
Weak Tweak-Keys for the CRAFT Block Cipher
Gregor Leander1 and Shahram Rasoolzadeh2

1 Ruhr University Bochum, Bochum, Germany, firstname.lastname@rub.de
2 Radboud University, Nijmegen, The Netherlands, firstname.lastname@ru.nl

Abstract. CRAFT is a lightweight tweakable Substitution-Permutation-Network (SPN)
block cipher optimized for efficient protection of its implementations against Dif-
ferential Fault Analysis (DFA) attacks. In this paper, we present an equivalent
description of CRAFT up to a simple mapping on the plaintext, ciphertext and round
tweakeys. We show that the new representation, for a sub-class of keys, leads to a
new structure which is a Feistel network, with non-linear operation and key addition
only on half the state. Consequently, it reveals a class of weak keys for which CRAFT
is less resistant against differential and linear cryptanalyses. As a result, we present
one weak-key single-tweak differential attack on 23 rounds (with time complexity of
294 encryptions and data complexity of 274 chosen plaintext/tweak/ciphertext tuples
and works for 2112 weak keys) and one weak-key related-tweak attack on 26 rounds of
the cipher (with time complexity of 2105 encryptions and data complexity 273 chosen
plaintext/tweak/ciphertext tuples and works for 2108 weak keys). Note that these
attacks do not break the security claim of the CRAFT block cipher.
Keywords: CRAFT · partial key addition · partial non-linear layer

1 Introduction
CRAFT is a tweakable block cipher presented at FSE 2019 and designed by Beierle, Leander,
Moradi, and Rasoolzadeh [BLMR19]. The cipher follows the SPN design with 32 rounds
and iterates 4 round tweakeys as of the tweakey schedule. The main goal of CRAFT was
to efficiently provide protection of its implementations against DFA attacks [BS97] while
to provide decryption on top of the encryption with minimum overhead was considered
as a side goal in the design criteria. The encryption-only implementation of the cipher
needs 949 GE (using the IBM 130nm ASIC library), which is less than that of the any
reported round-based implementation of a lightweight block cipher whose key size is 128
bits. Besides, considering the protected against DFA implementation of the cipher, under
the same settings with respect to the employed error-detection code, its area overhead
(even with decryption and tweak support) is smaller than all block ciphers considered in
[BLMR19] with compatible state and key size.

The designers of CRAFT provided a detailed security analysis of the cipher in their pro-
posal paper which covers differential, linear, impossible differential, zero-correlation linear
hull, meet-in-the-middle, time-data-memory trade-offs, integral (and division property),
and invariant attacks. Overall, they claimed 124 bit security in the related-tweak attacker
model. After the publication of the design, some other follow-up cryptanalysis has been
published [HSN+19, MA19, EY19, GSS+20] and in the following, we briefly explain results
of these analyses.

1.1 Known Results on CRAFT

Hadipour et al. [HSN+19] presented a detailed security analysis of CRAFT. In particular,
they presented 14-round related-tweak zero-correlation linear hull distinguishers. Using
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the same distinguishers and following the connection between zero-correlation and inte-
gral distinguisher, they also presented a 14-round related-tweak integral distinguisher.
Furthermore, using the automated search model based on an MILP tool, they found the
mistake reported on the differential probability and on the maximum number of rounds
for single-tweak differential distinguishers.

Moghaddam and Ahmadian [MA19] used an MILP-based tool to find truncated differen-
tials distinguishers for CRAFT, MIDORI, and SKINNY block ciphers. In the case of CRAFT, they
reported a 12-round distinguisher. ElSheikh and Youssef [EY19] presented a related-key
differential attack that recovers the whole 128-bit key in a full-round CRAFT with querying
corresponding ciphertext for about 236 chosen plaintexts and time complexity of about 236

encryptions using a negligible memory. Note that the designers did not claim any security
in the related-key model.

More recently, and most relevant for our work, Guo et al. [GSS+20] studied the
combination of the involutory S-box and the simple tweakey schedule used in the CRAFT
block cipher. They found that some input difference at a particular position can be
preserved through any number of rounds if the input pair follows certain truncated
differential trails. They used this property to construct weak-key truncated differential
distinguishers of round-reduced CRAFT. As a result, they found some 16-round and one
18-round truncated differential distinguishers of CRAFT that can be extended to a 20-round
distinguisher with probability 2−63. Moreover, they presented a key recovery attack on the
19-round CRAFT with 261 data, 268 memory, 294.6 time complexity and success probability
of about 80%.

1.2 Our Contribution

In this paper, we first study the round operations used in CRAFT in detail. Using properties
of these operations, we redefine the round function of the cipher which leads to an
equivalent description of CRAFT up to a simple mapping on the plaintext, ciphertext and
round tweakeys. In a weak tweak-key scenario, mainly thanks to the involutory S-box
and the special choice of MixColumns used in CRAFT, the equivalent representation of
the cipher leads to a Feistel network where the non-linear operation (S-box layer) only is
applied on half of the state. In this weak tweak-key class of the encryption, the 128-bit key
must be one of 288 weak keys, and for each weak-key there are exactly 28 64-bit tweaks
those are included in the set of 232 weak tweaks.

We analyze the security of the new weak tweak-key structure of the cipher and show
that compared to the original structure of CRAFT, the new structure is less resistant against
differential and linear cryptanalyses. This part of our results in particular gives another
explanation of the results in [GSS+20] and explains the weak tweak-keys identified there.

As a consequence, we find several 18-round single-tweak differential and several 21-
round related-tweak differentials with higher EDP than 2−64. We apply one of 18-round
single-tweak differentials to do a differential key recovery attack on 23-round CRAFT under
the weak key model which can recover the key (out of 2112 weak keys) using 274 chosen
plaintext/tweak/ciphertext tuples within about 294 encryptions by using 251 blocks of
memory. We also apply one of 21-round related-tweak differentials to do a 26-round
differential key recovery attack which recovers the key (out of 2108 weak keys) using 273

chosen plaintext/tweak/ciphertext tuples within about 2105 encryptions by using 260 blocks
of memory. Note that it is possible to reduce the complexity of attack, by reducing number
of the appending rounds. We emphasize that these attacks do not overcome the security
claim of the CRAFT block cipher and they are only a security evaluation of the cipher.
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1.3 Outline
First in Section 2, we recall the design of CRAFT. Then in Section 3, we present an equivalent
definition for CRAFT round function and using the new representation, we introduce a
weak-key structure for the cipher. In Section 4, we use an MILP tool to find all the activity
patterns with the minimum number of active S-boxes in differential and linear trails of the
weak tweak-key CRAFT structure. We estimate the expected differential probability (EDP)
for the differential effect within these differential activity patterns and we show that the
actual weak-key space in the differential activity patterns can be larger than the weak
tweak-key space for the weak tweak-key structure. Later, in Section 5, we describe the
details of our single-tweak attack 23-round and related-tweak attack on 26-round CRAFT.
Finally, we conclude our paper in Section 6.

2 CRAFT Specification
CRAFT is a lightweight tweakable block cipher consisting of a 64-bit block, a 128-bit key,
and a 64-bit tweak. The state is viewed as a 4× 4 array of nibbles. The notation X[i, j]
denotes the nibble located at row i and column j of the state. By concatenating the rows
of the state, one can denote the state as a vector of nibbles that X[i] denotes the nibble in
i-th position of this vector, i.e., X[i, j] = X[4i+ j].

The 128-bit key is split into two 64-bit keys K0 and K1. Together with the 64-bit tweak
input T , four 64-bit round-tweakeys TK0, TK1, TK2 and TK3 are derived. The cipher
uses 32 rounds that the first 31 one are identical round functions Ri with 0 ≤ i ≤ 30 and
the last one is a linear round R31. CRAFT makes use of the following five operations:

• SB: The 4-bit involutory S-box S is applied to each nibble of the state. This S-box
is the same as the S-box used in the block cipher MIDORI [BBI+15].

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

• MC: The following involutory binary matrix is multiplied to each column of the state:

M =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 .
• PN: Using an involutory permutation P , the position of the nibbles in the state

changes. Particularly, X[i] is replaced with X[P (i)], where

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0] .

• ARCi
: One 4-bit and one 3-bit round-constant value is XORed with the forth and

the fifth state nibble, respectively.

• AT Ki : The cipher derives four 64-bit tweakeys TK0, TK1, TK2 and TK3 from the
tweak T and the key (K0 ‖K1) as

TK0 = K0 ⊕ T , TK1 = K1 ⊕ T , TK2 = K0 ⊕ QN(T ) , TK3 = K1 ⊕ QN(T ) ,

where QN(T ) applies the permutation

Q = [12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13]
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Figure 1: One full round of CRAFT.

on the position of tweak nibbles which T [i] is replaced by T [Q(i)]. Then in each
round i, without any key update, the tweakey TKi mod 4 is XORed to the state. For
simplicity, we will use TKi.

The round functions Ri, with 0 ≤ i < 31, are defined as

Ri = SB ◦ PN ◦ AT Ki
◦ ARCi

◦ MC

and the last round R31 is defined as

R31 = AT K3 ◦ ARC31 ◦ MC .

The full one-round function of CRAFT is depicted in Figure 1.

3 CRAFT Weak Tweak-Key Structure
In this section, based on the given properties in the following for the linear round operations
of the cipher, we present an equivalent definition for the CRAFT round function. Based
on the new representation, we introduce a weak tweak-key class for the cipher. In this
weak tweak-key class of the encryption, the 128-bit key must be one of 288 weak keys, and
for each weak-key there are exactly 28 64-bit tweaks those are included in the set of 232

weak tweaks. In the second part of the section, we show how to minimize the size of the
weak-key set by slightly modifying QN operation with respect to the criteria applied in the
design of CRAFT cipher. However, it is necessary to analyze the security of the modified
cipher concerning the other cryptanalysis.

We use X ′ and X ′′ to denote left and right halves of the state X, i.e., X ′ =
(X[0], . . . , X[7]) and X ′′ = (X[8], . . . , X[15]). We use the same notation to denote each
halves of the key, tweak and tweakey, e.g., we use TK ′i and TK ′′i for the latter case.

Property 1. In MC operation, for each column index j ∈ {0, . . . , 3}, we have

M



X[0, j]
X[1, j]
X[2, j]
X[3, j]


 =


X[0, j]
X[1, j]
X[2, j]
X[3, j]

⊕

X[2, j]⊕X[3, j]

X[3, j]
0
0

 .
That is, a linear combination of the right half is XORed with the left half, i.e.,

MC(X ′ ‖X ′′) =
(
X ′ ⊕ MC′(X ′′) ‖X ′′

)
,

where MC′ is the corresponding linear operation with multiplying the binary matrix M ′ to
each column of the right half:

M ′ =
[
1 1
0 1

]
and

[
X[2, j]
X[3, j]

]
7→
[
X[2, j]⊕X[3, j]

X[3, j]

]
.
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Figure 2: The round function for (a) CRAFT representation, and (b) equivalent CRAFT.

Property 2. PN operation replaces the left half of the state with a nibble permutation of
the right half and vice versa, i.e.,

PN(X ′ ‖X ′′) =
(
PN′′(X ′′) ‖ PN′(X ′)

)
,

with PN′ using the following P ′ permutation to replace X[i] by X[P ′(i)]:

P ′ = [6, 5, 4, 7, 1, 2, 3, 0] .

Moreover, since PN is an involutive operation, we have PN′′ = PN′−1.

3.1 CRAFT Equivalent and Weak Tweak-Key Representation
Using Property 1 and Property 2, it is possible to represent the round function of CRAFT
as the function shown in Figure 2(a) where we use SB′ operation to denote the application
of the S-box S to each of eight nibbles. Besides, we use A′ to denote the tweakey or round
constant addition in each half of the state.

Proposition 1. CRAFT encryption is equivalent (up-to a nibble-permutation and an S-box
operation on the right half of the plaintext/ciphertext and a nibble-permutation on the right
half of the round tweakeys) to the encryption with the round function

R′i(X ′ ‖X ′′) =
(
SB′ ◦ A′T K′′′

i
◦ SB′(X ′′) ‖ A′T K′

i
◦ A′RCi

◦ MC′ ◦ PN′ ◦ SB′(X ′′)⊕X ′
)
,

that TK ′′′i = PN′′(TK ′′i ), except in the last round that similar to the Feistel network, the
final swapping between the right and left halves is omitted. The equivalent round function
is shown in Figure 2(b).

Proof. For CRAFT round function, we have:

Ri(X ′ ‖X ′′) = SB ◦ PN ◦ AT Ki
◦ ARCi

◦ MC(X ′ ‖X ′′)
= PN ◦ SB ◦ AT Ki

◦ ARCi
◦ MC(X ′ ‖X ′′)

= PN ◦ SB ◦ AT Ki
◦ ARCi

(X ′ ⊕ MC′(X ′′) ‖X ′′)

= PN ◦ SB ◦ AT Ki

(
A′RCi

(
X ′ ⊕ MC′(X ′′)

)
‖X ′′

)
= PN ◦ SB

(
A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′(X ′′)

)
‖ A′T K′′

i
(X ′′)

)
= PN

(
SB′ ◦ A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′(X ′′)

)
‖ SB′ ◦ A′T K′′

i
(X ′′)

)
=
(

PN′′ ◦ SB′ ◦ A′T K′′
i

(X ′′) ‖ PN′ ◦ SB′ ◦ A′T K′
i
◦ A′RCi

(
X ′ ⊕ MC′(X ′′)

))
.



Gregor Leander and Shahram Rasoolzadeh 5

This is the same representation of CRAFT round function in Figure 2(a). Similarly for the
last linear round, we have:

R31(X ′ ‖X ′′) =
(

A′T K′
3

(
X ′ ⊕ MC′(X ′′)⊕RC ′31

)
‖ A′T K′′

3
(X ′′)

)
.

Consider now a bijective function G. By iterating R′i = G ◦ Ri ◦ G−1 instead of Ri round
functions, we reach to an encryption equivalent to the CRAFT encryption.

R′31 ◦ . . . ◦ R′1 ◦ R′0 = G ◦ R31 ◦ G−1 ◦ . . . ◦ G ◦ R1 ◦ G−1 ◦ G ◦ R0 ◦ G−1

= G ◦ R31 ◦ . . . ◦ R1 ◦ R0 ◦ G−1 .

Precisely, for the plaintext X and the corresponding ciphertext Y in the CRAFT encryption,
the plaintext G(X) will be encrypted to the ciphertext G(Y ) in the equivalent cipher with
R′i round functions. By choosing G as

G(X ′ ‖X ′′) =
(
X ′ ‖ SB′ ◦ PN′′(X ′′)

)
⇒ G−1(X ′ ‖X ′′) =

(
X ′ ‖ PN′ ◦ SB′(X ′′)

)
,

it is possible to simplify the equivalent round functions:

R′i(X ′ ‖X ′′) = G ◦ Ri ◦ G−1(X ′ ‖X ′′) = G ◦ Ri

(
X ′ ‖ PN′ ◦ SB′(X ′′)

)
= G

(
PN′′ ◦ SB′ ◦ A′T K′′

i
◦ PN′ ◦ SB′(X ′′) ‖ PN′ ◦ SB′ ◦ A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′ ◦ PN′ ◦ SB′(X ′′)

))
= G

(
SB′ ◦ A′T K′′′

i
◦ PN′′ ◦ PN′ ◦ SB′(X ′′) ‖ PN′ ◦ SB′ ◦ A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′ ◦ PN′ ◦ SB′(X ′′)

))
= G

(
SB′ ◦ A′T K′′′

i
◦ SB′(X ′′) ‖ PN′ ◦ SB′ ◦ A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′ ◦ PN′ ◦ SB′(X ′′)

))
=
(

SB′ ◦ A′T K′′′
i
◦ SB′(X ′′) ‖ SB′ ◦ PN′′ ◦ PN′ ◦ SB′ ◦ A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′ ◦ PN′ ◦ SB′(X ′′)

))
=
(

SB′ ◦ A′T K′′′
i
◦ SB′(X ′′) ‖ SB′ ◦ SB′ ◦ A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′ ◦ PN′ ◦ SB′(X ′′)

))
=
(

SB′ ◦ A′T K′′′
i
◦ SB′(X ′′) ‖ A′T K′

i
◦ A′RCi

(
X ′ ⊕ MC′ ◦ PN′ ◦ SB′(X ′′)

))
,

where TK ′′′i = PN′′(TK ′′i ). Note that this is the same round function as in Figure 2(b).
Similarly for the last round, we have:

R′31(X ′ ‖X ′′) =
(

A′T K′
3
◦ A′RC31

(
X ′ ⊕ MC′ ◦ PN′ ◦ SB′(X ′′)

)
‖ SB′ ◦ A′T K′′′

3
◦ SB′(X ′′)

)
,

which is same as the other round functions R′i without the final swapping between the left
and the right halves of the state.

We provided an step by step approach of this proof with illustrations in Figure 6.

Hereafter, we will simply call equivalent CRAFT to this equivalent representation of the
cipher (the one depicted in Figure 2(b)). Note that the equivalent CRAFT encryption is
quite similar to the Feistel network. The only difference is in the transition of the right
half of the state which is through SB′ ◦ AT K′′′

i
◦ SB′ function while in the case of a Feistel

network, this function is the identity function.
On the other hand, the equivalent CRAFT provides a weak tweak-key structure for CRAFT.

If the function SB′ ◦ AT K′′′
i
◦ SB′ is equal to the identity function, the equivalent CRAFT

will be a Feistel network which includes partial nonlinear round and partial key-addition.
Therefore, for such weak tweak-key classes, the equivalent CRAFT might shows weaker
resistance against some analysis, e.g., differential and linear attacks. Hereafter, we will
simply call weak tweak-key CRAFT to this weak tweak-key encryption of the equivalent CRAFT
(the ones depicted in Figure 3). In the following, we discuss the necessary requirements for
the weak tweak-key CRAFT.
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Lemma 1. SB′ ◦ A′T K′′′ ◦ SB′ is equal to the identity function if and only if TK ′′′ = 0.

Proof. SB′ ◦ A′T K′′′ ◦ SB′ is the identity function if and only if for any X ′ ∈ F32
2 ,

SB′ ◦ A′T K′′′
i
◦ SB′(X ′) = X ′ .

Since SB′ is involution, this equally means for any X ′, we must have

A′T K′′′
i
◦ SB′(X ′) = SB′(X ′) ⇔ TK ′′′i ⊕ SB′(X ′) = SB′(X ′) ⇔ TK ′′′i = 0 .

Lemma 2. In the weak tweak-key CRAFT, with the given permutation Q in the cipher’s
specification, the 128-bit key must be one of 288 weak keys, and for each weak-key there are
exactly 28 64-bit tweaks those are included in the set of 232 weak tweaks.

Proof. As a corollary from 1, to achieve the weak tweak-key CRAFT, it is necessary to
have TK ′′′i = 0 for all rounds. This equally means TK ′′0 = TK ′′1 = TK ′′2 = TK ′′3 = 0.
Simplifying these equations to the key and tweak variables, we reach to

K ′′0 = K ′′1 = T ′′ = QN(T )[8, . . . , 15] .

For the given Q permutation in the CRAFT specification, the above equation is same as

K0[8] =K1[8] =T [8] =T [11] , K0[9] =K1[9] =T [9] =T [3] ,
K0[10] =K1[10] =T [10] =T [7] , K0[11] =K1[11] =T [11] =T [4] ,
K0[12] =K1[12] =T [12] =T [6] , K0[13] =K1[13] =T [13] =T [0] ,
K0[14] =K1[14] =T [14] =T [1] , K0[15] =K1[15] =T [15] =T [13] .

This means that in the weak tweak-key CRAFT, the 128-bit key must be one of 288 weak
keys satisfying above equations, i.e., both K ′′0 = K ′′1 must be in the following form:

K ′′0 = K ′′1 =
(
x0, x1, x2, x0, x3, x4, x5, x4

)
.

Besides, the 64-bit tweak must be one of 232 weak tweaks in the form of

T =
(
t0, t1, t2, t3, t4, t5, t6, t7, t4, t3, t7, t4, t6, t0, t1, t0

)
.

Moreover, the weak key and the weak tweak must satisfy the followings:

x0 = t4 , x1 = t3 , x2 = t7 , x3 = t6 , x4 = t0 , x5 = t1 .

Therefore, for each weak key, there is exactly 28 weak tweaks with freedom on the t2 and
t5 nibbles, and in total there are 288+32−24 = 296 weak tweak-key pairs.

The round function of the weak tweak-key CRAFT is shown in Figure 3(a) which by using
an equivalent tweakey schedule changes to the Feistel round function shown in Figure 3(b).

Lemma 3. If all the right halves of the tweakeys in CRAFT encryption are equal to zero,
i.e., all TK ′′i = 0 with 0 ≤ i < 4, then the encryption is equivalent to the Feistel network
with the following round function

Ri(X ′, X ′′) =
(
X ′′, X ′ ⊕Fi(X ′′ ⊕ ETKi)

)
with Fi := A′RCi

◦ MC′ ◦ PN′ ◦ SB′ ,

where ETKi is an equivalent tweakey. Moreover, the equivalent round tweakeys are

ETK0 = 0 , ETK1 = K ′0 ⊕ T ′ , ETK2 = K ′1 ⊕ T ′ , ETK3 = T ′ ⊕ T ′′′,
ETK4 = T ′ ⊕ T ′′′, ETK5 = K ′0 ⊕ T ′′′, ETK6 = K ′1 ⊕ T ′′′, ETK7 = 0

while for i ≥ 8, we have ETKi = ETKi mod 8. Besides, T ′′′ denotes the left half of QN(T ),
i.e., T ′′′ =

(
QN(T )[0], . . . , QN(T )[7]

)
.
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MC′ SB′PN′

TKi
′

RCi
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ETKi

′

RCi
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Figure 3: The round function for weak tweak-key CRAFT.

Proof. The behavior of the key addition in the Feistel network is already studied well
and it is known in the literature that the Feistel cipher with round functions defined by
Ri(X ′, X ′′) =

(
X ′′, RKi⊕X ′⊕Fi(X ′′)

)
is equal to the Feistel cipher with round functions

of R′i(X ′, X ′′) =
(
X ′′, X ′ ⊕Fi(X ′′ ⊕ ERKi)

)
where for each i with i > 1, we have

ERKi = RKi−1 ⊕ ERKi−2 ,

while ERK0 = 0, ERK1 = RK0. Also, there is a whitening key in the ciphertext with
value of ERKr−1 and ERKr in the right and left halves, respectively.

The tweakey schedule in the weak tweak-key CRAFT uses four 32-bit round tweakeys,
TK ′0, TK

′
1, TK

′
2 and TK ′3 repeatedly. For the equivalent round tweakeys, we would have

the following eight round tweakeys:

ETK0 = = = 0 ,
ETK1 = = TK ′0 = K ′0 ⊕ T ′ ,
ETK2 = ETK0 ⊕ TK ′1 = TK ′1 = K ′1 ⊕ T ′ ,
ETK3 = ETK1 ⊕ TK ′2 = TK ′2 ⊕ TK ′0 = T ′ ⊕ T ′′′ ,
ETK4 = ETK2 ⊕ TK ′3 = TK ′3 ⊕ TK ′1 = T ′ ⊕ T ′′′ ,
ETK5 = ETK3 ⊕ TK ′0 = TK ′2 = K ′0 ⊕ T ′′′ ,
ETK6 = ETK4 ⊕ TK ′1 = TK ′3 = K ′1 ⊕ T ′′′ ,
ETK7 = ETK5 ⊕ TK ′2 = = 0 ,

that are used repeatedly. For the whitening keys we have ERK31 = ERK32 = 0.

As you see, half of the round tweakeys in the equivalent tweakey schedule are indepen-
dent of the key value. More important, ETK0 = ETK7 = 0 makes the first and the last
rounds of the weak tweak-key structure of CRAFT to be key-less rounds. This means that
the security of 32-round weak tweak-key CRAFT cipher with Feistel network structure is
based on the middle 30 rounds and the other two rounds are actually useless.

3.2 Effect of Q Permutation on the Size of Weak Key Set
The permutation Q plays an important role in the size of weak tweak or weak key sets.
For an arbitrary choice for permutation Q, from Lemma 2, we know that the essential
condition to achieve the weak tweak-key CRAFT is to have

K0[8] =K1[8] =T [8] =T [Q[8]] , K0[9] =K1[9] =T [9] =T [Q[9]] ,
K0[10] =K1[10] =T [10] =T [Q[10]] , K0[11] =K1[11] =T [11] =T [Q[11]] ,
K0[12] =K1[12] =T [12] =T [Q[12]] , K0[13] =K1[13] =T [13] =T [Q[13]] ,
K0[14] =K1[14] =T [14] =T [Q[14]] , K0[15] =K1[15] =T [15] =T [Q[15]] .

Note that in the design rationale for CRAFT, the only criterion for the permutation Q was
to be a circulant one that the cipher can resist against time-data-memory trade-off attack.
Based on this criterion and depending on the choice for permutation Q, the size for weak
key set can be in the form of 264+4·` (out of 2128 keys) with 1 ≤ ` ≤ 8.
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The maximum size for the weak key set with ` = 8 happens if the circulant permutation
Q be in the form of that for any i ∈ {8, . . . , 15} then Q[i] ∈ {0, . . . , 7}. We denote such
a permutation by Qmax that there 8! · 7! ones out of 15! circulant permutations. For a
Qmax permutation, the size for weak key and weak tweak sets are 296 and 232, respectively,
that must satisfy eight conditions on the key and tweak nibbles (i.e., there are 296 weak
tweak-key values).

On the other hand, the minimum size for the weak key set with ` = 1 happens if in
the corresponding circle in graph representation of the permutation, the eight values in
{8, . . . , 15} are consecutive. In other meaning, there exist an i ∈ {0, . . . , 7} such that for
any j with 1 ≤ j ≤ 8, we have Qj [i] ∈ {8, . . . , 15}. We show such a permutation by Qmin

that there are (8!)2 ones out of 15! circulant permutations. For a Qmin permutation, we
have T [8] = . . . = T [15] which results in

T = (t0, t1, t2, t3, t4, t5, t6, t7, ti, ti, . . . , ti, ti) , and K ′′0 = K ′′1 = (ti, ti, . . . , ti, ti) .

This means that the size for weak key and weak tweak sets are 268 and 232, respectively,
that must satisfy one condition on the key and tweak nibbles (i.e., there are 296 weak
tweak-key values).

Among all the 15! circulant permutations, the chosen Q permutation for CRAFT was
taken from a set of one thousand randomly generated permutations that it is the one
with most resistance against related-tweak differential attack. As a designer one can add
another criterion for Q permutation that it is one of (8!)2 Qmin permutations to minimize
the size for weak-key set in the weak tweak-key CRAFT while (s)he must consider resistance
of the cipher against related-tweak attacks.

4 Differential and Linear Analysis
In this section, first we use an MILP tool to find all the activity patterns with the minimum
number of active S-boxes in reduced-round differential and linear trails of the weak tweak-
key CRAFT structure. We apply the methods introduced in [ELR20] to estimate the EDP
for the differential effect within these differential activity patterns. Then, we discuss
the conditions for applying the same differential trails of the weak tweak-key CRAFT in
the equivalent CRAFT structure. There, we show that the weak tweak-key space in the
differential activity patterns of the equivalent CRAFT can be larger than the one for the weak
tweak-key CRAFT. Later, we investigate possibility of applying related-tweak differentials
in the weak tweak-key or in the equivalent CRAFT structures.

As a result, we present 18-round single-tweak differential activity patterns which provide
multiple differentials with EDP of 2−58.11, and several 21-round related-tweak differential
activity patterns that include multiple differentials with EDP of higher than 2−64.

4.1 Minimum Number of Active S-boxes
To compare the resistance of original CRAFT and the weak tweak-key CRAFT against the
differential and linear attacks, we compute the minimum number of active S-boxes in the
single-tweak model. In order to compute these bounds, similar to the one in the CRAFT
proposal paper [BLMR19], we use the MILP as explained in [MWGP11]. It is noteworthy
to mention that this approach is independent of the specification of the S-box and it takes
only the properties of the linear layer into account.

While for computing the minimum number of active S-boxes in the original CRAFT, in
the MILP codes, for each round, we need to consider all the 16 corresponding variables
to the S-box layer as objective variables, in the case for weak tweak-key CRAFT, we must
consider only the 8 corresponding variables to the right half variables in the S-box layer.
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Table 1: The minimum number of active S-boxes in differential and linear activity patterns
in up to 32 rounds of CRAFT. n1 and n2 denote the numbers for original and weak tweak-key
CRAFT, respectively.

r 1 2 3 4 5 6 7 8 9 ≤ r < 32
n1 1 2 4 6 10 14 20 26 4 · (r − 1)
n2 0 1 2 3 4 7 10 13 2 · (r − 1)

Beyond this difference in two structures, by taking benefit of being a Feistel design, we
slightly improved the MILP codes used in [BLMR19] to reduce the number of variables.

As it is already mentioned in [MWGP11], to find the the minimum number of active
S-boxes for linear activity patterns, it is enough to replace the matrix of MC layer, M ,
with the corresponding inverse of transpose matrix, (M−1)T (which equals to MT ). The
current choice for M causes that solving the equation to find the minimum number of
active S-boxes with matrix M , to be the same as solving with MT . This means that for a
given number of rounds, the minimum number of active S-boxes in differential activity
patterns is the same as the minimum number of active S-boxes in linear activity patterns.

Table 1 shows the minimum number of active S-boxes in the single-tweak model for
up to 32 rounds in both differential and linear activity patterns. We use n1 and n2 to
denote the numbers for original and weak tweak-key CRAFT, respectively. One interesting
observation from Table 1 is that for most of number of rounds, n2 is exactly half of n1.
Intuitively, this makes sense because in the weak tweak-key structure, each left half of the
state is considered once, while in the original structure, each left half-state is considered
twice: first in the left half-state of the current round and second in the right half-state of
the next round.

While for the original CRAFT, after 9 rounds, all the numbers of active S-boxes are higher
than or equal to 32, for weak tweak-key CRAFT, this happens after 17 rounds. Note that
having at least 32 active S-boxes is important because the maximum differential probability
(resp. absolute linear correlation) for an active S-box is 2−2 (resp. 2−1) and this makes the
probability (resp. absolute correlation) of a differential (resp. linear) characteristic to be
less than or equal to 2−64 (resp. 2−32). Therefore, such a characteristic cannot distinguish
the (reduced-round) cipher from a random permutation.

4.2 Differential Effects
Finding the minimum number of active S-boxes considers only a single characteristic
in the analysis. Therefore, the differential or linear distinguisher might actually be
stronger due to the differential or linear hull effects, respectively. To have a better
estimation about the strength of the differential distinguishers, we compute the EDP of
the differentials. To this point, we use the MILP technique introduced in [SHW+14] to
find all the differential activity patterns with the minimum possible active S-boxes. Then,
for each given differential activity pattern, we use the methods in [ELR20] to compute
the EDP of the differentials within the activity pattern. That is by fixing the input and
output differences in the differential, we consider all different single characteristics which
follow the same activity pattern with the minimum number of active S-boxes. Then by
summing all these probabilities of each single characteristics, we find a lower bound for
the probability of corresponding differential. We repeat this computation for all different
values for the input and the output differences in the differential to find the ones with the
maximum EDP.

It is noteworthy to mention that the computed values for the EDPs are lower bounds,
because for a fixed input and output difference, there might be some other single character-
istics that are not following the S-box activity pattern. However, as for such characteristics
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Table 2: The maximum EDP for the differentials within the activity patterns with
minimum number of active S-boxes. Note we use p = − log2 EDP instead of showing values
for the EDP.

r 9 10 11 12 13 14 15 16 17 18 19

p 25.79 29.79 35.54 41.42 41.19 45.19 50.42 56.42 54.00 58.11 63.25

Table 3: 18-round differentials with the highest EDP (= 2−58.11) within the differentials
of the activity patterns with the minimum number of active S-boxes (= 34).

∆P
∆C

trail 1
01010101 10100000
10100000 00010000
00010000 10000010
10000010 10000001
10000001 10000011
10000011 00000000
00000000 10000011
10000011 10000001
10000001 10000011
10000011 00000000
00000000 10000011
10000011 10000001
10000001 10000011
10000011 00000000
00000000 10000011
10000011 10000001
10000001 10000010
10000010 00010000
00010000 10100010

0x0a0x0a a0y00000
000y0000 a0z000t0

trail 2
10101010 01010000
01010000 10000000
10000000 01000001
01000001 00011000
00011000 01000011
01000011 00000000
00000000 01000011
01000011 00011000
00011000 01000011
01000011 00000000
00000000 01000011
01000011 00011000
00011000 01000011
01000011 00000000
00000000 01000011
01000011 00011000
00011000 01000001
01000001 10000000
10000000 01010001

a0x0a0x0 0a0y0000
y0000000 0a0z000t

trail 3
01010101 10100000
10100000 01000000
01000000 00101000
00101000 00100100
00100100 00101100
00101100 00000000
00000000 00101100
00101100 00100100
00100100 00101100
00101100 00000000
00000000 00101100
00101100 00100100
00100100 00101100
00101100 00000000
00000000 00101100
00101100 00100100
00100100 00101000
00101000 01000000
01000000 10101000

0a0x0a0x a0y00000
0a000000 z0y0t000

trail 4
10101010 01010000
01010000 00100000
00100000 00010100
00010100 01000010
01000010 00011100
00011100 00000000
00000000 00011100
00011100 01000010
01000010 00011100
00011100 00000000
00000000 00011100
00011100 01000010
01000010 00011100
00011100 00000000
00000000 00011100
00011100 01000010
01000010 00010100
00010100 00100000
00100000 01010100

x0a0x0a0 0a0y0000
00a00000 0z0y0t00

t = y ⊕ z and
(xyz) ∈ {(5,a,0), (7,5,f),

(7,d,7), (a,5,f), (a,a,0), (a,d,7),
(a,f,5), (d,a,0), (f,a,0), (f,f,5)}

t = z ⊕ a , x ∈ {5,a,d,f} and
(y, z) ∈ {(5,f), (a,0), (d,7), (f,5)}

the number of active S-boxes will be higher, we assume their affect on the probability of
differential to be negligible.

Table 2 summarizes the maximum EDP for the differentials within the activity patterns
with minimum number of active S-boxes up to 19 rounds. For 19 rounds and more, there
is no differential within the activity patterns of minimum number of active S-boxes that
has EDP of significantly higher than 2−64. Note that in this table, instead of showing
value of EDP, we use p = − log2 EDP.

The differentials of 18-round with the highest EDP (= 2−58.11) within the differentials
of the activity patterns with the minimum number of active S-boxes (34 S-boxes) are listed
in Table 3 which are from four different activity patterns. Note that in these activity
patterns, the active and the inactive nibbles of states are denoted by 1 and 0, respectively.
Besides, the values of the input difference (∆P ) and the output difference (∆C) are shown
in the hexadecimal.



Gregor Leander and Shahram Rasoolzadeh 11

4.3 Enlarging Weak Tweak-Key Set in a Differential Activity Pattern
To achieve the Feistel round function of CRAFT (shown in Figure 3(b)), it is necessary
to have TK ′′′i = 0 for all i values which leads to 288 weak keys (out of 2128) and 232

weak tweaks (out of 264) together with 24 bit conditions between them which leaves
296 weak tweak-keys (out of 2196). But for the differentials within an activity pattern,
considering TK ′′′i = 0 is a non necessary condition. Considering Figure 2(b), to assure
that the differential probability of a differential transition over the right branch (over the
SB′ ◦ AT K′′′

i
◦ SB′ operation) is equal 1, it is enough that only the nibbles of TK ′′′i to be

zero which are the corresponding nibbles to the active nibbles in the difference. This is
because of the property of a bijective S-box which a zero difference in the input leads to
zero difference in the output and vice versa.

Therefore, it is possible to use the same activity patterns found for the weak tweak-key
CRAFT with Feistel round functions shown in Figure 3, also for the equivalent CRAFT with
the round functions shown in Figure 2(b). To do this, we only need to consider weak
tweak-keys which make the active nibbles of all TK ′′′i s to be zero.
Example 1. Consider a differential distinguisher corresponding to the trail 1 from Table 3.
This distinguisher works for equivalent CRAFT with the following weak tweak-key set:

TK ′′′0 [0] = TK ′′′0 [2] = 0, TK ′′′10[0] = TK ′′′10[6] = TK ′′′10[7] = 0,
TK ′′′1 [3] = 0, TK ′′′11[0] = TK ′′′11[7] = 0,

TK ′′′2 [0] = TK ′′′2 [6] = 0, TK ′′′12[0] = TK ′′′12[6] = TK ′′′12[7] = 0,
TK ′′′3 [0] = TK ′′′3 [7] = 0, TK ′′′14[0] = TK ′′′14[6] = TK ′′′14[7] = 0,

TK ′′′4 [0] = TK ′′′4 [6] = TK ′′′4 [7] = 0, TK ′′′15[0] = TK ′′′15[7] = 0,
TK ′′′6 [0] = TK ′′′6 [6] = TK ′′′6 [7] = 0, TK ′′′16[0] = TK ′′′16[6] = 0,

TK ′′′7 [0] = TK ′′′7 [7] = 0, TK ′′′17[3] = 0,
TK ′′′8 [0] = TK ′′′8 [6] = TK ′′′8 [7] = 0, TK ′′′18[0] = TK ′′′18[2] = 0.

Moreover, considering that TKi+4 = TKi, all the above conditions can be combined in
below conditions:

TK ′′′0 [0] = TK ′′′0 [2] = TK ′′′0 [6] = TK ′′′0 [7] = 0, TK ′′′1 [3] = 0,
TK ′′′2 [0] = TK ′′′2 [2] = TK ′′′2 [6] = TK ′′′2 [7] = 0, TK ′′′3 [0] = TK ′′′3 [7] = 0.

These conditions lead to 248 weak tweaks (with four conditions of T [0] = T [13] = T [15] and
T [4] = T [8] = T [11]), and 2112 weak-keys (with four conditions of K0[8] = K0[11] = K1[11]
and K0[13] = K0[15] = K1[15]), with three extra conditions between the tweak and
key nibbles. All together, the distinguisher works for a weak tweak-key set of size
2112+48−12 = 2148.

It is important to emphasize that by changing the index of starting round, the size for
weak key set or weak tweak set can change while the size for weak tweak-key set stays the
same. Besides, the size of the weak tweak-key set for other distinguishers from Table 3 is
the same. Moreover, it is noteworthy to mention that there are other distinguishers with a
larger size for the weak key or weak tweak-key sets, but with a lower value for the EDP.

By appending some rounds before and after the distinguisher, one can use these
distinguishers to do a key recovery attack on the reduced-round CRAFT. For all the
distinguishers in Table 3, it is possible to append at most 3 (resp. 5) rounds before (resp.
after) the distinguisher. Therefore, it is possible to do a key recovery attack on at most 26
rounds of CRAFT cipher with such a weak key, but notice that the time complexity of the
attack (which must not exceed 2112 encryptions) is not considered here.

4.4 Related-Tweak Differentials in the Weak Tweak-Key CRAFT

While the differentials discussed in the previous subsections were based on a single-tweaks,
in this subsection, we investigate the possibility for existence of related-tweak differentials
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Table 4: The minimum number of active S-boxes and the maximum EDP for the related-
tweak differentials within the activity patterns with the minimum (or close to the minimum)
number of active S-boxes. Note that RTi refers to the characteristic starting with round
round 4 · j + i, and also, we use p = − log2 EDP instead of showing the value for EDP.

minimum number of active S-boxes highest expected differential probability
r 18 19 20 21 22

RT0 31 33 36 37 38
RT1 32 35 36 37 40
RT2 34 35 36 39 42
RT3 32 33 36 39 40

18 19 20 21 22
46.64 49.54 57.09 60.83 66.00
47.54 55.54 56.00 62.25 64.96
54.45 54.45 56.45 60.30 64.30
47.54 49.54 55.54 63.54 66.25

in the weak tweak-key CRAFT.
As explained previously in Section 3 and Subsection 4.3, it is possible that any difference

α in the input of S
(
S(·)⊕ t

)
transits to the same difference in the output of the function,

if α is equal to zero or if the round tweakey nibble t is equal to zero. Hence, it is still
possible to consider existence of related-tweak differentials, if we keep these conditions,
precisely, if the difference in the right half of the round tweakeys, TK ′′i , (consequently,
in the right half of the round tweaks T ′′i ) is equal to zero. Therefore, by considering
∆T ′′0 = ∆T ′′1 = ∆T ′′2 = ∆T ′′3 = 0, we can check if there is any possibility for related-tweak
differential in the weak tweak-key CRAFT.{

∆T ′′0 = ∆T ′′1 = 0 ⇒ ∆T [8, 9, 10, 11, 12, 13, 14, 15] = 0
∆T ′′2 = ∆T ′′3 = 0 ⇒ ∆T [0, 1, 3, 4, 6, 7, 11, 13] = 0 .

This means that there is still freedom in choosing the difference in two nibbles of tweak,
namely ∆T [2] and ∆T [5]. Considering that ∆T [2] = x and ∆T [5] = y, the difference in
the left half of the round tweaks would be equal to ∆T ′0 = ∆T ′1 = (0, 0, x, 0, 0, y, 0, 0) and
∆T ′2 = ∆T ′3 = (0, 0, 0, y, 0, 0, 0, x).

Similar to the single-tweak differential model, we use an MILP tool to find all the
activity patterns with the minimum and close to the minimum number of active S-boxes.
We show the minimum number of active S-boxes in the related-tweak model of the weak
tweak-key CRAFT for 18 up to 22 rounds in Table 4. Note that in the related-tweak model,
the differentials are dependent on the starting round. For this reason, we use the index of
RT to show the starting round.

One interesting observation in searching the activity patterns is that for most of them,
there is no differential characteristics that can follow the activity pattern. It is important
to mention that this is independent of the choice of S-box, and it is only because that a
set of linear equations must be satisfied between the variables of difference in the input
and output of the active S-boxes and also the active nibble(s) in the tweak difference.
Therefore, before using the activity pattern to find the differentials with high EDP value,
we use an algorithm to sieve all the activity patterns which lead to an invalid set of linear
equations. Briefly explaining, in this algorithm for a given activity pattern, we consider a
variable for input difference and one another for output difference of each active S-box,
and also one variable for each active nibble in the tweak. Then, based on the relations
in the linear layer of the round function, we build a set of linear equations that must be
satisfied for the given pattern. Each of these equations includes some variables which
their XOR sum must be equal to zero. After applying Gaussian elimination to this set of
equations, there must be no equation with a single variable. Otherwise, it means that this
single variable is equal to zero and this contradicts the activity of this variable. Hence,
this algorithm can efficiently determine if the given activity pattern is a valid one.

After filtering the useful activity patterns, we again use the method of [ELR20] to
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Table 5: 21-round related-tweak differentials with the highest EDP within the differentials
of the activity patterns with the minimum (or close to the minimum) number of active
S-boxes.

∆T
∆P
∆C

trail 1 with ST0
00110001 10000000
10000000 10000000
10000000 10000010
10000010 10000000
10000000 10010010
10010010 00010011
00010011 10000000
10000000 00000011
00000011 00010001
00010001 00010001
00010001 00000011
00000011 10000000
10000000 00010011
00010011 10010010
10010010 10000000
10000000 10000010
10000010 00010001
00010001 10010000
10010000 00000011
00000011 00000001
00000001 00010010
00010010 10100011

00x00000 00000000
00xy000z a0000000
000w00x0 t0u000vx

trail 2 with ST1
10100011 00010010
00010010 00000001
00000001 00000011
00000011 10010000
10010000 00010001
00010001 10000010
10000010 10000000
10000000 10010010
10010010 00010011
00010011 10000000
10000000 00000011
00000011 00010001
00010001 00010001
00010001 00000011
00000011 10000000
10000000 00010011
00010011 10010010
10010010 10000000
10000000 10000010
10000010 00010000
00010000 10000000
10000000 00110001

00x00000 00000000
y0z000tx 000a00x0
v0000000 00xa000u

trail 3 with ST2
00010011 10000000
10000000 00000011
00000011 00010001
00010001 00010001
00010001 00000011
00000011 10000000
10000000 00010011
00010011 10010010
10010010 10000000
10000000 10000010
10000010 00010001
00010001 10010000
10010000 00000011
00000011 10000001
10000001 00010011
00010011 00010011
00010011 10000001
10000001 00000011
00000011 00010000
00010000 00000001
00000001 00100000
00100000 01000100

00a00000 00000000
000x00ax y0000000
00a00000 0a000a00

trail 4 with ST3
11101101 01100100
01100100 00100000
00100000 00000000
00000000 00000000
00000000 00000001
00000001 00010001
00010001 00010011
00010011 10000011
10000011 10000011
10000011 00010011
00010011 00010001
00010001 00000001
00000001 00000000
00000000 00000000
00000000 00100000
00100000 01100100
01100100 10101101
10101101 01000000
01000000 00000101
00000101 00110000
00110000 01100010
01100010 11111101

00a00000 00000000
xya0xa0a 0za00z00
0au000v0 pqastq0a

compute the EDP of differentials within the activity pattern and find the differentials with
the highest EDP. We recall that in this method by fixing the input and output differences
of the differential together with the tweak difference, we consider all the different single
characteristics which follow the same activity pattern with the minimum number of active
S-boxes. Table 4 summarizes the maximum EDP for the differentials within the activity
patterns with minimum (or close to minimum) number of active S-boxes for 18 up to 22
rounds and for different index of starting round. For 22 rounds and more, we did not find
any differentials within the activity patterns with the minimum (or close to the minimum)
number of active S-boxes that has EDP of significantly higher than 2−64. Note that in
this table, instead of showing value of the EDP, we use p = − log2 EDP.

As a result, we find several 21-round differentials with EDP higher than 2−64 for
different index of RT. Precisely, for each RTi, we find only one activity pattern that
includes several differentials with the highest possible EDP. These highest EDP values are
2−60.83, 2−62.25, 2−60.30 and 2−63.54 for RT0, RT1, RT2 and RT3, respectively, that are
listed in Table 5. Note that in these activity patterns, the active and the inactive nibbles of
states are denoted by 1 and 0, respectively. Besides, the values for input difference (∆P ),
output difference (∆C) and tweak difference (∆T ) are shown in hexadecimal. Moreover,
since there are many choices for the differential with the highest possible EDP, we simply
denote the variables by p, q, . . . , y, z to show how the active nibbles in ∆P,∆C and ∆T
are related. It might be interesting to mention that the number of differentials with the
highest EDP are 2688, 16, 24 and 250000, for trail 1, 2, 3 and 4, respectively.

About the weak tweak-key sets for the given related-tweak differentials in Table 5, we
use the same approach as in Example 1 to find the conditions between the key and tweak
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nibbles. For both trail 1 and trail 2, we need to have

TK ′′′0 [0] = TK ′′′0 [3] = TK ′′′0 [6] = TK ′′′0 [7] = 0, TK ′′′2 [0] = TK ′′′2 [6] = TK ′′′2 [7] = 0,
TK ′′′1 [0] = TK ′′′1 [3] = TK ′′′1 [6] = TK ′′′1 [7] = 0, TK ′′′3 [0] = TK ′′′3 [6] = TK ′′′3 [7] = 0,

which leads to
K0[8] = K1[8] = K0[11] = K1[11] = T [4] = T [8] = T [11] ,

K0[15] = K1[15] = T [13] = T [15] ,
K0[14] = K1[14] = T [14] .

For trail 3, we need to have

TK ′′′1 [0] = TK ′′′1 [3] = TK ′′′1 [6] = TK ′′′1 [7] = 0, TK ′′′0 [3] = TK ′′′0 [7] = 0,
TK ′′′2 [0] = TK ′′′2 [2] = TK ′′′2 [6] = TK ′′′2 [7] = 0, TK ′′′3 [0] = TK ′′′3 [6] = TK ′′′3 [7] = 0,

that is same as
K0[8] = K1[8] = K0[11] = K1[11] = T [4] = T [8] = T [11] ,

K0[15] = K1[15] = T [13] = T [15] ,
K0[14] = K1[14] = T [14] ,

K0[13] = T [0] .

And for trail 4, we need to have

TK ′′′0 [1] = TK ′′′0 [2] = TK ′′′0 [3] = TK ′′′0 [6] = TK ′′′0 [7] = 0,
TK ′′′1 [2] = TK ′′′0 [3] = TK ′′′0 [5] = TK ′′′0 [6] = TK ′′′0 [7] = 0,

TK ′′′2 [0] = TK ′′′2 [1] = TK ′′′2 [2] = TK ′′′2 [3] = TK ′′′2 [5] = TK ′′′2 [6] = TK ′′′2 [7] = 0,
TK ′′′3 [0] = TK ′′′3 [1] = TK ′′′3 [2] = TK ′′′3 [3] = TK ′′′3 [5] = TK ′′′3 [6] = TK ′′′3 [7] = 0,

which is equal to

K0[8] = K1[8] = K0[11] = K1[11] = T [4] = T [8] = T [11] ,
K0[13] = K1[13] = K0[15] = K1[15] = T [0] = T [13] ,

K0[12] = K1[12] = T [6] = T [12] ,
K0[14] = K1[14] = T [1] = T [14] ,
K0[9] = K1[9] = T [3] = T [9] ,

K1[10] = T [7] .

All together, the size for weak keys, weak tweaks, and weak tweak-keys sets are 2108, 252

and 2148 for trail 1, 2 and 3, and 292, 240 and 2108 for trail 4.
In order to do a key recovery attack, the attacker can append several rounds before and

after the above 21-round related tweak differentials. But, it should be taken into account
that the number of appended rounds before the differential starting with round i, RTi, is
either i or i + 4. For the above differentials, appending more than 4 rounds actives all
the nibbles at the plaintext state. Hence, for the differentials with RTi we can append i
rounds in before the differential. However, there is no such a restriction on the number
of rounds to append after the differentials and it is possible to extend those differentials
by adding at most 3, 2, 3 and 3 rounds for key recovery. Therefore, it is possible that an
attacker have a successful related-tweak differential attack on at most 28, 25, 27 and 27
rounds, respectively. It is noteworthy that here, we did not consider the time complexity
for the key recovery to check the feasibility of the attack. Hence, the number of rounds
that can be analyzed by the attacker is an upper bound.

Note that even though, we only analyzed security of the weak tweak-key CRAFT against
differential cryptanalysis, but we believe that it can be applied to improve the result
against other attacks, such as impossible differential, (zero-correlation) linear hull, meet-in-
the-middle, and integral. However, in contrary to [GSS+20], we keep the general weakness
as it is and do not specialize it only for differential attack.
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4.5 Differential Properties of S∗
c := S

(
S(·) ⊕ c

)
We already mentioned that since S is an involution, S∗0 is the same as identity function.
This makes it possible for any input difference of α ∈ F4

2 to transit to the same difference in
the output of S-box S∗0 with probability 1. Here, we study the probability for transition of
an input difference α to the same difference in the output of S∗c for non-zero values of c ∈ F4

2.
Table 6 shows the number of x ∈ F4

2 such that for each given c and α, S∗c (x⊕α)⊕S∗c (x) = α.
Interestingly, there are some high values in this table. Specially, there are two non-zero

values for c and α pair which the input difference α stays the same in the output with
probability 1, namely for c = α = 2 and c = α = a. For our application, this means that
even if the corresponding nibble of the round tweakey for an active S-box of S∗ is not zero
(i.e., the tweakey value is not included in the weak tweak-key space), it may lead to a high
EDP. But this EDP is always smaller than the one we computed for the weak tweak-keys
(which this nibble of the round tweakey is necessarily zero) and this is because of the
restriction in the values of the input/output difference of S∗ S-box. For instance, in case
of c = a, while only the input difference value of a can transit with probability 1, input
difference with a value in {5, 7, d, f} can also transit to the same difference in the output
with probability 2−1. Therefore, the differentials discussed in the previous sections are not
only useful for the tweakeys within the weak tweak-key spaces, but it might be possible to
be applied for the tweakeys out of the weak tweak-key spaces with a smaller EDP.

It is noteworthy to mention that the transition probability for c = α = a, previously
was observed and applied in [GSS+20] to enlarge the weak tweak-key space. While their
technique makes it possible to enlarge the weak tweak-key space, it fixes the difference
value in some intermediate nibbles. Therefore, the EDP of the differential gets smaller in
favor of making the weak tweak-key space larger. This can be used as a trade-off between
the EDP and the size of weak tweak-key space, which in case of a key recovery attack,
both of these parameters affect number of needed plaintext differential pairs. Hence, the
attacker can take advantage of this to reduce the data or time complexity of the attack.

Table 6: Number of entries x for S∗c (x⊕ α)⊕ S∗c (x) = α.

α
1 2 3 4 5 6 7 8 9 a b c d e f

1 2 4 0 6 2 6 0 2 0 0 0 0 0 2 0
2 4 16 4 4 0 4 0 0 4 0 4 4 0 4 0
3 0 4 0 6 0 4 2 2 2 0 0 0 2 0 2
4 6 4 6 2 2 0 0 2 0 0 2 0 0 0 0
5 2 0 0 2 4 0 4 0 2 8 0 2 4 0 4
6 6 4 4 0 0 0 2 2 0 0 0 2 2 0 2
7 0 0 2 0 4 2 4 0 0 8 2 0 4 2 4

c 8 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
9 0 4 2 0 2 0 0 2 6 0 6 2 0 0 0
a 0 0 0 0 8 0 8 0 0 16 0 0 8 0 8
b 0 4 0 2 0 0 2 2 6 0 4 0 2 0 2
c 0 4 0 0 2 2 0 2 2 0 0 6 0 6 0
d 0 0 2 0 4 2 4 0 0 8 2 0 4 2 4
e 2 4 0 0 0 0 2 2 0 0 0 6 2 4 2
f 0 0 2 0 4 2 4 0 0 8 2 0 4 2 4



16 Weak Tweak-Keys for CRAFT Block Cipher

5 Differential Key Recovery Attack
In this section, we describe one single-tweak weak-key and one related-tweak weak key
differential key recovery attack on respectively 23- and 26-round CRAFT block cipher that
is based on the weak tweak-key CRAFT. For the single-tweak weak key attack, we apply
some of the differentials with the highest EDP in one of the 18-round trails (entitled trail
1 at Table 3). By appending three rounds before (in the plaintext side) and two rounds
after (in the ciphertext side) the trail, we extend it to a 23-round differential key recovery
attack. In this attack, we recover the weak key (out of 2112 weak keys) using 274 chosen
plaintext/tweak/ciphertext tuples, in about 294 time of 23-round CRAFT encryptions and
with 251 blocks of memory usage.

For the related-tweak weak-key attack, we apply some of the differentials with the
highest EDP in the 21-round trail starting with RT0 (see Table 5). By appending four
rounds before and one round after the trail, we extend it for a 26-round differential
key recovery attack. In this attack, we recover the weak key (out of 2108 weak keys)
using 273 chosen plaintext/tweak/ciphertext tuples, in about 2105 time of 26-round CRAFT
encryptions and with 260 blocks of memory usage.

It is important to mention that it is possible to reduce the complexity of attack, by
reducing number of the appending rounds. In the following subsections, we describe the
form of weak tweak-key sets, the attack procedures, and complexity of the attacks in detail.

5.1 Single-Tweak Differential Attack on 23-Round CRAFT

The highest EDP for differentials within the trail 1 of Table 3, is 2−58.11 and it happens
for 10 differentials. Considering that the trail is staring at the beginning of third round,
the value of these differences are shown below.

∆X3 = (0x0a 0x0a a0y0 0000) , ∆X21 = (000y 0000 a0z0 00t0) ,

with t = y⊕z and (xyz) ∈ {(5,a,0), (7,5,f), (7,d,7), (a,5,f), (a,a,0), (a,d,7), (a,f,5),
(d,a,0), (f,a,0), (f,f,5)}. To achieve this 18-round single-tweak differentials, we need to
have following weaknesses in the tweakey schedule of (equivalent) CRAFT:

TK ′′′0 [3] = 0, TK ′′′1 [0] = TK ′′′1 [2] = TK ′′′1 [6] = TK ′′′1 [7] = 0,
TK ′′′2 [0] = TK ′′′2 [7] = 0, TK ′′′3 [0] = TK ′′′3 [2] = TK ′′′3 [6] = TK ′′′3 [7] = 0.

Note that since we start the trail after three rounds we need to shift the indices for round
tweakeys from what we had in Example 1. These conditions lead to 248 weak tweaks (with
four conditions of T [0] = T [13] = T [15] and T [4] = T [8] = T [11]), and 2112 weak-keys
(with four conditions of K0[11] = K1[8] = K1[11] and K0[15] = K1[13] = K1[15]), with
three extra conditions between the tweak and key nibbles. All together, the distinguisher
works for a weak tweak-key set of size 2112+48−12 = 2148. Therefore, the weak tweaks and
weak keys will be in the following forms:

K0 = (k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k′8, k12, k13, k14, k′13) ,
K1 = (k′0, k′1, k′2, k′3, k′4, k′5, k′6, k′7, k′8, k′9, k′10, k′8, k′12, k′13, k′14, k′13) ,
T = ( t0, t1, t2, t3, t4, t5, t6, t7, t4, t9, t10, t4, t12, t0, t14, t0) ,

together with three conditions between key and tweak: k′8 = t4, k
′
13 = t0, k14 = t14.

Since, the values for key nibbles k′8, k′13 and k14 are unknown to the attacker, it
is not possible to check their equality with t4, t0 and t14, respectively. However, the
attacker can repeat the key recovery attack for all 212 different values of t4, t0 and t14 and
observe for which value of these three nibbles, the differential distinguisher occurs as it is
expected. In other words, each of these differential will occur with probability of 2−58.11, if
k′8 = t4, k

′
13 = t0, k14 = t14; otherwise, it occurs with probability of about 2−64. Besides,
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note that due to the tweakey schedule of CRAFT, in the weak tweak-key set for this trail,
we know the values for TK ′′′0 [0], TK ′′′0 [7] and TK ′′′2 [3] round tweakey nibbles.

To reduce the effect of differential expansion in extending the trails, we only use the
ones with y = a and z = 0. Extending these differentials by three rounds in the beginning
activates all the nibbles in plaintext difference, with three linear conditions in the difference

∆P ′ ∆P ′′
∆P ′[5] = ∆P ′′[5]

∆P ′[7] = ∆P ′′[7]

∆P ′[2]⊕∆P ′[6]⊕
∆P ′′[2] = a

MC′

SB′

PN′′

TK ′0 TK ′′′0

0 0

0 0 PN′◦SB′MC′

SB′

SB′

TK ′1 TK ′′′1

∆X ′1 ∆X ′′1

∆X ′′1 [2]⊕∆X ′′1 [6] = a

0 0

0 0 a

0 0 γ

0 0

γ

0 0

γ

0 0

PN′◦SB′MC′

SB′

SB′

TK ′2 TK ′′′2

∆X ′2 ∆X ′′2
∆X ′2[0]⊕∆X ′2[4] = a

∆X ′2[2]⊕∆X ′2[6] = a

∆X ′2[3] ∈ {5, a, d, f}

a 0 a 0

0 0 0 0

0 x 0 a

0 x 0 a

∆X ′3 ∆X ′′3

... ...

a 0 0 0

0 0 a 0

α 0 0 0

0 0 0 β

α 0 0 β

0 0 0 β

0 0 0 a

0 0 0 0

PN′◦SB′MC′

SB′

SB′

TK ′1 TK ′′′1

∆X ′21 ∆X ′′21

α, β ∈ {5, a, d, f}

α 0 0 β ⊕ a

0 0 0 β

0 0 0

0 0

0 0

0 0

a 0 0 0

0 0 a 0

PN′◦SB′MC′

PN′

SB′

TK ′2 TK ′′′2

∆X ′22 ∆X ′′22

∆X ′′22[3]⊕∆X ′′22[7] = a

0 0 0

0 0

a 0

0 0

∆C ′ ∆C ′′

∆C ′[2]⊕∆C ′[6] = a

∆C ′[6]⊕∆C ′′[6] = a

∆C ′[7] = ∆C ′′[7]

∆C ′[3] = ∆C ′′[3]⊕∆C ′′[7]

α = ∆S(C ′′[7]) ∈ {5, a, d, f}
β = ∆S(C ′′[3]) ∈ {5, a, d, f}
∆S(C ′′[3])⊕∆S(C ′′[6]) = a

Figure 4: Extending the first 18-round activity pattern from Table 3 by three rounds
before and two rounds after the trail.
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of plaintext nibbles:

∆P [5] = ∆P [13] , ∆P [7] = ∆P [15] and ∆P [2]⊕∆P [6]⊕∆P [10] = a .

On the other side, extending the differentials by two rounds, activates only eight nibbles
in the ciphertext difference, with one constant, four linear and three nonlinear conditions
in the difference of ciphertext nibbles:

∆C[2] = ∆C[14] , ∆C[7] = ∆C[15] , ∆C[2]⊕∆C[6] = a , ∆C[3]⊕∆C[11]⊕∆C[15] = 0 ,

∆S(C[11]) = ∆S(C[14]) = a , ∆S(C[11]) ∈ {5, a, d, f} and ∆S(C[15]) ∈ {5, a, d, f} .

Figure 4 depicts details of the extensions in both directions. In this figure, the values
written in each cell shows the difference in the corresponding nibble. Besides, the nibbles
in the round state or round tweakey whose value are known, are shown in green color,
while the round tweakey nibbles with value of zero are shown in orange color.

As mentioned before, to recover the whole key, we need to repeat the attack for each
212 values of t0, t4 and t14. Therefore, we first fix eight tweak nibbles, t1, t2, t3, t5, t6, t7, t9,
t10, t13, to zero and then choose value for t0, t4, t14.

Collecting Data Structures For each values of t0, t4, t14, we choose 262 random plaintexts
(p0, . . . , p15) and ask for their encryption (c0, . . . , c15) using the weak tweak (t0, 0, 0, 0, t4, 0,
0, 0, t4, 0, 0, t4, 0, t0, t14, t0). Considering value of a0 = p5 ⊕ p13, a1 = p7 ⊕ p15 and a2 =
p2 ⊕ p6 ⊕ p10 for each plaintext, we separate the collected data to 212 sets which each
set contains only the data with the same value for (a0, a1, a2). In average, there are
250 plaintext/ciphertext pairs. Using any plaintext/ciphertext pair of set (a0, a1, a2)
together with any plaintext/ciphertext pair of set (a0, a1, a2 ⊕ a) provides a differential
pair with ∆p5 = ∆p13, ∆p7 = ∆p15 and ∆p2 ⊕∆p6 ⊕∆p10 = a. Hence, there are about
212 · 250·2−1 = 2111 differential pairs with an appropriate plaintext difference.

The probability that one of these differential pairs lead to one of those four differences
in ∆X3 is 4 · 2−52 = 2−50. In other meaning, in average, there are about 261 differential
pairs with the correct difference in ∆X3 and about 261−58.11 ≈ 7 differential pairs with
the correct difference in ∆X21. Therefore, for each t0, t4, t14 value, the attacker needs
to use 262 plaintext/ciphertext pairs (2111 differential pairs) to insure that for the case
that k′8 = t4, k

′
13 = t0, k14 = t14, there are about 7 of right differential pairs with the

corresponding ∆X21.

Filtering Wrong Differential Pairs On the other side of the differential pairs, the attacker
can use the ciphertext differentials to sieve the potentially right differential pairs. These
conditions are listed below.

∆c0 = a , ∆c1 = ∆c4 = ∆c5 = ∆c8 = ∆c9 = ∆c10 = ∆c12 = ∆c13 = 0 ,

∆c2 = ∆c14 , ∆c7 = ∆c15 , ∆c2 ⊕∆c6 = a , ∆c3 ⊕∆c11 ⊕∆c15 = 0 ,

∆S(c11) = ∆S(c14) = a , ∆S(C[11]) ∈ {5, a, d, f} and ∆S(C[15]) ∈ {5, a, d, f} .

All together, for each t0, t4, t14 value, after this filtering, from all 2111 differential pairs,
there will be only 2111−60 = 251 of them left. We keep all these remaining differential pairs
in a memory to use them in the key recovery step.

Recovering Key Nibbles Apart from k′8, k
′
13, k14, the attacker can recover other 22 nibbles

of the key, namely K ′0[0, 1, 2, 3, 4, 5, 7], K ′′′0 [1, 2, 4, 5, 6], K ′1[0, 1, 2, 3, 5, 7] and K ′′′1 [1, 3, 4], by
using the following 16 equations which are based on the partial encryption or decryption
of the differential pairs. Note that only three nibbles of the weak key remain unknown,
k′4 = K ′1[4, 6], k′6 = K ′1[6] and k′9 = K ′′′1 [5].
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1. ∆X ′2[0]⊕∆X ′2[4] = a using K ′0[4] and K ′′′1 [4]
2. ∆X ′2[3] ∈ {5, a, d, f} using K ′0[3] and K ′′′1 [3]
3. ∆X ′′2 [0] = 0 using K ′0[1, 6]
4. ∆X ′′2 [2] = 0 using K ′0[3, 4] and K ′′′0 [2]
5. ∆X ′′2 [4] = 0 using K ′0[1] and K ′′′0 [4]
6. ∆X ′′2 [6] = 0 using K ′0[3] and K ′′′0 [6]
7. ∆X ′′2 [7] = a using K ′0[0]
8. ∆X ′3[1] = x using K ′0[2, 5], K ′′′0 [1] and K ′1[1]
9. ∆X ′3[3] = a using K ′0[0, 7] and K ′1[3]
10. ∆X ′3[5] = x using K ′0[2], K ′′′0 [5] and K ′1[5]
11. ∆X ′′3 [1] = 0 using K ′0[1, 2, 3, 4], K ′′′0 [2, 5], K ′1[2, 5] and K ′′′1 [1]
12. ∆X ′′3 [3] = 0 using K ′0[0, 1, 3, 6], K ′1[0, 7] and K ′′′1 [3]
13. ∆X ′′3 [0] = a using K ′0[0, 2, 5], K ′′′0 [1] and K ′1[1]
14. ∆X ′′3 [2] = a using K ′0[0, 7] and K ′1[3]
15. ∆X ′21[0] = 0 using K ′0[6]
16. ∆X ′21[7] = 0 using K ′0[0] and K ′′′0 [1]⊕K ′′′0 [6]

Note that the average probability for satisfying each of above equations is 2−4, except
for number 2, 12, 15, 16 and one of 8 or 10 that in average are 2−2. Hence, for each
remaining differential pair, there are in average 288 · 2−(4·11+2·5) = 234 key candidates that
satisfy all the equations. Moreover, this means that in average, each of these keys will
be counted about 251 · 234 · 2−88 = 2−3 times, while for the right value of the key it is
expected to be about 7 times. In other meaning, signal to noise ratio of the differential
key recovery attack is about 56.

To not use a memory for 288 key counters, instead, the attacker can guess value of
these 22 key nibbles and then find the differential pairs which this key value is a candidate
to satisfy those 16 equations. Note that if the attacker guesses all the 22 key nibbles at
once, then the computation time for key recovery will be higher than exhaustive search for
the weak key. To avoid this problem, he can guess the key nibbles one-by-one and at each
level he checks for the corresponding equation. For instance, he can start with equations
which only need one key nibble to be guessed. In this way, the computation complexity of
this step will be reduced significantly.

Beyond these 22 key nibbles, the value of t0, t4, t14 which the right differential pairs
happen as expected determines value of the corresponding three key nibbles. This leaves
28− 22− 3 = 3 key nibbles, k′4 = K ′1[4], k′6 = K ′1[6] and k′9 = K ′′′1 [5], that can be found by
doing an exhaustive search.

Attack Complexity Since the signal to noise ratio of the attack is high, 7 correct dif-
ferential pairs is enough to recover 100 bits of the weak key. Overall, we need to ask
for 212 · 262 = 274 data encryptions which determines the data complexity of the attack.
Besides, to keep the potentially right differential pairs for each value of t0, t4, t14, we need
about 251 blocks of memory.

About the time complexity, the order of equations to be checked and the corresponding
key nibbles to be guessed is important. If order of the equations to be checked is 7 (K ′0[7]),
15 (K ′0[6]), 3 (K ′0[1]), 5 (K ′′′0 [4]), 16 (K ′′′0 [1]⊕K ′′′0 [6]), 9 (K ′0[7] and K ′1[3]), 14 (nothing), 6
(K ′0[3] and K ′′′0 [6]), 2 (K ′′′1 [3]), 1 (K ′0[4] and K ′′′1 [4]), 4 (K ′′′0 [2]), 12 (K ′1[0, 7]), 13 (K ′0[2, 5]
and K ′1[1]), 10 (K ′′′0 [5] and K ′1[5]) and 11 (K ′1[2] and K ′′′1 [1]), then we need to do about
234 partial encryption/decryption for each remaining differential pairs. Since the partial
encryption is at most for three rounds, this means that the computation cost for key
recovery step is about 234 · 3

23 ≈ 231 encryptions per pair and each tweak value. Therefore,
the time complexity of the attack is about 212 · 251 · 231 = 294 encryption.
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5.2 Related-Tweak Differential Attack on 26-Round CRAFT

The highest EDP for differentials within the trail RT0 of Table 5, is 2−60.83 and it happens
for 2688 differentials. Considering that the trail is staring at the beginning of fourth round,
the format of these differences are shown below.

∆X4 = (00xy 000z a000 0000) , ∆X25 = (000w 00x0 t0u0 00vx) ,

with tweak difference of (00x0 0000 0000 0000). To achieve this 21-round related-tweak
differentials, we need to have following weaknesses in the tweakey schedule of CRAFT:

TK ′′′0 [0] = TK ′′′0 [3] = TK ′′′0 [6] = TK ′′′0 [7] = 0, TK ′′′2 [0] = TK ′′′2 [6] = TK ′′′2 [7] = 0,
TK ′′′1 [0] = TK ′′′1 [3] = TK ′′′1 [6] = TK ′′′1 [7] = 0, TK ′′′3 [0] = TK ′′′3 [6] = TK ′′′3 [7] = 0.

These lead to 252 weak tweaks (with four conditions of T [4] = T [8] = T [11] and T [13] =
T [15]), and 2108 weak-keys (with five conditions of K0[8] = K1[8] = K0[11] = K1[11],
K0[15] = K1[15] and K0[14] = K1[14], with three extra conditions between the tweak
and key nibbles. All together, the distinguisher works for a weak tweak-key set of size
2108+52−12 = 2148. Therefore, the weak tweaks and weak keys will be in the forms of

K0 = (k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k8, k12, k13, k14, k15) ,
K1 = (k′0, k′1, k′2, k′3, k′4, k′5, k′6, k′7, k8, k′9, k′10, k8, k′12, k′13, k14, k15) ,
T = ( t0, t1, t2, t3, t4, t5, t6, t7, t4, t9, t10, t4, t12, t13, t14, t13) ,

together with three conditions between key and tweak: k8 = t4, k15 = t13, k14 = t14.
Since, the values for key nibbles k8, k14 and k15 are unknown to the attacker, to

check their equality with t4, t14 and t13, respectively, the attacker needs to repeat the key
recovery attack for all 212 different values of t4, t13 and t14. Moreover, note that in the
weak tweak-key set for this trail, we know the values for TK ′′′2 [3] and TK ′′′3 [3].

To reduce the effect of differential expansion in extending the trails and to have more
differentials for a fixed related-tweak, we only use the ones with x = z = a and y = 0.
This way, there are 256 differentials left that u = v ⊕ a, t ∈ {5, a, d, f} and there are 64
choices for (v, w) pair (that we denote the set of these 64 pairs by ∆v,w). Extending these
differentials by four rounds in the beginning activates all the nibbles in plaintext difference,
with three linear conditions in the difference of plaintext nibbles:

∆P [5] = ∆P [13] , ∆P [7]⊕∆P [15] and ∆P [3]⊕∆P [7]⊕∆P [11] ∈ {5, a, d, f} .

On the other side, extending the differentials by one round, activates eleven nibbles in
the ciphertext difference, with two constant, four linear and three nonlinear conditions in
the difference of ciphertext nibbles:

∆C[0] = ∆C[8] , ∆C[7] = ∆C[15] , ∆C[1] = ∆C[5] = ∆C[13] , ∆S(C[11]) = a ,

∆S(C[15]) ∈ {5, a, d, f} ,
(
∆S(C[8]) ,∆C[3]⊕∆C[11]⊕∆C[15]

)
∈ ∆v,w

The details of extensions in both direction are depicted in Figure 5.
This attack is similar to the previously mentioned single-tweak differential attack on 23

rounds. To recover the whole key, we need to repeat the attack for each 212 values of t4, t13
and t14. Therefore, we first fix ten tweak nibbles, t0, t1, t2, t3, t5, t6, t7, t9, t10, t12, to zero
and then choose value for t0, t4, t14. Note that in the related tweak, we need to fix t2 to a.

Collecting Data Structures For each values of t4, t13, t14, we choose 260 random plaintexts
(p0, . . . , p15) and ask for their encryption (c0, . . . , c15) using the weak tweak (0, 0, 0, 0, t4, 0, 0,
0, t4, 0, 0, t4, 0, t13, t14, t13) and ask also for encryption of another 260 random plaintexts
using the related tweak (0, 0, a, 0, t4, 0, 0, 0, t4, 0, 0, t4, 0, t13, t14, t13). For both of the tweak
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Figure 5: Extending the 21-round activity pattern RT0 from Table 5 by four rounds before
and one round after the trail.
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values, considering value of a0 = p5 ⊕ p13, a1 = p7 ⊕ p15 and a2 = p3 ⊕ p7 ⊕ p11 for each
plaintext, we separate the collected data to 212 sets which each set contains only the data
with the same value for (a0, a1, a2). In average, there are 248 plaintext/ciphertext pairs. Us-
ing any plaintext/ciphertext pair of set (a0, a1, a2) from the weak tweak together with any
plaintext/ciphertext pair of set (a0, a

′
1, a
′
2) from the related tweak with a′1 ∈ a1⊕{5, a, d, f}

and a′2 ∈ a2 ⊕ {5, a, d, f}, provides a differential pair with ∆p5 = ∆p13, ∆p7 ⊕∆p15 and
∆p3 ⊕∆p7 ⊕∆p11 ∈ {5, a, d, f}. Hence, there are about 212 · 42 · 248·2 = 2112 differential
pairs with an appropriate plaintext difference.

The probability that one of these differential pairs lead to the difference in ∆X4 is 2−56.
In other meaning, in average, there are about 256 differential pairs with the correct difference
in ∆X4 and about 256 · 256−60.83 ≈ 9 differential pairs with the correct difference in ∆X25.
Therefore, for each t4, t13, t14 value, the attacker needs to use 2 · 260 plaintext/ciphertext
pairs (2112 differential pairs) to insure that for the case that k8 = t4, k15 = t13, k14 = t14,
there are about 9 of right differential pairs with the corresponding ∆X25.

Filtering Wrong Differential Pairs On the other side of the differential pairs, the attacker
can use the ciphertext differentials to sieve the potentially right differential pairs.

∆c4 = ∆c9 = ∆c10 = ∆c12 = ∆c14 = 0 , ∆c2 = ∆c6 = a ,

∆c0 = ∆c8 , ∆c7 = ∆c15 , ∆c1 = ∆c5 = ∆c13 , ∆S(c11) = a ,

∆S(c15) ∈ {5, a, d, f} ,
(
∆S(c8) ,∆c3 ⊕∆c11 ⊕∆c15

)
∈ ∆v,w

All together, for each t4, t13, t14 value, after this filtering, from all 2112 differential pairs,
there will be only 2112−52 = 260 of them left. We keep all these remaining differential pairs
in a memory to use them in the key recovery step.

Recovering Key Nibbles Apart from k8, k15, k14, the attacker can recover other 23 nibbles
of the key, namelyK ′0, K ′1, K ′′′0 [1, 2, 4, 5] andK ′′′1 [1, 2, 4], by using the following 19 equations
which are based on the partial encryption or decryption of the differential pairs. Note that
only one nibble of the weak key remains unknown, K ′′′1 [5].

1. ∆X ′2[0] = ∆X ′2[4] using K ′0[4] and K ′′′1 [4]
2. ∆X ′′2 [0] = a using K ′0[1, 6]
3. ∆X ′′2 [2] = 0 using K ′0[3, 4] and K ′′′0 [2]
4. ∆X ′′2 [4] = 0 using K ′0[1] and K ′′′0 [4]
5. ∆X ′′2 [6] = 0 using K ′0[3]
6. ∆X ′′2 [7] = a using K ′0[0]
7. ∆X ′3[1] = ∆X ′3[5] using K ′0[2, 5], K ′′′0 [1, 5] and K ′1[1, 5]
8. ∆X ′′3 [0] = 0 using K ′0[2, 3, 5], K ′′′0 [1] and K ′1[1, 6]
9. ∆X ′′3 [1] = 0 using K ′0[1, 2, 3, 4], K ′′′0 [2, 5], K ′1[2, 5] and K ′′′1 [1]
10. ∆X ′′3 [6] = 0 using K ′0[0, 7] and K ′1[3]
11. ∆X ′′3 [7] = a using K ′0[1, 6] and K ′1[0]
12. ∆X ′′3 [3]⊕∆X ′′3 [7] = a using K ′0[0] and K ′1[7]
13. ∆X ′4[2] = a using K ′0[0, 1, 2, 7], K ′′′0 [4], K ′1[3, 4] and K ′′′1 [2]
14. ∆X ′′4 [3] = 0 using K ′0[0, 1, 2, 3, 5, 6, 7], K ′′′0 [1] and K ′1[0, 1, 3, 6]
15. ∆X ′′4 [5] = 0 using K ′0[0, 1, 2, 7], K ′′′0 [4, 5], K ′1[3, 4, 5] and K ′′′1 [2]
16. ∆X ′′25[2] = v ⊕ a using K ′′′1 [2]
17. ∆X ′24[0] = 0 using K ′1[6]
18. ∆X ′24[2] = 0 using K ′1[3], K ′′′1 [2] and K ′1[4]⊕K ′′′1 [1]
19. ∆X ′24[6] = 0 using K ′1[3]
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Note that the average probability for satisfying each of above equations is 2−4, except
for number 11, 12, 17 and one of 18 or 19 that in average are 2−2. Hence, for each
remaining differential pair, there are in average 223·4 · 2−(4·15+2·4) = 224 key candidates
that satisfy all the equations. Moreover, this means that in average, each of these keys
will be counted about 260 · 224 · 2−92 = 2−8 times, while for the right value of the key it is
expected to be about 9 times. In other meaning, signal to noise ratio of the differential
key recovery attack is about 2300. It is important to mention that to increase the signal
to noise ratio, in the ciphertext side, we use two rounds for the key recovery attack. This
is possible because the differentials (and their corresponding EDPs) that we are using, all
are based on the same activity pattern which requires conditions to be satisfied.

Moreover, the value of t4, t13, t14 which the right differential pairs happen as expected
determines value of corresponding three key nibbles and the remaining key nibble, K ′′′1 [5]
can be found by doing an exhaustive search.

Attack Complexity Since the signal to noise ratio of the attack is very high, 9 correct
differential pairs is enough to recover 108 bits of the weak key. Overall, we need to ask for
212 · 2 · 260 = 273 data encryptions which determines the data complexity of the attack.
Besides, to keep the potentially right differential pairs for each value of t4, t13, t14, we need
about 260 blocks of memory.

About the time complexity, if order of the equations to be checked is 5 (K ′0[3]), 6
(K ′0[0]), 16 (K ′′′1 [2]), 12 (K ′1[7]), 17 (K ′1[6]), 19 (K ′1[3]), 10 (K ′0[7]), 18 (K ′1[4]⊕K ′′′1 [1]), 1
(K ′0[4] and K ′′′1 [4]), 3 (K ′′′0 [2]), 2 (K ′0[1, 6]), 4 (K ′′′0 [4]), 11 (K ′1[0]), 13 (K ′0[2] and K ′1[4]),
15 (K ′′′0 [5] and K ′1[5]), 9 (K ′1[2]), 7 (K ′0[5], K ′′′0 [1] and K ′1[1]), 8 (-) and 14 (-), then we
need to do about 236 partial encryption/decryption for each remaining differential pairs.
Since the partial encryption is at most for three rounds, this means that the computation
cost for key recovery step is about 236 · 3

26 ≈ 233 encryptions per pair and each tweak value.
Therefore, the time complexity of the attack is about 212 · 260 · 233 = 2105 encryptions.

6 Conclusion
Most of the security analysis for new block cipher designs are based on the assumption
of independent round keys. While this is not an issue in most cases, it may result in
overestimating the resistant of the design, in particular for in the weak-key scenario.

In this work, we showed how the SPN structure of CRAFT block cipher (with full-state
non-linear layer) changes to a Feistel-network structure (with half-state non-linear layer) in
the weak tweak-key scenario. Consequently, in the same number of rounds, the weak tweak-
key structure of the cipher is less resistant against differential and linear cryptanalyses. As
an application of this observation, we present one weak-key single-tweak differential attack
on 23 rounds of the cipher with time complexity of 294 encryptions and data complexity
of 274 chosen plaintext/tweak/ciphertext tuples that works for 2112 weak keys. We also
present one weak-key related-tweak attack on 26 rounds of the cipher time complexity of
2105 encryptions and data complexity 273 chosen plaintext/tweak/ciphertext tuples that
works for 2108 weak keys. It is important to mention that these attacks do not overcome
the security claim of the CRAFT block cipher.
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Figure 6: Transforming two representation rounds of CRAFT to two equivalent rounds: (a) two consecutive rounds, (b) bringing SB′ and PN′ from
end of left branch of each round to the beginning of the right branch in the next round, (c) passing both SB′ and PN′ through the bridge point of
each round, (d) removing both PN′ and PN′′ in the right branch of each round by replacing TK ′′i with TK ′′′i = PN′′(TK ′′i ).
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