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Abstract. The random oracle, generic group, and generic bilinear map
models (ROM, GGM, GBM, respectively) are fundamental heuristics
used to justify new computational assumptions and prove the security
of efficient cryptosystems. While known to be invalid in some contrived
settings, the heuristics generally seem reasonable for real-world applica-
tions.

In this work, we ask: which heuristics are closer to reality? Or conversely,
which heuristics are a larger leap? We answer this question through the
framework of computational indifferentiability, showing that the ROM
is a strictly “milder” heuristic than the GGM, which in turn is strictly
milder than the GBM. While this may seem like the expected outcome,
we explain why it does not follow from prior works, and is not the a
priori obvious conclusion. In order to prove our results, we develop new
ideas for proving computational indifferentiable separations.

1 Introduction

The Random Oracle Model. The random oracle model (ROM) of Bellare and
Rogaway [BR93] is ubiquitous in modern cryptography. The goal of this model is
to justify the security of cryptosystems in cases where it is unknown how to prove
the security relative to standard, widely accepted computational assumptions.
In the ROM, one treats a cryptographic hash function as a uniformly random
function that can only be accessed by making evaluation queries. The hope is
that the ROM accurately reflects real-world attacks on the cryptosystem.

The advantage of the ROM is that it allows for designing simpler proto-
cols than would otherwise be necessary. This helps in aiding the design of new
schemes, and many feasibility results are initially proved in the ROM (e.g.,
identity-based encryption [BF01]). Moreover, due to their simplicity, ROM con-
structions are often more efficient than their standard-model counterparts. Simi-
larly, ROM schemes can sometimes require milder cryptographic building blocks.

Now, random oracles are exponential-sized objects and therefore cannot ex-
ist in real life. To make matters worse, there are somewhat contrived exam-
ples [CGH98] of schemes that are proven secure in the ROM, but cannot be
instantiated by any concrete procedures. Due to such theoretical limitations, a
ROM proof is considered a compelling heuristic, but certainly less convincing



than a standard-model security proof. On the other hand, the known counter-
examples tend to be contrived and, for the most part, do not reflect real-world
constructions. Moreover, the best practical attacks on many hash functions and
schemes built from them simply use the hash function as a black box. As a result,
the trade-off between simplicity/efficiency and justification for security is often
viewed as a reasonable compromise.

The Generic Group and Bilinear Map Models. Other “idealized models” for
cryptographic objects are also common in the literature, two of the most common
being the generic group and generic bilinear map models.

Similar to the random oracle model, the generic group model (GGM) of
Shoup [Sho97] treats a cryptographic (cyclic) group as having uniformly random
labels for the group elements. Slightly more formally, we imagine fixing a genera-
tor g of the group, and letting L(x) = gx, which we will call the labeling function.
The generic group is then an idealization of a group, where the labeling function
L is modelled as a random injection L : Zp → {0, 1}n, together with an ora-
cle A computing the group operation: A(x, y, b) 7→ L( L−1(x) + (−1)bL−1(y) ).
Analogous to the random oracle model, the generic group model captures cryp-
tographic groups where the best practical attacks simply perform the prescribed
group operations. The generic bilinear map model (GBM), as defined by Boneh
and Boyen [BB04], extends the model to cryptographic pairings.

The generic group and bilinear models have been particularly useful for jus-
tifying the hardness of the many computational assumptions made on crypto-
graphic groups and bilinear maps. For example, the discrete logarithm, deci-
sional (bilinear) Diffie-Hellman, Diffie-Hellman inversion, Diffie-Hellman expo-
nent, and decision linear assumptions can all be proven hard in the respective
generic model. The generic bilinear map model has also been used to directly
prove the security of cryptosystems, such as recent constructions of broadcast
encryption [AY20] and traitor tracing [Zha20] from pairings.

This Work: Random Oracles vs. Generic Groups/Bilinear Maps. Cryptogra-
phers frequently compare various cryptographic primitives or computational
assumptions—which assumptions/primitives are more plausible, and which ones
are less likely to exist? Feasibility results and black box separations can be seen
as giving a partial ordering to the plausibility of such objects, with “stronger”
objects being less likely to exist than “weaker” ones.

Along these lines, the central goal of this work is to compare the random
oracle, generic group, and generic bilinear map heuristics. In particular, we ask:
which of these heuristics are closer or further from the “real” world?

In terms of “raw strength,” generic groups appear strictly stronger than
random oracles. After all, generic groups imply public key agreement, whereas
Impagliazzo and Rudich [IR89] show that random oracles cannot be used to build
public key agreement. As such, random oracles alone cannot yield generic groups.
In the reverse direction, all of the typical objects implied by random oracles
(one-way functions, collision resistant hashing, etc.) can readily be constructed
by generic groups.
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However, the relative “strength” of an idealized model in terms of implied
cryptosystems is actually largely uncorrelated with the relative soundness of the
heuristic. As an illustrative example, consider the case of [HSW14], who replaces
a random oracle with indistinguishability obfuscation (one of the strongest cryp-
tographic assumptions ever made) in the Full Domain Hash signature scheme [BR93].
By avoiding the random oracle, their proof is sound and free of any heuristics,
even though they require substantially stronger tools to achieve security.

More abstractly, random oracle model theorems typically also make compu-
tational assumptions, in addition to relying on the random oracle heuristic. But
once we make computational assumptions, we can no longer compare idealized
models in terms of cryptosystems implied by the model: under the assumption
that the given cryptosystem exists, both idealized models “imply” the cryp-
tosystem, by simply ignoring the idealized model. For example, in a world where
public key agreement exists (which is widely believed to be the world we live in!),
random oracles actually can be used to build public key agreement, just by ig-
noring the random oracle and using the given key agreement scheme. In contrast,
the separation of Impagliazzo and Rudich [IR89] explicitly requires working in a
world where essentially all (cryptographically useful) computational assumptions
are false, and the only source of hardness is the random oracle itself.

In a world where computational assumptions hold, perhaps a random ora-
cle actually can be used to build a generic group. The recent work of Zhandry
and Zhang [ZZ20] gives some hope: they combine random oracles with standard-
model key agreement schemes satisfying certain properties, in order to “upgrade”
the key agreement scheme into an “ideal” public key agreement scheme. It may
therefore seem plausible that an analogous construction can upgrade a suffi-
ciently good standard-model cryptographic group into a generic group, using
only the random oracle model as the base heuristic.

We therefore view an idealized model as roughly consisting of two parts: a
“standard-model” part, which tells us which types of standard-model cryptosys-
tems are implied by the model, and a “heuristic” part, which corresponds to
the features of the model that are not realizable in the standard model, and
thus captures how far the model is from the real world. The “standard-model”
part is where traditional black box separations come into play; for example,
Impagliazzo-Rudich already tells us that generic groups are stronger than ran-
dom oracles in this sense. However, the comparison between the heuristic parts
is a priori entirely unclear; this is the problem we seek to answer.

1.1 Formalizing Our Setting

Before describing our results, we first must formalize what it means to compare
the heuristic parts of two idealized models. In particular, we must describe what
it would mean for a random oracle to imply or not imply a generic group, for our
purposes. To do so, we use the indifferentiability framework of Maurer, Renner,
and Holenstein [MRH04].

Consider a construction G of a cryptographic group from a random oracle
H, which we will denote as GH . GH contains a labeling function LH , and an

3



addition function AH . We would like to define what it means for GH to be a
generic group. A first attempt would require that oracle access to LH , AH (but
not H) be indistinguishable from the oracles of a generic group interface. Such
an indistinguishable group is actually very easy to construct. Simply set L to be,
say, a Feistel network with the random oracle as the round function and A the
function that applies the appropriate operations to achieve the group operation.
By Luby and Rackoff [LR88], a 4-round Feistel network with a random hidden
round function is a strong PRP, which is enough to justify security.

The problem with the above is that a real-world attacker would be able to
make queries to H as well, since H represents a concrete hash function known
to everyone. But once we allow the attacker to query H, clearly, LH , AH , H
is trivially distinguishable from a generic group: the attacker can run LH for
himself by making queries to H, and then compare that to what the L oracle
outputs. In the LH , AH , H case, the outputs would match, while in the generic
group case, they clearly would not.

The solution, as demonstrated by Maurer et al., is to use the notion of in-
differentiability. Here, we define the “real world” as the setting where the ad-
versary has oracle access to LH , AH and H. In the “ideal world”, the adversary
has access to a true generic group, and a “simulated” random oracle H. In the
ideal world, a simulator S answers random oracle queries, potentially by keeping
state and also by making queries to the generic group. In doing so, the simula-
tor hopes to simulate a random oracle that is “consistent,” so that the attacker
cannot distinguish the two worlds. If such a simulator exists, we say that (L,A)
is indifferentiable from a generic group.

Where do computational assumptions fit in? Suppose a construction of a
generic group from a random oracle relied on a computation assumption. This
would imply that indifferentiability only holds against computationally bounded
distinguishers, since any computational assumption would be meaningless for an
unbounded distinguisher. Therefore, we will say that A computationally implies
B if there is a construction that is indifferentiable with respect to all computa-
tionally bounded distinguishers3. If indifferentiability holds also against compu-
tationally unbounded distinguishers, we say that A statistically implies B.

We will therefore say that the heuristic part of A is strictly milder than the
heuristic part of B if (1) B statistically implies A, while (2) A does not even
computationally imply B. In this case, we write A / B 4.

As alluded to above, our notion of comparison between idealized models is
largely orthogonal to what kinds of cryptosystems are implied by the models,
which is the usual purview of black box separations. Indeed, as discussed above,
in the setting of black box separations, the cryptographic groups are stronger
than hash functions, in the sense that groups give public key agreement but hash
functions cannot under black box constructions. On the other hand, Zhandry
and Zhang [ZZ20] show that, under certain computational assumptions, random

3 [MRH04] uses the terminology of “computational reducibility” for this concept.
4 Our choice to have B statistically imply A means that both the standard-model part

and heuristic part of B are stronger than A.
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oracles computationally imply both ideal public key agreement and ideal unique
signatures. Meanwhile, cryptographic groups on their own are not known to
imply unique signatures. As such, the relation, say, between random oracles
and generic groups in terms of computational indifferentiability is not a priori
obvious, given known separations.

1.2 Our Results

With our notation above, we can now write our main result as:

ROM / GGM / GBM

In other words, the random oracle model is a strictly milder heuristic than the
generic group model, which is a strictly milder heuristic than the generic bilinear
map model. We note that this result holds with respect to Shoup’s original
definition of the GGM [Sho97]5.

While this ordering mirrors intuition and what is suggested by black box sep-
arations, we will see in the following discussion that the results are incomparable.
Even the “easy” directions—showing that generic bilinear maps imply generic
groups, which in turn imply random oracles—are not completely trivial in this
setting. For the “hard” directions, we note that there are very limited techniques
for proving separations in terms of computational indifferentiability: [MRH04]
gives one general approach in terms of entropy, but it cannot be applied in our
setting as the computational version requires polynomially bounded entropy.
In contrast, the idealized models we consider all have exponential entropy. We
therefore have to develop new approaches in order to justify the claimed results.

1.3 Technical Overview

Warm-up: generic groups statistically imply random oracles. We first explain
how generic groups imply random oracles. This result is not entirely trivial. The
natural choice would be to set the labeling function of the generic group as the
random oracle. However, this function has homomorphisms that the random
oracle does not. In particular, given L(x) and L(y), it is possible to compute
L(x+ y). This is not possible for a random oracle.

Our solution is simple: we just truncate the labeling function, setting H(x)
to be the first, say, half the bits of L(x) 6. The intuition is that, given only half
the bits of L(x), it is impossible to meaningfully query the addition oracle. As a
result, since L(x) on its own is a random oracle we obtain a random oracle7.

5 Another variant of the GGM is defined by Maurer [Mau05] which avoids an explicit
mapping. Even though many results about the GGM hold in both models, our results
hold with respect to the original definition of Shoup.

6 Deleting any super-logarithmic number of bits will do.
7 Technically L(x) is a random injection. But a truncated random injection is indis-

tinguishable from a random oracle.
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To turn this into an indifferentiability proof, we have to explain how to
simulate L and H, given a true random oracle H. The idea is that, for any query
to L(x), the simulator will query H(x), set the first half of L(x) to be H(x),
and then choose a random string for the second half. The addition oracle A is
simulated by looking at the L queries made so far; if one of the input labels is not
amongst the L queries, A rejects. The reason this simulator works, roughly, is
that the distinguisher cannot make a query to A unless it knows the entire label.
Since obtaining the second half of the label required querying L, this means
the simulator will know the value for every label queried to A. This allows the
simulator to answer queries to A correctly.

Random Oracles do not (computationally) imply Generic Groups. Suppose we
have a purported construction GH = (LH , AH) of a cryptographic group from a
random oracle H. How do we show that GH can be differentiated from a generic
group, using a computationally efficient distinguisher?

One approach might be to look at the typical security properties assumed of
cryptographic groups—such as the hardness of discrete logarithms—and show
that such security properties cannot hold on G. Assuming the security property
is efficiently falsifiable [Nao03,GW11], this leads to a distinguisher: the distin-
guisher plays both the role of adversary and challenger for the security property,
reporting whether the adversary wins or loses in the security experiment. In the
real world, the adversary wins by design, whereas in the ideal world, the adver-
sary cannot win. As a result, the combined adversary-challenger will distinguish
the two worlds.

Remember, however, that we need the distinguisher, and hence adversary,
to be efficient. Under the plausible assumption that cryptographic group exists
satisfying the particular security property, one can set G to be that group, and
simply ignore H. An efficient adversary for the security property is then im-
possible. This means we cannot actually use security properties that are true of
standard-model cryptographic groups.

Our idea is to use a variant of the discrete logarithm problem, which impor-
tantly is trivially false on standard model groups but easily proved to hold on
generic groups. Our variant is what we call the discrete log identification (DLI)
problem, informally defined as: given h = L(x) 8, construct a (probabilistic, effi-
cient) circuit C such that C(x) accepts with overwhelming probability, but C(x′)
rejects with overwhelming probability on all x′ 6= x. The DLI problem is triv-
ially easy on standard-model groups: set C(x′) to be 1 if and only if L(x′) = h,
where L(x′) = gx

′
is computed as part of C. On the other hand, the DLI prob-

lem is readily shown to be hard on generic groups; importantly, the circuit C is
oracle-free, meaning it cannot evaluate L(x′) since doing so requires queries to
the generic group oracles.

While the DLI problem is easily solvable on standard-model groups, it re-
mains to show that the DLI problem is solvable on any group GH built from a

8 Remember that for standard-model groups, L(x) denotes the value gx for a fixed
generator g.
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random oracle H, where the attacker (but not C!) can also make queries to H.
The difficulty is that GH may use the random oracle, but the circuit C cannot;
as a result C(x′) cannot readily compute LH(x′) for itself, and it is therefore
not obvious how to make the attack work. The natural approach, following tech-
niques from the literature on black box separations, is to try to “compile out” the
oracle H. That is, an attacker can easily construct an oracle aided circuit CH(x′)
breaking the DLI problem by computing LH(x′) using the oracle H. Then, the
hope is to anticipate the oracle queries C will make to H, have the adversary
query on those points for itself. This task is usually accomplished by running
CH for itself on several random inputs, recording all queries that were made.
Then the adversary hardcodes the query answers into C to get an oracle-free
circuit, which C outputs.

Unfortunately, it is not a priori obvious that such a strategy should work, or
even that the DLI problem should be easy on groups built from random oracles.
To see why, consider an analogous pre-image identification (PI) problem for hash
functions, where the goal is, given an image h, to compute a circuit that accepts
only x such that H(x) = h. This PI problem is similarly easy for standard-model
hash functions, but hard in the random oracle model. One could hope to break
the PI problem on any hash function built from a random oracle by similarly
compiling out the random oracle queries. But since it is trivial to build a random
oracle from a random oracle (even with indifferentiability), and the PI problem
is hard for random oracles, we cannot hope to build an attack on the PI problem
in our setting.

Therefore, in order to develop our algorithm for the DLI problem, we must
exploit the fact that GH implements a group in order to compile out H from
CH . In particular, along with the labeling function LH , there is an addition
oracle AH which maps (LH(y), LH(z), b) 7→ LH(y+(−1)bz). This addition oracle
potentially makes queries to the random oracle H.

Consider computing LH(x) from x, which in turn makes queries to the ran-
dom oracle H. Let Qx be the set of query/answer pairs made during this pro-
cess. Consider running the addition oracle AH(LH(y), LH(z), b = 0), where
y, z are random conditioned on y + z = x. The output of this addition is
LH(y + z) = LH(x). For each query/answer pair (q, a) ∈ Qx, there are roughly
three possibilities:

1. With non-negligible probability over the choice of y, z,AH(LH(y), LH(z), b =
0) makes a query to H on q.

2. The label LH(x) does not “depend” on the answer a at all.
3. The label LH(x) depends on a, but AH(LH(y), LH(z), b = 0) queries q with

negligible probability.

Now consider running CH on input x. We claim that we can hardcode query
answers into C to guarantee that it will reconstruct LH(x) without making any
queries at all:

– In Case 1, consider the following procedure: choose a random y, compute
hy = LH(y), and then compute hz = AH(h, hy, 1) = LH(x − y) = LH(z),
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where we implicitly define z = x − y (we do not know it). Note that y, z
are random conditioned on y + z = x. Then, run AH(hy, hz), collecting all
oracle queries (q′, a′) made during this process into a list D. For Case 1, we
know that with non-negligible probability (q, a) will be amongst the (q′, a′)
queried. By repeating several times, we obtain that D contains (q, a) with
high probability. We then include D in the description of C, using D to
answer any queries on the q′.

– In Case 2, since LH(x) does not depend on a, when evaluating LH(x) we
can change the response H makes on q to a random value independent of
H, without affecting the ultimate labeling. Therefore, for any query not in
D, we will just have C respond with a uniformly random string.

– In Case 3, it must be that AH(hy, hz, 0) must have, in some sense, been able
to figure out a from the inputs hy, hz. But this in particular means that
LH(y) or LH(z) must query H on q, in order for the labels to have infor-
mation about a. We notice that y and z are both uniform, and in particular
distributed identically, and so the probability that LH(y) resulted in query
q is at least 1/2. But then we can collect (q, a) by additionally recording in
D all queries made when computing hy = LH(y) above. By repeating the
process several times, we obtain (q, a) with high probability.

Now consider evaluating C(x′) for x′ 6= x. In this case, if we got lucky and
correctly anticipated all queries C would make to H, we correctly compute the
right label for x′, which will be unequal to h; hence C(x′) rejects as desired. On
the other hand, if we did not anticipate all the queries, we just replace the query
answers with random values; while this means we compute an incorrect label
for x′, intuitively the random response to the oracle query should only serve to
inject further randomness into the label, and it should still be the case that our
incorrect label is different from gx. The result is a procedure for compiling out
the H queries made by C, resulting in an oracle-free C which accepts exactly
the discrete log x.

The above sketch is imprecise and ignores numerous low-level details, which
we work through in Section 3.

Generic Bilinear Maps are stronger than Generic Groups. We next turn to
extend our techniques to separate generic bilinear maps from generic groups.
This setting is far more challenging than the separation above, owing to the
fact that generic groups have a lot more structure to exploit in order to build a
bilinear map.

Since generic groups imply generic groups, we cannot rely solely on the group
structure of a bilinear map in order to achieve a separation from generic groups.
We instead must factor in the pairing operation. The difficulty is that the pairing
operation is also in some sense a restricted group operation (in the multiplicative
group Z∗p), and it could be that the generic group structure is used to implement
the pairing. Essentially what we must do is show that a single cryptographic
group cannot simultaneously be used to implement both the group operation
and pairing operations. This is a very different problem than our separation
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above, which showed that the group structure could not be obtained in the first
place.

In terms of the proof strategy, it is possible in the generic group model to
learn information about a label on a point x through the addition function,
in which case one does not necessarily have to even know x. But if we try to
adapt our proof technique from above, this means our procedure for collect-
ing query/response pairs will no longer work: our procedure for generating a
database D may never be able to query on the exact queries q made by LH(x),
in which case we would fail to simulate the circuit C.

What we can guarantee, however, is the following. Let L be the labeling func-
tion for the generic group, and L′ the supposed labeling function for a bilinear
map construction. When running L′(x), let Qx denote the vector of queries made
to L9. What we can show, essentially, is that, for x = y + z, given hy = L′(y)
and hz = L′(z), we can compute explicit matrices M,M ′ such that

Qx = M ·Qy +M ′ ·Qz

M,M ′ are obtained by tracing the calls to the addition oracle to the underly-
ing generic group. Similar statements hold for the pairing operation. Our main
insight is to use the fact that, for any bilinear map built from a generic group,
both the group addition and the pairing operations must be linear in this way.
We can then construct many equations in the various Qx sets. This does not
let us solve for the actual underlying variables, but it lets us effectively compile
the oracle queries the circuit C, giving an oracle-free circuit that identifies the
discrete logarithm. The details are given in Section 4.

1.4 Discussion

Our work shows that generic groups are a greater departure from the real world
that random oracles, and generic bilinear maps are a still greater departure.

Random Oracles from Algebraic Tools? Our positive result shows how to (un-
conditionally) construct a random oracle from a generic group. To the extent
which the generic group model for a given cryptographic group is believed, sim-
ply by truncating the labeling function one obtains a random oracle. Thus, it
is possible to build a plausible random oracle from algebraic tools. In contrast,
most of the time the random oracle heuristic is only applied to non-algebraic
hash functions.

Multilinear Maps? A natural question left open by our work is whether our re-
sults extend to multilinear maps [BS02]. In other words, can it be shown that
generic bilinear maps are a strictly milder heuristic than generic trilinear maps,
etc.? This is an important question, since the generic multilinear map model has

9 Technically, L′(x) may make queries to the generic group addition oracle. However,
we can replace such queries with queries to L, since L′ can trace the origin of all
labels to L queries.
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been used to establish the security of various constructions, especially that of
obfuscation [BR14,BGK+14]. Our separation between generic groups and bilin-
ear maps seems challenging to extend to higher-order multilinear maps. Indeed,
our separation inherently relies on solving linear equations arising from the lin-
ear structure of a generic group. When moving to the multilinear setting, one
obtains higher-degree equations, and it is unclear how to adapt our proof to such
equations since it is generally infeasible to solve higher-degree equations.

We note that a very coarse separation is possible using existing works: namely
that ideal constant-degree multilinear maps are strictly milder than ideal multi-
linear maps of polynomial degree. Indeed, it is known that ideal multilinear maps
of polynomial degree imply virtual black box obfuscation (e.g. [BR14,BGK+14]),
while virtual black box is impossible in the generic constant-degree multilinear
map model [PS16], even using computational assumptions. While these works are
not phrased in terms of indifferentiability, the results taken together nonetheless
imply an indifferentiability separation.

2 Preliminaries

Notation. Throughout this paper, λ ∈ N denotes the security parameter. For a
finite set S, we denote a uniformly random sample s from S as s← S.We say a
function µ(n) is negligible if µ ∈ o(n−ω(1)), and is non-negligible otherwise. We
let negl(n) denote an arbitrary negligible function. If we say some p(n) is poly,
we mean that there is some polynomial q such that for all sufficiently large n,
p(n) ≤ q(n). We say a function ρ(n) is noticeable if the inverse 1/ρ(n) is poly.

2.1 Ideal Objects

Random Oracle Model (ROM). A hash function is a function H : {0, 1}∗ →
{0, 1}n. The Random oracle model is an idealized model proposed by Bellare and
Rogaway [BR93,FS87], which assumes the existence of a truly random publicly
accessible hash function H. This means H(x) is chosen uniformly at random and
independently for each x. H can be queried on any input x; each query has unit
cost, so that a PPT algorithm can only make a polynomial number of queries.

Generic Group Model (GGM) [Sho97] . For our purposes, a cryptographic group
is a set G of prime size p, endowed with an efficiently computable group operation.
Equivalently, a cryptographic group is a (not necesarily efficient) embedding of
the additive group Zp into some set. The Generic Group Model is an idealized
model which assumes the existence of a random embedding from Zp. Concretely,
a generic group is a pair G = (G label,Gadd). Here, G label is a “labeling” function
that is a random injection from Zp to S, giving the embedding of Zp into S. Gadd
is the induced group operation: Gadd(G label(z1),G label(z2), b) = G label(z1+(−1)bz2).
We will write Gadd(h1, h2) = Gadd(h1, h2, 0). These functions can be queried on
any input at unit cost.
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Generic Bilinaer Maps (GBM) [BB04] . For our purposes, a bilinear map con-
sists of three sets G1,G2,GT of prime size p, each endowed with a group structure.
Additionally, there is an efficiently computable map e : G1 ×G2 → GT such that
e(gz11 , g

z2
2 ) = e(g1, g2)z1z2 for some fixed generators g1 ∈ G1, g2 ∈ G2.

The Generic Bilinear Map Model is an idealized model which assumes the
existence of random embeddings from Zp into the groups G1,G2,GT . Concretely,
a generic bilinear map is a tuple G = (G label1 ,G label2 ,G labelT Gadd1 ,Gadd2 ,GaddT ,Gmulti).
Here, G labeli and Gaddi are as in the generic group case. Gmulti is then defined as

Gmulti( G label1 (z1) , G label2 (z2) ) = G labelT (z1 × z2) .

As before, all queries incur unit cost.

2.2 Indifferentiability

The following definitions in this section are taken verbatim from [ZZ20].
In [MRH04], Maurer, Renner and Holenstein (MRH) propose the indiffer-

entiability framework, which formalizes a set of necessary and sufficient con-
ditions for one system to securely be replaced with another one in a wide
class of environments. This framework has been used to prove the structual
soundness of a number of cryptographic primitives, which includes hash func-
tions [CDMP05,DRS09], blockciphers [ABD+13,CHK+16,DSSL16], domain ex-
tenders [CDMS10] and authenticated encryption with associated data [BF18].
In the following, we first recall the definition of indifferentiability.

A random system Σ := (Σ.hon,Σ.adv) is accessible via two interfaces Σ.hon
and Σ.adv, where Σ.hon provides a honest interface through which the system
can be accessed by all parties and Σ.adv models the adversarial access to the
inner working part of Σ. Typically, a system implements either some ideal objects
F , or a construction CF

′
, which applies some underlying ideal objects F ′.

Definition 1 (Indifferentiability [MRH04]). Let Σ1 and Σ2 be two systems
and S be a simulator. The indifferentiability advantage of a differentiator D
against (Σ1,Σ2) with respect to S is

Advindif
Σ1,Σ2,S,D(1λ) := Pr[RealΣ1,D]− Pr[IdealΣ2,S,D],

where games RealΣ1,D and IdealΣ2,S,D are defined in Figure 1. We say Σ1 is
indifferentiable from Σ2, if there exists an efficient simulator S such that for any
probabilistic polynomial time differentiator D, the advantage above is negligible.
Moreover, we say Σ1 is statistically indifferentiable from Σ2, if there exists an
efficient simulator such that, for any unbounded differentiator D, the advantage
above is negligible.

In the rest of the paper, we also use the notations in [BF18] and consider the
definition above to two systems with interfaces as:

(Σ1.hon(X),Σ1.adv(x)) := (CF1(X),F1(x));

(Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)),

11



RealΣ1,D:

b← DHonestR,AdvR

Return b.

HonestR(X)

Return Σ1.hon(X).

AdvR(X)

Return Σ1.adv(X).

IdealΣ2,S,D:

b← DHonestI,AdvI

Return b.

HonestI(X)

Return Σ2.hon(X).

AdvI(X)

Return SΣ2.adv(·)(X).

Fig. 1. Indifferentiability of Σ1 and Σ2, where S is the simulator and D is the adversary.

where F1 and F2 are two ideal objects sampled from their distributions and CF1

is a construction of F2 by calling F1.

Definition 2 (Computational Indifferentiable Separation [MRH04]). Let
Σ1, Σ2 be two idealized models, we say Σ2 is computational indifferentiably sep-
arated from Σ1 if for any efficient algorithm A and any efficient simulator S,
there exist an efficient differentiator DA,S and a noticeable function ρ(n) such
that

Advindif
AΣ1 ,Σ2,S,DA,S (1λ) := |Pr[RealΣ1,DA,S ]− Pr[IdealΣ2,S,DA,S ]| ≥ ρ(n).

Observe that, if an idealized model Σ2 is computational indifferentiably sepa-
rated from another idealized model Σ1, it means that, we cannot build a scheme
AΣ1 such that AΣ1 is indifferentiable from Σ2, even under arbitrarily strong
computational assumptions10.

3 ROM / GGM

In this section, we give evidence that random oracles are strictly milder than
generic groups. We first illustrate a separation result, that is GGM is compu-
tational indifferentiably separated from ROM, then we show how to build a
statistically indifferentiable ROM from GGM.

3.1 Indifferentiable Separation between GGM and ROM

In this part, we show that generic groups are computational indifferentiably
separated from random oracles.

Theorem 1 (Main Theorem). Generic group model is computational indif-
ferentiably separated from random oracle model.

Proof. Let G = (G label,Gadd) be a generic group model, subject to G label : Zp →
{0, 1}m (p is a sufficiently large prime and m ≥ log p+λ), and let H be a random
oracle model that H : {0, 1}∗ → {0, 1}n. To establish the proof, we first identify
a hard problem Phard for G and then show that if we can build an indifferentiable
scheme (LH , AH) (this indicates that there is an efficient simulator S), we can

10 Unless, of course, those assumptions are false.
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break Phard by using S. According to [Sho97], the discrete logarithm problem is
hard; specifically for any unbounded adversary A,

Pr[AG(·)(G label(x))→ x : x
$← Zp] ≤

q2

2p
,

where A is making q queries to G(·) (either G label(·) or Gadd(·, ·, ·)). For ease of
exposition, we give a modified hard problem DLhard as follows. Given two group
elements, G label(x),G label(y), any query efficient adversary cannot identify x + y
with good probability, more concretely,

Pr
x,y

$←Zp

[
AG(·)(G label(x),G label(y))→ S : (x+ y ∈ S) ∧

(
|S|
p
≤ 1

q3

)]
≤ q2|S|

2p
≤ 1

q
,

This variant discrete logarithms tells us that, for any query efficient adver-
sary, it is infeasible to output a set S that covers x+ y with a good probability,
such that S is a tiny fraction of Zp. The hardness of DLhard follows immediately
from [Sho97] above, by computing S and then sampling a random element from
S; assuming the discrete log is in S, the result will be the discrete log with
probability 1/|S|.

We use the hardness of DLhard to build our contradiction as follows. Assuming
there is an indifferentiable scheme (LH , AH), which indicates that there exists
an efficient simulator S such that no computational differentiator can tell the
difference of the real world and ideal world, we then can build a query efficient
adversary that breaks DLhard by accessing to S. Here we first specify some
parameters:

– A makes at most qind queries to H when running AH1 (x);
– A makes at most qind queries to H when running AH2 (AH1 (x), AH1 (y), b);
– S makes at most qsim queries to G when responding to a single query to H;
– advantage of any efficient differentiator is bounded by ε ≤ negl(λ);
– q∗ is a polynomial such that q∗(λ) ≥ max(λ, 10);
– q̄ = 6qind ∗ q∗, s = q̄2 ∗ qind,;
– qG = (s+ 1) ∗ qsim ∗ qind, f = 10q3

G .

Now we are ready to illustrate our attacker for DLhard. Our intuitive strategy
is the following: (1) we build an algorithm in the real world within two specific
properties (details shown below); (2) we leverage the framework of indifferen-
tiability to transfer this algorithm into the ideal world via the simulator S, and
show that the transferred algorithm also achieves the same property; (3) using
the transferred algorithm to break DLhard. Next we establish our proof step by
step.

Step 1. In this part, we build an algorithm in the real world that achieves the
following properties. Concretely, we build an efficient algorithm BHreal that takes
inputs (LH(x), LH(y)) and outputs a circuit Preal which has no access to H. This
circuit here plays role of a predicate function that takes z ∈ Zp as input and
outputs a bit. And we argue that Preal would identify x+y with high probability,
which means it satisfies the following two properties:

13



1. Pr[Preal(x+ y) = 1] ≥ 1− 1
2q∗ ;

2. Prz 6=x+y[Preal(z) = 1] ≤ 2
√
ε ≤ negl,

where the probability is over the distribution of sampling x, y, z and generating

Preal. For ease of exposition, we denote (tx1 , . . . , t
x
qind

)
q← LH(x) as the queries made

during the encoding procedure, and similarly (t
(L(x),L(y))
1 , . . . , t

(L(x),L(y))
qind )

q←
AH(LH(x), LH(y)) as the queries made when adding the labels for x and y.
Next, we give the description of BHreal and Preal in Figure 2.

BHreal(L
H(x), LH(y)):

T1 ← Φ, T2 ← Φ, T ← Φ, r1, . . . , rs
$← Zp;

for i = 1 to s,
(ti1, . . . t

i
qind)

q← LH(ri),
T1 ← T1 ∪ {(ti1, H(ti1)), . . . , (tiqind , H(tiqind))};

(t∗1, . . . , t
∗
qind)

q← AH(LH(x), LH(y));
T2 ← T2 ∪ {(t∗1, H(t∗1)), . . . , (t∗qind , H(t∗qind))};
T ← T1 ∪ T2;
return Preal( · , T, AH(LH(x), LH(y))).

Preal(z, T, u
∗):

u← LT (z);
if u = u∗, return 1;
return 0.

Fig. 2. Algorithms in the real world.

BHreal takes as input two labels (LH(x), LH(y)). It first runs LH on s random
points ri, collecting all queries made to H. Then it adds the two input labels
together using AH , collecting all queries made during this process. Then it out-
puts the program Preal, with the list of queries hardcoded, and a target u∗ which
is the sum of the input labels.

Preal takes the input z, and computes the label u on z, checking if the result
is u∗. Here, Preal is not allowed to make oracle queries; instead it relies on the list
of queries computed by Breal. Concretely, it computes u ← LT (z), which works
the exactly as LH(z) except that on a query t, it does:

– if there is a tuple of the form (t, a) ∈ T , then it responds to the query with
a;

– else it samples a random string str, inserts (t, str) into T , and responds with
str.

The hope is that by the time Breal finishes, T will contain all “relevant”
queries, such that Preal will satisfy the two desired properties. We now prove
this:

First property. Here we prove that, Pr[Preal(x + y)] ≥ 1 − 1
2q∗ . We denote by

Qx+y the set of queries made during the encoding procedure LH(x+y); in other

words Qx+y = {(tx+y
1 , H(tx+y

1 )), . . . , (tx+y
1 , H(tx+y

1 ))}, where (tx+y
1 , . . . , tx+y

qind
)

q←
LH(x+ y). We define Qx, Qy as the same way as above and denote Qadd as the
set of queries that are made during AH(LH(x), LH(y)).
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We immediately observe that, if Qx+y ⊆ T , then LT (x + y) = LH(x + y),
referring to Preal(x+ y) = 1. Hence it suffices to show that T covers Qx+y with
high probability. Unfortunately, this certainly is not true in general as some
query in Qx+y may be completely ignored when running LH(x + y). However,
suppose that the label on x+y depends on a for some query (t, a) in Qx+y. If we
run AH on the labels for x, y, then AH must also output the label on x+ y, else
we can easily differentiate the construction. Thus, AH must somehow recover a,
since the label depends on a. In turn, this means either AH must have queried
on t, or that LH(x) or LH(y) must have queried on t.

More abstractly, let U be the label on x+ y. Then there exist two functions
func1, func2 such that U = func1(x+y,Qx+y) = func2(x, y,Qx∪Qy∪Qadd), where
func1 corresponds computing the label through LH(x+y), and func2 corresponds
to computing the label through AH(LH(x), LH(y)). As a result, we argue that
the only queries we care about are actually Qx+y∩(Qx∪Qy∪Qadd) (we denote it
as Q∗x+y below), because U is in fact independent of the queries in Qx+y\Q∗x+y

11.

By the description of BHreal, we note that Qadd ⊆ T2 ⊆ T , hence it is sufficient
to show that T also covers Qx+y ∩ (Qx ∪ Qy). However, the fact is that, both
(x,Qx) and (y,Qy) are unknown to BHreal(·, ·), and to resolve this barrier, our
strategy is that, we show that with high probability the queries in Qx+y ∩ (Qx ∪
Qy) are all frequent queries (define below). Thus, we can draw sufficiently large
samples, say r1, . . . , rs, and record all the queries made in LH(ri), and capture
all the frequent queries. In other words, T2 records Qadd and T1 covers Qx+y ∩
(Qx ∪Qy).

Now we define the frequent query as follows: we say a query (t,H(t)) is a
frequent query, if

Pr[(t,H(t)) ∈ Qz : z
$← Zp] ≥

1

q̄
.

Then we show that, T1 captures all of the frequent queries with high probability.
In fact, there are at most v = qind ∗ q̄ frequent queries (we denote those queries
as t1, . . . , tv), and for ti, we have

Pr[(ti, H(ti)) /∈ T1] ≤
(

1− 1

q̄

)s
=

(
1− 1

q̄

)q̄∗(qind∗q̄)
≤ e−qind∗q̄.

Thus, by union bound, it’s apparent that

Pr[(ti, H(ti)) ∈ T1 : ∀i ∈ [v]] ≥ 1− qind ∗ q̄ ∗ e−qind∗q̄ ≥ 1− λe−λ.

Now, it remains to show that, with high probability, the queries in Qx+y ∩ (Qx∪
Qy) are all frequent queries. First, note that x and x+y are independent random

values, if we ignore y. Therefore, for all queries (tx1 , . . . , t
x
qind

)
q← LH(x), if txi is

not a frequent query, then by definition, we have

Pr[(txi , H(txi )) ∈ Qx+y] ≤ 1

q̄
.

11 We can view those queries as insensitive queries and replacing the responses to
random strings would not affect the encoding value with high probability
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By a union bound, we have that

Pr[(Qx+y ∩Qx) contains non-frequent queries] ≤ qind
q̄

=
1

6q∗
.

We can symmetrically conclude that (Qx+y ∩Qy) contains frquent queries with
probability at most 1/6q∗. Then we have that

Pr[Qx+y ∩ (Qx ∪Qy) are all frequent queries] ≥ 1− 1

3q∗
,

This then implies that

Pr[Preal(x+ y) = 1] ≥ 1− 1

3q∗
− λe−λ − ε ≥ 1− 1

2q∗
.

Second property. Here we show that, for other z 6= x + y, Preal(z) = 0 except
with negligible probability. We split Zp into two disjoint set: S1 and S2, and
we say that z ∈ S1 if and only if LH(z) = LH(x + y). Then we show that: (1)
|S1|
p ≤

√
ε; (2) Pr[Preal(z) = 1|z ∈ S2] ≤

√
ε.

It is straightforward that |S1|
p must be negl, or else we can build a differen-

tiator runs LH on random inputs looking for collisions. Now consider a z ∈ S2.
We see that the distribution of LH(z) and LT (z) are identical, since LT just
answers all queries not in T with random outputs, matching the distribution of
H. Hence if Pr[Preal(z) = 1|z ∈ S2] >

√
ε, then we have that

Pr[LT (z1) = LT (z2)|z1, z2 ∈ S2] > ε⇒ Pr[LH(z1) = LH(z2)|z1, z2 ∈ S2] > ε

which contradicts indifferentiability security. Thus, we have

Pr[Preal(z) = 1] ≤ 2
√
ε.

Step 2. In this part, we leverage the simulator for the indifferentiability to

transfer (BHreal, Preal) to (BS
G

ideal, Pideal). Concretely, Pideal works identically to Preal

and BS
G

ideal works the same as BHreal except for answering queries. Essentially, when
Breal makes a query to H, say H(t), Bideal calls the simulator S to answer H(t)
by calling at most qsim queries to G(·). Then we show Pideal also achieves the two
properties above with only a tiny loss, specifically:

Pr[Pideal(x+ y) = 1] ≥ 1− 1

2q∗
− 1

2f
> 1− 1

q∗
>

9

10
;

Pr
z 6=x+y

[Pideal(z) = 1] ≤ negl(λ) +
1

2f
<

1

f
.

Toward that end, we show that if either of these two properties does not
hold in Pideal, then we can build an differentiator D, illustrated in Figure 3 ,
with advantage at least 1

20 > ε.
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Differentiator in real world Dreal

x, y, z1, . . . , zf
$← Zp;

U1 ← LH(x),U2 ← LH(y),
U3 ← LH(x+ y);
P ∗ ← BHreal(U1,U2);
if P ∗(x+y) = 1∧(∀i ∈ [f ], P ∗(zi) = 0),

return 1;
return 0.

Differentiator in ideal world Dideal

x, y, z1, . . . , zf
$← Zp;

U1 ← G label(x),U2 ← G label(y),
U3 ← G label(x+ y);

P ∗ ← BS
G

ideal(U1,U2);
if P ∗(x+y) = 1∧(∀i ∈ [f ], P ∗(zi) = 0),

return 1;
return 0.

Fig. 3. Differentiator for failed properties.

We note that, in the real world, the differentiator outputs 1 with high prob-
ability, in fact, we have that

Pr[Dreal = 1] ≥ 1− 1

2q∗
− 2f

√
ε ≥ 19

20
.

However in the ideal world, we argue (assuming either of the two properties
does not hold) that the differentiator Dideal outputs 1 with noticeably smaller
probability. In the following, we give the analysis case by case:

The first property fails. In this case, we have that Pr[P ∗(x+y) = 1] ≤ 9
10 , which

immediately refers to that

Pr[Dideal = 1] ≤ Pr[P ∗(x+ y) = 1] ≤ 9

10
.

The second property fails. In this case we have that ∀i,Pr[P ∗(zi) = 1] ≥ 1
f .

Moreover, z1, . . . , zf are uniformly sampled, which means P ∗(z1), . . . , P ∗(zf )
are independent, meaning

Pr[Dideal = 1] ≤ 1−
(

1− 1

f

)f
≤ 1− 1

e
≈ 0.6 .

Hence, if one of the two properties fails, then there exists a differentiator that
breaks the indifferentiability with advantage at least 1

20 .

Step 3. In this part, we show that how to use (BS
G

ideal, Pideal) to break DLhard.
Recall that, in generic group model, for any query efficient adversary A,

Pr
x,y

$←Zp

[
AG(·)(G label(x),G label(y))→ S : (x+ y ∈ S) ∧

(
|S|
p
≤ 1

q3
G

)]
≤ 1

qG
<

1

106
,

where A makes at most qG queries to G(·). To present the contradiction, we next
build a query efficient adversary A∗ in figure 4, which outputs a very small set
S such that x+ y ∈ S with high probability.
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A∗(G label(x),G label(y)):

S ← Φ; P ← BS
G

;
for i = 0 to p− 1,

if P (i) = 1, S ← S ∪ {i};
return S.

Fig. 4. Adversary to break DLhard.

We immediately observe that A∗ only makes qG queries to G(·), hence it

suffices to show that A∗ can output a set S, such that x+ y ∈ S and |S|p ≤
1
q3
G

,

with a good probability, say ≥ 1
2 .

In fact, by the analysis in step 2, it immediately follows that Pr[x+ y ∈ S] ≥
9
10 . In order to bound the size of S, we denote SPideal to be the set such that
z ∈ SPideal iff Pideal(z) = 1. Due to the analysis in step 2, we have that

Pr
x,y,Pideal

[
|SPideal |
p

>
10

f
] ≤ 1

10
⇒ Pr

x,y,Pideal

[
|SPideal |
p

>
1

q3
G

] ≤ 1

10
,

meaning

Pr[A∗ wins] ≥ 1− 1

10
− 1

10
=

4

5
.

Combing together, we establish the entire proof. ut

3.2 GGM implies ROM

In this part, we show how to build an indifferentiable ROM from GGM. Although
it is simple, the result appears to be previously unknown.

Building Blocks. Our construction consists of two building blocks:

– G = (G label,Gadd) is a generic group model that maps Zp to {0, 1}s;
– Truncsn is a truncation function that takes s-bit string as inputs and outputs

its first n bits.

where s ≥ 2 log p+λ and n := blog pc. Note that, Truncsn truncates any G label(x)
into an n-bit string. Now, we build an indifferentiable random oracle H that
maps {0, 1}n → {0, 1}n as follows:

H(x) = Truncsn(G label(x)).

We note that every bit of H(x) is random and independent, referring to the
outputs are well-distributed. Next we show this construction achieves indiffer-
entiability.

Theorem 2 (Indifferentiable ROM). H is indifferentiable from a random
oracle model. More precisely, there is a simulator S such that for all (qG label , qGadd)-
query differentiator D with qG label + qGadd ≤ q, we have

Advindif
H,S,D ≤

q2 + q

2λ
.
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The simulator makes at most q queries to its oracles.

Proof Sketch. According to the definition of indifferentiability, the adversary has
one honest interfaceH and two adversarial interfaces G label and Gadd12. Therefore,
we need to build an efficient simulator S that can simulate (G label,Gadd) properly,
which means, for any (even computationally unbounded) differentiator D, the
view of D in the real game is close to the view in the ideal game. In the following,
we illustrate the description of our simulator in Figure 5 and then we give the
high-level intuition of our proof strategy (due to space limit, we give the full
proof in Appendix A).

Algo.S.G label(x):

if ∃(x, y) ∈ Tlabel,
return y;

r � {0, 1}s−n,
Tlabel ← Tlabel∪(x,O(x)||r),

return O(x)||r.

Algo.S.Gadd(Z0,Z1):

if ∃((Z0,Z1,Z2) ∨ (Z1,Z0,Z2)) ∈ Tadd, return Z2;

if ∃((x0,Z0)∧ (x1,Z1)∧ (x0 + x1,Z2)) ∈ Tlabel, return Z2;
if ∃((x0,Z0) ∧ (x1,Z1)) ∈ Tlabel and (x0 + x1,Z2) /∈ Tlabel,
r � {0, 1}s−n, Tlabel ← Tlabel ∪ (x0 +x1,O(x0 +x1)||r),
return O(x0 + x1)||r;

return ⊥.

Fig. 5. Simulator for ROM in terms of two sub-simulators associated with oracle O.
These two sub-simulators share two tables (Tlabel, Tadd) as joint state (which are initial-
ized empty).

We immediately observe that, our simulator makes at most q queries to O,
and it keeps two tables and the size of each table is at most q, referring to S
is efficient. In the following, we present the intuitive idea that why S works.
Note that, G is a generic group model, hence the responses of a proper simulator
should follow the following rules:

1. The responses of G label are statistically uniform in {0, 1}s;
2. There do not exist x0 6= x1 such that G label(x0) = G label(x1);
3. H(x) = Truncsn(G label(x));
4. G label(x0 + x1) = Gadd(G label(x0),G label(x1)),
5. ∀Z /∈ {G label(x)}x∈Zp , Gadd(Z, ·) =⊥.

Next, we show our simulator achieves those five rules. Observe that rule 1 and
3 trivially holds.
Rule 2. The only way to break this rule is if a collision occurs. As r is uniformly

sampled, this bad event is trivially bounded by q2

2s−n ≤
q2

2λ
.

Rule 4. Note that, when running Gadd(Z0,Z1), if Z0,Z1 are the known valid
encoding (Z0,Z1 have already been put into Tlabel), then this equation holds for

12 For ease of exposition, we here only illustrate the simulation for the addition proce-
dure, and subtraction can be simulated identically.
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free. The only bad event that breaks this rule is whenAmakes the addition query
before the labeling queries (in the real world, the response is G label(x0+x1), while
in the ideal world, the simulator outputs ⊥ instead).

However, if this bad event occurs, then it means that the adversary needs to
predict a valid encoding G label(x). Of course, the adversary could have the first
n bits of G label(x), which it has to outputs the last s − n bits, which in fact is
independent of the adversary’s view. Thus this bad event is apparently bounded
by q∗p

2s−n ≤
q

2λ
.

Rule 5. By the description of S.Gadd, we know that, if and only if Z0,Z1 are the
known valid encoding , the response is not ⊥. Hence, if Z is an invalid encoding,
S.Gadd always outputs ⊥. ut

4 GGM / GBM

In this section, we give evidence that generic group model is strictly milder
than generic bilinear map. We first illustrate a separation result, that is GBM is
computational indifferentiably separated from GGM, then we show how to build
an indifferentiable GGM from GBM.

4.1 Indifferentiable Separation between GBM and GGM

In this part, we show that generic bilinear maps are computational indifferen-
tiably separated from generic groups.

An intuitive idea is to apply the same method above, since the discrete log-
arithm problem is also hard in the GBM. Concretely, we build an algorithm
BGreal, in the real world, that takes two source group labels (Blabel1 (x),Blabel1 (y))
as inputs and outputs a “query-free” circuit Preal that can identify xy with high
probability. Then we leverage the indifferentiability framework to transfer the

algorithms to the ideal world, we build (BS
G

ideal, Pideal). After that, we break dis-
crete log by Pideal. Unfortunately, in generic group model, this does not work
anymore. Below, we illustrate why it fails and propose our new solutions.

First Attempt. We apply the same method as Theorem 1. Let B = (Blabel1 ,Badd1 ,
Bmulti

1 ,Blabel2 ,Badd2 ) be a generic bilinear map (assuming identical source groups
for ease), with Blabel1 ,Blabel2 mapping Zp → {0, 1}s. Let G = (G label,Gadd) be a
generic group model. To show the impossibility, we use an analous hard problem
for the generic bilinear map model. Specifically, we can adapt the techniques of
Section 3 to show:

Pr
x,y

$←Zp
[AG(·)(Blabel1 (x),Blabel1 (y))→ S s.t. (xy ∈ S) ∧

(
|S|
p
≤ 1

q3

)
] ≤ q2|S|

2p
≤ 1

q
.

Following the same strategy, we assume there exists an indifferentiable GBM
construction (LG1 , A

G
1 ,M

G
1 , L

G
2 , A

G
2 ), and then build the algorithm BGreal, in fig-

ure 6, which takes LG1 (x), LG1 (y) as inputs and output a circuit Preal. Moreover,
we hope Preal identifies xy and rejects others with high probability.
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BGreal(L
G
1 (x), LG1 (y)):

T1 ← Φ, T2 ← Φ, T ← Φ, r1, . . . , rs
$← Zp;

for i = 1 to s,
(ti1, . . . t

i
qind)

q← LG1 (ri),
T1 ← T1 ∪ {(ti1,G(ti1)), . . . , (tiqind ,G(tiqind))};

(t∗1, . . . , t
∗
qind)

q←MG1 (LG1 (x), LG1 (y));
T2 ← T2 ∪ {(t∗1,G(t∗1)), . . . , (t∗qind ,G(t∗qind))};
T ← T1 ∪ T2;
return Preal( · , T,MG1 (LG1 (x), LG1 (y))).

Preal(z, T, u
∗):

u← LT2 (z);
if u = u∗, return 1;
return 0.

Fig. 6. Algorithms in the real world.

Note that, in the algorithm Breal, T1 records the frequent queries and T2

records the queries in the multiplication procedure. Hence, following the analysis
in Theorem 1, T indeed covers all the relevant queries with high probability.
However, because the underlying model here is generic group model, rather than
random oracle model, this strategy is insufficient.

Why it fails in GGM? It is true that T covers all the relevant queries with high
probability. However, the queries recorded in T might not be have sufficient
information, and as a result Preal fails to respond to the queries properly. Indeed,
there are two types of queries in the GGM: labeling queries and adding queries.
We write (z, label,G label(z)) as the labeling query and (G label(z1),G label(z2), add,
G label(z1 + z2)) as the adding query. We observe that, when T records (z1 +
z2, label,G label(z1 + z2)), it knows z1 + z2 explicitly. Meanwhile if T only records
(G label(z1),G label(z2), add,G label(z1 + z2)), it has no knowledge of z1, z2 or z1 + z2.

This unfortunately means that, after runningBreal, some of the tuples recorded
in T2 are the adding queries, while Preal needs the corresponding labelling queries.
Concretely, when LT2 (z) makes a relevant labeling query (z∗1+z∗2 , label, ·), Preal has
to respond with G label(z∗1 + z∗2), while T2 has only recorded (G label(z∗1),G label(z∗2),
add,G label(z∗1 + z∗2)), which means Preal cannot tell whether or not G label(z∗1 + z∗2)
is the proper response. Thus, Preal fails to identify xy.

Note that the main barrier showed above is that adding queries themselves
might not be sufficient for the algorithm L2, as the corresponding labelling
queries are needed when running L2. To solve this obstacle, we utilize a new
technique. At a high level, we construct two extractor algorithms that “transfer”
those adding queries to the corresponding labeling queries with high probability,
and then apply the proof framework of Theorem 1 to complete the proof. Essen-
tially, we observe that, although the adding queries (e.g. (G label(z1),G label(z2), add,
G label(z1 + z2))) do not explicitly give out the underlying value (e.g. (z1, z2, z1 +
z2)), they leak something, in particular linear constraints on the values, e.g.
(G label(z1)⊕G label(z2) = G label(z1+z2)) (here we use ⊕ as the group addition). Our
goal is to collect sufficiently many constraints so as to compute (z1, z2, z1 + z2)
by solving a linear system. Unfortunately, adding queries alone are insufficient to
generate enough equations, since generic groups can of course be used to build
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generic groups. We then leverage the power of the pairing to form an additional
linear system, which lets us solve the equations, transferring all adding queries
into labeling queries with high probability.

Theorem 3 (Main Theorem). Generic bi-linear maps are indifferentiably
separated from the generic group model.

Proof. Applying the same strategy in Theorem 1, we immediately observe that
it suffices to build an efficient algorithm BGreal such that BGreal takes LG1 (x) as input
and outputs a ”query-free” circuit Preal that satisfying the following:

1. Pr[Preal(x) = 1] ≥ 9
10 ;

2. Prz 6=x[Preal(z) = 1] ≤ negl(λ).

Hence, in the rest of proof, we focus on (BGreal, Preal). Here are some parameters:

– all algorithms makes at most qind queries to G;
– advantage of any efficient differentiator is bounded by ε ≤ negl(λ);
– q∗ is a polynomial such that q∗(λ) ≥ max(λ, 30);
– q̄ = qind ∗ q∗, s = qind ∗ q̄2;

Next we define five sets, (Q1
x, D

1
x, Fx, Q

2
x, D

2
x), which record (query, response)

tuples:

– All-query set on source group: Q1
x is a table that records all the labeling

queries when running LG1 (x).
– Relevant-query set on source group: D1

x is a table that only records all the
relevant labeling queries for LG1 (x).

– Frequently-extractable-query set on source group: Fx is a table that records
tuples with form of (∗, label,G label(z)) as computed by Extractor-1 (Figure.
7). At a high level, Fx records all the frequently extractable queries (de-
fined below) of LG1 (x), when Extractor-1 runs group operations (e.g. addi-
tion or multiplication), on LG1 (x) and LG1 (y), where y ← Zp is sampled by
Extractor-1.

– All-query set on target group: Analogously, Q2
x is a table that records all the

labeling queries when running LG2 (x).
– Relevant-query set on target group: Analogously, D2

x is a table that only
records all the relevant labeling queries for LG2 (x).

Observe that D1
x ⊂ Q1

x and D2
x ⊂ Q2

x. Moreover, as in Theorem 1, we have
that if we can build BGreal that takes LG1 (x) as input and outputs D1

x or D2
x, then

Preal can be constructed straightforwardly. In fact, one we have fixed D1
x (or D2

x),
it is apparent that

Pr[LG1 (x) = L
D1
x

1 (x)] ≥ 9/10 ∧ Pr
y 6=x

[LG1 (y) = L
D1
x

1 (y)] ≤ negl,

Pr[LG2 (x) = L
D2
x

2 (x)] ≥ 9/10 ∧ Pr
y 6=x

[LG2 (y) = L
D2
x

2 (y)] ≤ negl.

22



Thus in the rest of the proof, we show that how to transfer those adding queries
to D1

x (or D2
x) by making use of Fx and the pairing.

As in Theorem 1, we define the frequent queries: a query (z, label,G label(z))
is a frequent query on the source group if

Pr[(z, label,G label(z)) ∈ Q1
y : y

$← Zp] ≥
1

q̄
,

and a query (z, label,G label(z)) is a frequent query on the target group if

Pr[(z, label,G label(z)) ∈ Q2
y : y

$← Zp] ≥
1

q̄
.

Below, we let T1 and T2 be the set of frequent queries on the source group and
the target group, respectively. For ease of exposition, all the queries that the
algorithm calls to G in the addition procedure AG1 (LG1 (x), LG1 (y)) are denoted as

(at
L1(x),L1(y)
1 , . . . , atL1(x),L1(y)

qind
)
q← AG1 (LG1 (x), LG1 (y)).

Similarly, all the queries that the algorithm calls to G in the multiplication
procedure MG1 (LG1 (x), LG1 (y)) are denoted as

(mt
L1(x),L1(y)
1 , . . . ,mtL1(x),L1(y)

qind
)
q←MG1 (LG1 (x), LG1 (y)),

Finally, we consider a scaling procedure Scale, which takes (LG1 (x), u) as inputs
and outputs LG1 (ux). Scale is computed by at most 2 log p addition procedures.
All the queries that the algorithm calls to G in ScaleG(LG1 (x), u) are denoted as:

(st
L1(x),u
1 , . . . , st

L1(x),u
2 log pqind

)
q← ScaleG(LG1 (x), u).

Next, we define a new notion called “extractable queries”, a component of
constructing Extractor-1 and computing Fx. For fixed LG1 (x), consider Extractor-1

sampling y and computing LG1 (y). Write (at1, . . . , atqind)
q← AG1 (LG1 (x), LG1 (y)).

Then we say query (∗, label,G(z)) is an extractable query of LG1 (x) in the addition

procedure AG1 (LG1 (x), LG1 (y)), denoted as (∗, label,G(z))
ext
= AG1 (LG1 (x), LG1 (y)), if:

1. G(z) /∈ Q1
y ∪ T1 ∪ T2;

2. ∃ ati, i ∈ [1, qind] s.t. ati = (G(z),G(z′), add,G(z + z′));
3. G(z) never appears in the previous addition queries at1, . . . , ati−1.

The extractable queries of LG1 (x) in the multiplication and scaling procedures
can be defined analogously.

Now, we are ready to describe the frequently extractable query of LG1 (x),
and thus build Fx. Specifically, we say (∗, label,G(z)) is a frequently extractable
query of LG1 (x) for the addition procedure if

Pr[(∗, label,G(z))
ext
= AG1 (LG1 (x), LG1 (y)) : y

$← Zp] ≥
1

q̄
.

23



Similarly, (∗, label,G(z)) is a frequently extractable query of LG1 (x) for scaling if:

Pr[(∗, label,G(z))
ext
= ScaleG(LG1 (x), u) : u

$← Zp] ≥
1

q̄
,

and (∗, label,G(z)) is a frequently used query of LG1 (x) for multiplication if:

Pr[(∗, label,G(z))
ext
= MG1 (LG1 (x), LG1 (y)) : y

$← Zp] ≥
1

q̄
.

Next, we give the formal description of Extractor-1, in Figure 7, which takes
LG1 (x) as inputs and outputs Fx and CG, where CG denotes the set of the linear
constraints.

Extractor-1(LG1 (x)):

T1, T2 ← {(1,G(1))};Fx ← {(1,G(1))}, G← {G(1)}, CG ← (G(1) = 1);

y1, . . . ys, w1, . . . , ws, u1, . . . , us, v1, . . . , vs
$← Zp;

for i = 1 to s
Q1
yi = (t1, . . . , tqind)

q← LG1 (yi), Q
2
wi = (tqind+1, . . . , t2qind)

q← LG2 (wi);

T1 ← T1 ∪Q1
yi , T2 ← T2 ∪Q2

wi //computes T1 and T2

for j = 1 to 2qind; //collects all the group elements that appears into G

tj = (z, label,G label(z)), G← G ∪ {G label(z)}, CG ← CG ∪ (G label(z) = z);

(t2qind+1, . . . , t3qind)
q← AG1 (LG1 (x), LG1 (yi)),

(t3qind+1, . . . , t4qind)
q←MG1 (LG1 (x), LG1 (vi))

(t4qind+1, . . . , t(2 log p+4)qind)
q← Scale(LG1 (x), ui),

for j = 2qind+1 to (2 log p+4)qind //identifies all the extractable queries that ever appears

if tj = (z, label,G label(z)), G← G ∪ {G label(z)}, CG ← CG ∪ (G label(z) = z);
if tj = (G label(z1),G label(z2), add,G label(z1 + z2)),
G ∪ {G label(z1),G label(z2),G label(z1 + z2)},
CG ← CG ∪ (G label(z1) + G label(z2) = G label(z1 + z2))

if G label(z1)
used
= LG1 (x), Fx ← Fx ∪ G label(z1)

if G label(z2)
used
= LG1 (x), Fx ← Fx ∪ G label(z2)

return Fx, T1, T2, G,CG.

Fig. 7. Extractor for Fx.

Applying the same analysis in Theorem 1, we have for sufficiently large s
that T1 and T2 will record all the frequent queries for the source and target
groups (with probability ≥ 1 − 2λ

eλ
), and and Fx will record all the frequently

extractable queries of LG1 (x) (with probability ≥ 1− (2 log p+2)λ
eλ

) (here we abuse
the notation that Fx only records the group element G(z), rather than the tuple
(∗, label,G(z))).

Next, we claim that Fx\{G(1)} ⊆ Dx with overwhelming probability. Indeed,
LG1 (x) is independent of any query q /∈ Dx, and by the description of Extractor-1,
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every element in Fx is extracted in the addition, multiplication and scaling pro-
cedure. Thus, as long as the generic group model (Zp → S) has long outputs,
say log |S| ≥ log p + 2λ (which means it is hard to predict a valid encoding in
S without making a labeling query), those procedures would not involve any
independent queries (without making labeling query) except for negligible prob-
ability (≤ 1

2λ
). Hence, every element in Fx would be relevant to LG1 (x), implying

that Fx \ {G(1)} ⊆ Dx.
Moreover, by the description of Extractor-1, we have that Extractor-1 also out-

puts CG, a set of linear constraints on G. Based on CG, we can compute some
linear constraints on Fx, denoted as C1

Fx
. Write |C1

Fx
| to mean the total number

of linearly independent equations on Fx. Then if |C1
Fx
| = |Fx|, we can trivially de-

code Fx by solving the linear system. For example, if Fx = {(∗,G(z1)), (∗,G(z2))}
and C1

Fx
= {(G(z1)) = G(z2))⊕G(z2))), (G(6)) = G(z1))⊕G(z2)))}, then we can

solve the linear system and get the values z1 = 4 and z2 = 2. We use F ∗x to
denote the decoded table of Fx and note that every tuple in F ∗x has the form
(z1,G(z1)).

Next, we show that if F ∗x can be efficiently computed, then we can construct
(BGreal, Preal) straightforwardly. Here is the description, in Figure 8, which takes
input (LG1 (x), F ∗x , T1, T2).

BGreal(L
G
1 (x), F ∗x , T1, T2):

y
$← Zp, T ← T1 ∪ T2, Qy

q← LG1 (y),

(t1, . . . , tqind)
q← AG1 (LG1 (x), LG1 (y));

for i = 1 to qind,
if ti = (z, label,G label(z)), T ← T ∪ ti,
if ti = (G label(z1),G label(z2), add,G label(z1 + z2)),

if {G label(z1),G label(z2)} 6⊂ Qy ∪ F ∗x ∪ T1 ∪ T2, abort,
else ti ← (z1 + z2, label,G label(z1 + z2)), T ← T ∪ ti;
//every tuple recorded in T is labeling query

Return Preal(·, T, y, LG1 (x+ y)).

Preal(z, T, y, u
∗):

u← LT1 (z + y);
if u = u∗, return 1;
return 0.

Fig. 8. Algorithms in the real world.

Immediately observe that BGreal aborts only if:

1. some extractable queries of LG1 (x) appears in (t1, . . . , tqind);
2. one of them is not frequently extractable.

By the definition of frequently-extractable and F ∗x , this bad event is trivially
bounded by ≤ qind

q̄ = 1
q∗ = 1

30 . Thus, applying the analysis in Theorem 1, we
have that

Pr[Preal(x) = 1] ≥ 1− 1

30
− 1

q∗
− (2 log p+ 4)λ

eλ
− 1

2λ
− ε ≥ 9

10
,

Pr
z 6=x

[Preal(z) = 1] ≤ 2
√
ε ≤ negl.
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However, it is possible that F ∗x is not efficiently computable; for instance,
C1
Fx

might only have a few linear constraints or none. This is inherent, since
so far we have not used the pairing at all. To compute F ∗x , we extract more
equations using the algorithm Extractor-2, which makes use of the pairing.

First, in the scaling procedure Scale(LG1 (x), u), if u is known but x is un-
known, then the group elements in D1

ux can be represented as a linear system
as follows (with overwhelming probability):

D1
ux = M̄1

uxFx + M̄2
ux(T1 ∪ T2),

Here, we here abuse the notation D1
ux as a vector of the group elements), and

M̄1
ux and M̄2

ux are explicitly known. This follows straightforwardly by the same
analysis in Theorem 1. By this linear system, we know that every group element
in D1

ux would be represented by a linear combination of the elements in Fx∪T1∪
T2, with high probability. Moreover, (Fux\{G(1)} ⊆ Dux and (1,G(1)) ∈ T1∪T2,
thus we have:

Fux = M1
uxFx +M2

ux(T1 ∪ T2),

where M1
ux and M2

ux can be computed from M̄1
ux and M̄2

ux, by cutting off some
rows.

Next, we leverage the power of the pairing to gain more linear constraints.
In generic bilinear maps, L2(xyz) = MG1 (L1(xy), L1(z)) = MG1 (L1(x), L1(yz)).
Hence, with high probability we can represent the elements in D2

xyz as follows:

D2
xyz = Mxy

1 Fxy +Mz
2Qz + M̄x,y,z

3 (T1 ∪ T2)

= Mxy
1 MyxFx +Mz

2Qz +Mx,y,z
3 (T1 ∪ T2)

= Mxy
1 Myx Fx +Mz

2Qz +Mx,y,z
3 (T1 ∪ T2)

= Mx
4 Fx +Myz

5 Qyz +Mx,y,z
6 (T1 ∪ T2).

Note that, if Mxy
1 Myx 6= Mx

4 , then we can gain constraints on Fx as follows:

(Mxy
1 Myx −Mx

4 )Fx = Myz
5 Qyz −Mz

2Qz + (Mx,y,z
6 −Mx,y,z

3 )(T1 ∪ T2). (1)

Moreover, y, z are chosen by the algorithm itself, it means that every term
on the right side is explicitly known, by which we have that the new con-

straints can be efficiently computed. In the following, we denote (c1, . . . , ck)
ext←

Ext(L1(x), Fx, y, z) as the linear constraints that extracted by Equation 1. Next,
we present the description of Extractor-2, in Figure 9.

Observe that the goal of Extractor-2 is to gain as many linear constraints on
Fx as possible. A more interesting property is that, when Extractor-2 finishes,
then it would be hard to extract an additional linear-independent constraint,
specifically,

Pr
y,z

[Ext(LG1 (x), Fx, y, z) extracts a new constraint on Fx] ≤ λ

eλ
+

1

q̄
.
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Extractor-2(LG1 (x), Fx, C
1
Fx):

y1, . . . , ys, z1 . . . , zs
$← Zp, C2

Fx ← C1
Fx ;

for i = 1 to s,

(ci1, . . . , c
i
k)

ext← Ext(LG1 (x), Fx, yi, zi); C
2
Fx ← C2

Fx ∪ {c
i
1, . . . , c

i
k};

Return C2
Fx

Fig. 9. Additional extractor for Fx.

We now show how to use this property to build (Breal, Preal) in case that C2
Fx

is
still not good enough. Again, if we can compute F ∗x by C2

Fx
, then we are done, as

in Figure 8. Unfortunately, even with C2
Fx

, F ∗x might not be efficiently computed.

In such a situation, we then propose a new method that builds (BGreal, Preal) in
an alternative way, by using the property we illustrated above.

Let f1 = |Fx|, f2 = |C2
Fx
|. Given Fx and C2

Fx
, it is easy to compute an

(f1 − f2)× f1 matrix P xext and a new set of group elements F̂x such that:

1. |F̂x| = f1 − f2; Fx = P xextF̂x;
2. elements in F̂x are linearly independent.

Note that F̂x is a projection of Fx based on C2
Fx

. Moreover, we have that ex-

tracting a linear constraint on F̂x is identical to extracting an additional linear-
independent constraint on Fx after Extractor-2 finishes. Thus, we have that, for
any w, v ∈ Zp,

D2
xwv = Mxw

1 MxwFx +Mv
2Qv +Mx,w,v

3 (T1 ∪ T2)

= Mxw
1 MxwP

x
ext F̂x +Mv

2Qv +Mx,w,v
3 (T1 ∪ T2)

= Mx
4 Fx +Mwv

5 Qwv +Mx,w,v
6 (T1 ∪ T2)

= Mx
4 P

x
ext F̂x +Mwv

5 Qwv +Mx,w,v
6 (T1 ∪ T2).

Observe that with high probability, we must have

Mxw
1 MxwPext = Mx

4 Pext. (2)

In fact, if Equation 2 does not hold, it immediately gives at least one linear
constraint on F̂x, which would have resulted in an additional linear-independent
constraint on Fx after Extractor-2 finishes.

Of course, Equation 2 would not directly help us to compute F ∗x , but it opens
up an alternative way to build (BGreal, Preal). Let LG1 (x) be the challenge input. We
first sample x′, y′, and in our new strategy, we would then attempt to compute
F ∗x′x, rather than F ∗x directly. Specifically, given LG1 (x′), we compute Fx′ , C

2
Fx′

,

and P x
′

ext as above (here we know everything of Fx′ as x′ is sampled). Then we
have that, with high probability

Fx′x = Mx′xFx′ +M ′(T1 ∪ T2) = Mx′xP
x′

extF̂x′ +M ′(T1 ∪ T2)

Mx′x
1 Mx′xP

x′

ext = Mx′

4 P x
′

ext
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where we treat the unknown challenge term x as the scaling parameter. Now we
see that, if we can compute the matrix Mx′xP

x′

ext, then F ∗x′x can be efficiently
computed (as x′ is sampled by the algorithm, even Q1

x is explicitly known).
Again, once we compute F ∗x′x, we are done.

However, Mx′xP
x′

ext is computable if and only if Mx′x
1 is a row full rank

matrix, which might not be true. It remains therefore to handle the scenario that
Mx′x

1 is not row full rank. Observe that if Mx′x
1 has a kernel (not a row full rank

matrix), it means that the multiplication procedure MG1 (LG1 (x′x), LG1 (y′)) only
needs partial information about Fx′x. Thus, instead of computing F ∗x′x (which
is impossible in this case), we only compute this kind of partial information of
F ∗x′x. Concretely, let K∗ be the kernel of Mx′x

1 , an f1 × n matrix (n ≤ f1). We
then compute K such that [K|K∗] is a square (f1 × f1) and invertable matrix

and U =

[
U1

U2

]
13 as its inverse. Then

Mx′x
1 Mx′xP

x′

ext = Mx′x
1 [K|K∗]

[
U1

U2

]
Mx′xP

x′

ext

= [Mx′x
1 K|0]

[
U1

U2

]
Mx′xP

x′

ext

= (Mx′x
1 K)U1Mx′xP

x′

ext.

Now we see that Mx′x
1 K is definitely row full rank, which means that we can

efficiently compute U1Mx′xP
x′

ext. And now we specify the partial information as
F̃x′x := U1F

∗
x′x and prove that F̃x′x itself is sufficient to transfer every adding

query into labeling query. Concretely,

D2
xx′y′ = Mx′x

1 Fx′x +My′

2 Fy′ +Mx,x′,y′

3 (T1 ∪ T2)

= (Mx′x
1 K)U1Fx′x +My′

2 Fy′ +Mx,x′,y′

3 (T1 ∪ T2)

= (Mx′x
1 K)F̃x′x +My′

2 Fy′ +Mx,x′,y′

3 (T1 ∪ T2).

We know everything about F̂x′ since x′ is chosen by the algorithm itself, so we
can compute F̃x′x as

F̃x′x = U1Mx′xP
x′

extF̂x′ .

And again, once we have F̃x′x, we are done. Combining together, we establish
the entire proof. ut

Due to space limit, we give our indifferentiable GGM from GBM in Ap-
pendix C. In fact, we illustrate a more general result in Appendix C, which
states the following: for any integer d1, d2, if d1 divides d2, then we can build an
indifferentiable d1-linear MMaps from an idealized d2-linear MMaps statistically.

13 U1 is an (f1 − n)× f1 matrix.
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A Proof of Theorem 2

Proof. According to the definition of indifferentiability, the adversary has one
honest interface H and two adversarial interfaces G label and Gadd. Therefore we
need build an efficient simulator S in the ideal world that can simulate the
adversarial interfaces properly. We will go through a sequence of hybrid games
where in each game, there exists a system that responds to all of the queries
(both honest and adversarial) in a slightly different way and then we build our
simulator S as the system in the last game. Before the description of the games,
we first specify some parameters:

– There are three types of queries: (x;H), (y, label;G) and (Z0,Z1, add;G),
where x← {0, 1}n, y ← Zp and Z0,Z1 ← S.

– The adversary only makes q queries to the system, where q = poly(λ).
– The oracles used in the real world are H̃, G̃ label and G̃add;
– In each game, the system’s responses are denoted as Hr, Grlabel and Gradd. For

instance, Gradd(Z0,Z1) denotes the system’s response when adversary makes
a query Q = (Z0,Z1, add;G).

The hybrid games are as follows.
Game 0. This game is identical to the real game except that the system main-
tains two table, referring to L-table and A-table(for labeling and addition queries,
respectively). Specifically, the system responds to the queries the same as in the
real world, for instance, Hr(x) = H̃(x) and Gradd(Z0,Z1) = G̃add(Z0,Z1). For the
tables, the system maintains them as follows:

– L-table: Initially empty, consists of tuples with form of (x,Z). Once the
adversary makes a label query, say (x, Label;G), which does not exist in
L-table yet(no tuple such that the first element is x), the system inserts
(x, G̃ label(x)) into L-table.

– A-table: Initially empty, consists of tuples with form of (Z0,Z1,Z). Once the
adversary makes an addition query, say (Z0,Z1, add;G), which does not exist
in A-table yet(no tuple such that the first elements are (Z0,Z1) or (Z1,Z0)),
the system inserts (Z0,Z1, G̃add(Z0,Z1)) into A-table. Moreover, if there exist
(x0,Z0) and (x1,Z1) in the previous queries, then the system also inserts
(x0 + x1, G̃add(Z0,Z1)) into L-table.

Note that at this point all the queries are answered by the real oracles and
these tables are just keeping track of information related to adversary’s queries
(to the adversarial interfaces) and completely hidden to the adversary. Hence
the view in real game is identical to the one in Game 0. Next, we illustrate an
alternative way to responds to part of the queries, by using these tables and
accessing to the honest interface.

For ease of exposition, we here define a relation between the query Q and
the table Tab. Specifically, if Q is a labeling query, for instance Q = (x, label;G),
we say Q ∈ Tab if there exists a tuple T = (T1, T2) ∈ Tab such that T1 = x.
Analogously, if Q is an addition query, for instance Q = (Z0,Z1, add;G), we say
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Q ∈ Tab, if there exists a tuple T = (T1, T2, T3) ∈ Tab such that T1 = Z0, T2 = Z1

or T1 = Z1, T2 = Z0.
Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding to the queries. Specifically,
Labeling query. Suppose Qk = (x, label;G)(the k-th query), then

– Case 1. If Qk ∈ L, which means there exists a tuple T = (T1, T2) ∈ L such
that T1 = x, then the system responds to the query with T2.

– Case 2. Otherwise, the system responds with G̃ label(x) and inserts (x, G̃ label(x))
into L-table.

Addition query. Suppose Qk = (Z0,Z1, add;G), then

– Case 1. If Qk ∈ A, which means there exist a tuple T = (T1, T2, T3) such
that T1 = Z0, T2 = Z1 or T1 = Z1, T2 = Z0, then the system responds to the
query with T3.

– Case 2. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), and T1 + T ′1 ∈ L, then the
system responds with the corresponding record.

– Case 3. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), but T1 + T ′1 /∈ L, then the
system responds with G̃add(Z0,Z1) and inserts (T1 + T ′1, G̃add(Z0,Z1)) into
L-table.

– Case 4. Otherwise, the system responds with G̃add(Z0,Z1).

Note that, in Game 1 the system keeps a longer table, and for part of the
queries, the system responds to them in an alternative way, which is only using
the tables and the honest interfaces. Moreover, in Game 1, the tuples stored
in the tables correspond to the response of queries that are answered by the
real oracles. Hence, in either game, the response of any query is identical, which
refers to that the view in Game 1 is identical to the one in Game 0. However, the
system can only answer part of the queries by tables and honest interfaces, and
for the rest it has to call the real oracles. Thus, in the following hybrid games, we
will illustrate additional alternative ways(not calling the real oracles) to respond
to the rest queries, without changing the view significantly.
Game 2. This game is identical to Game 1, except for responding to the addition
queries. Suppose Qk = (Z0,Z1, add;G), then the system responds:

– Case 1. If Qk ∈ A, which means there exist a tuple T = (T1, T2, T3) such
that T1 = Z0, T2 = Z1 or T1 = Z1, T2 = Z0, then same as in Game 1.

– Case 2. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), and T1 + T ′1 ∈ L, then same
as in Game 1.

– Case 3. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), but T1 + T ′1 /∈ L, then same
as in Game 1.

– Case 4. Otherwise, the system responds with ⊥.
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Note that the only difference between Game 1 and Game 2 occurs in Case 4,
where one of (Z0,Z1) never appears in the labeling query, say Z0. We immediately
observe that, if Z0 is not a valid group element, then Game 1 and Game 2 are
identical. In fact, the honest interface only gives the adversary the first n bits and
due to log |S| ≥ log p+ n+ λ, Z0 is non-valid except with negligible probability.
Game 3. This game is identical to Game 2, except for responding to the addition
queries. Suppose Qk = (Z0,Z1, add;G), then the system responds:

– Case 1. If Qk ∈ A, which means there exist a tuple T = (T1, T2, T3) such
that T1 = Z0, T2 = Z1 or T1 = Z1, T2 = Z0, then same as in Game 2.

– Case 2. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), and T1 + T ′1 ∈ L, then same
as in Game 2.

– Case 3. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), but T1 + T ′1 /∈ L, then the
system makes a query (T1 + T ′1;H) and samples a random element Z ∈ S
conditioned that Truncn(Z) = Hr(T1 + T ′1), and responds the query with Z.
After that, the system inserts (T1 + T ′1,Z) into L-table.

– Case 4. Otherwise, same as in Game 2.

Note that the only difference between Game 2 and Game 3 occurs in Case
3. In this case, Z0 and Z1, of course, are valid group element and the system is
obligated to output a proper response, which should be consistent to the honest
interface. Essentially, we observe that, as T1 + T ′1 ∈ L-table, the adversary can
only learn the first n bits of G̃ label(T1 + T ′1), and the rest bits are independent
of the adversary’s view. Thus, it is okay to replace them with random strings,
as long as Z never appears before Qk, which can only happen with negligible
probability.
Game 4. This game is identical to Game 3, except for responding to the labeling
queries. Suppose Qk = (x, label;G), then the system responds:

– Case 1. If Qk ∈ L, which means there exists a tuple T = (T1, T2) ∈ L such
that T1 = x, then same as in Game 3.

– Case 2. Otherwise, the system makes a query (x;H) and samples a random
element Z ∈ S conditioned that Truncn(Z) = Hr(x), and responds the query
with Z. After that, the system inserts (x,Z) into L-table.

Trivial to note that, Game 4 is close to Game 3 within the same reason
above(Game 3 ≈ Game 2).
Game 5. In Game 4, the queries to the adversarial interfaces are answered
by the tables which are maintained by the system and by making queries to
honest interface. The system never makes queries directly to G̃ label and G̃add;
these oracles are only used to answer the H queries (either generated by the
adversary or by the system’s response to labeling or addition queries). At this
point, it is straightforward to show that we can replace H with a random oracle
O, resulting in Game 5.
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We note that in Game 5, the system is efficient, and it responds to the adver-
sarial interfaces just by keeping several tables and calling the honest interfaces.
Thus, we can build a simulator that responds to the honest and adversarial
queries precisely as the system does in Game 5. The result is that the view in
Game 5 is identical to the ideal world and it suffices to prove that any adjacent
games are indistinguishable.

In the following, we first give the full description of the simulator and then
complete the proof by showing that every pair of adjacent games are indistin-
guishable.
Simulator in Ideal Game. Let O be a random oracle, and we define the
simulator S works as follows. Like the system in Game 5, the simulator also
maintains two tables: the labeling table L-table and the addition table A-table.
Concretely:

– L-table: Initially empty and consists of tuples with form of (x,Z);
– A-table: Initially empty and consists of tuples with form of (Z0,Z1,Z) or

(Z0,Z1, ⊥).

By definition, S has access to the honest interfaces O. And for the adversarial
queries, S works as the system in Game 5, by just using the tables and calling
the honest interfaces.
Labeling query. Suppose Qk = (x, )(the k-th query), then

– Case 1. If Qk ∈ L, which means there exists a tuple T = (T1, T2) ∈ L such
that T1 = x, then the simulator responds to the query with T2.

– Case 2. Otherwise, the simulator makes a query (x;H) and samples a random
element Z ∈ S conditioned that Truncn(Z) = Hr(x), and responds the query
with Z. After that, the simulator inserts (x,Z) into L-table.

Addition query. Suppose Qk = (Z0,Z1, add;G), then

– Case 1. If Qk ∈ A, which means there exist a tuple T = (T1, T2, T3) such
that T1 = Z0, T2 = Z1 or T1 = Z1, T2 = Z0, then the simulator responds to
the query with T3.

– Case 2. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), and T1 + T ′1 ∈ L, then the
simulator responds with the corresponding record.

– Case 3. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), but T1 + T ′1 /∈ L, then the
simulator makes a query (T1 + T ′1;H) and samples a random element Z ∈ S
conditioned that Truncn(Z) = Hr(T1 + T ′1), and responds the query with Z.
After that, the simulator inserts (T1 + T ′1,Z) into L-table.

– Case 4. Case 4. Otherwise, the simulator responds with ⊥.

Next we prove the indistinguishability between any adjacent games, by show-
ing that the adversary’s view on both games are close.
Claim. Game Real ≈ Game 0.
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Proof. The only difference between Game Real and Game 0 is that, in Game 0
the system additionally maintains two tables that are completely hidden from
the adversary, hence we have

Pr[Game Real] = Pr[Game 0].

Claim. Game 0 ≈ Game 1.

Proof. By definition, we note that in Game 1, the system maintains longer tables
and it responds to part of the queries (type A query) by just using those tables
and calling the honest interface. For the other queries (type B query), the system
responds by calling the real oracles. Moreover, the items stored in those tables are
always consistent with the real oracles, and in either games, the honest interfaces
correspond to the real oracles, which means the response by calling the honest
interfaces is identical to the one by calling real oracles. Hence the responses of
type A queries by either the real oracles(Game 0) or by honest interfaces plus
tables(Game 1) are identical, which refers to

Pr[Game 0] = Pr[Game 1].

Claim. Game 1 ≈ Game 2.

Proof. Recalling that the only difference between Game 1 and Game 2 occurs
in case 4, where one of the elements in (Z0,Z1) never appears in the previous
queries, say Z0. In Game 1, the system responds with G̃add(Z0,Z1), while in
Game 2, the system replaces it with ⊥. To prove the indistinguishability, we
first formalize the adversary’s view in Game 1. By definition, we immediately
observe that,

– The system responds to (x;H) with H̃(x).
– The system responds to (x, label;G) with G̃ label(x).
– The system responds to (Z0,Z1, add;G) with G̃add(Z0,Z1).

Hence, in the adversary’s view, under the consistency conditions listed below,
every bit of the response(if not ⊥) should be random and independent. And the
consistency conditions are:

– Hr(x) = Truncn(Grlabel(x));
– Grlabel(x0 + x1) = Gradd(Grlabel(x0),Grlabel(x1)).
– There exists no x 6= x′ such that Grlabel(x) = Grlabel(x′).

We immediately observe that, if Z0 is not a valid group element, then the
view on Qk are identical in both games, as G̃add(Z0,Z1) =⊥. Hence it suffice to
prove that Z0 is a non-valid group element except with negligible probability.
In fact, the adversary might know some x∗ such that Hr(x∗) = Truncsn(G̃L(x)),
but those bits clearly are the only information it has. To output a valid element,
the adversary is obligated to guess the rest n + λ bits, which the probability is
bounded by

Pr[Bad] ≤ 2n

2n+λ
=

1

2λ
≤ negl(λ).
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Thus, we have

|Pr[Game 1]− Pr[Game 2]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 2 ≈ Game 3.

Proof. Recalling that the only difference between Game 2 and Game 3 occurs in
case 3, where both Z0 and Z1 appear in L-table(say (x0,Z0) and (x1, Z1) ), but
x0 +x1 6∈ L. In game 2, the system responds with G̃add(Z0,Z1), while in Game 3,
it replaces with a random Z ∈ S such that Truncsn(Z) = Hr(x0 + x1). And after
Qk, the system implicitly sets Grlabel(x0 + x1) = Z.

Analogously, we know that, under the condition the bad events never hap-
pen, the adversary’s view on H and G are random strings. Hence, the response
in Game 3 are well distributed. Next, we show that, except with negligible prob-
ability, the consistency conditions also hold.

Observe that the first two equations hold trivially. And for the third one,
note that Z is uniformly sampled and as long as it does not appear before Qk
(the first n bits might be known) and there exists no x such that G̃ label(x) = Z,
then the equation holds. And we can bound the union of the bad events by

Pr[Bad] ≤ k − 1

2n+λ
+

2n

2n+λ
≤ negl(λ),

which refers to

|Pr[Game 2]− Pr[Game 3]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 3 ≈ Game 4.

Proof. Applying the same analysis above(Game 2 ≈ Game 3), it is trivial that

|Pr[Game 3]− Pr[Game 4]| ≤ |Pr[Game 2]− Pr[Game 3]|.

Claim. Game 4 ≈ Game 5.

Proof. Let O be a random oracle model, and we note that the difference between
Game 4 and Game 5 is that: in Game 4 the system responds to all the queries
by calling (x;H), while in Game 5, it makes queries with form of (x;O). In fact,
as Hr(x) = Truncsn(G̃ label(x)), and G is a generic group model, hence every bit of
Hr(x) is random and independent, which means the distribution of Hr(x) and
Or(x) are identical, referring to

Pr[Game 4] = Pr[Game 5].

Combing together, we establish the entire proof.
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B General GGM implies ROM

In this section, we consider about a more general version of GGM and show
that even the encoding of GGM is not random string, we still can build an
indifferentiable ROM from it. To simplify the construction, we here only give
out a one-bit random oracle construction14.
Building Blocks. Our construction consists of two building blocks:

– G = (G label,Gadd) is a generic group model that maps Zp to S, subject to
distribution D;

– Ext is a (k, ε) strong seeded extractor.

where log |S| ≥ 2 log p + 2λ, the min-entropy H∞(D) ≥ k ≥ 2 log p + λ. Note
that Ext is a strong seeded extractor, taking the encoding G label(x) and a seed s
as inputs, and outputs a bit. Then, we can build a one-bit indifferentiable ROM
H that maps {0, 1}n → {0, 1} as follows:

H(x) = Ext(s,G label(x)),

where s is a random seed as a public parameter. Observe that, for any efficient
adversary that makes at most q queries, the distribution of H(x1), . . . ,H(xq) is
qε-close to uniform.

Theorem 4. H is indifferentiable from a random oracle model. More precisely,
there is a simulator S such that for all (qH, qG label , qGadd)-query PPT differentiator
D with qH ≤ q1 qG label + qGadd ≤ q2, we have

Advindif
H,S,D ≤

q2
2 + q2

2λ
+ (q1 + q2λ)ε+

q2

3λ
.

The simulator makes at most q2λ queries to its oracles.

Proof. According to the definition of indifferentiability, the adversary has one
honest interface H and two adversarial interfaces G label and Gadd. Therefore we
need build an efficient simulator S in the ideal world that can simulate the
adversarial interfaces properly. We will go through a sequence of hybrid games
where in each game, there exists a system that responds to all of the queries
(both honest and adversarial) in a slightly different way and then we build our
simulator S as the system in the last game. In the following, we illustrate the
description of our simulator in Figure 10 and then we give the high-level intuition
of our proof strategy and then complete the proof.

We immediately observe that, our simulator makes at most q queries to O,
and it keeps two tables and the size of each table is at most q, referring to S
is efficient. In the following, we present the intuitive idea that why S works.
Note that, G is a generic group model, hence the responses of a proper simulator
should follow the following rules:

14 For random oracle model, once having one-bit scheme, it’s straightforwards to extend
to many bits
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Algo.S.Setup:

s� {0, 1}n;

Algo.S.G label(x):

if ∃(x, y) ∈ Tlabel, return y;
y1, . . . , yλ � D, k ← 0;
k ← min{1, . . . , λ} s.t. Ext(s, yk) = O(x);
if k = 0, abort;
Tlabel ← Tlabel ∪ (x, yk); return yk.

Algo.S.Gadd(Z0,Z1):

if ∃((Z0,Z1,Z2) ∨ (Z1,Z0,Z2)) ∈ Tadd, return Z2;

if ∃((x0,Z0) ∧ (x1,Z1) ∧ (x0 + x1,Z2)) ∈ Tlabel, return Z2;
if ∃((x0,Z0) ∧ (x1,Z1)) ∈ Tlabel and (x0 + x1,Z2) /∈ Tlabel,

y1, . . . , yλ � D, k ← 0;
k ← min{1, . . . , λ} s.t. Ext(s, yk) = O(x0 + x1);
if k = 0, abort;
Tlabel ← Tlabel ∪ (x0 + x1, yk); return yk.

return ⊥.

Fig. 10. Simulator for ROM in terms of two sub-simulators associated with oracle
O. These two sub-simulators share two tables (Tlabel, Tadd) as joint state (which are
initialized empty).

1. The responses of G label obey to D;

2. There do not exist x0 6= x1 such that G label(x0) = G label(x1);

3. O(x) = Ext(s,G label(x));

4. G label(x0 + x1) = Gadd(G label(x0),G label(x1)),

5. ∀Z /∈ {G label(x)}x∈Zp , Gadd(Z, ·) =⊥;

6. S never aborts.

Next, we show our simulator achieves those six rules.

Rule 1. By definition, it’s trivial that the simulator samples the response of
G label(x) by distribution D.

Rule 2. The only chance that breaks this rule is collisions occurs. As D has
high min-entropy and Ext is a strong seeded extractor, this bad event is trivially

bounded by
q2
2

2H∞(D)∗( 1
2−ε)

≤ q2
2

2λ
.

Rule 3. This rule holds straightforwardly under the condition that S does not
abort.

Rule 4. Note that, when running Gadd(Z0,Z1), if Z0,Z1 are the known valid
encoding (Z0,Z1 have already been put into Tlabel), then this equation holds for
free. And the only bad event that breaks this rule is that, A makes the addition
query before the labeling queries (in the real world, the responses is G label(x0 +
x1), while in the ideal world, the simulator outputs ⊥ instead). However, if
this bad event occurs, then it means that the adversary needs to predict a valid
encoding G label(x). Of course, the adversary could have Ext(s,G label(x)), but other
information is lost. Thus this bad event is apparently bounded by q2

2λ
.
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Rule 5. By the description of S.Gadd, we know that, if and only if Z0,Z1 are the
known valid encoding , the response is not ⊥. Hence, if Z is an invalid encoding,
S.Gadd always outputs ⊥.
Rule 6. By definition, we see that the only chance S abort is that for all yi,
Ext(s, yi) 6= O(x), which is trivially bounded by q2

3λ
.

Next, we complete our proof. Before the description of the games, we first
specify some parameters:

– There are three types of queries: (x;O), (y, label;G) and (Z0,Z1, add;G),
where x← {0, 1}n, y ← Zp and Z0,Z1 ← S.

– The adversary only makes q1 queries to H and q2 queries to G, where q1, q2 =
poly(λ).

– The oracles used in the real world are H̃, G̃ label and G̃add;
– In each game, the system’s responses are denoted as Or, Grlabel and Gradd. For

instance, Gradd(Z0,Z1) denotes the system’s response when adversary makes
a query Q = (Z0,Z1, add;G).

The hybrid games are as follows.
Game 0. This game is identical to the real game except that the system main-
tains two table, referring to L-table and A-table(for labeling and addition queries,
respectively). Specifically, the system responds to the queries the same as in the
real world, for instance, Or(x) = Õ(x) and Gradd(Z0,Z1) = G̃add(Z0,Z1). For the
tables, the system maintains them as follows:

– L-table: Initially empty, consists of tuples with form of (x,Z). Once the
adversary makes a label query, say (x, Label;G), which does not exist in
L-table yet(no tuple such that the first element is x), the system inserts
(x, G̃ label(x)) into L-table.

– A-table: Initially empty, consists of tuples with form of (Z0,Z1,Z). Once the
adversary makes an addition query, say (Z0,Z1, add;G), which does not exist
in A-table yet(no tuple such that the first elements are (Z0,Z1) or (Z1,Z0)),
the system inserts (Z0,Z1, G̃add(Z0,Z1)) into A-table. Moreover, if there exist
(x0,Z0) and (x1,Z1) in the previous queries, then the system also inserts
(x0 + x1, G̃add(Z0,Z1)) into L-table.

Note that at this point all the queries are answered by the real oracles and
these tables are just keeping track of information related to adversary’s queries
(to the adversarial interfaces) and completely hidden to the adversary. Hence
the view in real game is identical to the one in Game 0. Next, we illustrate an
alternative way to responds to part of the queries, by using these tables and
accessing to the honest interface.

For ease of exposition, we here define a relation between the query Q and
the table Tab. Specifically, if Q is a labeling query, for instance Q = (x, label;G),
we say Q ∈ Tab if there exists a tuple T = (T1, T2) ∈ Tab such that T1 = x.
Analogously, if Q is an addition query, for instance Q = (Z0,Z1, add;G), we say
Q ∈ Tab, if there exists a tuple T = (T1, T2, T3) ∈ Tab such that T1 = Z0, T2 = Z1

or T1 = Z1, T2 = Z0.
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Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding to the queries. Specifically,
Labeling query. Suppose Qk = (x, label;G)(the k-th query), then

– Case 1. If Qk ∈ L, which means there exists a tuple T = (T1, T2) ∈ L such
that T1 = x, then the system responds to the query with T2.

– Case 2. Otherwise, the system responds with G̃ label(x) and inserts (x, G̃ label(x))
into L-table.

Addition query. Suppose Qk = (Z0,Z1, add;G), then

– Case 1. If Qk ∈ A, which means there exist a tuple T = (T1, T2, T3) such
that T1 = Z0, T2 = Z1 or T1 = Z1, T2 = Z0, then the system responds to the
query with T3.

– Case 2. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), and T1 + T ′1 ∈ L, then the
system responds with the corresponding record.

– Case 3. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), but T1 + T ′1 /∈ L, then the
system responds with G̃add(Z0,Z1) and inserts (T1 + T ′1, G̃add(Z0,Z1)) into
L-table.

– Case 4. Otherwise, the system responds with G̃add(Z0,Z1).

Note that, in Game 1 the system keeps a longer table, and for part of the
queries, the system responds to them in an alternative way, which is only using
the tables and the honest interfaces. Moreover, in Game 1, the tuples stored
in the tables correspond to the response of queries that are answered by the
real oracles. Hence, in either game, the response of any query is identical, which
refers to that the view in Game 1 is identical to the one in Game 0. However, the
system can only answer part of the queries by tables and honest interfaces, and
for the rest it has to call the real oracles. Thus, in the following hybrid games, we
will illustrate additional alternative ways(not calling the real oracles) to respond
to the rest queries, without changing the view significantly.
Game 2. This game is identical to Game 1, except for responding to the addition
queries. Suppose Qk = (Z0,Z1, add;G), then the system responds:

– Case 1. If Qk ∈ A, which means there exist a tuple T = (T1, T2, T3) such
that T1 = Z0, T2 = Z1 or T1 = Z1, T2 = Z0, then same as in Game 1.

– Case 2. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), and T1 + T ′1 ∈ L, then same
as in Game 1.

– Case 3. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), but T1 + T ′1 /∈ L, then same
as in Game 1.

– Case 4. Otherwise, the system responds with ⊥.

Note that the only difference between Game 1 and Game 2 occurs in Case 4,
where one of (Z0,Z1) never appears in the labeling query, say Z0. We immediately

41



observe that, if Z0 is not a valid group element, then Game 1 and Game 2 are
identical. In fact, the honest interface only gives the adversary Ext(s,G labelx ) and
due to D has high min-entropy and Ext is strong extractor, Z0 is non-valid except
with negligible probability.
Game 3. This game is identical to Game 2, except for responding to the addition
queries. Suppose Qk = (Z0,Z1, add;G), then the system responds:

– Case 1. If Qk ∈ A, which means there exist a tuple T = (T1, T2, T3) such
that T1 = Z0, T2 = Z1 or T1 = Z1, T2 = Z0, then same as in Game 2.

– Case 2. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), and T1 + T ′1 ∈ L, then same
as in Game 2.

– Case 3. If there exist two tuples T = (T1, T2) and T ′ = (T ′1, T
′
2) such that

T2 = Z0 and T ′2 = Z1(or T2 = Z1 and T ′2 = Z0), but T1 + T ′1 /∈ L, then the
system makes a query (T1 + T ′1;O) and samples y1, . . . , yλ and find yi such
that Ext(s, yi) = Or(T1 +T ′1), and responds to the query with yi. After that,
the system inserts (T1 + T ′1, yi) into L-table.

– Case 4. Otherwise, same as in Game 2.

Note that the only difference between Game 2 and Game 3 occurs in Case
3. In this case, Z0 and Z1, of course, are valid group element and the system is
obligated to output a proper response, which should be consistent to the honest
interface. Essentially, we observe that, as T1 + T ′1 ∈ L-table, the adversary can
only learn Ext(s, G̃ label(T1 + T ′1)), and all other information is lost. Thus, it is
okay to replace them with other samples conditioned on they have the same
extracted value and yi never appears before.
Game 4. This game is identical to Game 3, except for responding to the labeling
queries. Suppose Qk = (x, label;G), then the system responds:

– Case 1. If Qk ∈ L, which means there exists a tuple T = (T1, T2) ∈ L such
that T1 = x, then same as in Game 3.

– Case 2. Otherwise, the system makes a query (T1 + T ′1;O) and samples
y1, . . . , yλ and find yi such that Ext(s, yi) = Or(T1 + T ′1), and responds to
the query with yi. After that, the system inserts (T1 + T ′1, yi) into L-table.

Trivial to note that, Game 4 is close to Game 3 within the same reason
above(Game 3 ≈ Game 2).
Game 5. In Game 4, the queries to the adversarial interfaces are answered
by the tables which are maintained by the system and by making queries to
honest interface. The system never makes queries directly to G̃ label and G̃add;
these oracles are only used to answer the O queries (either generated by the
adversary or by the system’s response to labeling or addition queries). At this
point, due to Ext is a strong extractor, it is straightforward to show that we can
replace O with a random oracle H, resulting in Game 5.

We note that in Game 5, the system is efficient, and it responds to the adver-
sarial interfaces just by keeping several tables and calling the honest interfaces.
Thus, we can build a simulator that responds to the honest and adversarial
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queries precisely as the system does in Game 5. The result is that the view in
Game 5 is identical to the ideal world and it suffices to prove that any adjacent
games are indistinguishable.

Next we prove the indistinguishability between any adjacent games, by show-
ing that the adversary’s view on both games are close.
Claim. Game Real ≈ Game 0.

Proof. The only difference between Game Real and Game 0 is that, in Game 0
the system additionally maintains two tables that are completely hidden from
the adversary, hence we have

Pr[Game Real] = Pr[Game 0].

Claim. Game 0 ≈ Game 1.

Proof. By definition, we note that in Game 1, the system maintains longer tables
and it responds to part of the queries (type A query) by just using those tables
and calling the honest interface. For the other queries (type B query), the system
responds by calling the real oracles. Moreover, the items stored in those tables are
always consistent with the real oracles, and in either games, the honest interfaces
correspond to the real oracles, which means the response by calling the honest
interfaces is identical to the one by calling real oracles. Hence the responses of
type A queries by either the real oracles(Game 0) or by honest interfaces plus
tables(Game 1) are identical, which refers to

Pr[Game 0] = Pr[Game 1].

Claim. Game 1 ≈ Game 2.

Proof. Recalling that the only difference between Game 1 and Game 2 occurs
in case 4, where one of the elements in (Z0,Z1) never appears in the previous
queries, say Z0. In Game 1, the system responds with G̃add(Z0,Z1), while in
Game 2, the system replaces it with ⊥. To prove the indistinguishability, we
first formalize the adversary’s view in Game 1. By definition, we immediately
observe that,

– The system responds to (x;O) with Õ(x).
– The system responds to (x, label;G) with G̃ label(x).
– The system responds to (Z0,Z1, add;G) with G̃add(Z0,Z1).

Hence, in the adversary’s view, under the consistency conditions listed below,
every bit of the response(if not ⊥) should be random and independent. And the
consistency conditions are:

– Or(x) = Ext(s,Grlabel(x));
– Grlabel(x0 + x1) = Gradd(Grlabel(x0),Grlabel(x1)).
– There exists no x 6= x′ such that Grlabel(x) = Grlabel(x′).
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We immediately observe that, if Z0 is not a valid group element, then the
view on Qk are identical in both games, as G̃add(Z0,Z1) =⊥. Hence it suffice to
prove that Z0 is a non-valid group element except with negligible probability.
In fact, the adversary might know some x∗ such that Or(x∗) = Ext(s, G̃ label(x)),
but this is the only information that adversary gain. To outputs a valid group
element, it has to recover the other information, and this is bounded by

Pr[Bad] ≤ p

2H∞(D)∗( 1
2−ε)

≤ 1

2λ
≤ negl(λ).

Thus, we have

|Pr[Game 1]− Pr[Game 2]| ≤ q2 · Pr[Bad] ≤ negl(λ).

Claim. Game 2 ≈ Game 3.

Proof. Recalling that the only difference between Game 2 and Game 3 occurs in
case 3, where both Z0 and Z1 appear in L-table(say (x0,Z0) and (x1, Z1) ), but
x0 +x1 6∈ L. In game 2, the system responds with G̃add(Z0,Z1), while in Game 3,
it replaces with a random yi � D such that Ext(s, yi) = Hr(x0 + x1). And after
Qk, the system implicitly sets Grlabel(x0 + x1) = yi.

Analogously, we know that, under the condition the bad events never hap-
pen, the adversary’s view on H and G are random strings. Hence, the response
in Game 3 are well distributed. Next, we show that, except with negligible prob-
ability, the consistency conditions also hold.

Observe that the first two equations hold trivially. And for the third one,
note that Z is uniformly sampled and as long as it does not appear before Qk
(the first n bits might be known) and there exists no x such that G̃ label(x) = Z,
then the equation holds. And we can bound the union of the bad events by

Pr[Bad] ≤ k − 1

2n+λ
+

2n

2n+λ
≤ negl(λ),

which refers to

|Pr[Game 2]− Pr[Game 3]| ≤ q · Pr[Bad] ≤ negl(λ).

Claim. Game 3 ≈ Game 4.

Proof. Applying the same analysis above(Game 2 ≈ Game 3), it is trivial that

|Pr[Game 3]− Pr[Game 4]| ≤ |Pr[Game 2]− Pr[Game 3]|.

Claim. Game 4 ≈ Game 5.

Proof. Let H be a random oracle model, and we note that the difference between
Game 4 and Game 5 is that: in Game 4 the system responds to all the queries
by calling (x;O), while in Game 5, it makes queries with form of (x;H). In fact,
as Or(x) = Ext(s,G label(x)), where G label(x) obeys the distribution D. Moreover,
the adversary only makes q1 queries to H and the simulator only makes q2λ
queries to H, hence by hybrid argument, it’s trivial the statistical distance of
Game 4 and 5 is bounded by (q1 + q2λ)ε.

Combing together, we establish the proof.

44



C Constructing d-linear Multi-linear Map from dl-linear
Multi-linear Map

In this part, we give a more general result, which states that, for any integer d, l,
we can build an indifferentiable d-linear MMaps from a dl-linear MMaps.

Construction. Let M̃ be an ideal dl-linear maps, where the encoding of α at

level k ∈ [dl] is denoted as J̃αKk. Moreover, M̃ allows addition and multiplication

(Ãdd, M̃ul) of the encodings, as well as zero-test(Z̃T) of the top-level elements.
Now, we build an ideal d-linear map M as follows:

– Encode algorithm: for any α and k ∈ [d], we define JαKk = J̃αKkl;
– Addition algorithm: Add(JαKk, JβKk) = Ãdd(J̃αKkl, J̃αKkl);
– Multiplication algorithm: Mul(JαKk1 , JβKk2) = Ãdd(J̃αKk1l

, J̃αKk2l
);

– Zero-test: ZT(JαKd) = Z̃T(JαKdl).

Correctness easily follows, and next we prove the indifferentiability for our
construction.

Theorem 5 (dl-linear to d-linear). M is indifferentiable from an ideal d-
linear mulitilinear map.

Proof. According to the definition of indifferentiability, the adversary has four
honest interface Encd,Add,Mul,ZT and four adversarial interfaces ˜Encd, ˜Add, M̃ul,
Z̃T. Therefore we need build an efficient simulator S in the ideal world that can
simulate the adversarial interfaces properly. We will go through a sequence of
hybrid games where in each game, there exists a system that responds to all of
the queries (both honest and adversarial) in a slightly different way and then we
build our simulator S as the system in the last game. Before the description of
the games, we first specify some parameters:

– There are four types of honest queries: (x, k, label;M), (Z0,Z1, k, add;M), (Z0,
k0,Z1, k1,Mul;M), (Z,ZT,M);

– There are four type of adverserial queries: (x, k, label; M̃), (Z0,Z1, k, add; M̃),
(Z0, k0,Z1, k1,Mul; M̃), (Z,ZT, M̃);

– The adversary only makes q queries to the system, where q = poly(λ).
– The oracles used in the real world are ML

real,M
A
real,M

M
real,M

ZT
real, M̃

L
real, M̃

A
real, M̃

M
real

and M̃ZT
real;

– In each game, the system’s responses are denoted as MrL,MrA,MrM,MrZT and
M̃rL, M̃rA, M̃rM, M̃rZT.

The hybrid games are as follows.
Game 0. This game is identical to the real game except that the system main-
tains 3dl table, referring to Li-table and Ai-table(for encoding, addition and
multiplication queries of each individual level , respectively). Specifically, the
system responds to the queries the same as in the real world, for instance,
MrL(x) = ML

real(x) and M̃rA(Z0,Z1, S) = M̃A
real(Z0,Z1, S) =. For the tables, the

system maintains them as follows:
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– Li-table: Initially empty, consists of tuples with form of (x, i,Z). Once the
adversary makes a label query for level i ∈ [dl], say (x, iLabel; M̃), which
does not exist in Li-table yet(no tuple such that the first element is x and
the second element is i), the system inserts (x, i, M̃L

real(x) into Li-table.

– Ai-table: Initially empty, consists of tuples with form of (Z0,Z1, i,Z). Once
the adversary makes an addition query, say (Z0,Z1, i, add; M̃), which does not
exist in Ai-table yet(no tuple such that the first two elements are (Z0,Z1) or
(Z1,Z0) for level i), the system inserts (Z0,Z1, i, M̃

A
real(Z0,Z1) into Ai-table.

Moreover, if there exist (x0, i,Z0) and (x1, i,Z1) in the previous queries, then
the system also inserts (x0 + x1, i, M̃

A
real(Z0,Z1, i)) into Li-table.

– Mi-table: Initially empty, consists of tuples with form of (Z0, i0,Z1, i1,Z),
where i0+i1 = i. Once the adversary makes an addition query, say (Z0, i0,Z1,
i1,mul;M), which does not exist in Mi-table yet, then the system inserts
(Z0, i0,Z1, i1, M̃

M
real(Z0, i0,Z1, i1)) into Mi-table. Moreover, if (x0, i0,Z0) and

(x1, i1,Z1) appear in the previous queries, then the system also inserts (x0 +
x1, i0 + i1, M̃

M
real(Z0,Z1)) into Li-table.

Note that at this point all the queries are answered by the real oracles and
these tables are just keeping track of information related to adversary’s queries
(to the adversarial interfaces) and completely hidden to the adversary. Hence
the view in real game is identical to the one in Game 0. Next, we illustrate an
alternative way to responds to part of the queries, by using these tables and
accessing to the honest interface.

To ease of exposition, we here introduce a new notion, called ”upgradable”.
We say an group element Z is upgradable if: 1) Z ∈ Li∪Ai∪Mi(i = al+ b) where
a < d and a ≥ b > 0; 2) we can represent Z =

∑
Jα1Kk1 · . . . · JαsKks where Jα`Kk`

is either a valid group element in M or in Lk` -table. Thus, if Z is upgradable,
it’s trivial to upgrade Z to a valid element up(Z) on level (a + 1)l, such that Z
and up(Z) share the same plaintext and the upgrade algorithm only needs access
to the honest interfaces.

Game 1. This game is identical to Game 0, except the way of maintaining the
tables and responding to the queries. Specifically,

Zero-test query. Suppose Qk = (Z,ZT; M̃), then the system just makes a query
(Z,ZT,M) and outputs the corresponding response.

Labeling query. Suppose Qk = (x, i, label, M̃), then

– Case 1. If Qk ∈ Li, which means there exists a tuple T = (T1, T2, T3) ∈ L
such that T1 = x and T2 = i, then the system responds to the query with
T3.

– Case 2. If l divides i, then the system makes a query (x, i/l, label;M) and
outputs the corresponding response. Then it inserts (x, i,MrL(x, i/l)) into
Li-table.

– Case 3. Else, we have that i = al + b where 0 < b < a < d. Then if there
exists a upgradable element Z ∈ Ai∪Mi such that MrL(x, a+1) = up(Z), then
the system responds to the query with Z and inserts (x, i,Z) into Li-table.
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– Case 4. Otherwise, it responds with M̃rL
real(x, i) and inserts (x, i, M̃rL

real(x, i))
into Li-table.

Addition query. Suppose Qk = (Z0,Z1, i, add; M̃), then

– Case 1. If Qk ∈ Ai, which means there exists a tuple T = (T1, T2, T3, T4) ∈ Ai

such that T1 = Z0,T2 = Z1 and T3 = i(or T1 = Z1, T2 = Z0, T3 = i), then
the system responds to the query with T4.

– Case 2. If l divides i, then the system makes a query (Z0,Zi, i/l, add;M) and
outputs the corresponding response.

– Case 3. If both Z0 and Z1 are upgradable and there exists Z such that
up(Z) = MrL(up(Z0), up(Z1), (a+ 1)), then the system responds to the query
with Z and inserts (Z0,Z1, i,Z) into Ai-table.

– Case 4. If both Z0 and Z1 are upgradable but there is no upgradable Z such
that up(Z) = MrL

real(up(Z0), up(Z1)), then the system responds to the query

with M̃rA
real(Z0,Z1, i).

– Case 5. Otherwise, it responds the query with M̃rA
real(Z0,Z1, i) and inserts

(Z0,Z1, i, M̃
rA
real(Z0,Z1, i)) into Ai-table.

Multiplication query. Suppose Qk = (Z0, i0,Z1, i1,mul; M̃), then

– Case 1. If Qk ∈ Mi0+i1-table, then the system responds with the correspond-
ing item.

– Case 2. If l divides both i0 and i1, then the system makes a query (Z0, i0/l,Z1,
i1/l,mul;M), and outputs the corresponding response.

– Case 3. If both Z0 and Z1 are upgradable, and there is a Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 · Z1) = up(Z), then the system responds to the query with
Z.

– Case 4. If both Z0 and Z1 are upgradable, but there is no Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 · Z1) = up(Z), then the system responds to the query with
M̃rM

real(Z0, i0,Z1, i1).

– Case 5. Otherwise, the system responds to the query with M̃rM
real(Z0, i0,Z1, i1).

Note that, in Game 1 the system keeps a longer table, and for part of the
queries, the system responds to them in an alternative way, which is only using
the tables and the honest interfaces. Moreover, in Game 1, the tuples stored
in the tables correspond to the response of queries that are answered by the
real oracles. Hence, in either game, the response of any query is identical, which
refers to that the view in Game 1 is identical to the one in Game 0. However, the
system can only answer part of the queries by tables and honest interfaces, and
for the rest it has to call the real oracles. Thus, in the following hybrid games, we
will illustrate additional alternative ways(not calling the real oracles) to respond
to the rest queries, without changing the view significantly.
Game 2. This game is identical to Game 1, except for responding to the addition
queries. Suppose Qk = (Z0,Z1,i, add; M̃), then the system responds:

– Case 1. If Qk ∈ Ai, then same as in Game 1.
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– Case 2. If l divides i, thensame as in Game 1.
– Case 3. If both Z0 and Z1 are upgradable and there exists Z such that

up(Z) = MrL(up(Z0), up(Z1), (a+ 1)), then same as in Game 1.
– Case 4. If both Z0 and Z1 are upgradable but there is no upgradable Z such

that up(Z) = MrL
real(up(Z0), up(Z1)), then same as in Game 1.

– Case 5. Otherwise, it responds the query with ⊥.

Note that the only difference between Game 1 and Game 2 occurs in Case
5, where at least one of (Z0,Z1) is not upgradable, say Z0. We immediately
observe that, if Z0 is not a valid group element, then Game 1 and Game 2 are
identical. In fact, the honest interfaces only give the adversary the encoding at
level al, a ∈ [d], and if Z0 is not upgradable, then the adversary has to guess
an encoding correctly at other levels, which is of course bounded by negligible
probability.
Game 3. This game is identical to Game 2, except for responding to the multi-
plication queries. Suppose Qk = (Z0, i0,Z1,i1,mul; M̃), then the system responds:

– Case 1. If Qk ∈ Mi0+i1-table, then same as in Game 2.
– Case 2. If l divides both i0 and i1, then same as in Game 2.
– Case 3. If both Z0 and Z1 are upgradable, and there is a Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 · Z1) = up(Z), then same as in Game 2.
– Case 4. If both Z0 and Z1 are upgradable, but there is no Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 · Z1) = up(Z), then same as in Game 2.
– Case 5. Otherwise, the system responds to the query with ⊥.

Same as above, we see that if one of (Z0,Z1)(say Z0) is not upgradable, then
with overwhelming probability, Z0 is not a valid group element.
Game 4. This game is identical to Game 3, except for responding to the addition
queries. Suppose Qk = (Z0,Z1,i, add; M̃), then the system responds:

– Case 1. If Qk ∈ Ai, which means there exists a tuple T = (T1, T2, T3, T4) ∈ Ai

such that T1 = Z0,T2 = Z1 and T3 = i(or T1 = Z1, T2 = Z0, T3 = i), then
same as in Game 3.

– Case 2. If l divides i, then same as in Game 3.
– Case 3. If both Z0 and Z1 are upgradable and there exists Z such that

up(Z) = MrA(up(Z0), up(Z1), (a+ 1)), then same as in Game 3.
– Case 4. If both Z0 and Z1 are upgradable but there is no upgradable Z such

that up(Z) = MrL
real(up(Z0), up(Z1)), then the system responds to the query

with a random string.
– Case 5. Otherwise, it responds the query with ⊥.

Note that the only difference between Game 3 and Game 4 occurs in Case
4. In this case, Z0 and Z1, of course, are valid group element and the system
is obligated to output a consistent response. While, as there is no Z such that
up(Z) = MrL

real(up(Z0), up(Z1)), which means the encoding is independent of the
adversary’s view. Thus it is okay to replace them with random strings, as long
as those strings never appear before Qk, which can only happen with negligible
probability.
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Game 5. This game is identical to Game 4, except for responding to the multi-
plication queries. Suppose Qk = (Z0, i0,Z1,i1,mul; M̃), then the system responds:

– Case 1. If Qk ∈ Mi0+i1-table, then same as in Game 4.
– Case 2. If l divides both i0 and i1, then same as in Game 4.
– Case 3. If both Z0 and Z1 are upgradable, and there is a Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 · Z1) = up(Z), then same as in Game 4.
– Case 4. If both Z0 and Z1 are upgradable, but there is no Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 ·Z1) = up(Z), then the system responds to the query with a
random string.

– Case 5. Otherwise, the system responds to the query with ⊥.

Trivial to note that, Game 5 is close to Game 4 within the same reason
above(Game 4 ≈ Game 3).
Game 6. This game is identical to Game 5, except for responding to the labeling
queries. Suppose Qk = (x, i, label;M̃), then the system responds:

– Case 1. If Qk ∈ Li, then same as in Game 5.
– Case 2. If l divides i, then same as in Game 5.
– Case 3. If there exists a upgradable element Z ∈ Ai∪Mi such that MrL(x, a+

1) = up(Z), then same as in Game 5.
– Case 4. Otherwise, it responds with a random string.

The argument that Game 6 is close to Game 5 easily follows as above(Game
4 ≈ Game 3).
Game 7. In Game 6, the queries to the adversarial interfaces are answered by
the tables which are maintained by the system and by making queries to honest
interface. The system never makes queries directly to the adversarial interfaces;
these oracles are only used to answer the honest queries (either generated by the
adversary or by the system’s response to labeling or addition queries). At this
point, it is straightforward to show that we can replace M with an ideal d-linear
MMaps, resulting in Game 7.

We note that in Game 7, the system is efficient, and it responds to the adver-
sarial interfaces just by keeping several tables and calling the honest interfaces.
Thus, we can build a simulator that responds to the honest and adversarial
queries precisely as the system does in Game 7. The result is that the view in
Game 7 is identical to the ideal world and it suffices to prove that any adjacent
games are indistinguishable.

In the following, we first give the full description of the simulator and then
complete the proof by showing that every pair of adjacent games are indistin-
guishable.
Simulator in Ideal Game. Let MM be an ideal d-linear MMaps, and we define
the simulator S works as follows. Like the system in Game 7, the simulator also
maintains 3dl tables. Concretely:

– Li-table: Initially empty, consists of tuples with form of (x, i,Z).
– Ai-table: Initially empty, consists of tuples with form of (Z0,Z1, i,Z).
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– Mi-table: Initially empty, consists of tuples with form of (Z0, i0,Z1, i1,Z),
where i0 + i1 = i.

By definition, S has access to the honest interfaces MM. And for the adver-
sarial queries, S works as the system in Game 7, by just using the tables and
calling the honest interfaces.

Zero-test query. SupposeQk = (Z,ZT; M̃), then S just makes a query (Z,ZT,MM)
and outputs the corresponding response.

Labeling query. Suppose Qk = (x, i, label, M̃), then

– Case 1. If Qk ∈ Li, which means there exists a tuple T = (T1, T2, T3) ∈ L
such that T1 = x and T2 = i, then S responds to the query with T3.

– Case 2. If l divides i, then the simulator makes a query (x, i/l, label;M) and
outputs the corresponding response. Then it inserts (x, i,MMrL(x, i/l)) into
Li-table.

– Case 3. Else if there exists a upgradable element Z ∈ Ai ∪ Mi such that
MMrL(x, a + 1) = up(Z), then the simulator responds to the query with Z
and inserts (x, i,Z) into Li-table.

– Case 4. Otherwise, S responds with a random string.

Addition query. Suppose Qk = (Z0,Z1, i, add; M̃), then

– Case 1. If Qk ∈ Ai, which means there exists a tuple T = (T1, T2, T3, T4) ∈ Ai

such that T1 = Z0,T2 = Z1 and T3 = i(or T1 = Z1, T2 = Z0, T3 = i), then S
responds to the query with T4.

– Case 2. If l divides i, then the simulator makes a query (Z0,Zi, i/l, add;MM)
and outputs the corresponding response.

– Case 3. If both Z0 and Z1 are upgradable and there exists Z such that
up(Z) = MMrL(up(Z0), up(Z1), (a + 1)), then the simulator responds to the
query with Z and inserts (Z0,Z1, i,Z) into Ai-table.

– Case 4. If both Z0 and Z1 are upgradable but there is no upgradable Z
such that up(Z) = MMrL(up(Z0), up(Z1)), then the simulator responds to the
query with a random string.

– Case 5. Otherwise, it responds the query with ⊥.

Multiplication query. Suppose Qk = (Z0, i0,Z1, i1,mul; M̃), then

– Case 1. If Qk ∈ Mi0+i1-table, then the simulator responds with the corre-
sponding item.

– Case 2. If l divides both i0 and i1, then the simulator makes a query
(Z0, i0/l,Z1,
i1/l,mul;MM), and outputs the corresponding response.

– Case 3. If both Z0 and Z1 are upgradable, and there is a Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 ·Z1) = up(Z), then the simulator responds to the query with
Z.

– Case 4. If both Z0 and Z1 are upgradable, but there is no Z ∈ Li0+i1 ∪ Ai0+i1

such that up(Z0 ·Z1) = up(Z), then the system responds to the query with a
random string.
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– Case 5. Otherwise, the system responds to the query with ⊥.

Next we prove the indistinguishability between any adjacent games, by show-
ing that the adversary’s view on both games are close.
Claim. Game Real ≈ Game 0.

Proof. The only difference between Game Real and Game 0 is that, in Game 0
the system additionally maintains two tables that are completely hidden from
the adversary, hence we have

Pr[Game Real] = Pr[Game 0].

Claim. Game 0 ≈ Game 1.

Proof. By definition, we note that in Game 1, the system maintains longer tables
and it responds to part of the queries (type A query) by just using those tables
and calling the honest interface. For the other queries (type B query), the system
responds by calling the real oracles. Moreover, the items stored in those tables are
always consistent with the real oracles, and in either games, the honest interfaces
correspond to the real oracles, which means the response by calling the honest
interfaces is identical to the one by calling real oracles. Hence the responses of
type A queries by either the real oracles(Game 0) or by honest interfaces plus
tables(Game 1) are identical, which refers to

Pr[Game 0] = Pr[Game 1].

Claim. Game 1 ≈ Game 2.

Proof. Recalling that the only difference between Game 1 and Game 2 occurs in
case 5, where one of the elements in (Z0,Z1), say Z0, is not upgradable. In Game
1, the system responds with M̃L

real(Z0,Z1, i), while in Game 2, the system replaces
it with ⊥. To prove the indistinguishability, we first formalize the adversary’s
view in Game 1. By definition, we immediately observe that,

– The system responds to (x, i, label;M) with M̃L
real(x, il).

– The system responds to (Z0,Z1, i, add; ;M) with M̃A
real(Z0,Z1, il).

– The system responds to (Z0, i0,Z1, i1,mul;M) with M̃M
real(Z0, i0l,Z1, i1l).

– The system responds to (x, i, label; M̃) with M̃L
real(x, i).

– The system responds to (Z0,Z1, i, add; ; M̃) with M̃A
real(Z0,Z1, i).

– The system responds to (Z0, i0,Z1, i1,mul; M̃) with M̃M
real(Z0, i0,Z1, i1).

Hence, in the adversary’s view, under the consistency conditions listed below,
every bit of the response(if not ⊥) should be random and independent. And the
consistency conditions are:

– MrL(x, i) = M̃rL(x, il);
– MrA(MrL(x0, i),M

rL(x1, i)) = MrL(x0 + x1, i);
– MrM(MrL(x0, i0),MrL(x1, i1)) = MrL(x0x1, i0 + i1);
– M̃rA(M̃rL(x0, i), M̃

rL(x1, i)) = M̃rL(x0 + x1, i);
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– M̃rM(M̃rL(x0, i0), M̃rL(x1, i1)) = M̃rL(x0x1, i0 + i1);
– There exist no (x0, i0) 6= (x1, i1) such that M̃rL(x0, i0) = M̃rL(x1, i1).

We immediately observe that, if Z0 is not a valid group element, then the view
on Qk are identical in both games, as M̃L

real(Z0,Z1, i) =⊥. Hence it suffice to prove
that Z0 is a non-valid group element except with negligible probability. In fact,
the adversary only has knowledge of valid elements at level cl, where c ∈ [d], and
is independent of the encodings at other levels(except making a labeling query).
And in case 5, we have i = al + b(b > 0), which refers to that, the adversary is
obligated to output at least one valid encoding at other levels(not divided by l).
Hence,

|Pr[Game 1]− Pr[Game 2]| ≤ negl(λ).

Claim. Game 2 ≈ Game 3.

Proof. Due to definition, it’s apparent that

|Pr[Game 3]− Pr[Game 2]| = |Pr[Game 2]− Pr[Game 1]|.

Claim. Game 3 ≈ Game 4.

Proof. Recalling that the only difference between Game 3 and Game 4 occurs
in case 4, where both Z0 and Z1 are both upgradable, but there is no Z such
that up(Z) = MrA(up(Z0), up(Z1), (a + 1)). In game 3, the system responds with
M̃rA

real(Z0,Z1, i), while in game 4, the system replaces it with a random string str.

And after Qk, the system implicitly set M̃rA(Z0,Z1, i) = str.
Analogously, we know that, under the condition the bad events never happen,

the adversary’s view on the response of M and M̃ are random strings. Hence,
the response in Game 4 are well distributed. Next, we show that, except with
negligible probability, the consistency conditions also hold.

Observe that, under the condition that both Z0 and Z1 are upgradable, the
first five equations hold trivially. And for the last one, note that str is uniformly
sampled and as long as it does not appear before Qk and there exists no (x, i)
such that M̃rA

real(Z0,Z1, i) = str, then the equation holds. Thus, which refers to

|Pr[Game 3]− Pr[Game 4]| ≤ negl(λ).

Claim. Game 4 ≈ Game 5. Applying the same analysis above(Game 3 ≈ Game
2), it is trivial that

|Pr[Game 5]− Pr[Game 4]| = |Pr[Game 4]− Pr[Game 3]|.

Claim. Game 5 ≈ Game 6. Due to definition, it’s apparent that

|Pr[Game 6]− Pr[Game 5]| = |Pr[Game 4]− Pr[Game 3]|.

Claim. Game 6 ≈ Game 7.
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Proof. Let MM be an ideal d-linear MMap, and we note that the difference
between Game 6 and Game 7 is: in Game 6 the system responds to all the
queries by the tables and access to M, while in Game 7, it would make queries
to MM. Hence, it suffices to show that the distribution of M and MM are close.

In fact, by definition, JαKk = J̃αKkl and M̃ is an ideal dl-linear MMaps, thus the
distribution of M and MM are identical, referring to

Pr[Game 4] = Pr[Game 5].

Combing together, we establish the entire proof.
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