinguisher might actually be stronger due to

1We recall that in a differential (resp. linear) activity pattern, an S-box is called active, if the input
difference (resp. mask) is non-zero.
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Table 2: The maximum EDP for the differentials within the activity patterns with

minimum number of active S-boxes. Note we use p = —log, EDP instead of showing values
for the EDP.
r 9 10 11 12 13 14 15 16 17 18

p 25,79 29.79 3554 4142 4119 45.19 50.42 5642 54.00 58.11

differential or linear hull effects, respectively. To have a better estimation about the strength
of the differential distinguishers, we compute the EDP of the differentials. To this point,
we use the MILP technique introduced in [SHW™14] to find all the differential activity
patterns with the minimum possible active S-boxes. Then, for each given differential
activity pattern, we use the methods in [ELR20] to compute the EDP of the differentials
within the activity pattern. That is by fixing the input and output differences in the
differential, we consider all different the single characteristics which follow the same
activity pattern with the minimum number of active S-boxes. Then by summing all theses
probabilities of each single characteristics, we find a lower bound for the probability of
corresponding differential. We repeat this computation for all the different values for the
input and output differences in the differential to find the differential with the maximum
EDP.

It is noteworthy to mention again that the computed values for the EDPs are lower
bounds, because for a fixed input and output difference, there might be some other single
characteristics that are not following the S-box activity pattern. However, as for such
characteristics the number of active S-boxes will be higher, we assume their affect on the
probability of differential to be negligible.

Table 2 summarizes the maximum EDP for the differentials within the activity patterns
with minimum number of active S-boxes up to 18 rounds. For 19 rounds and more, there
is no differentials within the activity patterns of minimum number of active S-boxes that
has EDP of higher than 274, Note that in this table, instead of showing value of the EDP,
we use p = — log, EDP.

The differentials of 18-round with the highest EDP (= 275811 within the differentials
of the activity patterns with the minimum number of active S-boxes (34 S-boxes) are listed
in Table 3 which are from four different activity patterns. Note that in these activity
patterns, the active and the inactive nibbles of states are denoted by 1 and 0, respectively;
Besides, the values of the input difference (AP) and the output difference (AC') are shown
in the hexadecimal.

4.3 Enlarging Weak-Key Space in a Differential Activity Pattern

To achieve the Feistel round function of CRAFT (shown in Figure 3(b)), it is necessary
to have TK!" = 0 for all the i values which leads to 264 weak-keys out of the 21%® keys.
But for the differentials within an activity pattern, considering TK/” = 0 is a generous
condition. Considering the Figure 2(b), to assure that the differential probability of a
differential transition over the right branch (over the SB’ o Ap KO SB’ operation) is equal
1, it is enough that only the nibbles of TK}” be zero which are the corresponding nibbles
to the active nibbles in the difference. This is because of the property of a bijective S-box
which a zero difference in the input leads to zero difference in the output and vice verse.

Therefore, it is possible to use the same activity patterns found for the structure with
Feistel round functions shown in Figure 3, also for the structure with the round functions
shown in Figure 2(b). To do this, we only need to consider weak-keys which make the
active nibbles of all TK/”'s to be zero.

Example 1. Consider a distinguisher corresponding to the trail 1 from Table 3. This
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distinguisher works for the weak-key space which leads to

TKY'0] = TK{'[2] =0, TK{[0] = TK{}[6] = TK{}[7] = o,

TK}'[3] = o, TK}(0] = T[] = o,

TKY'[0] = TK}'[6] = 0, TK3[0] = TK}3[6] = TK{3[7) = 0,

TKY'[0] = TKY'[7] = o, TK};[0] = TK}4[6] = TK{{[7] = o,

TK}'[0] = TK}'[6] = TK/'[7] = 0, TK2[0] = TKZ[7) = o,
TK('|0] = TK('[6] = TK/'[7] = 0, TK{[0] = TK{[6] = o,
TK7'[0] = TK7"[T] = 0, TKi7[3] =0,

TKY'[0] = TKY'[6] = TK'[7) = 0, TE}3[0] = TK4[2] = o.

Moreover, considering that TK; 4 = TK;, all the above conditions can be combined in
below conditions:

TKY[0] = TKY'[2] =
TK/// [O] TK///[2]

= TK{'[6]
TK/// [6}

= TK}'[7] =0,
TKY[7] =0,

TK!"[3] =0,
TK}'[0] = TK”’[?] =o.
Satisfying these conditions is possible by fixing 4 nibbles (indexed by 8, 11, 13, 15) from
Ky and 3 nibbles (indexed by 11, 14, 15) from K7 to a value dependent on the tweak value.
Hence, it works for the weak-key space of 2199 keys.

It is noteworthy to mention that the size of the weak-key space for other distinguishers
from Table 3 is also 2190 keys. Besides, it is important to mention that there are some
other distinguishers with a larger size for the weak-key space, but with a lower value for the
EDP. By appending some rounds before and some after, one can use these distinguishers to

Table 3: 18-round differentials with the highest EDP (= 27°%:11) within the differentials
of the activity patterns with the minimum number of active S-boxes.

trail 1 trail 2 trail 3 trail 4
01010101 10100000 | 10101010 01010000 | 01010101 10100000 | 10101010 01010000
10100000 00010000 | 01010000 10000000 | 10100000 01000000 | 01010000 00100000
00010000 10000010 | 10000000 01000001 | 01000000 00101000 | 00100000 00010100
10000010 10000001 | 01000001 00011000 | 00101000 00100100 | 00010100 01000010
10000001 10000011 | 00011000 01000011 | 00100100 00101100 | 01000010 00011100
10000011 00000000 | 01000011 00000000 | 00101100 00000000 | 00011100 00000000
00000000 10000011 | 00000000 01000011 | 00000000 00101100 | 00000000 00011100
10000011 10000001 | 01000011 00011000 | 00101100 00100100 | 00011100 01000010
10000001 10000011 | 00011000 01000011 | 00100100 00101100 | 01000010 00011100
10000011 00000000 | 01000011 00000000 | 00101100 00000000 | 00011100 00000000
00000000 10000011 | 00000000 01000011 | 00000000 00101100 | 00000000 00011100
10000011 10000001 | 01000011 00011000 | 00101100 00100100 | 00011100 01000010
10000001 10000011 | 00011000 01000011 | 00100100 00101100 | 01000010 00011100
10000011 00000000 | 01000011 00000000 | 00101100 00000000 | 00011100 00000000
00000000 10000011 | 00000000 01000011 | 00000000 00101100 | 00000000 00011100
10000011 10000001 | 01000011 00011000 | 00101100 00100100 | 00011100 01000010
10000001 10000010 | 00011000 01000001 | 00100100 00101000 | 01000010 00010100
10000010 00010000 | 01000001 10000000 | 00101000 01000000 | 00010100 00100000
00010000 10100010 | 10000000 01010001 | 01000000 10101000 | 00100000 01010100

AP 0x0a0z0a a0y00000 | a0z0a0z0 0a0y0000 | 0a0z0aldz al0y00000 | x0a0x0a0 0a0y0000
AC 000y0000 a0z000t0 | y0000000 0a0z000t | 0a000000 z0y0t000 | 00200000 0z0y0t00
t=y®z and t=z®a , z€{5,a,d,f} and
(ayz) € {(5,2,0),(7,5,%), (y.2) € {(5,%), (2,0, (d.7), (£.5)}
(7,4,7),(a,5,f),(a,a,0),(a,d,7),
(a,£,5),(d,a,0), (£,a,0), (£,£,5)}
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do a key recovery attack on the reduced-round CRAFT. For all the distinguishers in Table 3,
appending 3 (resp. 4) rounds before (resp. after) the distinguisher activates all the nibbles
in the plaintext (resp. ciphertext) difference. All together, it might be possible for the
attacker to do a key recovery attack on 25 rounds of the CRAFT cipher.

Differential Properties of S* := S(S(-) @ c¢): We already mentioned that since S is
an involution, S is the same as identity function. This makes it possible for any input
difference of o € F3 to transit to the same difference in the output of S-box S with
probability 1. Here, we study the probability for transition of an input difference «a to
the same difference in the output of S for non-zero values of ¢ € F3. Table 4 shows the
number of x € F§ such that for each given ¢ and a, S} (z @ o) ® S (z) = a.

Interestingly, there are some high values in this table; specially, there are two non-zero
values for ¢ and « pair which the input difference « stays the same in the output with
probability 1; namely for ¢ = @ = 2 and ¢ = a = a. For our application, this means that
even if the corresponding nibble of the round tweakey for an active S-box of S* is not zero
(i.e. the key value is not in the weak-key space), it may lead to a high EDP. But this EDP
is always smaller than the one we computed for the weak-keys (which this nibble of the
round tweakey is necessarily zero) and this is because of the restriction in the values of
the input/output difference of S* S-box. For instance, in case of ¢ = a, while only the
input difference value of a can transit with probability 1, input difference with a value
in {s,7,d,£} can also transit to the same difference in the output with probability 2.
Therefore, the differentials discussed in the previous sections are not only useful for the
keys within the weak-key spaces, but it might be possible to be applied for the keys out of
the weak-key spaces by using a smaller EDP value.

It is noteworthy to mention that the transition probability for ¢ = oo = a, previously was
observed and applied in [GSS'20] to enlarge the weak-key space. While their technique
makes it possible to enlarge the weak-key space, it fixes the difference value in some
intermediate nibbles. Therefore, the EDP of the differential gets smaller in favor of making
the weak-key space larger. This can be used as a trade-off between the EDP and the size
of weak-key space, which in case of a key recovery attack, both of these parameters affect
number of needed plaintext differential pairs. Hence, the attacker can take advantage of

Table 4: Number of entries = for S} (z @ ) @ S¥(z) = .

o
1 2 3 4 5 6 7 8 9 a b c d e f

112 4 0 6 2 6 0 2 0 0 0 0 0 2 O
2|14 16 4 4 0 4 0 0 4 0 4 4 0 4 O
3|{0 4 0 6 0 4 2 2 2 0 0 0 2 0 2
416 4 6 2 2 0 0 2 0 0 2 0 0 0 O
512 0 0 2 4 0 4 0 2 8 0 2 4 0 4
6|6 4 4 0 0 0 2 2 0 0 0 2 2 0 2
70 0 2 0 4 2 4 0 0 8 2 0 4 2 4

c 82 0 2 2 0 2 0 0 2 0 2 2 0 2 O
9/0 4 2 0 2 0 0 2 6 0 6 2 0 0 O
al0O 0 0 O 8 0 8 0 0 16 0 0 8 0 8
b0 4 0 2 0 0 2 2 6 0 4 0 2 0 2
c|0 4 0 0 2 2 0 2 2 0 0 6 0 6 0
d{0 0 2 0 4 2 4 0 0 8 2 0 4 2 4
e|2 4 0 0 O 0O 2 2 0 0 0 6 2 4 2
£{0 0 2 0 4 2 4 0 0 8 2 0 4 2 4
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Figure 4: Round-based design architecture of the new structure.

this to reduce the data and/or time complexity of the attack.

Note that even though, we only analyzed security of the weak-key structure against
differential and linear cryptanalyses, but since we believe that it can be applied to improve
the result against other attacks (such as impossible differential, zero-correlation linear hull,
meet-in-the-middle, and integral), in contrary to [GSST20], we keep the general weakness
as it is and do not specialize the weakness only for differential attack.

5 Hardware Implementation of the New Structure

Even though the Feistel network (weak-key structure) of the CRAFT block cipher provides
less cryptographic security than the original design, in this section, we show that the
new structure makes it possible to have a better implementation of the cipher specially
when the encryption is combined with decryption and also when it is combined with
the countermeasures against fault analysis. To this point, we start with recalling the
specification of the new structure.

The new structure is a Feistel-network block cipher with the following round function:

Ri(fﬂi_h Iz) = (I’i, xi+1) with Ti41 = Tj—1 D -Fz(xz) and ./.'; = ARCZ{ @) MC/ @) PN/ @) SB, o Atki .

Note that since as it is shown in Proposition 2, the current tweakey schedule of the
structure provides weak round tweakeys (the ones denoted by ETKs), we recommend to
use another stronger tweakey schedule that we denote them by tk;s.

Encryption Only: Since with an equal number of rounds, the new structure is less
cryptographically secure than the original CRAFT structure, it is necessary to use more
number of rounds to provide a secure cipher using the new structure. In the round-
based design architecture (which was the target implementation of the CRAFT cipher), the
overhead of increasing number of rounds is on the increasing number of clock cycles used
for an encryption and does not affect the area cost of implementation.

Figure 4 illustrates the round-based implementation of the new structure excluding the
circuit for the tweakey structure. Compared to the round-based implementation of CRAFT
shown in [BLMR19, Figure 8], the new design decreases the area of implementation and it
is because of using 8 S-boxes per round (instead of 16) and using 32 XOR gates for the
key addition (instead of 64).

Encryption & Decryption Thanks to the being a Feistel network, in the new structure,
the decryption is the same as the encryption with the reverse order of the round constants
and round tweakeys. Therefore, to provide the decryption on top of the encryption, we
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only need to add extra circuits for reversing the order of the round constants and the
round tweakeys. For reversing order of the round constants, we only need to implement the
inverse of the updating function for the LFSRs. Besides, if the tweakey schedule iterates
the round-tweakeys (similar to the one in the CRAFT cipher), it is possible to reverse the
order of the round tweakeys by updating the circuits for the selector bits of the multiplexer
choosing the round tweakey. Note that both of these techniques are already already applied
in the CRAFT design with a very small area overhead.

The prominent difference of combining encryption and decryption for the new structure
and the CRAFT cipher is that in the case of the latter one, we need to modify the round
tweakeys from TK; to MC(T'K;). This modification needs extra 48 XOR (to implement MC
circuit) and 32 MUX gates (to choose between these two round tweakeys). All together,
the encryption+decryption circuit of the new structure is smaller than the one for CRAFT
cipher with difference of 8 Sboxes, 80 XOR and 32 MUX gates which in the IBM 130nm
ASIC library equals to 328 GE.

It is noteworthy to mention that here, we do not consider the difference in the imple-
mentation of the new tweakey schedule. Just as an example, consider the 128-bit master
key as four 32-bit keys (ko||k1|/k2||ks), and the 64-bit tweak as two 32-bit tweakeys (tol|t1).
The similar tweakey schedule to the CRAFT tweakey schedule would be iterating following
12 round tweakeys:

tho = ko ©ty, thi=ki, tha=ko@t1, ths=k3Dty, tha=ko, ths=Fk Dti,
the = ko ©to, thy =ks, thg=ko®t1, thko =~k ©to, thio=ko, thi1=k3®Dt1.

Please note that the new tweakey schedule not only has smaller footprint in the imple-
mentation, it also makes the Time-Data-Memory Trade-off attack mentioned in [BLMR19,
Section 5.3] impossible.

Applying Fault Analysis Countermeasures In [AMR ™20, SRM20], it is shown that apply-
ing concurrent error detection-based countermeasures against fault analysis have overhead
of more than 100% (even if there is one bit redundancy per nibble) and this gets worse
in the case of error correction-based countermeasures. The main reason for this is that
the check points or the correction points in these countermeasures are several times larger
than the circuit for the round operation.

While in the fault analysis countermeasures for the CRAFT cipher, it is necessary to have
16 check points (or correction points), for the new structure having only 8 of these points
suffices to protect against a univariate adversary model. We recall that the univariate
adversary model considers an adversary that can inject up-to a known limited number of
faults in the entire of encryption. Therefore, the new structure makes it possible to have
even more efficient design for protection against fault analysis attacks.

6 Conclusion

While most of the security analysis for new block cipher designs are usually based on the
assumption of independent round keys, it may happen to overestimate resistant of the
design in the weak-key scenario. In this work, we showed how the SPN structure of CRAFT
block cipher (with full-state non-linear layer) changes to a Feistel-network structure (with
half-state non-linear layer) in the weak-key scenario. Consequently, in the same number of
number of rounds, the weak-key structure of the cipher is less resistant against differential
and linear cryptanalyses. However, the new structure suggests some efficiencies in the
hardware implementation of the cipher: providing decryption on top of encryption with
almost zero overhead, and reducing the overhead of protecting against FA attacks by factor
of about two. Therefore, it is possible to use the new structure as a new block cipher with
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improved hardware efficiency. All that is left here is to develop an appropriate tweakey

schedule.
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