Generic Hardware Private Circuits

Towards Automated Generation of
Composable Secure Gadgets

David Knichel®™ | Pascal Sasdrich®® | and Amir Moradi

Ruhr University Bochum, Horst Gortz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

Abstract. With an increasing number of mobile devices and their high
accessibility, protecting the implementation of cryptographic functions
in the presence of physical adversaries has become more relevant than
ever. Over the last decade, a lion’s share of research in this area has been
dedicated to developing countermeasures at an algorithmic level. Here,
masking has proven to be a promising approach due to the possibil-
ity of formally proving the implementation’s security solely based on its
algorithmic description by elegantly modeling the circuit behavior. The-
oretically verifying the security of masked circuits becomes more and
more challenging with increasing circuit complexity. This motivated the
introduction of security notions that enable masking of single gates while
still guaranteeing the security when the masked gates are composed. Sys-
tematic approaches to generate these masked gates — commonly referred
to as gadgets — were restricted to very simple gates like 2-input AND
gates. Simply substituting such small gates by a secure gadget usually
leads to a large overhead in terms of fresh randomness and additional
latency (register stages) being introduced to the design.

In this work, we address these problems by presenting a generic frame-
work to construct trivially composable and secure hardware gadgets for
arbitrary vectorial Boolean functions, enabling the transformation of
much larger sub-circuits into gadgets. In particular, we present a de-
sign methodology to generate first-order secure masked gadgets which
is well-suited for integration into existing Electronic Design Automa-
tion (EDA) tools for automated hardware masking as only the Boolean
function expression is required. Furthermore, we practically verify our
findings by conducting several case studies and show that our methodol-
ogy outperforms various other masking schemes in terms of introduced
latency or fresh randomness — especially for large circuits.

Keywords: Masking, Generic and Composable Hardware Gadgets, Au-
tomated Masking, Side-Channel Analysis
1 Introduction

Even though Side-Channel Analysis (SCA) has been studied extensively by aca-
demic and industrial researchers, secure implementation of strong cryptographic

https://orcid.org/0000-0002-2510-8881
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-4032-7433
mailto: david.knichel@rub.de, pascal.sasdrich@rub.de, amir.moradi@rub.de

2 D. Knichel et al.

implementations remains a challenging tasks. In the wake of the seminal de-
scription by Paul Kocher [18], different approaches for countermeasures against
SCA adversaries have been proposed. Among all candidates, masking, inspired
by secret sharing concepts, fascinates through its theoretical and sound security
foundation [9] and has been applied manifold until today [16,27,22,24,15,14]. Un-
fortunately, not many of the proposed schemes have survived due to design flaws,
inaccurate models, or invalid assumptions [20]. As a consequence, this trend of
schemes whose assumptions have been proven invalid only confirms that, to the
present day, design and implementation of masking schemes is still a mostly
manual, complex, and error-prone process, even for experienced security experts
and hardware designers.

Facing such challenges, researchers recently started to focus on development
of formal and accurate models of physical adversaries, hardware platforms, and
execution environments as a mandatory foundation for formal verification and
provably-secure schemes. In this light, formal verification of masked circuits is
frequently conducted in the simple and abstract Ishai-Sahai-Wagner (ISW) d-
probing security model [16], given some basic assumptions on input and noise
distribution, and its extension for more accuracy in the presence of physical
defaults, e.g., glitches, transitions, and couplings [12].

Even though the introduction of a simple, yet practical, formal model ac-
celerated verification, most security proofs are still limited to small circuits and
masked gadgets only, mostly due to constraints in computational complexity.
Naturally, modern approaches endeavor to extend formal verification to larger
circuits through composition of formally verified gadgets, however, experience
has shown that composition of secure gadgets is non-trivial and security proofs
do not extend immediately.

Accordingly, several security notions for secure and trivial composition of
masked gadgets have been proposed recently [2,3,8]. Although the security no-
tions aim to assist in design and verification of larger circuits, creation of gadgets
according to these rules in order to meet the requirements is still a challenge.
More specifically, design of efficient gadgets under several optimization metrics,
e.g., computational complexity, area demands, randomness requirements, per-
formance in terms of latency and throughput, or higher-order protection still
requires manual interaction and long-standing experience. To this end, the list
of existing secure gadgets is limited, as most of them are hand-crafted, mainly
focusing on protection of small gates, e.g., a 2-input AND [27,4,12,7]. More im-
portantly, these approaches usually are limited to atomic Boolean functions,
e.g., AND and XOR, but do not provide a generic or automated approach to de-
sign secure, efficient, and trivially composable gadgets for different or arbitrary
Boolean functions.

Contributions. In this work, we present a novel and generic framework that
allows to easily construct trivially composable gadgets for arbitrary vectorial
Boolean functions. In particular, relying on the glitch-extended probing ad-
versary model and the secure composability notion of Probe-Isolating Non-

GHPC 3

Interference (PINI), our framework enables simple and generic construction of
hardware private circuits and opens the possibility to transform any unprotected
Boolean function into a first-order secure and composable gadget. In addition,
backed by a thorough and sound theoretical security analysis and formal secu-
rity arguments, our constructions enable efficient formal verification of entire
cryptographic circuits and systems with respect to the PINI security notion.
Eventually, we show practical relevance of our construction through experimen-
tal verification using different case studies and compare implementation results
with respect to area, latency, and fresh randomness for various gadget construc-
tions and related work.

Outline. Before we present our fundamental design principles based on Shan-
non’s Decomposition and provide a dedicated security analysis for our first-order
secure construction schemes in Section 3, we first briefly present underlying as-
sumptions and concepts in Section 2, including circuit representation, adversary
model, security notions, and Boolean masking. In Section 4, we discuss and com-
pare our proposed constructions to related works from literature, focusing on the
metrics of area, latency, randomness, and composability. We further present dif-
ferent case studies to emphasize practical application of our concepts in Section 5
and experimentally confirm our theoretical security analyses based on leakage
assessment for different PRESENT and AES designs. Eventually, we give a con-
clusion of the research conducted in this work in Section 6.

2 Background

2.1 Notation

Let us denote functions using sans-serif fonts. Next, we denote random variables
with uppercase letters while sets of random variables are given in bold. Further,
we use subscripts to indicate elements within a set while superscripts are used to
denote (randomized) shares of random variables. Moreover, lowercase letters are
used for the value of a random variable and bold lowercase letters indicate values
for sets of variables accordingly. As a special case, the set of all shares of each
random variable in X is denoted as Sh(X) and P[X = x] = P[X] denotes the
joint probability that every X; € X takes the value x; € x. Moreover, X7, j > 0,
denotes the set containing all shares with index j. If S is a set over arbitrary
shares X7, i.e., S C Sh(X), then |S|; denotes the number of shares in S that

27

correspond to Xj.

2.2 Circuit Model

Throughout this work, any deterministic logic circuit C will be considered and
modeled as a Directed Acyclic Graph (DAG) Gc = {V, &}, where V gives the
list of vertices and £ the list of edges of the DAG. Further, each vertex v € V
represents a single combinational or sequential gate in the netlist while each edge

4 D. Knichel et al.

e € & represents a single wire carrying an element from the finite field Fa. In its
entirety, a circuit realizes a vectorial Boolean function F : F§ — F3* given its
coordinate functions Fo,...,Fp—1, where F is defined over its input X € F5.

2.3 Encoded Circuit Model

As formalized in the work of Ananth et al. [1], a circuit compiler is a set of
the algorithms {Compile, Encode, Decode}, such that Compile is a deterministic
algorithm that takes as input a circuit C and generates a randomized and encoded
circuit C. Further, Encode is a probabilistic algorithm that takes as input a set
of (secret) random variables X and generates a shared representation Sh(X)
with respect to some masking scheme (e.g., Boolean masking). Lastly, Decode
is a deterministic algorithm that takes as input a shared representation Sh(Y)
and reconstructs the according set of random variables Y. Moreover, the circuit
compiler has to satisfy correctness such that:

Decode(C(Encode(X))) = C(X), VX.

2.4 Adversary Model

Before discussing common security notions and Boolean masking as theoretically
sound countermeasure against SCA, we introduce the foundational d-probing
adversary model which is used in modern literature to model side-channel ad-
versaries and verify security of hardware circuits in presence of such adversaries.

Traditional d-Probing Model. In the traditional ISW d-probing model [16],
the adversarial strength is solely defined and limited by the number of probes
that are granted to an adversary. Each probe can be used to observe and extract
information carried on a single circuit! wire at a time. Assuming an ideal cir-
cuit, all gates and wires are updated simultaneously and each wire only carries
the result of the driving gate under the current assignment of primary inputs.
Then, depending on the number of granted probes, an adversary can combine
information of up to d wires in the circuit to infer sensitive information. Further,
a circuit is assumed to be secure under the d-probing adversary model if for any
combination of up to d probes, the adversary is not able to learn about sensitive
information (more details are given in Section 2.5).

Probing in the Presence of Glitches. Research has shown that physical
circuits do not have an ideal behavior but physical defaults, e.g., glitches, tran-
sitions, and cross-coupling [12], may cause unintentional leakages. In particular
glitches, causing unintentional transitions on circuit wires due to non-ideal gates

! In the remainder of this work, we assume that the adversary is only able to observe
an encoded circuit C while the Encode and Decode algorithms are unavailable for
the adversary.

GHPC 5

and different path delays, have been shown to introduce design vulnerabilities
even for circuits that are secure under the standard d-probing adversary model
[19]. As a consequence, a robust d-probing model has been proposed [12] as-
suming a worst-case scenario under glitch-occurrence in physical circuits. More
precisely, in contrast to the standard model, probes in the robust model are con-
sidered as glitch-extended and grant an adversary not only access to the signal
on the probed wire but also any combination of stable driving signals (primary
or registered inputs).

Probe Propagation in Composed Circuits. Experience has shown that
composition of secure circuits, in the presence of d adversarial probes, may not
result in secure composed circuits, given the same adversarial strength. More
specifically, even though each circuit separately can be proven to resist up to
d adversarial probes, the effect of probe propagation may provide the adversary
with more information than initially assumed. In particular, as downstream sub-
circuits in a composed circuit usually process and combine results of upstream
sub-circuits, placing up to d adversarial probes in those sub-circuits can provide
information that, for isolated circuits, might only be obtainable by placing more
than d probes, hence, virtually extending the adversarial strength beyond the
limit of d probes.

2.5 Security Notions

Since the seminal introduction of the d-probing adversary model [16], many
different security notions to analyze and verify the security of physical circuits
have been proposed, in particular to ensure composition of secure circuits from
provably secure sub-circuits. Below, we introduce most common security notions,
based on the consolidated definitions in [11] and their generalization, unification,
and extension as recently presented in [17].

Probing Security. Granted access to internal values of a circuit through ad-
versarial probes, an adversary may learn (partial) information on the processed
secrets. Hence, in order to achieve probing security in the presence of up to d
adversarial probes, any combination of up to d probes on internal values carried
on wires must be statistically independent of the processed secrets. More specif-
ically, this will limit the partial information any d-probing adversary can learn
on the secrets, such that correct guessing and recovering of the sensitive infor-
mation is impossible. More formally, probing security can be defined through
Definition 1.

Definition 1 (d-Probing Security). An encoded circuit C, with secret input
Encode(X),X € F3, is d-probing secure, if and only if for any observation Q
of t < d wires, X is statistically independent of the observation, i.e., P[Q|X] =
P[Q].

6 D. Knichel et al.

Non-Interference. While d-probing security purely focuses on the security
of circuits in the presence of adversarial probes, the security notion of Non-
Interference (NI) additionally targets the composition of masked circuits, usu-
ally considered as gadgets, such that security spans across the composed circuit
instead of isolated gadgets only.

Through the concept of NI, flow of sensitive information is limited, although
a d-probing adversary is still allowed to gain partial information on internal val-
ues and wires through adversarial probes. However, the original circuit, and in
particular the original distribution of probed values, must not be distinguishable
from a simulated distribution generated only based on the available partial infor-
mation. As a consequence, each adversarial probe must be perfectly simulatable
on partial information comprising a subset of all primary input shares limited by
the security order d. More formally, the security notion of NI can be expressed
through Definition 2.

Definition 2 (d-Non-Interference). An encoded circuit C, with secret input
Encode(X),X € F%, is d-non-interfering if and only if for any observation Q
of t < d wires, there exists a set S of input shares, with |S|; < t,Vi, such that

P[Q[S] = P[Q|Sh(X)].

Strong Non-Interference. Unfortunately, the security notion of NI could not
ensure composability of d-probing secure gadgets, due to the problem of probe
propagation in composed circuits. More precisely, composing gadgets may result
in combination of partial information such that the placing of adversarial probes
on downstream gadgets may propagate into upstream gadgets and grant the
adversary access to partial information that otherwise could only be observed
by placing more than d adversarial probes.

Hence, to correct deficiencies in the NI notion, once it comes to composition
of secure gadgets, the stronger notion of Strong Non-Interference (SNI) was
introduced. In particular, the concept of SNI intercepts probe propagation at the
primary output of gadgets which again limits the partial information accessible
through adversarial probes. As a consequence, each primary output of an SNI-
secure gadget must be perfectly simulatable even without any partial information
gained through adversarial probes. More formally, the security notion of SNI can
be expressed through Definition 3.

Definition 3 (d-Strong Non-Interference). An encoded circuit C, with se-
cret input Encode(X), X € F, is d-strong-non-interfering if and only if for any
observation Q of t = t1 + to < d wires, with t1 being internal wires and to being
output wires, there exists a set S of input shares, with |S|; < t1,Vi, such that

P[Q[S] = P[Q|Sh(X)].

Probe-Isolating Non-Interference. Although the security notion of SNT re-
solves shortcomings in NI and allows secure composition of gadgets, this security
notion, however, is rather conservative and inefficient in practice with respect

GHPC 7

to fresh entropy and circuit area. Moreover, Cassiers and Standaert [8] have
shown that the concept of SNI is limited to single-output gadgets only, but does
not scale for multi-output gadgets, again due to probe propagation. Although
the concept of Multiple-Input-Multiple-Output SNI (MIMO-SNI) could fix the
deficiencies, PINI was introduced as a more elegant and efficient solution.

In particular, the approach of PINI is inspired by trivial composition of lin-
ear functions (assuming Boolean masking) and the concept of domain separation
as introduced in [15]. More precisely, PINI-secure gadgets limit the propagation
of adversarial probes with respect to share domains — also referred to as circuit
shares —, i.e., each share domain is separated and any adversarial probe will only
propagate into its associated share domain. Given this, PINI-gadgets are triv-
ially composable, similar to linear gadgets, regardless of the number of primary
outputs. More formally, the security notion of PINI can be expressed through
Definition 4.

Definition 4 (d-Probe-Isolating Non-Interference). An encoded circuit C
with secret input Encode(X),X € F3, is probe-isolating non-interfering if and
only if for any observation Q of t = t1 + ta < d wires, with t1 being internal
wires and to being output wires, there exists a set of Iy, primary input indices,
with |Ip| < t1, and Ipo primary output indices, with |Ipo| < to, such that Q can
be perfectly simulated by S = Sh(X)Tro,

2.6 Boolean Masking

Due to its sound theoretical foundation, Boolean masking has been established as
the most predominant approach to mitigate side-channel leakage in digital logic.
In general, Encode for Boolean masking relies on concepts of secret sharing to
split sensitive variables X into Boolean shares X*, such that X = EB?ZO X, which
allows simple masking of linear functions, but requires special considerations for
non-linear operations.

Assuming that each Boolean share X’ is independent of the secret X and
all other shares, a circuit implementing Boolean masking with d + 1 shares
can be evaluated securely even in the presence of d adversarial probes. How-
ever, as already mentioned, transient computations, i.e., glitches in hardware
circuits, may recombine independent shares resulting in secret-dependent eval-
uations that may leak sensitive information. Hence, careful construction and
layout of the masking scheme is imperative and a variety of different schemes
has been proposed to ensure resistance even in the presence of glitches. As a con-
sequence, different hardware masking schemes have been proposed over the last
years [16,27,22,24,15,14], most of them being extendable to higher-order protec-
tion and providing different trade-offs for computational and area complexity,
memory requirement, latency, and randomness demand.

8 D. Knichel et al.

3 Generic Hardware Private Circuits (GHPC)

3.1 Shannon Decomposition

In general, our construction for the design of generic and composable hardware
private circuits for arbitrary Boolean functions utilizes the so-called Shannon
Decomposition which was initially presented by Boole in [5].

Theorem 1 (Shannon Decomposition). Any Boolean function F : F§ — Fy
can be written as

F(Xo0, X1, ..., Xty ooy Xno1) =X; - F(Xo0, X1, .10, .0, Xn1) @
Xi F(Xo, X1,y 1o, X)),

or in short: F = X; - Flx,—0 ® X; - F|x,=1, where F|x,—o and F|x,—¢ are called
the Shannon cofactors.

Note that in the original definition, the Shannon cofactors were connected
by a simple OR operation instead of an XOR. Correctness of both versions is
nonetheless obvious, as by assigning a value to X;, the corresponding Shannon
cofactor is selected as output function, such that:

(1)

£ [Flx=o. £Xi=0
| Flx,=1, fXi=1

Since F|x,—¢ and F|x,—; are again Boolean functions, this decomposition can
be applied recursively, depending on arbitrary input variables. For example, F
can be decomposed choosing X; and X}, i # j, then leading to:

F:

| 2

i X - Flxi=0,x,=0 @
i XjFlxi=0,x;=1 @

>

(2)

P

Flx,=1,x,=0 ©
Xi X Flx,=1,x,=1-

In essence, translating a Shannon Decomposition of F into a logic circuit
can be represented as a multiplexer selecting the cofactors depending on the
decomposition variables. For this, Equation (1) results in a 2-input multiplexer
selecting depending on X;, while Equation (2) results in a 4-input multiplexer
selecting depending on X; and X.

3.2 Design

A high-level overview of our methodology for generating composable private cir-
cuits from unprotected circuits is depicted in Figure 1. Given an unprotected
circuit C realizing a Boolean function F : Iy — [F3* and knowing the function

GHPC 9

masking R
—_——
/\ RoRi Rm-1
X — —> Fo @ Ro
Xo— xo{ X' —FRoR |fgR
X, —» — F : :
' ’ Xn_g —> — F1 ® Ry
. —F GHPC
X : C : F 1
: . Xog —> — Ry
—> Fm1 X! X1 H 4> R R
Xn—1 —> 1 .
Xoo1 —> — R

Fig.1: An overview of first-order masking

expression of F, our masking approach enables the construction of a first-order
protected and composable hardware private circuit GHPC with 2 input and out-
put shares under the PINT security notion (even in the presence of glitches).
Further, the number of refreshing random bits of our approach is limited to only
a single fresh random bit per coordinate function (i.e., R € F3"). In fact, the
result of the GHPC is a textbook sharing of each original coordinate function F;,
i.e., each coordinate function is blinded by a different fresh mask R; € R, while
the second share is simply assigned the chosen random value R; drawn from R,
hence, immediately ensuring uniformity and correctness of the sharing.

Construction Principle. Given the circuit C, our construction principle for
translation into a GHPC allows to process and transform each coordinate function
F; with 0 < i < m independently. For this, we will restrict the discussion of the
construction principle to arbitrary single-output Boolean functions F : F" +— F,
as extension to vectorial Boolean functions is given trivially through application
on each coordinate function separately.

In general, given a shared function expression obtained through direct sharing
of the original function F, i.e., F/ = F(X{ @ X}, XY@ X1,..., X2 ;o X!), our
construction can be seen as Shannon Decomposition of F/, where each Shannon
cofactor is blinded by R and F’ is evaluated and decomposed based on shares
from a single share domain. However, it is important to note that F’ itself is
never constructed explicitly, as a Shannon Decomposition based on one share
allows to construct F’ implicitly, as this, given simple Boolean masking, results
in substituting any variable in the original function F with the corresponding
(possibly negated) other share. For instance, it holds that if X = 0, X = 1,
~and X} =1, then Fllxi_(o1,.. 1) = F(X§,X?,..., X} _,). Interestingly, in
this case, the Shannon cofactors only depend on a single share domain, while
selection of the correct computation, i.e., the selection of the correct cofactor,
only depends on the other share domain.

Hence, the foundation of our construction is a multiplexer design that selects
function evaluations restricted to one share, each evaluation blinded by the same

10 D. Knichel et al.

r=—==n
Xié'X*}""'X}lfl gl :
!
F/ _ X(J
|x17(o,0 ,,,,, o)() :)D» N —|
R
r=--a
XTXTo XL, —
o !
Flx1-(0,0,...,1(X°) :)D |
—- >
R H>0'=FaR
r===n
XEXPoXE e
o !
F/lx1_ X°
|x1,(1,1....,1)():)D» . |
R
=== ==
| |
R > : | > : | > OY = R
| ! | !

Fig. 2: General GHPC design.

random value R € Fs, as shown in Figure 2 and algorithmically described in
Algorithm 1. Then, the selection of the correct evaluation only depends on the
second share, e.g., shares from domain 1 for the given design. Note, however,
that naming of share domains is not fixed but may be chosen arbitrarily, as
long as the share domain naming is applied consistently throughout the entire
design and the naming of the output domains is adopted accordingly (to ensure
security under the PINI notion). Then, each blinded Shannon cofactor is stored
in a register, and selected according to the other share subsequently. For this,
the registers depicted in dashed lines (and denoted as Regpipe[] in Algorithm 1)
ensure synchronization and enable a pipelined architecture, but do not have any
effect on the security in the glitch-extended robust probing model in general.
Eventually, as only the correct Shannon cofactor is enabled through an AND
gate but all other factors are gated, summing up the values in the final register
stage will result in the correct but blinded output, hence, assigning R to the
second share of the GHPC provides the correct sharing.

Security Analysis. In this section, we briefly prove the correctness and security
of our construction under the notion of PINI, as stated in Theorem 2, assuming
the d-probing model with glitch-extended probes.

GHPC 11

Algorithm 1 GHPC

Input: input shares X° X' € F}, fresh randomness R € F2
Output: F ¢ F3,F = [F*,F'| = [R,F® R]

01€F2701<*0

0° + Regpipe[RegpipeR]] > Computation of O°

for Vi € {0,...,2" — 1} do > Computation of O*
S; + Regpipe[PRODUCT (4, X 1)]
T; < Reg[F'|x1_pn(i) @ R] > BIN(¢) is the binary representation of 4
o' «+ Ot @ M;

end for

function probUCT(V € F3, X € F3)
PelFy,P+1
for Vi € {0,...,n— 1} do
if [BIN(V)]; =1 then © [BIN(V)]; is the i-th bit of the binary representation

of V
P+ P-X;

else
P+ P-X;
end if
end for
return P
end function

Theorem 2. For an arbitrary circuit C, realizing a Boolean function F : Fy —
Fs, the transformation into a GHPC results in a correct and first-order PINI-
secure circuit under the glitch-extended d-probing model.

Proof.

i) Correctness: The correctness of the Shannon Decomposition directly implies
that O! = F/ @ R. As [X°,X!] is a valid sharing of X, it follows that O =
F@® R, hence 0 = 0°@ O! =F.

ii) PINI: Considering Figure 2 and Algorithm 1, any extended probe on an input
to the non-optional elements of the first register stage reveals all variables
contributing to T; < Reg[F'|x1_pi(;) @ R] for a fixed 0 <4 < 2" —1, i.e., the
joint distribution over [R, X°], which can be perfectly simulated with shares
restricted to share domain 0 and drawing R €gr Fsy. Further, any extended
probe on the input of the second register stage reveals every stable variable
contributing to M; + Reg[S; - T;], which translates to a leakage of the joint
distribution over [T;, X!']. Due to the blinding with R, T; can be simulated
by drawing T; €r F2. Hence, every observation can be simulated with shares
restricted to domain 1. Eventually, placing an extended probe on the output
O! reveals the joint distribution over [Mg, My, ..., Man_1]. Here, depending
on which input T; is selected as the output, each observation will be of
the form [0,...,0, M;,0,...,0], i.e., a vector where all coordinates are zero

12 D. Knichel et al.

14030@1{4,\l AOBDCOEBR*\

A°B°CO@ R~
- A"BOC°@ R~
0
Aok B R~
Ol “A0 RO MO 4>Ol

s ABOCO@ R~
AR ok BT e R~
- DB oR >
AR o DB R~

(a) 2-input AND (b) 3-input AND

Fig. 3: Examples for first-order PINI-secure GHPC constructions.

except the one that shows a function perfectly blinded by R. This is due to
the fact that by construction of the multiplexer design, only one second-stage
register contains the selected input — all others contain zero. The resulting
vector can be perfectly simulated by drawing a fresh random bit and placing
it at the right position ¢ of the vector. However, note that in this example,
the position ¢ depends on the shares from share domain 1, hence, in order
to provide PINI-security, exchanging the indices of the circuit output shares
is not allowed. Eventually, every extended probe on the output O° will only
reveal a fresh random bit R, i.e., no information about the original input
and/or output.

O

Examples. In Figure 3, the designs resulting from masking a 2-input AND
(Figure 3a) and a 3-input AND (Figure 3b) are given as examples. For this,
we would like to highlight the clocked multiplexer symbol used in these figures,
which refer to the same module identified by a blue border in Figure 2. As
previously explained, the inputs to the multiplexer can be simply derived by
inserting every combination of negated /non-negated shares from domain 0 into
F = A B. This results in 2"=2 input functions for the multiplexer design realizing
a 2-input AND and in 2"=2 = 8 input functions for the 3-input AND. As an
extra verification, we checked these designs with SILVER [17] — a software tool for
formal verification of masked circuits — which confirmed our theory by reporting
first-order security under the PINI notion in the robust probing model.

GHPC 13

X4 XX
A
Fl‘X]:(O,U,,.v,U)(XO) DD

Ro

Ry

X5 - X} Xn1 7™ i
\7 A 7\
, Ry —
F \xlz(o,n“. ,1)(X0) D R
—_—— L —>

Ron_1 -

\7 A 7‘
F,\xlzm,l“..,n(xo) ::)D L:)

Ron_y

Fig. 4: General GHPC| design with reduced latency.

3.3 Reducing the Latency

If desired, in order to reduce the overall latency, the number of register stages
in the design can be reduced to a single stage.

Construction Principle. For this, every input to the multiplexer must be
blinded by a different freshly drawn random mask, as only this way, the second
register stage in the first circuit share can be entirely omitted. For the output
of circuit share 0, i.e., for O°, the corresponding randomness has to be selected
by a standard multiplexer before it is stored in a register. The resulting design
with one register stage — referred to as GHPCy| in the following — can be seen in
Figure 4 and in Algorithm 2. The architecture of circuit share 1 uses the same
multiplexer architecture as presented in Figure 2, but with the second register
stage omitted. Hence, this design has a reduced latency of 1 clock cycle, while
expanding the demand for fresh randomness to 2" bits.

Security Analysis. Again, we briefly prove the correctness and security under
the notion of PINI, as stated in Theorem 3, assuming the glitch-extended d-
probing model.

Theorem 3. For an arbitrary circuit C, realizing a Boolean function F : Fy —
Fy, the transformation into a GHPCy results in a correct and first-order PINI-
secure circuit under the glitch-extended probing model.

14 D. Knichel et al.

Algorithm 2 GHPC
Input: input shares X% X' € F%, fresh randomness R € F%n
Output: F € F3,F = [F° F!] = [R,FO® R], with R€ R

RelF;, R+ 0
01€F2701<*0
for Vi € {0,...,2" — 1} do

S; + Regpipe[PRODUCT (4, X1)] > PRODUCT as defined in Algorithm 1
T Reg[Fll)(l:BIN(i) D Rl]
01 — O1 @ M;
end for
0° < Reg[R]
Proof.

i) Correctness: Following the same argumentation as for Theorem 2, O! outputs
F& R; with ¢ € {0,...,2" — 1} and for any valid input sharing. As by
construction, O° equals R;, correctness of this masking is fulfilled.

ii) PINI: Considering Figure 4 and Algorithm 2, the joint distribution [X°, R;]
resulting from a probe on the input of T; < Reg[F'|x1_pn(;) © Ri] can be
simulated using only shares from domain 0 and drawing R; €r Fs. An
extended output probe on O' will observe a joint distribution of the form
(X1, Ty, Ty, . .., Ton_1], which can be simulated with X! and drawing 2" fresh
random bits as T; €p Fo, VO < ¢ < 2" — 1. Due to the output register, a
probe on O° can be perfectly simulated using one fresh random bit, while
each internal probe (on R) is perfectly simulatable by fresh randomness and
shares drawn only from share domain 1, as the whole circuit share does not
involve computation on shares from share domain 0.

O

4 Comparisons

In this section, we briefly discuss and compare our proposed constructions to
state-of-the-art masking schemes with respect to common metrics, such as la-
tency, demand for fresh randomness, area consumption, and composability of
gadgets. To this end, Table 1 and Table 2 list recent approaches from literature
and their application to hardware circuits. In particular, we align our discus-
sion and comparison by focusing on basic non-linear gates, i.e., 2-input AND
gates, which are commonly used to create secure and composable gadgets re-
quired for construction of larger circuits. Further, we extend our discussion by
comparing different techniques with respect to larger circuits, particularly us-
ing the PRESENT, PRINCE, Skinny, Prgst, Rectangle, Class-13, and AES S-boxes
as illustrating examples. For the 4-bit S-boxes, we realized the corresponding

GHPC 15

descriptions given in [7] which are optimized with respect to the number of cas-
caded 2-input AND gates, i.e., favoring HPC1 and HPC2 as instantiated gadget.
For the AES S-box, we considered the design given in [6], where — based on a
tower field representation — a low-depth circuit has been constructed. It contains
two isomorphisms at the start and end of the GF(28) inversion, and excluding
the XOR gates, has at most 4 cascaded 2-input AND gates, which also is in
favor of HPC1 and HPC2. In addition, we also include results reported in [13],
proposing a generic approach for low-latency masking which has been applied
to the AES S-box considering different low-latency constructions.

Further, note that the descriptions given in [7] are without considering pipeline
registers to synchronize the inputs of each gate. Therefore, in order to provide
a fair comparison, all performance figures reported in Table 1 and Table 2 are
for non-pipeline designs. Besides, similar to the state of the art, we did not
include the area required for generation of fresh masks in the reported area
footprints. All area results have been obtained by synthesizing the Hardware
Description Language (HDL) code of the design using Synopsis Design Com-
piler and UMC 180 nm standard cell library, unless indicated otherwise.

Latency. Since the final latency of our constructions does not depend on the
underlying Boolean function and its algebraic degree, its application on larger
functions leads to a higher efficiency with respect to latency compared to other
approaches. Certainly, for small circuits and simple Boolean functions, e.g., a
2-input AND gate, hand-crafted and optimized gadgets might be more efficient
in terms of latency. However, as our approach easily scales for larger functions,
even with high algebraic degree, e.g., for an entire AES S-box, construction of
masked circuits with low latency becomes feasible. More specifically, focusing
on our low-latency approach GHPCi | (at cost of additional randomness), our
secure constructions outperform all other schemes listed in Table 1 and Table 2
in terms of latency. More precisely, to the best of our knowledge, the GHPC, is
the only first-order composable construction with one clock cycle latency.
Although Gro8 et al. proposed a generic low-latency masking approach in [13],
the resulting AES S-box constructions certainly have a comparable latency
(along with demand for fresh randomness and area), but do not result in a
composable design but only focus on proving a probing-secure construction.

Randomness. In contrast to latency, the demand for fresh randomness of our
constructions is mainly governed by the underlying Boolean function. The num-
ber of required fresh random bits r per circuit evaluation is given as

TGHPC = M, TGHPC, = m - 2".

More precisely, for GHPC this number is independent of the number of inputs n
but only depends on the number of outputs m of the underlying Boolean function
F : F7 — F3'. Hence, for large functions, such as 4-bit or 8-bit S-boxes, this
results in randomness-efficient designs. This view for sure changes when lower

16 D. Knichel et al.

Table 1: Comparison of different first-order masking schemes (part 1).
(using Synopsis Design Compiler, and UMC 180 standard cell library)

Scheme Func. Latency Rand. Area Compos. Ref.
n m [eycle] [bit] [GE] notion
AND2
DOM 2 1 56 SNI [12]
HPC1 2 2 94 PINI [7]
HPC2 2 1 2 1 66 PINI [7]
GHPC 2 1 82 PINI new
GHPCL 1 4 59 PINI new
PRESENT S-box
HPC1 3 8 403 PINI [7]
HPC2 3 4 320 PINI [7]
GHPC -AND 4 4 2 16 310 PINI new
GHPC 2 4 1308 PINI new
GHPC, 1 64 959 PINI new
PRINCE S-box
HPC1 4 12 645 PINI [7]
HPC2 4 6 467 PINI [7]
GHPC, -AND 4 4 2 24 445 PINI new
GHPC 2 4 1384 PINI new
GHPC, 1 64 987 PINI new
Skinny S-box
HPC1 4 8 467 PINI [7]
HPC2 4 4 301 PINI [7]
GHPC, -AND 4 4 2 16 288 PINI new
GHPC 2 4 1232 PINI new
GHPC, 1 64 951 PINI new
Prgst S-box
HPC1 3 8 432 PINI [7]
HPC2 3 4 309 PINI [7]
GHPC, -AND 4 4 2 16 302 PINI new
GHPC 2 4 1225 PINI new
GHPC, 1 64 952 PINI new
Rectangle S-box
HPC1 3 8 439 PINI [7]
HPC2 3 4 319 PINI [7]
GHPC -AND 4 4 2 16 311 PINI new
GHPC 2 4 1229 PINI new
GH PCLL 1 64 962 PINI new

GHPC 17

Table 2: Comparison of different first-order masking schemes (part 2).
(using Synopsis Design Compiler, and UMC 180 standard cell library)

Scheme Func. Latency Rand. Area Compos. Ref.
n m [eycle] [bit] [GE] notion

Class-13 S-box

HPC1 3 8 432 PINI (7]
HPC2 3 4 304 PINI 7]
GHPC_.-AND 4 4 2 16 303 PINI new
GHPC 2 4 951 PINI new
GHPCy, 1 64 933 PINI new
AES S-box

CMS 5 54 2530 - [10]
DOM 8 18 2851 - [15]
GLLM 1 2048 607302 - [13]
GLLM 2 416 67407 - [13]
HPC1 8 8 5 68 3504 PINI 6]
HPC2 5 34 2452 PINI 6]
GHPC_-AND 4 136 2376 PINI new
GHPC 2 8 77145 PINI new
GHPC, 1 2048 64111 PINI new

2 These designs were synthesized using a different UMC 90 nm process technology.

latency is favorable, i.e., GHPC | whose required fresh randomness depends on
both m and n.

Then again, efficiency of our approach, in terms of required fresh random-
ness, does not change with the optimizations done on the implementation of the
Boolean function. Taking the HPC1 and HPC2 of the S-boxes covered by Ta-
ble 1 and Table 2, the foundational S-box implementations have been optimized
through application of SAT solvers in order to reduce the latency and number of
2-input AND gates [7,6]. However, for our approach, the number of random bits
is independent of how the Boolean function is realized. Instead, it only depends
on its number of input and output bits. For this, our approach is particularly
suitable for integration into EDA tools and automated integration of masking
countermeasures into logic circuits.

Area. Besides latency and demand for fresh randomness during execution, the
footprint in terms of area of the resulting design is an often considered metric
in evaluation of efficiency and expense of a final design. In this regard, reduc-
tion in area usually can be traded for increasing latency and demand for fresh
randomness.

In turn, this implies that our proposals optimized for low-latency (GHPCy)
and low-randomness (GHPC) naturally are outperformed by hand-crafted and so-

18 D. Knichel et al.

phisticatedly optimized gadgets and constructions. However, observing that our
GHPC\| construction for a 2-input AND not only provides best results in latency
but also is smaller than all related (PINI-secure) hand-crafted gadgets, we opted
to instantiated all S-box constructions provided in Table 1 and Table 2 with our
GHPC | gadget instead of HPC1 or HPC2. Given this, we can observe that all our
GHPC_ -AND S-box constructions outperform related designs in terms of area
(and even latency to some extend), but at cost of additional randomness that is
required for secure execution. Construction of larger GHPC | -AND gadgets (3-
or 4-bit input) to be used in the implementation of the S-boxes is also possible,
but since the S-box descriptions we have in hand are not optimized to efficiently
use such large-input gates, we have not included such cases in the presented
results.

Composability. Eventually, our construction allows to build secure and com-
posable hardware gadgets from arbitrary Boolean functions. As a consequence,
even entire S-boxes, as shown in Table 1 and Table 2 can be transformed into
securely-composable gadgets under the PINI notion. However, in contrast to the
existing designs focusing on construction of secure circuits through composi-
tion of secure AND and XOR gates, our approach efficiently scales for arbitrary
Boolean functions. For instance, AES S-box designs presented in [15,10] rely on
a careful instantiation of secure 2-input (and larger) AND gates. However, as
these gadgets are not trivially composable, the resulting S-box circuit is indeed
probing secure, but does not necessarily provide composability.

In contrast to this, our approach always results in PINI-secure gadgets, in-
dependent of the underlying function, allowing to construct gadgets even for
larger circuits such as the AES S-box. As a result, we can conclude that due
to its flexibility, our approach provides a clear road map for automatization of
masking arbitrary circuits through generation of composable secure gadgets. It
is true that a secure variant of any circuit can be constructed by HPC1 and HPC2
2-input AND (and XOR) gadgets, but there is a lower bound for the latency of
the resulting circuit — which is of crucial importance in hardware designs — de-
fined by the algebraic degree of the components of the underlying cryptographic
function. However, our scheme uncouples this dependency while maintaining the
same generality.

5 Case Studies

Below we present the experimental results obtained when applying our construc-
tion principle to different block cipher implementations.

5.1 Target Device and Measurement Setup

The analyses have been conducted on a SAKURA-G board [25], where a Spartan-
6 Field-Programmable Gate Array (FPGA) is embedded to host cryptographic
cores. For all case studies given in the remainder of this section, the power

GHPC 19

consumption traces of the target FPGA have been collected by monitoring the
voltage drop over a 12 resistor placed in the Vdd path amplified by an on-board
AC amplifier. During the measurements performed by a digital oscilloscope at
the sampling rate of 500 MS/s, the implemented cryptographic core was supplied
by a stable and jitter-free clock source at the frequency of 6 MHz.

PRNG. For the generation of each fresh random bit, we constructed a 31-bit
Linear-Feedback Shift Register (LFSR) with the feedback polynomial 3! +228 +
1, which has a maximum cycle of 23! — 1 with only two taps [28]. Each LFSR
is initialized by an arbitrary value right after the FPGA power-up, making sure
that no LFSR is entirely filled by zero, and there is no common initialization
value for two LFSRs.

5.2 Byte-Serial AES

For our first case study, we opted to implement a first-order secure AES encryp-
tion based on the byte-serial architecture of Moradi et al. [21] with only minor
modifications in the control logic due to the increased S-box latency. It is worth
to highlight that all our HDL designs of the case studies are provided in the
GitHub.

Design. For this, a single GHPC AES S-box is instantiated and shared between
data path and key expansion circuits, requiring both, data and key to be shared
using d+ 1 = 2 shares. Further, due to the two-cycle latency of the GHPC S-box
design, and this component being the bottleneck of the architecture, we opted
to include all pipelining registers to enable processing of all byte substitutions
within 22 cycles, i.e., 2 cycles initial latency, 16 cycles for the round function
S-box computations, and 4 cycles for the key expansion. Further, shifting of rows
and mixing of columns is done in one respectively four cycles, while the key is
updated simultaneously. In total, a single first-order secure AES round function
(including key expansion) requires 23 cycles, resulting in a total of 230 cycles for
an AES-128 encryption. Note that, although mixing of columns is omitted in the
last round, expansion of the final post-whitening key is stalling the final round
computation. We also provide a generic HDL description of our architecture in
the GitHub which allows to select GHPC or GHPC | as the underlying design
while adjusting the S-box, control logic, and randomness automatically (see more
details in Appendix A). However, we considered only the GHPC design in our
experimental analyses due to the similarity of the results.

Then, as given in Table 3, our entire first-order AES encryption architecture
has a size of 86.3kGE, using an 180 nm cell library while it requires only 8-bit
fresh randomness per clock cycle to maintain the first-order security.

Leakage Assessment. Using a fix-versus-random Test Vector Leakage Assess-
ment (TVLA) methodology according to [26], Figure 5b and Figure 5¢ show eval-

https://github.com/Chair-for-Security-Engineering/GHPC
https://github.com/Chair-for-Security-Engineering/GHPC

20 D. Knichel et al.

uation results for first-order and second-order statistical moments using 100 mil-
lion power traces. As expected, our design does not exhibit any observable leak-
age for the first-order statistical moment while expectedly we could observe sig-
nificant differences in the second-order statistical moment. These results indeed
confirm our theoretical security evaluations for the GHPC construction, showing
its applicability to arbitrary Boolean functions in order to construct generic and
composable PINI-secure gadgets.

5.3 Nibble-Serial PRESENT

For our second case study, we implemented the nibble-serial design of Poschmann
et al. [23], realizing the PRESENT encryption where a single S-box instance is
shared for the entire data and key processing. Per clock cycle, both state and
key registers are shifted nibble-wise to conduct key addition and S-box look-up

Power

0 10 20 30 40 50
Time [us]

(a) A mean trace over 1000 measurements indicating the cipher rounds

5F

t-statistics
o

_5 C L L L L
0 10 20 30 40 50
Time [us]
(b) first-order leakage assessment
100
(2]
g 0
0
5 -100
£ 200
-300 & | | | | =
0 10 20 30 40 50

Time [us]
(c) second-order leakage assessment

Fig. 5: Experimental analysis of our first-order AES byte-serial encryption design
(covering the entire encryption); fixed vs. random t-test results using 100 million
traces.

GHPC 21

Table 3: Performance figures of our case studies.
(using Synopsis Design Compiler, and UMC 180 standard cell library)

Design Order Random. Area Delay Latency
d [bit] [GE] [ns] [cycle]
AES Serial 0 0 3646 8.13 195
GHPC 1 8 86 326 21.34 215
GHPCy, 1 2048 76 339 23.48 205
PRESENT Serial 0 0 2139 5.12 545
GHPC 1 4 5604 5.76 607
GHPCy. 1 64 5253 5.92 576
PRESENT Round-based 0 0 2798 4.39 31
GHPC 1 72 31559 5.22 62
GHPC, 1 1152 25264 5.28 31

at the same time, while the permutation layer is done in parallel (in a single
clock cycle). Again, we constructed a general design, in which the user can set
the desired GHPC or GHPC scheme. The number of required fresh masks as
well as the latency of the S-box, required for the control logic, is automatically
adjusted accordingly. For more detail on the design architecture, we refer to the
HDL code given in the the GitHub. Table 3 also lists the performance figures
of our designs including the area overhead, required fresh randomness, latency,
and delay.

Focusing on our GHPC design, we collected 100 million traces and performed
fix-versus-random TVLA at different orders. The results shown in Figure 6 con-
firm our claims and expectations on the security level of our construction.

5.4 Round-Based PRESENT

We also implemented the PRESENT encryption function in a round-based fash-
ion. The unprotected design performs each cipher round in a single clock cycle,
resulting in 31 cycles for the entire encryption. The first-order GHPC design
needs 2 clock cycles per round while forming a pipeline design, i.e., encrypting
two plaintexts in consecutive clock cycles, resulting in 62 clock cycles for two
encryptions. Note that we made use of the internal registers of the S-box as the
state register. This allowed us to keep 31 clock cycle latency in GHPC, | design
(see Table 3). Similar to all other case studies, we practically examined this
construction by performing the same leakage assessment at different orders. The
results, which are along the same line as the formerly presented ones, are shown
in Figure 7. Nevertheless, Table 3 covers the performance figures of this design
as well.

As a remark, the evaluation results of the GHPCy circuits of all case studies
are very similar to the figures presented above. Therefore, we omit showing the
identical results.

https://github.com/Chair-for-Security-Engineering/GHPC

22 D. Knichel et al.

Power

0 5 10 15 20
Time [us]
(a) A mean trace over 1000 measurements
400
2 8 200
k7 @
g g 0
2 9 -200
d ‘ ‘ ‘ -400 ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20
Time [uS] Time [uS]
(b) first-order (c) second-order

Fig. 6: Experimental analysis of our first-order PRESENT nibble-serial encryption
design (covering the first five rounds); fixed vs. random t-test results using 100

million traces.

Power

0 3 6 9 12
Time [us]

(a) A mean trace over 1000 measurement

8 8
B z
IS 8
Q @
0 3 6 9 12 0 3 6 9 12
Time [us] Time [us]
(b) 1st-order (¢) 2nd-order

Fig. 7: Experimental analysis of our first-order PRESENT round-based encryp-
tion design (covering the entire encryption); fixed vs. random t-test results using
100 million traces.

GHPC 23

6 Discussions and Conclusions

In this work, we developed and presented a generic framework to construct triv-
ially composable hardware private circuits with a compact latency from arbitrary
vectorial Boolean functions. Following the concept of Shannon’s decomposition,
we derived generic circuit constructions which offer both, first-order probing se-
curity in the presence of glitches and trivial composability, by fulfilling the notion
of PINI in the robust probing model. More specifically, we presented the fun-
damental design principles, security analyses, and simple examples to illustrate
our contribution.

After establishing the concept, we compared our constructions to state-of-
the-art masking schemes. Based on this comparison, we conclude that our ap-
proach can be used to achieve optimize designs for different metrics, in particular
focusing on latency, randomness, and area.

— In terms of latency, our proposed GHPC | gadgets outperform all hand-
crafted and carefully optimized constructions, independent of the complexity
and appearance of the underlying Boolean function. In fact, all our presented
results constructed according to the GHPCy| approach have the smallest la-
tency of a single cycle, while still being PINI-secure, however, introducing
higher demands on area and fresh randomness.

— Then, considering low-randomness optimizations, our GHPC provides the
best results in comparison to related works due to its independence on the
targeted Boolean function and its appearance, while the number of random
bits only depends on the number of outputs the underlying function has.
Focusing on the designs with low fresh randomness, our GHPC approach
scales well particularly for larger functions, e.g., an AES S-box, with only
modest increase of latency in comparison to the GHPC | approach while
requiring only 8 bit fresh randomness as it is a function with 8-bit output.

— Eventually, low-area constructions for all S-boxes can be achieved by replac-
ing the HPC1 or HPC2 2-input AND gadget with our proposed GHPC, -AND
construction. Interestingly, such constructions provide the smallest area foot-
print along with competitive latency. This however comes at cost of increased
demand for fresh randomness.

Furthermore, our methodology was verified by (i) testing small examples
with the state-of-the-art formal verification tool SILVER [17], and by (ii) exper-
imentally evaluating several case studies. As a first case study for our first-order
approach, we decided to analyze a byte-serialized version of AES where the en-
tire S-box was translated into a single first-order secure and composable gadget
based on our presented design principle. For a second case study, we constructed
a secure nibble-serialized and round-based PRESENT encryption, again translat-
ing the entire S-box into a single gadget following the corresponding first-order
design concepts. All case studies evidently support our theoretical findings by
showing no leakage in the first-order statistical moment when performing a non-
specific leakage assessment.

24 D. Knichel et al.

To conclude, our generic methodology for constructing masked gadgets for
arbitrary vectorial Boolean functions pioneers automatic generation of masked
circuits in hardware solely based on the function expression and with a constant
latency of 2 clock cycles for GHPC and 1 clock cycle for GHPC . (at cost of higher
fresh randomness). A fundamental question, which is not yet answered and still
needs proper attention, is how expensive it is to generate a certain number of
fresh masks per clock cycle. For this, choosing area, energy, power, or delay as
the metric and cost function are certainly possible choices. However, without
any detailed insight on the cost factors, we cannot easily prefer one design over
another even though they have, for example, the same latency.

Since the presented solution is restricted to the first order with 2 shares,
extension of the technique to cover higher-order security is naturally among our
future works. As our approach pioneers the automated construction of masked
hardware circuits, development of a proper tool is an interesting exercise to
pursue. In this context, exploration of trade-offs between randomness and latency
for functions larger than 4 bits through clever construction of atomic gadgets is
an interesting question also left open for future work.

Acknowledgments

The work described in this paper has been supported in part by the German
Research Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972, and through the project 393207943 “Security for Internet of
Things with Low Energy and Low Power Consumption (GreenSec).

References

1. Ananth, P., Ishai, Y., Sahai, A.: Private Circuits: A Modular Approach. In:
CRYPTO 2018. Lecture Notes in Computer Science, vol. 10993, pp. 427-455.
Springer (2018)

2. Barthe, G., Belaid, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P.: Veri-
fied Proofs of Higher-Order Masking. In: EUROCRYPT 2015. Lecture Notes in
Computer Science, vol. 9056, pp. 457-485. Springer (2015)

3. Barthe, G., Belaid, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P., Zucchini,
R.: Strong Non-Interference and Type-Directed Higher-Order Masking. In: CCS
2016. pp. 116-129. ACM (2016)

4. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F., Strub, P.: Parallel
Implementations of Masking Schemes and the Bounded Moment Leakage Model.
In: EUROCRYPT 2017. Lecture Notes in Computer Science, vol. 10210, pp. 535—
566 (2017)

5. Boole, G.: The calculus of logic (1848)

6. Boyar, J., Peralta, R.: A Small Depth-16 Circuit for the AES S-Box. In: Information
Security and Privacy Conference, SEC 2012. IFIP, vol. 376, pp. 287-298. Springer
(2012)

7. Cassiers, G., Grégoire, B., Levi, 1., Standaert, F.: Hardware Private Circuits: From
Trivial Composition to Full Verification. IEEE Transactions on Computers (2020)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

GHPC 25

Cassiers, G., Standaert, F.: Trivially and Efficiently Composing Masked Gadgets
With Probe Isolating Non-Interference. IEEE Trans. Information Forensics and
Security 15, 2542-2555 (2020)

Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: CRYPTO ’99. Lecture Notes in Computer Sci-
ence, vol. 1666, pp. 398—412. Springer (1999)

Cnudde, T.D., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 Shares in Hardware. In: CHES 2016. Lecture Notes in Computer
Science, vol. 9813, pp. 194-212. Springer (2016)

De Meyer, L., Bilgin, B., Reparaz, O.: Consolidating Security Notions in Hardware
Masking. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 119-147 (2019)
Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable
Masking Schemes in the Presence of Physical Defaults & the Robust Probing
Model. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 89-120 (2018)
Grof3, H., Iusupov, R., Bloem, R.: Generic Low-Latency Masking in Hardware.
TACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 1-21 (2018)

Grof}, H., Mangard, S.: A unified masking approach. J. Cryptogr. Eng. 8(2), 109-
124 (2018)

Grof3, H., Mangard, S., Korak, T.: An Efficient Side-Channel Protected AES Imple-
mentation with Arbitrary Protection Order. In: CT-RSA 2017. LNCS, vol. 10159,
pp. 95-112. Springer (2017)

Ishai, Y., Sahai, A., Wagner, D.A.: Private Circuits: Securing Hardware against
Probing Attacks. In: CRYPTO 2003. LNCS, vol. 2729, pp. 463-481. Springer (2003)
Knichel, D., Sasdrich, P., Moradi, A.: SILVER - Statistical Independence and Leak-
age Verification. In: ASTACRYPT 2020. Lecture Notes in Computer Science, vol.
12491, pp. 787-816. Springer (2020)

Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: CRYPTO ’96. Lecture Notes in Computer Science,
vol. 1109, pp. 104-113. Springer (1996)

Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: CT-RSA 2005. Lecture Notes in Computer Science, vol. 3376, pp. 351—
365. Springer (2005)

Moos, T., Moradi, A., Schneider, T., Standaert, F.: Glitch-Resistant Masking Re-
visited or Why Proofs in the Robust Probing Model are Needed. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019(2), 256-292 (2019)

Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: EUROCRYPT 2011.
Lecture Notes in Computer Science, vol. 6632, pp. 69-88. Springer (2011)
Nikova, S., Rijmen, V., Schléffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptol. 24(2), 292-321 (2011)
Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-Channel
Resistant Crypto for Less than 2,300 GE. J. Cryptology 24(2), 322-345 (2011)
Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidat-
ing Masking Schemes. In: CRYPTO 2015. Lecture Notes in Computer Science,
vol. 9215, pp. 764-783. Springer (2015)

SAKURA: Side-channel Attack User Reference Architecture. http://satoh.cs.
uec.ac.jp/SAKURA/index.html

Schneider, T., Moradi, A.: Leakage Assessment Methodology - A Clear Roadmap
for Side-Channel Evaluations. In: CHES 2015. Lecture Notes in Computer Science,
vol. 9293, pp. 495-513. Springer (2015)

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

26 D. Knichel et al.

27. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. IACR Cryptol. ePrint Arch. 2003, 236 (2003)

28. Ward, R., Molteno, T.C.: Table of Linear Feedback Shift Registers. Tech. Rep.
2012-1, University of Otago (2012), http://www.physics.otago.ac.nz/reports/
electronics/ETR2012-1.pdf

A HDL Codes in the GitHub

We have provided the HDL code of our case studies of Section 5 in the GitHub.
A “PINI_pkg.vhd” file is given for each design, where the settings of the desired
implementation can be adjusted. This includes parameters like “low_latency”
with which the gadget type (GHPC/ GHPCy) can be selected, and “pipeline”
which sets if pipeline registers should be instantiated into the designs.

We further constructed the designs in such a way that it can easily realize
different Boolean functions (i.e., different S-boxes). In the “PINI_pkg.vhd” file,
the number of input bits and the output bits (via parameters “in_size” and
“out_size”) can be adjusted, and the target Boolean function can be set as a case
statement of the “PINI_Stepl.vhd” file as a look-up table. This eases the process
of automatic generation of GHPC and GHPC| gadgets of arbitrary Boolean
functions.

http://www.physics.otago.ac.nz/reports/electronics/ETR2012-1.pdf
http://www.physics.otago.ac.nz/reports/electronics/ETR2012-1.pdf
https://github.com/Chair-for-Security-Engineering/GHPC
https://github.com/Chair-for-Security-Engineering/GHPC

	Generic Hardware Private Circuits

