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Abstract

CSURF (CSIDH on the surface) was recently proposed by Cas-
tryck, and Decru in PQCrypto-2020, and then improved by the radi-
cal isogeny formulæ in Asiacrypt-2020. The main advantage of using
CSURF and radical isogenies is the possibility of using isogenies of
degree two and radical isogeny chains of odd degree requiring only
a single random sampling of points. This work addresses the prac-
tical implications of a constant-time implementation of CSURF and
the radical isogeny procedures. In particular, this paper introduces
the �rst constant-time formulation and implementation of the radical
isogenies using projective representation, which are twice as e�cient
as the original radical isogeny formulæ. Nevertheless, the overhead
introduced by going to constant-time is signi�cant: in terms of �nite
�eld operations, our experiments illustrate that the speed-up of us-
ing a constant-time CSURF-512 is reduced to 1.64% in comparison to
the fastest state-of-the-art constant-time CSIDH-512 implementation.
Furthermore, these savings disappear when using constant-time radical
isogenies and when moving to higher parameter sets. This negatively
answers the open question from Castryck and Decru: constant-time
CSIDH implementations outperform both CSURF and radical isoge-
nies.

1 Introduction

The �rst proposal of an isogeny-based Di�e-Hellman key exchange was done
by Couveignes [9] and centered on the action of an ideal class group on a
set of ordinary elliptic curves. But, it wasn't until Rostovtsev and Stol-
bunov [16, 15] independently rediscovered it and recognized its potential as
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a strong post-quantum candidate. After this, isogeny-based cryptography
developed further with SIDH in [11, 10, 1]. In Asiacrypt 2018, Castryck,
Lange, Martindale, Panny, and Renes introduced CSIDH (as a possible im-
provement to SIDH) by reformulating Couveignes' system by focusing on
supersingular curves de�ned over a prime �eld [6] and only using odd degree
isogenies. With the hope to improve CSIDH performance, Castryck and
Decru proposed CSURF by giving an interesting way of exploiting and per-
forming degree-2 isogenies [4] by moving to the surface of the isogeny graph.
Indirectly hinted by CSURF's nature, Castryck, Decru, and Vercauteren pre-
sented in Asiacrypt 2020 a couple of new ideas for constructing isogenies with
small odd degree based on radical computations (N -th roots) [5]. With this
they gained a speed-up of about 19% over CSIDH. It is worth mentioning
that both of the works in [4] and [5] focused on non-constant-time instanti-
ations. In particular, Castryck, Decru, and Vercauteren left the analysis of
a constant-time implementation of CSURF and radical isogenies as an open
problem.

Dealing with constant-time implementations of CSIDH (and CSURF) can
be tricky as there are multiple approaches, such as using dummy isogenies
or a dummy-free approach. The �rst constant-time CSIDH instantiation
is the procedure using dummy isogenies proposed by Meyer, Campos, and
Reith in [13], and then improved by Onuki et al. in [14]. Subsequently,
Cervantes-Vázquez et al. proposed a dummy-free variant of CSIDH [7]. In
summary, all of the previously mentioned constant-time implementations of
CSIDH perform a �xed number of isogeny constructions.

Let's explain the general idea of how a constant-time CSIDH implemen-
tations works by using CSIDH-512 as an example. That is, we use the prime
p = 4 ·

∏74
i=1 `i − 1, where `1 up to `73 are the smallest 73 odd prime num-

bers and `74 = 587. Next, let E/Fp : y2 = x3 + Ax2 + x be a supersingular
Montgomery curve with (p + 1) rational points. Additionally, assume we
require exactly m = 5 isogenies per `i, then our keyspace corresponds with
the integer exponent vectors (e1, . . . , e74) ∈ J−m . . mK74 1. Finally, we have
all the ingredients for describing what the main block of CSIDH is. In a
dummy-based variant, one starts performing |ei| secret degree-`i isogenies
and then proceeds by computing (m− |ei|) dummy-isogenies. The degree-`i
isogeny kernel belongs to either E[π − 1] or E[π + 1] (the sign of ei deter-
mines which one will be used). Now, the dummy-free variant removes the
(m − |ei|) dummy-isogeny constructions by assuming ei has same parity as
m, and alternatingly uses kernels in E[π − 1] and E[π + 1].

Contributions. We have investigated constant-time implementation of
CSURF and radical isogenies, which claimed to be 5% and 19% faster than
CSIDH in a non-constant-time setting, and we have explored di�erent ap-

1The word exponent comes from the associated group action (see section 2)
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proaches to constant-time implementations. More speci�cally, the main con-
tributions of this work are the new projective radical isogeny formulæ and the
�rst constant-time implementation of CSURF and chain of projective radi-
cal isogenies of degree up to nine. The proposed projective radical isogeny
formulæ are almost twice as e�cient as the original (a�ne) radical isogeny
formulæ in constant time. We have also provided further optimizations by
speeding up the costly exponentiations used in radical isogenies, and we have
added the optimal bounds and optimal strategies as in [8]. Our Python-code
implementation allows isogeny evaluation strategies using both traditional
and Vélu square-root formulæ, as well as radical isogenies and degree-2 iso-
genies (on the surface), and is freely available at

https://github.com/Krijn-math/Constant-time-CSURF-CRADS.

The provided implementation allows us to compare CSURF and radical
isogenies against state-of-the-art constant-time implementations of CSIDH.
We have performed this comparison both theoretically and practically using
six di�erent parameter sets of 512-, 1024-, 1792-, 2048-, 3074-, and 4096-bits.
We show that in low parameter sets, with the additional cost of moving to
constant-time, CSURF performs on par with current CSIDH implementa-
tions, with a 1.64% speed-up for 512 bits and a 0.34% speed-up for 1024
bits. In high parameter sets, or when using radical isogenies, there is no
speed-up in comparison to CSIDH. This negatively answers an open ques-
tion in [5]: the impact of moving to constant-time is signi�cant for CSURF
and radical isogenies, and we do not achieve a speed-up by implementing
it. In high parameter sets, we show that the cost of CSURF and radical
isogenies scale worse than those of current CSIDH implementations. Our
results illustrate that constant-time CSURF and radical isogenies perform
worse than large CSIDH instantiations, at least at the level of �nite �eld
operations.

Outline. Section 2 recaps the theoretical preliminaries on isogenies, the
Tate normal form, CSIDH, CSURF and radical isogenies. Our constant-
time proposed a�ne and projective radical isogenies formulæ are presented
in Section 3, as well as the use of fast exponentiations with addition chains.
In addition, Section 3 also focuses on the performance impact of moving to
constant-time implementations and concludes with a theoretical cost analysis
of degree-2 and odd degree radical isogeny constructions. Our experiments
in comparing CSIDH with CSURF and radical isogenies are described in
Section 4. Finally, Section 5 presents the concluding remarks and lists a
number of open problems.
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2 Preliminaries

In this section we describe the basics of isogenies, CSIDH, CSURF and rad-
ical isogenies.

Given two elliptic curves E and E′ over a prime �eld Fp, an isogeny
is a morphism ϕ : E → E′ such that OE 7→ OE′ . A separable isogeny
ϕ has a degree deg(ϕ) equal to the size of its kernel, and for any isogeny
ϕ : E → E′ a there is a unique isogeny ϕ̂ : E′ → E called the dual isogeny,
with the property ϕ̂ ◦ ϕ = [deg(ϕ)] is the scalar point multiplication on E.
A separable isogeny is uniquely de�ned by its kernel and vice versa; a �nite
subgroup G ⊂ E de�nes a unique separable isogeny ϕG : E → E/G (up to
isomorphism).

Vélu's formulæ [17] provide the construction and evaluation of separable
isogenies with cyclic kernel G = 〈P 〉 for some N -torsion point P ∈ E. Both
the isogeny construction of ϕG and the evaluation of ϕG(R) for R ∈ E have
a running time of O(#G), which becomes infeasible for large subgroups G.
A new procedure presented by Bernstein, De Feo, Leroux, and Smith in
ANTS-2020 based on the Baby-step-giant-step algorithm decreases this cost
to Õ(

√
#G) �nite �eld operations [2]. This new approach is based on multi-

evaluations of a given polynomial and at its heart is still the traditional
Vélu's formulæ.

Isogenies from E to itself are endomorphisms, and the set of all endo-
morphisms of E forms a ring, which is usually denoted as End(E). The
scalar point multiplication map (x, y) 7→ [N ](x, y) and the Frobenius map
π : (x, y) 7→ (xp, xp) are examples of such endomorphisms over the �nite
�eld of characteristic p. In particular, the order O ∼→ Z[π] is a subring of
End(E). An elliptic curve E is ordinary if it has a (commutative) endomor-
phism ring isomorphic to a suborder O of the ring of integers OK for some
quadratic number �eld K. Now, a supersingular elliptic curve has a larger
endomorphism ring: End(E) is isomorphic to an order O in a quaternion
algebra, and thus non-commutative.

2.1 CSIDH and its surface

CSIDH works with a smaller commutative subring Endp(E) ⊂ End(E) of
isogenies of a supersingular elliptic curve de�ned over a prime �eld Fp. In
addition, Endp(E)

∼→ O ⊂ OK and both [N ] and π are de�ned over Fp,
which implies Z[π] ⊂ Endp(E). To be more precise, the CSIDH protocol is
based on the commutative action of the class group C̀ (O) on the set E`̀ p(O)
of supersingular elliptic curves E for some order O ⊂ OK . The group action
for an ideal class [a] ∈ C̀ (O) maps a curve E ∈ E`̀ p(O) to another curve
a?E also in E`̀ p(O) (see section 2.2). Furthermore, the CSIDH group action
is believed to be a hard homogeneous space [9] that allows a Merkle-Di�e-
Hellman-like key agreement protocol with commutative diagram
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E a ? E

b ? E ab ? E

a

a

b b

The original CSIDH protocol uses the set E`̀ p(O) with O ∼→ Z[π] and
p = 3 mod 4. Now, CSURF protocol was designed to bene�t from degree-2
isogenies by switching to the elliptic curves on the surface of the isogeny
graph by using E`̀ p(O) for order O ∼→ Z[1+π2 ] and p = 7 mod 8.

2.2 The group action of CSIDH and CSURF

The traditional way of evaluating the group action of an element a ∈ C̀ (O) is
by using traditional [17] or square-root [2] Vélu's formulæ. The group action
maps E → [a] ? E and can be described by the kernel E[a] of an isogeny ϕa

of �nite degree. Moreover, [a] ? E = E/E[a] and

E[a] =
⋂
ϕ∈a

Ker(ϕ).

In both CSIDH and CSURF, we apply speci�c elements li ∈ C̀ (O) such
that l±1i = (`i, π ∓ 1) and `i is the i-th odd prime dividing (p + 1). For li,
we have

E[l±1i ] = E[`i] ∩ E[π ∓ 1],

where P ∈ E[`i] means P is a point of order `i and P ∈ E[π∓ 1] implies
π(P ) = ±P , so P is either an Fp-rational point or a zero-trace point over
Fp2 . Thus, the group action E → [l±1i ] ? E is usually calculated by sampling

a point P ∈ E[l±1i ] and applying Vélu's formulæ with input point P . On
the other hand, CSURF takes advantage of changing the order O to also
perform degree-2 isogenies on the surface of the isogeny graph; these degree-
2 isogenies do not require the sampling of a 2-order point but can instead be
calculated by a speci�c formula based on radical computations.

2.3 The Tate normal form

Fix an N -order point P on E with N ≥ 4. Then there is a unique isomorphic
curve E(b, c) over Fp such that P is mapped to (0, 0) on E(b, c). The curve
E(b, c) is given by Equation 1, and is called the Tate normal form of E.

E(b, c)/Fp : y2 + (1− c)x− by = x3 − bx2 (1)
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The curve E(b, c) has a non-zero discriminant ∆(b, c) and in fact, it can
be shown that the reverse is also true: for b, c ∈ Fp such that ∆(b, c) 6= 0, the
curve E(b, c) is an elliptic curve over Fp with (0, 0) of order N ≥ 4. Thus the
pair (b, c) uniquely determines a pair (E,P ) with P having order N ≥ 4 on
some elliptic curve E over Fp. In short, there is a bijection between the set of
isomorphism classes of pairs (E,P ) and the set of Fp-points of A2−{∆ = 0}.

2.4 Radical isogenies

Let E0 be a supersingular Montgomery curve over Fp and P0 an N -order
point with N ≥ 4. Additionally, let E1 = E0/〈P0〉, and P1 an N -order
point on E1 such that ϕ̂(P1) = P0 where ϕ̂ is the dual of the degree-N
isogeny ϕ : E0 → E1. The pairs (E0, P0) and (E1, P1) uniquely determine
Tate normal parameters (b0, c0) and (b1, c1) with bi, ci ∈ Fp.

Castryck, Decru, and Vercauteren proved the theoretical existence of a
function ϕN that maps (b0, c0) to (b1, c1) [5]. Such a ϕN can be applied iter-
atively to compute a chain of degree-N isogenies without sampling points of
order N . As a consequence, writing a given supersingular Montgomery curve
E/Fp into Tate normal form allows a generalization of the idea of evaluating
E → [li]?E without sampling a point every time (we only require one initial
point of order `i to move to the right Tate normal form). Speci�cally, it
allows us to compute E → [li]

k ? E without having to sample k points of
order N .

E [li] ? E . . . [li]
k ? E

E(b0, c0) E(b1, c1) . . . E(bk, ck)

Vélu

ϕN

To Tate normal form To Montgomery

The map ϕN is an elementary function in terms of b, c and α = N
√
ρ for a

speci�c element ρ ∈ Fp(b, c): hence the name `radical' isogeny. Over Fp, an
N -th root is unique whenever N and p−1 are co-prime (as the map x 7→ xN

is then a bijection). Notice that this in particular holds for all odd primes `i
of a CSIDH prime p = h ·

∏
`i − 1 for some suitable cofactor h. Castryck,

Decru, and Vercauteren provided the explicit formulæ of ϕN for small values
of N ∈ {2, 3, 4, 5, 7, 9, 11, 13}, for larger degrees the formulæ become too
complex. They also suggest the use of radical isogenies of degree 4 and 9
instead of 2 and 3, respectively.

3 Constant-time radical isogenies

The experiments presented in [5] suggest a speed-up of about 19% when using
radical isogenies instead of Vélu's formulæ (for a prime of 512 bits). However,
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these experiments focused on a non-constant-time Magma implementation
for both the group action evaluation and the chain of radical isogenies. This
implies that the radical isogeny Magma implementation computes exactly
|ei| degree-`i radical isogenies, where ei ∈ J−mi . . miK is a secret exponent
of the private key (for instance when ei = 0 the group action is trivial).
Clearly, when measuring random instances of CSURF the average number
of degree-`i radical isogenies to be performed is mi

2 , whereas in constant-
time implementations the number of isogenies of degree `i is the �xed bound
mi. Furthermore, in the original implementation of [5] the �eld inversion
is performed in variable time depending on the input, as Magma prioritizes
speed above constant-time.

In this section we analyse the theoretical cost of radical isogenies in
constant-time. We describe three major performance impacts of moving
to constant-time and higher parameter sets: constant-time �eld inversions
cost what an exponentiation costs, exponentiations do not scale well to larger
primes, and dummy-free isogenies are more expensive. Part of this impact
can be remedied by two improvements: �rstly, by moving to a projective ver-
sion of radical isogenies to save an expensive inversion per iteration; secondly,
by decreasing the cost per exponentiation using e�cient addition chains. No-
tice, the use of addition chains and projective radical isogenies can also be
used in the original implementation of [5] to provide a small speed-up.

3.1 Performance of radical isogenies in constant time

In a constant-time implementation one can compute the inverse of an element
α ∈ Fp by Fermat's little theorem: α−1 = αp−2 2. Therefore, inversion
becomes as costly as exponentiation. This almost doubles the cost of CSURF
and radical isogenies in low degrees (2, 3, 4, 5, 7) and signi�cantly increases
the cost of radical isogenies of degree 9, 11 and 13, and the overhead of
switching to Tate normal form and back to Montgomery form, and then
performing eN radical isogenies becomes less e�ective.

The cost of a radical isogeny of degree N is dominated by the cost of one
N -th root and one inversion. On average an exponentiation costs 1.5 log(p)
multiplications (using the square and multiply method). For radical isoge-
nies, speci�c �xed exponentiations are required instead of generic ones, which
makes it possible to decrease their cost by using short addition chains. Each
N -th root and the inversion in Fp correspond to an exponentiation by a
speci�c µN (with µ−1 for the inversion). We therefore decided to look for a
close-to-optimal addition chain using [12], which reduces the cost to some-
thing in the range [1.05 log(p), 1.19 log(p)]. These close-to-optimal addition
chains save at least 20% and at most 30% of the cost of an exponentiation,

2There is also a new Constant-time inversion based on gcd computations by Bernstein
and Yang [3], but in this work we remove the inverse computaions required.
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bringing the total cost of an (a�ne) radical isogeny in constant-time to the
range of [2.1 log(p), 2.4 log(p)].

Dummy-free radical isogenies. Recall, radical isogenies require sam-
pling an initial N -order point P to switch to the right Tate normal form,
depending on the direction of the isogeny. So two kinds of curves in Tate
normal form arise: P belongs either to E[π − 1] or to E[π + 1]. Now, a
dummy-free chain of radical isogenies requires (at some steps of the group
action) to switch the direction of the isogenies, and therefore to switch to a
Tate normal form where P belongs to either E[π − 1] or E[π + 1]. As we
switch direction mi − |ei| times, this requires us to sample mi − |ei| points.
That is, a dummy-free implementation of a chain of radical isogenies will
require sampling at least (mi − |ei|) points, and this will not be a constant-
time procedure. We can make this procedure constant-time by sampling
mi points every time, but this costs too much and kills the idea of radical
isogenies. Clearly, these costs may be decreased by pushing points through
radical isogenies, which is still an open problem. In any case, we will only
focus on dummy-based implementations of radical isogenies.

3.2 Decreasing cost using projective coordinates

The original (a�ne) radical isogenies cost approximately two exponentiations
(the N -th root and the inversion) per iteration. In this subsection we show
that one exponentiation can be saved by performing the radical isogeny with
projective coordinates, at the cost of a few extra multiplications per iteration.
After a chain of radical isogenies, one inversion is required to go back to a�ne
coordinates.

One can do a straightforward translation to projective coordinates for
radical isogenies. Such an approach saves an inversion by writing the Tate
normal parameter b (respectively c) as (X : Z), but comes at the cost of
having to calculate both N

√
X and N

√
Z in the next iteration. We can save

one exponentiation using the following lemma.

Lemma 3.1. Let N be a natural number such that gcd(N, p − 1) = 1. Let
α ∈ Fp. Write α as (XZN−1 : ZN ) in projective coordinates with X,Z ∈ Fp.
Then N

√
α = (

N
√
XZN−1 : Z).

Proof. AsN is co-prime with p−1, the map x 7→ xN is a bijection. Therefore,
the N -th root N

√
ρ is unique for ρ ∈ Fp, so

N
√
ZN = Z.

Corollary 3.1. The representation (XZN−1 : ZN ) brings the cost of a pro-
jective radical isogeny of small degree `i down to below 1.25 log(p) as it saves
an exponentiation in the calculation of a radical isogeny in projective coordi-
nates. Moreover, compared with the original a�ne radical isogeny formulæ,
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which roughly cost two exponentiations, our projective formulæ cost half of
the a�ne ones.

The e�ect this has for small degrees can be seen in Table 1a. A similar
approach as Lemma 3.1 works for radical isogenies of degree N = 4. It is
worth mentioning that degree-3 radical isogenies do not perform �eld inver-
sions, and thus it is not required to write them in projective representation.
We give three examples of these projective radical isogenies.

Example 3.1 (Projective isogeny of degree 4.). The Tate normal form for
degree 4 is E : y2 + xy − by = x3 − bx2 for some b ∈ Fp. From [5], we get
ρ = −b and α = 4

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = −α(4α2 + 1)

(2α+ 1)4

In projective form, write α as (X : Z) with X,Z ∈ Fp. Then the projective
transformation becomes

(X : Z) 7→ (X ′Z ′4 : Z ′)

X ′ = (4X2 + Z2)XZ

Z ′ = 2X + Z

(2)

This isogeny is a bit more complex than it seems. First, notice that the
denominator of the a�ne map is a fourth power. One would assume that
it is therefore enough to map to (X ′ : Z ′) and continue by taking only the
fourth root of X ′ and re-use Z ′ =

4
√
Z ′4. However, as gcd(4, p− 1) = 2, the

root δ = 4
√
Z ′ is not unique. Following [5] we need to �nd the root δ that is

a quadratic residue in Fp. We can force δ to be a quadratic residue: notice
that (X ′ : Z ′4) is equivalent to (X ′Z ′4 : Z ′8), so that taking fourth roots
gives (

4
√
X ′Z ′4 :

4
√
Z ′8) = (

4
√
X ′Z ′4 : Z ′2), where we have forced the second

argument to be a square, and so we get the correct fourth root.
Therefore, if we map to (X ′Z ′4 : Z ′) then we can compute 4

√
−b′ as

(
4
√
X ′Z ′4 : Z ′2) using only one 4-th root. This allows us to repeat equation 2

using only one exponentiation, without the cost of the inversion required in
the a�ne version.

Example 3.2 (Projective isogeny of degree 5.). The Tate normal form for
degree 5 is E : y2 + (1− b)xy − by = x3 − bx2 for some b ∈ Fp. From [5] we
get ρ = b and α = 5

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = α · α
4 + 3α3 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1

In projective form, write α = X/Z with X,Z ∈ Fp and work with (X : Z).
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Then the projective transformation becomes

(X : Z) 7→ (X ′Z ′4 : Z ′)

X ′ = X(X4 + 3X3Z + 4X2Z2 + 2XZ3 + Z4)

Z ′ = Z(X4 − 2X3Z + 4X2Z2 − 3XZ3 + Z4)

(3)

Notice that the image is (X ′Z ′4 : Z ′) instead of (X ′ : Z ′) = (X ′Z ′4 : Z ′5),
following Lemma 3.1. This allows us in the next iteration to compute 5

√
b =

( 5
√
X : 5

√
Z) = (

5
√
X ′Z ′4 : Z ′) using only one 5-th root. This allows us

to repeat equation 3 using only one exponentiation, without the cost of the
inversion required in the a�ne version.

Example 3.3 (Projective isogeny of degree 7.). The Tate normal form for
degree 7 is E : y2 + (−b2 + b + 1)xy + (−b3 + b2)y = x3 + (−b3 + b2)x2 for
some b ∈ Fp, with ρ = b5 − b4 and α = 7

√
ρ. However, the a�ne radical

isogeny is already too large to display here, and the projective isogeny is even
worse. However, we can still apply Lemma 3.1. The projective isogeny maps
to (X ′Z ′6 : Z ′) and in a next iteration we can compute α = 7

√
ρ = 7
√
b5 − b4

as ( 7
√
X4Z2(X − Z) : Z).

Projective isogenies of degree N ≥ 9. As mentioned by Castryck, De-
cru, and Vercauteren in [5], the e�ectiveness of using radical isogenies is
most noticeable for small degrees such as 2,3,4,5,6, and 7. This is also the
case for their projective versions. For that reason, we do not focus on imple-
menting projective radical isogenies of degrees larger than 7. We limit our
implementation to also include the a�ne radical isogenies of degree nine.

3.3 Summary of cost in �eld operations

Addition chains and projective coordinates give a decrease in cost of constant-
time radical isogenies from about 3 log(p) to less than 1.25 log(p). Table 1
shows the exact cost of such a single constant-time radical isogeny and their
overhead to move between the curve models. These numbers allow us to
compute the theoretical cost of k radical isogenies for a speci�c degree and
compare this to the number of bits of security this provides. For example,
for a prime of 512 bits we have a per bit of security the theoretical optimal
bounds e2 = 6, e3 = 5, e4 = 8, e5 = 5, e7 = 5 and e9 = 3 (OAYT-style,
excluding the cost of point sampling). For low parameter sets, this is around
2000 �nite �eld operations per bit of security for the most e�cient isogeny,
but high parameter sets give something close to 15000 �nite �eld operations
per bit of security.

From Table 1, CSURF-512 (as it uses only degree 2 isogenies) should be
very competitive against the fastest CSIDH-512 instantiations. Nevertheless,
large CSURF instantiations are expected to be slower than any of CSIDH,
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Degree 512 1024 1792 2048 3072 4096

2 607 1114 1888 2144 3165 4192
3 606 1162 1934 2216 3243 4285
4 612 1119 1893 2149 3170 4197
5 619 1164 1967 2230 3264 4288
7 638 1190 1965 2245 3282 4320
9 1254 2354 3948 4465 6553 8607

(a) Radical isogeny cost.

Degree 512 1024 1792 2048 3072 4096

2 5469 10188 17262 19582 28851 38102
3 3677 6846 11542 13112 19284 25465
4 7910 14735 24959 28311 41704 55067
5 4292 8007 13504 15334 22547 29757
7 4287 8002 13499 15329 22542 29752
9 4290 8005 13502 15332 22545 29755

(b) Overhead cost

Table 1: Number of �nite �eld operations required for (a) a radical isogeny of
a certain degree and (b) their corresponding overhead when moving to curve
models. It considers only multiplication (M) and squaring (S) operations,
and assumes S = M.

because of the high cost of the exponentiation (at least in the current ap-
proach). E�ectively, this implies the optimal bound for degree 2 becomes
0. Due to the increased cost per radical isogeny in constant time, radical
isogenies of degree 3 to 9 seem to cost more than the traditional Velu's
formulæ.

4 Experimental results

All the experiments presented in this section are centred on constant-time
CSIDH and CSURF instantiations with 512-, 1024-, 1792-, 2048-, 3072-, and
4096-bits. To be more precise, we restrict our experiments to i) the most com-
petitive CSIDH-con�gurations according to [8], ii) the CSURF-con�guration
presented in [4] and iii) the radical isogenies-con�guration presented in [5].
As mentioned in section 3, we only focus on dummy-based variants such as
MCR-style [13] and OAYT-style [14]. The experiments regarding CSURF
using radical isogenies are labelled by CRADS, and we assume one �eld
squaring costs what a �eld multiplication costs. The primes used are of the
form p = h ·

∏74
i=1 `i − 1, with h = 2k or h = 2k · 3, and the key space size is

about 2256. All the CSIDH instantiations use the optimal exponent bounds
presented in [8].

Our CSURF and CRADS constant-time implementations were done by
doing �rst a group action as CSIDH does on the �oor, then performing the
2-isogenies on the surface and �nishing with the radical isogenies on the
�oor if applicable. So, the only curve arithmetic required is on Montgomery
curves of the form E/Fp : By2 = x3 +Ax2 + x. We noticed no performance
improvements in using degree 4 radical isogenies in comparison to degree 2
isogenies, due to the larger overhead of performing degree 4 radical isogenies
in constant time. We therefore use degree 2 isogenies on the surface.

Concluding, we compare three di�erent implementations which we name
CSIDH, CSURF and CRADS. The CSIDH implementation uses traditional
Vélu's formulæ to perform an `i-isogeny for `i ≤ 101 and switches to square-
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root Vélu for `i > 101. The CSURF implementation adds the functionality
of degree 2 isogenies on the surface. The CRADS implementation uses degree
2 isogenies and uses radical isogenies to compute the isogenies of degree 3, 5
and 7.

4.1 Benchmarking performance

We �rst compare the performance of these di�erent implementations using
the �traditional� bounds proposed initially in [4] and [5]. After that, we
compare performance using more suitable bounds for CSURF and CRADS
using an adapted algorithm from [8].

Traditional bounds. We �rst focus on CSURF and CRADS instantia-
tions using the exponent bounds given in [4] and [5]. We use the same prime
as [4]. Then, Table 2 compares constant-time CSIDH-512, CSURF-512 and
CRADS-512 under state-of-the-art con�gurations, and illustrates CSIDH-
512 beats both of CSURF-512 and CRADS-512. However, these bounds
have been computed using non-constant-time cost assumptions, which gives
an unfair advantage to the CSIDH strategy.

Suitable bounds. Next we use suitable exponent bounds that minimize
the cost of CSURF and CRADS by using a slight modi�cation of the greedy
algorithm presented in [8], which is included in the provided repository. In
summary, the greedy algorithm starts by increasing the exponent bound
m2 ≤ 256 of two (required for CSURF), and then applies the exponent
bounds search procedure for minimizing the group action cost on the �oor
(the CSIDH computation part). Once having the optimal bound for CSURF,
we proceed in a similar way for CRADS: this time the optimal exponent
bound m2 of CSURF is �xed and the algorithm increases the exponent
bounds m3,m5,m7 ∈ J1 . . m2K of radical isogenies until it is optimal.

Comparisons. The full results are given in Table 2. From Figure 1a we
can see that CSURF-512 and CSURF-1024 now have a smaller running time
than CSIDH-512 and CSIDH-1024 have. To be more precise, using OAYT-
style, CSURF-{512,1024} provides a speed-up over CSIDH-{512,1024}, re-
spectively by 1.64% and 0.34%. Nevertheless, larger instantiations of CSURF
becomes less competitive to CSIDH as the 2-isogenies scale worse than Vélu's
(square-root) formulæ. As hinted in section 3, CRADS instantiations do not
provide a speed-up (the radical computations scale with respect to log(p)).
On the other hand, CSIDH gives a better performance against CSURF and
CRADS when using MCR-style. Table 2 presents the results obtained in this
benchmark and highlights the best result per parameter set.
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Figure 1: Running time regarding the group action evaluations of CSIDH,
CSURF, and CRADS. The numbers are given in millions of multiplications,
and they correspond with the average of 1024 random instances.

Dummy-style 512-bits 1024-bits 1792-bits 2048-bits 3072-bits 4096-bits

CSURF (traditional bounds) 0.895 - - - - -
CRADS (traditional bounds 1.013 - - - - -

CSIDH-MCR 0.972 1.055 1.180 1.217 1.380 1.550
CSURF-MCR 0.979 1.067 1.204 1.244 1.418 1.602
CRADS-MCR 1.082 1.283 1.482 1.542 1.797 2.064

CSIDH-OAYT 0.791 0.874 1.000 1.040 1.202 1.372

CSURF-OAYT 0.778 0.871 1.011 1.053 1.229 1.418
CRADS-OAYT 0.825 0.968 1.186 1.247 1.498 1.767

Table 2: Results for di�erent prime sizes. The numbers are given in millions
of multiplications, and they correspond with the average of 1024 random
instances. It considers only multiplication (M) and squaring (S) operations,
and assumes S = M. Numbers in bold are optimal results for that prime
size.

5 Concluding remarks and future research

Our proposed constant-time chain of projective radical isogenies integrated
to CSURF-512 and CSURF-1024 provides a speed-up over CSIDH-512 and
CSIDH-1024 of about 1.64% and 0.34%, respectively. Nevertheless, larger
dummy-based instantiations of CSURF become less competitive to CSIDH
(the degree-2 isogenies scale worse than Vélu square-root formulæ), and thus
the use of constant-time radical isogenies has a signi�cant negative impact
on performance.

We mentioned that a dummy-free chain of radical isogenies requires sam-
pling many points. For that reason, we list a number of open questions that
could improve the performance of CSURF and radical isogenies in constant-
time:

1. It is currently not known if points can be pushed through radical iso-
genies, which would allow a random-free variant of radical isogenies.
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2. A fully projective version of CSURF and radical isogenies might save
some overhead required to switch between di�erent forms of curves.

3. In the end, radical isogenies are given for curves in Tate normal form.
Thus, having a fully Tate normal curve arithmetic could save the over-
head from moving between the required curve models.
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