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Abstract

At PQCrypto-2020, Castryck and Decru proposed CSURF (CSIDH
on the surface) as an improvement to the CSIDH protocol. Soon after
that, at Asiacrypt-2020, together with Vercauteren they introduced
radical isogenies as a further improvement. The main improvement in
these works is that both CSURF and radical isogenies require only one
torsion point to initiate a chain of isogenies, in comparison to Vélu
isogenies which require a torsion point per isogeny. Both works were
implemented using non-constant-time techniques, however, in a realis-
tic scenario, a constant-time implementation is necessary to mitigate
risks of timing attacks. The analysis of constant-time CSURF and
radical isogenies was left as an open problem by Castryck, Decru, and
Vercauteren.

In this work we analyze this problem. A straightforward constant-
time implementation of CSURF and radical isogenies encounters too
many issues to be cost e�ective, but we resolve some of these issues with
new optimization techniques. We introduce projective radical isogenies
to save costly inversions and propose an improved evaluation strategy
to save point samplings. These improvements make radical isogenies
almost twice as e�cient in constant-time, in terms of �nite �eld multi-
plications. Using these improvements, we then measure the algorithmic
performance in a benchmark of CSIDH, CSURF and CRADS (an im-
plementation using radical isogenies) for di�erent prime sizes. Our im-
plementation provides a more accurate comparison between CSIDH,
CSURF and CRADS than the original benchmarks, by using state-
of-the-art techniques for all three implementations. Our experiments
illustrate that the speed-up of constant-time CSURF-512 with (and
without) radical isogenies is reduced to about 2% in comparison to
the fastest state-of-the-art constant-time CSIDH-512 implementation.

*jesus.dominguez@tii.ae
�krijn.reijnders@ru.nl
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The performance is worse for larger primes, as radical isogenies scale
worse than Vélu isogenies.

1 Introduction

The �rst proposal of an isogeny-based Di�e-Hellman key exchange was done
by Couveignes [13] and centered on the action of an ideal class group on a
set of ordinary elliptic curves. Later Rostovtsev and Stolbunov [24, 23]
independently rediscovered it and recognized its potential as a possible post-
quantum candidate. In the last decade, isogeny-based key exchange devel-
oped further, notably with SIDH in [16, 14, 2]. In Asiacrypt 2018, Castryck,
Lange, Martindale, Panny, and Renes introduced CSIDH (a non-interactive
key exchange) as a reformulation of the Couveignes-Rostovtsev-Stolbunov
system using supersingular curves de�ned over a prime �eld [9]. With the
hope to improve the performance of CSIDH, Castryck and Decru proposed
CSURF, which exploits 2-isogenies [7] on the surface of the isogeny graph.
Later on, Castryck, Decru, and Vercauteren in Asiacrypt 2020 expanded on
the ideas in CSURF to construct isogenies with small odd degree based on
radical computations (N -th roots) [8]. Using radical isogenies, they claimed
a speed-up of about 19% over CSIDH, however both of the works in [7]
and [8] focus on non-constant-time instantiations. In particular, Castryck,
Decru, and Vercauteren left the analysis of a constant-time implementation
of CSURF and radical isogenies as an open problem. A constant-time al-
gorithm refers to an algorithm whose running time is independent of (or
uncorrelated with) the secret input. In particular this means the variabil-
ity in the running time depends on randomness and not on the leakage of
information on secret values.

Dealing with constant-time implementations of CSIDH (and CSURF) can
be tricky as there are multiple approaches, such as using dummy isogenies or
a dummy-free approach. The �rst constant-time CSIDH instantiation is the
procedure using dummy isogenies proposed by Meyer, Campos, and Reith
in [18], later improved by Onuki et al. in [20]. Subsequently, Cervantes-
Vázquez et al. proposed a dummy-free variant of CSIDH [10], and more
recently, Bernstein et al. presented CTIDH [3]. This covers the literature
that we are aware of.

The general idea to make CSIDH implementations run in constant-time is
to perform a �xed number m of isogenies of a certain degree, independent of
the secret key ei. For example, take the CSIDH-512 prime p = 4 ·

∏74
i=1 `i−1,

where `1 up to `73 are the smallest 73 odd prime numbers and `74 = 587. Let
E/Fp : y2 = x3 +Ax2 +x be a supersingular Montgomery curve with (p+ 1)
rational points. Assuming we require exactly m = 5 isogenies per `i, then
our key space corresponds with the integer exponent1 vectors (e1, . . . , e74) ∈

1The word exponent comes from the associated group action, see Section 2.2
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J−m . . mK74. A dummy-based variant of constant-time CSIDH performs
|ei| secret `i-isogenies and then proceeds by performing (m − |ei|) dummy-
isogenies. The `i-isogeny kernel belongs to either E[π−1] or E[π+1], which
is determined by the sign of ei. A dummy-free variant (which prevents
e.g. fault injection attacks) does not perform the (m− |ei|) dummy-isogeny
constructions, but instead requires ei to have the same parity as m. It then
alternates between using kernels in E[π− 1] and E[π+ 1] in such a way that
one e�ectively applies ei isogenies while performing m isogenies.

The experiments presented in [8] suggest a speed-up of about 19% when
using radical isogenies instead of Vélu's formulas (for a prime of 512 bits). As
mentioned above, these experiments focused on a non-constant-time Magma
implementation for both the group-action evaluation and the chain of radi-
cal isogenies. More speci�cally, the Magma-code implementation of [8] per-
forms �eld inversions in variable time depending on the input. Further-
more, the implementation computes exactly |ei| `i-radical isogenies, where
ei ∈ J−mi . . miK is a secret exponent of the private key (for instance when
ei = 0 the group action is trivial). Clearly, when measuring random non-
constant time instances of CSURF or radical isogenies the average number
of `i-radical isogenies to be performed is mi

2 , whereas in constant-time im-
plementations the number of isogenies of degree `i is the �xed bound mi.

A straightforward constant-time implementation of CSURF and radi-
cal isogenies would replace all non-constant-time techniques with constant-
time techniques. This would, however, drastically reduce the performance
of CSURF and radical isogenies, as inversions become costly and we need
to perform more (dummy) isogenies per degree. Such an implementation
would be outperformed by any state-of-the-art CSIDH implementation in
constant-time.

Contributions. In this paper, we are interested in constant-time imple-
mentations of CSURF and radical isogenies. We present two improvements
to radical isogenies which reduce their algorithmic cost. Then, we analyze
the cost and e�ciency of constant-time CSURF and radical isogenies, and
benchmark their performance with regards to �nite �eld multiplications.
More concretely, our contributions are

1. fully projective radical isogenies, a non-trivial reformulation of radical
isogenies in projective coordinates, and of the required isomorphisms
between curve models. This allows us to perform radical isogenies
without leaving the projective coordinates used in CSIDH. This saves
an inversion per isogeny and additional inversions in the isomorphisms
between curve models, which in total reduces the cost of radical isoge-
nies in constant-time by almost 50%.

2. an improved evaluation strategy for radical isogenies, which allows us
to `re-use' torsion points that are used in the CSIDH group action
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evaluation to initiate a `chain' of radical isogenies. This saves the
cost of having to sample a torsion point to initiate a `chain' of radical
isogenies.

3. a cost analysis of the e�ciency of radical isogenies in constant-time,
which describes the overall algorithmic cost of an implementation with
radical isogenies, assuming the aforementioned improvements. We
show that, although these improvements greatly reduce the total cost
in terms of �nite �eld operations, radical isogenies of degree 5, 7, 11 and
13 are too costly in comparison to traditional Vélu isogenies. We con-
clude that only radical isogenies of degree 4 and 9 are an improvement
to `traditional' CSIDH. Furthermore, we show that radical isogenies
scale worse than Vélu isogenies when the size of the base �eld grows,
reducing the speed-up obtained by implementing CSURF and radical
isogenies.

4. the �rst constant-time implementation of CSURF and radical isogenies,
optimized with concern to the exponentiations used in radical isogenies,
and optimal bounds and approximately optimal strategies as in [15,
14, 12], which allow for a more precise comparison in performance
between CSIDH, CSURF and CRADS than [7] and [8]. Our Python-
code implementation allows isogeny evaluation strategies using both
traditional Vélu and

√
élu formulas, as well as radical isogenies and

2-isogenies (on the surface), and can thus be used to compare CSURF
and radical isogenies (CRADS) against a state-of-the-art constant-time
implementation of CSIDH.

5. a performance benchmark of CSURF and radical isogenies in com-
parison to �traditional� CSIDH, in total �nite �eld operations. We
perform this comparison for six di�erent parameter sets of 512, 1024,
1792, 2048, 3074, and 4096 bits. Our benchmark is more accurate
than the original benchmarks from [7] and [8] and shows that the 5%
and 19% speed-up (respectively) diminishes to roughly 2% in a pre-
cise constant-time comparison. These results gives a detailed view of
the performance of radical isogenies in terms of �nite �eld operations,
and their performance when increasing the size of the base �eld. We
show that in low parameter sets, with the additional cost of moving
to constant-time, CSURF-512 and CRADS-512 perform a bit better
than CSIDH-512 implementations, with a 2.53% and 2.15% speed-up
respectively. However, this speed-up reduces for larger primes: For
primes of 1792 bits and larger, CSIDH outperforms both CSURF and
CRADS due to the better scaling of Vélu isogenies in comparison to
radical isogenies.

The (Python) implementation used in this paper is freely available at
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https://github.com/Krijn-math/Constant-time-CSURF-CRADS.

The results from the benchmark answer the open question from Castryck,
Decru, and Vercauteren in [8]: in constant-time, the CSIDH protocol gains
only a small speed-up by using CSURF or radical isogenies, and only for
small primes.

Our results illustrate that constant-time CSURF and radical isogenies
perform worse than large CSIDH instantiations (i.e. log(p) ≥ 1792), at
least at the level of �nite �eld operations. We explicitly do not focus on
performance in clock cycles; a measurement in clock cycles (on our python-
code implementation) could give the impression that the underlying �eld
arithmetic is optimized, instead of the algorithmic performance.

Outline. In Section 2, we recap the theoretical preliminaries on isogenies,
CSIDH, CSURF, and radical isogenies. In Section 3, we introduce two im-
provements: fully projective radical isogenies, and an improved evaluation
strategy for radical isogenies. In Section 4, we analyze the e�ciency of
constant-time radical isogenies assuming these improvements. In Section 5,
we compare constant-time CSIDH, CSURF and CRADS in terms of �nite
�eld operations. Finally, in Section 6 we present our conclusions concerning
the e�ciency of radical isogenies in comparison to CSIDH.

2 Preliminaries

In this section we describe the basics of isogenies, CSIDH, CSURF and rad-
ical isogenies.

Given two elliptic curves E and E′ over a prime �eld Fp, an isogeny is a
morphism ϕ : E → E′ such that OE 7→ OE′ . A separable isogeny ϕ has a
degree deg(ϕ) equal to the size of its kernel, and for any isogeny ϕ : E → E′

there is a unique isogeny ϕ̂ : E′ → E called the dual isogeny, with the
property that ϕ̂ ◦ ϕ = [deg(ϕ)] is the scalar point multiplication on E. A
separable isogeny is uniquely de�ned by its kernel and vice versa; a �nite
subgroup G ⊂ E(Fp) de�nes a unique separable isogeny ϕG : E → E/G (up
to isomorphism).

Vélu's formulas [25] provide the construction and evaluation of separable
isogenies with cyclic kernel G = 〈P 〉 for some P ∈ E(Fp). Both the isogeny
construction of ϕG and the evaluation of ϕG(R) for a point R ∈ E(Fp) have
a running time of O(#G), which becomes infeasible for large subgroups G.
A new procedure presented by Bernstein, De Feo, Leroux, and Smith in
ANTS-2020 based on the baby-step giant-step algorithm decreases this cost
to Õ(

√
#G) �nite �eld operations [4]. We write this procedure as

√
élu. This

new approach is based on multi-evaluations of a given polynomial, although
at its core it is based on traditional Vélu's formulas.
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Isogenies from E to itself are endomorphisms, and the set of all endo-
morphisms of E forms a ring, which is usually denoted as End(E). The
scalar point multiplication map (x, y) 7→ [N ](x, y) and the Frobenius map
π : (x, y) 7→ (xp, xp) are examples of such endomorphisms over the �nite �eld
of characteristic p. In particular, the order O ∼= Z[π] is a subring of End(E).
An elliptic curve E is ordinary if it has a (commutative) endomorphism ring
isomorphic to a suborder O of the ring of integers OK for some quadratic
number �eld K. A supersingular elliptic curve has a larger endomorphism
ring: End(E) is isomorphic to an order O in a quaternion algebra, and thus
non-commutative.

2.1 CSIDH and its surface

CSIDH works with the smaller (commutative) subring Endp(E) of End(E),
which are rational endomorphisms of a supersingular elliptic curve E. This
subring Endp(E) is isomorphic to an order O ⊂ OK . As both [N ] and π are
de�ned over Fp, we get Z[π] ⊂ Endp(E). To be more precise, the CSIDH
protocol is based on the commutative action of the class group C̀ (O) on the
set E`̀ p(O) of supersingular elliptic curves E such that Endp(E) is isomorphic
to the speci�c order O ⊂ OK . The group action for an ideal class [a] ∈ C̀ (O)
maps a curve E ∈ E`̀ p(O) to another curve [a]?E ∈ E`̀ p(O) (see Section 2.2).
Furthermore, the CSIDH group action is believed to be a hard homogeneous
space [13] that allows a Merkle-Di�e-Hellman-like key agreement protocol
with commutative diagram

E [a] ? E

[b] ? E [ab] ? E

a

a

b b

The original CSIDH protocol uses the set E`̀ p(O) with O ∼= Z[π] and p =
3 mod 4 (named the �oor). To also bene�t from 2-isogenies, the CSURF
protocol switches to elliptic curves on the surface of the isogeny graph, that
is, E`̀ p(O) with O ∼= Z[1+π2 ]. Making 2-isogenies useful requires p = 7
mod 8.

2.2 The group action of CSIDH and CSURF

The traditional way of evaluating the group action of an element [a] ∈ C̀ (O)

is by using `traditional' Vélu's [25] or
√
élu [4] formulas. The group action

maps E → [a] ? E and can be described by the kernel E[a] of an isogeny ϕa

of �nite degree. Speci�cally, [a] ? E = E/E[a] where
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E[a] =
⋂
ϕ∈a

Ker(ϕ).

In both CSIDH and CSURF, we apply speci�c elements [li] ∈ C̀ (O) such
that l±1i = (`i, π ∓ 1) and `i is the i-th odd prime dividing (p + 1). For li,
we have

E[l±1i ] = E[`i] ∩ E[π ∓ 1],

where P ∈ E[`i] means P is a point of order `i and P ∈ E[π∓ 1] implies
π(P ) = ±P , so P is either an Fp-rational point or a zero-trace point over
Fp2 . Thus, the group action E → [l±1i ]?E is usually calculated by sampling a

point P ∈ E[l±1i ] and applying Vélu's formulas with input point P . A secret
key for CSIDH is then a vector (ei), which is evaluated as E →

∏
i[li]

ei ? E.
CSURF changes the order O used to Z[1+π2 ] to also perform 2-isogenies on
the surface of the isogeny graph; these 2-isogenies do not require the sampling
of a 2-order point but can instead be calculated by a speci�c formula based
on radical computations.

Key space. Originally, the secret key e = (ei) was sampled from J−m . . mKn

for some bound m ∈ N. This was improved in [15, 18, 12] by varying the
bound m per degree `i (a weighted L∞-norm ball). Further developments
with regards to improving the key space are presented in [19], using an
(L1 + L∞)-norm ball, and in CTIDH ([3]). These methods can give signi�-
cant speed-ups. In their cores, they rely on (variations of) Vélu isogenies to
evaluate the group action. In [7, 8], the authors compare the performance
of radical isogenies to CSIDH by using an unweighted L∞-norm ball for
CSIDH-512 versus a weighted L∞-norm ball for the implementation using
radical isogenies. In this paper, to make a fair comparison to the previous
work, we continue in the line of [15, 18, 12] by using weighted L∞-norm balls
for the implementations of CSIDH, CSURF and CRADS. It remains inter-
esting to analyse the impact of radical isogenies in key spaces that are not
based on weighted L∞-norm balls. The fact that radical isogenies can be
made to have exactly the same cost per degree without dummy operations
(with only slightly extra cost) make them interesting to analyse with respect
to CTIDH.

2.3 The Tate normal form

CSURF introduced the idea to evaluate a 2-isogeny by radical computations.
[8] extends this idea to higher degree isogenies, using a di�erent curve model
than the Montgomery curve. To get to that curve model, �x an N -order
point P on E with N ≥ 4. Then, there is a unique isomorphic curve E(b, c)
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over Fp such that P is mapped to (0, 0) on E(b, c). The curve E(b, c) is given
by Equation (1), and is called the Tate normal form of (E,P ):

E(b, c)/Fp : y2 + (1− c)x− by = x3 − bx2, b, c ∈ Fp. (1)

The curve E(b, c) has a non-zero discriminant ∆(b, c) and in fact, it can
be shown that the reverse is also true: for b, c ∈ Fp such that ∆(b, c) 6= 0,
the curve E(b, c) is an elliptic curve over Fp with (0, 0) of order N ≥ 4. Thus
the pair (b, c) uniquely determines a pair (E,P ) with P having order N ≥ 4
on some isomorphic curve E over Fp. In short, there is a bijection between
the set of isomorphism classes of pairs (E,P ) and the set of Fp-points of
A2 − {∆ = 0}. The connection with modular curves is explored in more
detail in [21].

2.4 Radical isogenies

Let E0 be a supersingular Montgomery curve over Fp and P0 an N -order
point with N ≥ 4. Additionally, let E1 = E0/〈P0〉, and P1 an N -order
point on E1 such that ϕ̂(P1) = P0 where ϕ̂ is the dual of the N -isogeny
ϕ : E0 → E1. The pairs (E0, P0) and (E1, P1) uniquely determine Tate
normal parameters (b0, c0) and (b1, c1) with bi, ci ∈ Fp.

Castryck, Decru, and Vercauteren proved the existence of a function ϕN
that maps (b0, c0) to (b1, c1) in such a way that it can be applied iteratively.
This computes a chain of N -isogenies without the need to sample points of
order N per iteration. As a consequence, by mapping a given supersingular
Montgomery curve E/Fp and some N -torsion point P to its Tate normal
form, we can evaluate E → [li] ? E without sampling a points (except for
sampling P ). Speci�cally, it allows us to compute E → [li]

k ? E without
having to sample k points of order N .

E [li] ? E . . . [li]
k ? E

E(b0, c0) E(b1, c1) . . . E(bk, ck)

Vélu

ϕN

To Tate normal form To Montgomery

Notice that the top row and the bottom row of the diagram are isomor-
phic. The map ϕN is an elementary function in terms of b, c and α = N

√
ρ

for a speci�c element ρ ∈ Fp(b, c): hence the name `radical' isogeny. Over
Fp, an N -th root is unique whenever N and p− 1 are co-prime (as the map
x 7→ xN is then a bijection). Notice that this in particular holds for all
odd primes `i of a CSIDH prime p = h ·

∏
`i − 1 for a suitable cofactor h.

Castryck, Decru, and Vercauteren provided the explicit formulas of ϕN for
small values of N ∈ {2, 3, 4, 5, 7, 9, 11, 13}. For larger degrees the formulas
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become too complex. They also suggest the use of radical isogenies of degree
4 and 9 instead of 2 and 3, respectively.

Later work by Onuki and Moriya [21] provides similar radical isogenies
on Montgomery curves instead of Tate normal curves. Although their results
are of theoretical interest, they only provide such radical isogenies for degree
3 and 4. For degree 3, the use of degree 9 radical isogenies on Tate normal
curves is more e�cient, while for degree 4 the di�erence between their for-
mulas and those presented in [8] are negligible. We, therefore, focus only on
radical isogenies on Tate normal curves for this work.

3 Improvements to radical isogenies

In this section we introduce two improvements to radical isogenies. First,
in Section 3.1 we present fully projective radical isogenies, which allow to
us bypass all inversions required for radical isogenies. We perform (a) the
radical isogenies on Tate normal curves in projective coordinates, and (b)
the switch between the Montgomery curve and the Tate normal curve in
projective coordinates. (a) requires non-trivial work which we explain in
Section 3.1, whereas (b) is only tediously working out the correct formulas.
The savings are worth it: (a) saves an inversion per radical isogeny and
(b) saves numerous inversions in overhead costs. All in all, it is possible
to remain in projective coordinates throughout the whole implementation,
which saves about 50% in terms of �nite �eld operations in comparison to
a�ne radical isogenies in constant time.

Second, in Section 3.2 we introduce an evaluation strategy that is an
improvement over the original evaluation strategy for radical isogenies, by
mixing the `traditional' CSIDH group action evaluation with radical iso-
genies. This saves us having to sample a torsion point to initiate radical
isogenies. Concretely, in `traditional' CSIDH isogeny evaluation, one pushes
a torsion point T through a series of `-isogenies with Vélu's formulas. This
implies that at the end, such a point T can still have suitable torsion to
initiate a chain of radical isogenies. Re-using this point saves us having to
speci�cally sample a torsion point to initiate radical isogenies.

Both techniques also improve performance in a non-constant implemen-
tation. However, in this section we assume a constant-time approach to
compare cost, as this is a more realistic approach for a cryptographical im-
plementation.

3.1 Fully projective radical isogenies

The cost of an original (a�ne) radical isogenies of degree N in constant-time
is dominated by the cost of the N -th root and one inversion per iteration. In
this subsection we introduce projective radical isogenies so that we do not
require this inversion. In a constant-time implementation, projective radical

9



isogenies save approximately 50% of �nite �eld operations in comparison to
a�ne radical isogenies. A straightforward translation to projective coordi-
nates for radical isogenies would save an inversion by writing the Tate normal
parameter b (when necessary c) as (X : Z). However, this comes at the cost
of having to calculate both N

√
X and N

√
Z in the next iteration. Using the

following lemma, we can save one of these exponentiations.

Lemma 3.1. Let N be a natural number such that gcd(N, p − 1) = 1. Let
α ∈ Fp. Write α as (X : Z) in projective coordinates with X,Z ∈ Fp. Then
N
√
α = (

N
√
XZN−1 : Z).

Proof. As α = (X : Z) = (XZN−1 : ZN ), we only have to show that the
N -th root is unique. But N is co-prime with p − 1, so the map x 7→ xN is
a bijection. Therefore, the N -th root N

√
ρ is unique for ρ ∈ Fp, so

N
√
ZN =

Z.

Crucially for radical isogenies, we want to compute N -th roots where
N = `i for some i, working over the base �eld Fp with p = h ·

∏
i `i − 1,

and so for such an N we get gcd(N, p− 1) = 1. This leads to the following
corollary.

Corollary 3.1. The representation (XZN−1 : ZN ) saves an exponentia-
tion in the calculation of a radical isogeny of degree N = `i in projective
coordinates.

This brings the cost of a projective radical isogeny of small degree `i
down to below 1.25 log(p). Compared with a�ne radical isogeny formulas
in constant-time, which cost roughly two exponentiations, such projective
formulas cost approximately half of the a�ne ones in terms of �nite �eld
operations. The e�ect this has for degrees 2, 3, 4, 5, 7 and 9 can be seen
in Table 1.

A similar approach as Lemma 3.1 works for radical isogenies of degree
N = 4. It is worth mentioning that 3-radical isogenies do not perform �eld
inversions, and thus it is not required to write them in projective represen-
tation. We give three examples of these projective radical isogenies.

Example 3.1 (Projective isogeny of degree 4.). The Tate normal form for
degree 4 is E : y2 + xy − by = x3 − bx2 for some b ∈ Fp. From [8], we get
ρ = −b and α = 4

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = −α(4α2 + 1)

(2α+ 1)4
.

In projective form, write α as (X : Z) with X,Z ∈ Fp. Then the projective
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transformation becomes

(X : Z) 7→ (X ′Z ′4 : Z ′) with

X ′ = (4X2 + Z2)XZ, and

Z ′ = 2X + Z.

(2)

This isogeny is a bit more complex than it seems. First, notice that the
denominator of the a�ne map is a fourth power. One would assume that
it is therefore enough to map to (X ′ : Z ′) and continue by taking only the
fourth root of X ′ and re-use Z ′ =

4
√
Z ′4. However, as gcd(4, p− 1) = 2, the

root δ = 4
√
Z ′ is not unique. Following [8] we need to �nd the root δ that is

a quadratic residue in Fp. We can force δ to be a quadratic residue: notice
that (X ′ : Z ′4) is equivalent to (X ′Z ′4 : Z ′8), so that taking fourth roots
gives (

4
√
X ′Z ′4 :

4
√
Z ′8) = (

4
√
X ′Z ′4 : Z ′2), where we have forced the second

argument to be a square, and so we get the correct fourth root.
Therefore, if we map to (X ′Z ′4 : Z ′) then we can compute 4

√
−b′ as

(
4
√
X ′Z ′4 : Z ′2) using only one 4-th root. This allows us to repeat Equa-

tion (2) using only one exponentiation, without the cost of the inversion
required in the a�ne version.

Example 3.2 (Projective isogeny of degree 5.). The Tate normal form for
degree 5 is E : y2 + (1− b)xy − by = x3 − bx2 for some b ∈ Fp. From [8] we
get ρ = b and α = 5

√
ρ, and the a�ne radical isogeny formula is

α 7→ b′ = α · α
4 + 3α3 + 4α2 + 2α+ 1

α4 − 2α3 + 4α2 − 3α+ 1
.

In projective form, write α = X/Z with X,Z ∈ Fp and work with (X : Z).
Then the projective transformation becomes

(X : Z) 7→ (X ′Z ′4 : Z ′) with

X ′ = X(X4 + 3X3Z + 4X2Z2 + 2XZ3 + Z4), and

Z ′ = Z(X4 − 2X3Z + 4X2Z2 − 3XZ3 + Z4).

(3)

Notice that the image is (X ′Z ′4 : Z ′) instead of (X ′ : Z ′) = (X ′Z ′4 : Z ′5),
following Lemma 3.1. This allows us in the next iteration to compute 5

√
b =

( 5
√
X : 5

√
Z) = (

5
√
X ′Z ′4 : Z ′) using only one 5-th root. This allows us to

repeat Equation (3) using only one exponentiation, without the cost of the
inversion required in the a�ne version.

Example 3.3 (Projective isogeny of degree 7.). The Tate normal form for
degree 7 is E : y2 + (−b2 + b + 1)xy + (−b3 + b2)y = x3 + (−b3 + b2)x2 for
some b ∈ Fp, with ρ = b5 − b4 and α = 7

√
ρ. However, the a�ne radical

isogeny is already too large to display here, and the projective isogeny is even
worse. However, we can still apply Lemma 3.1. The projective isogeny maps
to (X ′Z ′6 : Z ′) and in a next iteration we can compute α = 7

√
ρ = 7
√
b5 − b4

as ( 7
√
X4Z2(X − Z) : Z).
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For larger degrees, it becomes increasingly more tedious to work out
the projective isogeny maps. In the code repository, we provide formulas for
N ∈ {2, 3, 4, 5, 7, 9}. In Table 1 we compare the cost of a�ne radical isogenies
to projective radical isogenies. In Table 2 we compare the cost in switching
between the di�erent curve models for a�ne and projective coordinates.

A�ne Projective Ratio

Degree ([8]) (This work.) projective/a�ne

2-isogeny E + 4M + 6A + I E + 3M + 5S + 10A 50.4%
3-isogeny E + 6M + 3A E + 2M + 10A 99.3%
4-isogeny E + 4M + 3A + I E + 6M + 4S + 3A 50.5%
5-isogeny E + 7M + 6A + I E + 8M + 6S + 18A 50.7%
7-isogeny E + 24M + 20A + I E + 14M + 4S + 64A 50.5%
9-isogeny E + 69M + 58A + I E + 61M + 10S + 202A 52.1%

Table 1: Comparison between a�ne radical isogenies from [8] and the projective radical isogenies
in this work. The letters E, M, S, A and I denote exponentiation, multiplication, squaring,
addition and inversion respectively. The last column expresses the ratio projective/a�ne in terms
of �nite �eld multiplications over Fp for a prime of 512 bits, using close-to-optimal addition chains
for exponentiation and inversion, assuming S = M and ignoring A.

A�ne Projective Ratio

Function ([8]) (This work.) projective/a�ne

Mont+ to Mont- E + M + S + 2A + I E + 2M + 2S + 4A 50.1%
Mont- to Mont+ E + M + S + 2A + I E + 2S + 4A 50.0%
Mont- to Tate4 7M + S + A + I 5M + 8S + 7A 2.1%
Tate4 to Mont- 2E + 3M + S + 7A + 2I 2E + 6M + S + 11A 50.1%
Full overhead CSURF 7E + 17M + 6S + 19A + 5I 7E + 18M + 16S + 35A 58.5%

Mont+ to TateN E + 9M + S + 11A + I E + 13M + 7S + 13A 51.1%
TateN to Mont+ 3E + 20M + 7S + 34A + I 3E + 33M + 11S + 65A 75.9%
Full overhead CRADS 4E + 34M + 14S + 54A + 4I 4E + 54M + 22S + 83A 50.9%

Table 2: Comparison between the cost of di�erent functions to switch curve models, required
to perform radical isogenies. A�ne results from [8] and projective results from this work. The
letters E, M, S, A and I denote exponentiation, multiplication, squaring, addition and inversion
respectively. The last column expresses the ratio projective/a�ne in terms of �nite �eld multipli-
cations over Fp for a prime of 512 bits, using close-to-optimal addition chains for exponentiation
and inversion, assuming S = M and ignoring A.

In summary, fully projective radical isogenies are almost twice as fast
as the original a�ne radical isogenies for constant-time implementations.
Nevertheless, as we will see in the analysis of Section 4.1, the radical isogenies
of degree 5, 7, 11 and 13 still perform worse than `traditional' Vélu isogenies
in realistic scenarios.

3.2 Improved evaluation strategies for radical isogenies

In this subsection we describe an improved evaluation strategy that saves
the cost of having to sample a torsion point to initiate a `chain' of radical
isogenies. As described in Section 2.4, to start o� a chain of radical isogenies
of degree ` on EA, it is necessary to have an `-torsion point P on EA so
that we can map (EA, P ) to the (isomorphic) Tate normal curve E(b,c) with
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P 7→ (0, 0). We write V (for Vélu) for the set of primes `i which we want
to evaluate using traditional CSIDH isogeny evaluations such as Vélu and
R ⊂ {2, 3, 5, 7, 11, 13} for the set of primes for which we use radical isogenies.

In [8], the implementation �rst performs radical isogenies for all ` ∈ R
by sampling an appropriate `-torsion point on the Montgomery curve, swap
to the Tate normal form, perform the radical isogenies, and move back to
the Montgomery representation. Afterwards, the rest of the `-isogenies for
` ∈ V are performed using `traditional' CSIDH methods.

Algorithm 1 High-level evaluation strategy for radical isogenies

Inputs: A ∈ Fp, a list of integers (e1, . . . , en), and two sets of primes V
(Vélu isogenies) and R (radical isogenies), and r =

∏
i∈R `i.

Output: B ∈ Fp such that
∏

[li]
ei ? EA = EB

1: while ei 6= 0 for i ∈ V do

2: Sample x ∈ Fp.
3: Set s← 1 if x3 +Ax2 + x is a square in Fp, else s← −1.
4: Let S = {i ∈ V | ei 6= 0, sign(ei) = s}. Restart if S is empty.
5: Let k ← r ·

∏
i∈S `i and compute T ← [(p+ 1)/k]P .

6: for i ∈ S do

7: Compute Q← [k/`i]T . If Q =∞, skip this i.
8: Compute φ : EA → EB with kernel 〈Q〉 using Vélu.
9: Set A← B, T ← φ(T ), and ei ← ei − s.

10: end for

11: if R is not empty then
12: Select one j from R such that Q = [r/`j ]T is di�erent from ∞
13: Compute EB = [lj ]

ej ? EA using radical `j-isogenies.
14: Set A← B, and R← R− {j} and start over.
15: end if

16: end while

17: for i ∈ R do

18: Sample an `i-torsion point Q
19: Compute EB = [li]

ei ? EA using radical `i-isogenies.
20: Set A← B, and R← R− {i}.
21: end for

22: return A.

We improve upon this strategy by mixing the `traditional' CSIDHmethod
with radical isogenies. Concretely, in `traditional' CSIDH isogeny evaluation,
one pushes a torsion point T through a series of `-isogenies with Vélu's
formulas, for ` ∈ V . This implies that at the end, such a point T can still
have `-torsion with ` ∈ R. In such a case, we do not need to sample a
point, but can reuse T to instantiate the chain of radical isogenies of degree
`. Notice that we can only use one torsion point T to set of one chain of
radical isogenies, even if T might have more torsion, as we do not push T
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through the radical isogenies. With high probability, T will have `-torsion
at least once for every ` ∈ R during `traditional' CSIDH evaluation. This
approach does not leak any information with regards to the exponent ei of `i,
when using dummy isogenies. This strategy is summarized in high-level in
Algorithm 1. The algorithmic description ignores other improvements (e.g.
optimal strategies) for simplicity's sake. Notice that the last for loop of the
algorithm will almost never happen due to the high probability of T having
the correct torsion at least once in the main while loop.

4 Cost analysis of constant-time radical isogenies

In this section, we analyze the number of �nite �eld operations required
in a constant-time implementation of CSURF or radical isogenies. In a
simpli�ed model, the cost of performing n radical isogenies of degree ` using
Tate normal curves can be divided into 4 steps.

1. Sample a point P on EA of order `;

2. Map the pair (EA, P ) to the (isomorphic) Tate normal curve E0 with
P 7→ (0, 0);

3. Perform the radical isogeny formula n times: E0 → E1 → . . .→ En;

4. Map En back to the correct Montgomery curve EA′ = [l]n ? EA.

In each step, the cost is dominated by the number of exponentiations
(E) and inversion (I). Using Tables 2 and 3, in a straightforward constant-
time implementation, step 2 will cost 1 E + 1 I, step 3 costs approximately
1 E + 1 I per isogeny, and step 4 will cost 3 E + 1 I.

Inversions. In contrast to ordinary CSIDH, radical isogenies would require
these inversions to be constant-time, as the value that is inverted can reveal
valuable information about the isogeny walk related to the secret key. Two
methods to compute the inverse of an element α ∈ Fp in constant-time are
1) by Fermat's little theorem2: α−1 = αp−2, or 2) by masking the value that
we want to invert with a random value r ∈ Fp, computing (rα)−1 and mul-
tiplying by r again. Method 1 makes inversion as costly as exponentiation,
while method 2 requires a source of randomness, which is an impediment
from a crypto-engineering point of view. Using Fermat's little theorem al-
most doubles the cost of CSURF and of a radical isogeny in low degrees (2,
3, 4, 5, 7) and signi�cantly increases the cost of a radical isogeny of degree 9,
11 or 13. Furthermore, such constant-time inversions increase the overhead
of switching to Tate normal form and back to Montgomery form, which in

2There is also a new constant-time inversion based on gcd-computations by Bernstein
and Yang [5].
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total makes performing n radical isogenies less e�ective. Both methods of
inversion are unfavorable from a crypto-engineering view, and thus we im-
plement the fully projective radical isogenies from Section 3.1 to by-pass all
inversions completely for radical isogenies.

Approximate cost of radical isogenies. We can now approximate the
cost of evaluating radical isogenies in constant-time, using the improvements
introduced in Section 3. The evaluation strategy from Section 3.2 shows that
we can avoid (most of) the cost of step 1. Projective coordinates avoid the
inversion required in step 2 to move from the Montgomery curve to the
correct Tate normal curve, and the inversion required in step 4 to move
from the Tate normal curve back to the Montgomery curve. In step 3,
projective radical isogenies save an inversion per isogeny, and so step 3 costs
approximately n E. In total, performing n radical `-isogenies therefore costs
approximately (n+ 4)E.

At �rst sight, this approximated cost does not seem to depend on `. How-
ever, there is some additional cost besides the exponentiation per isogeny in
step 3, and this additional cost grows with `. But, the cost of an exponenti-
ation is larger than log2(p) M and so overshadows the additional cost. For a
more detailed description, see Table 1. For this analysis, the approximated
cost will �t for small isogeny degrees.

The cost of exponentiation is upperbounded by 1.5 log(p) by the (subop-
timal) square-and-multiply method, assuming squaring (S) costs as much as
multiplication (M). In total, we get the following approximate cost:

Lemma 4.1. The cost to perform n radical isogenies (using Tate normal
curves) of degree ` ∈ {5, 7, 9, 11, 13} is at least

(n+ 4) · α · log2(p),

�nite �eld multiplications (M) where α ∈ [1, 1.5] depends on the method to
perform exponentiation (assuming S = M).

4.1 Analysis of e�ectiveness of radical isogenies

In this subsection, we analyze the e�ciency of radical isogenies in comparison
to Vélu isogenies, assuming the results from the previous sections. We argue
that the cost of (n + 4) · α · log2(p) from Lemma 4.1 for radical isogenies is
too high and it is therefore not worthwhile to perform radical isogenies in
comparison to Vélu isogenies for degrees 5, 7, 11 and 13. Degrees 2 and 3,
however, bene�t from the existence of radical isogenies of degree 4 and 9.
Degree 4 and 9 isogenies cost only one exponentiation, but evaluate as two.
This implies that performing radical isogenies is most worthwhile in degrees
2 and 3. We write 2/4 and 3/9 as shorthand for the combinations of degree
2 and 4, resp. degree 3 and 9 isogenies.

The three crucial observations in our analysis are
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1. Current faster
√
élu isogeny formulas require O(

√
`log2 3) �eld multi-

plications, whereas the cost of a radical isogeny scales as a factor of
log2(p)(for more details, see [4] and [1]);

2. The group action evaluation �rst performs one block using
√
élu isogeny

formulas, and then isolates the radical isogeny computations. What is
particularly important among these

√
élu isogeny computations, is that

removing one speci�c `′-isogeny does not directly decrease the number
of points that need to be sampled. Internally, the group action looks
for a random point R and performs all the possible `i-isogenies such

that
[
p+1
`i

]
R 6= O.

3. Replacing the smallest Vélu `-isogeny with a radical isogeny could re-
duce the sampling of points in that speci�c Vélu isogeny block. This
is because the probability of reaching a random point R of order `
is `−1

` , which is small for small `. Additionally, the cost of verifying[
p+1
`

]
R 6= O is about 1.5 log2

(
p+1
`

)
point additions ≈ 9 log2

(
p+1
`

)
�eld multiplications (for more details see [10]). In total, sampling n
points of order ` costs

sampling(n, p, `) = 9

⌊
n`

`− 1

⌉
log2

(
p+ 1

`

)
M

≈ 9

⌊
n`

`− 1

⌉
(log2(p)− log2(`))M.

Nevertheless, using radical isogenies for these degrees does not save the
sampling of n points, just a fraction of them. To be more precise, let
`′ > ` be the next smallest prime such that the group action requires

n′ `′-isogenies and
⌊
n`
`−1

⌉
≥
⌊
n′`′

`′−1

⌉
. Then the savings are given by

their di�erence with respect to the cost sampling such torsion-points
(see Equation (4)).

9

(⌊
n`

`− 1

⌉
−
⌊
n′`′

`′ − 1

⌉)
(log2(p)− log2(`))M. (4)

Whenever
⌊
n`
`−1

⌉
<
⌊
n′`′

`′−1

⌉
, using radical isogenies does not reduce the

number of points that need to be sampled.

As an example for the cost in a realistic situation, we take the approxi-
mately optimal bounds analyzed in [20] and [12]. In both works, log2(p) ≈
512 and the �rst �ve smallest primes `i's in {3, 5, 7, 11, 13} have bounds mi

that satisfy
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⌊
m0`0
`0 − 1

⌉
=

⌊
m1`1
`1 − 1

⌉
=

⌊
m2`2
`2 − 1

⌉
=

⌊
m3`3
`3 − 1

⌉
=

⌊
m4`4
`4 − 1

⌉
.

Thus, there are no savings concerning sampling of points when includ-
ing small degree radical isogenies. Clearly, performing n `-radical isogenies
becomes costlier than using

√
élu isogenies, and thus the above analysis

suggests radical isogenies need their own optimal bounds to be competitive.
For this reason, we look for optimal bounds for radical isogenies as follows:
i) we set as initial bounds the optimal ones of CSIDH-512, ii) we set to zero
the exponent e of the `-radical isogeny, iii) we increase (as much as possible)
the radical bound e, and iv) we apply a greedy-based algorithm to reduce

the
√
élu-isogeny bounds.

The analysis is di�erent for degree 2 and 3, where we can perform 4-and
9-isogenies in

⌈
n
2

⌉
radical computations instead of n computations. In fact,

4-isogenies directly reduces the sampling of points by decreasing the bounds
of the other primes `i's. Nevertheless, performing n radical isogenies takes at
least (n+ 4) log2(p) �eld multiplications (Lemma 4.1), which implies higher
costs (and then lower savings) for large prime instantiations. For example,
a single radical isogeny in a 1024-bit �eld costs twice as much as a single
radical isogeny in a 512-bit �eld, and in a 2048-bit �eld this becomes four
times as much. These expected savings omit the cost of sampling an initial
point of order `i, as we have shown in Section 3.2 how we can �nd such
points with little extra cost with high probability.

4.2 Further discussion

In this subsection, we describe the two further impacts on performance in
constant-time and higher parameter sets in more detail: Radical isogenies do
not scale well to larger primes, as their cost scales with log(p), and dummy-
free isogenies are more expensive, as we will need to switch direction often
to perform a dummy-free evaluation.

Radical isogenies do not scale well. Using the results in Tables 1 and 2,
the cost of a single radical isogeny is approximately 600 �nite �eld opera-
tions, with an overhead of about 2500 �nite �eld operations for a prime of
512 bits. Thus, a CSURF-512 implementation (which uses 2/4- radical iso-
genies) or a CRADS-512 implementation (which uses 2/4- and 3/9- radical
isogenies) could be competitive with a state-of-the-art CSIDH-512 implemen-
tation. However, implementations using radical isogenies scale worse than
CSIDH implementations, due to the high cost of exponentiation in larger
prime �elds. For example, for a prime of 2048 bits, just the overhead of
switching curve models is already over 8500 �nite �eld operations, which is
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close to 1% of total cost for a `traditional' CSIDH implementation. There-
fore, CSIDH is expected to outperform radical isogenies for larger primes.
In Section 5, we demonstrate this e�ect using a benchmark we have per-
formed on CSIDH, CSURF and CRADS for six di�erent prime sizes, from
512 bits up to 4096 bits. These prime sizes are realistic: several analyses,
such as [6, 22, 11], call the claimed quantum security of the originally sug-
gested prime sizes for CSIDH (512, 1024 and 1792 bits) into question. We
do not take a stance on this discussion, and therefore provide an analysis
that �ts both sides of the discussion.

Dummy-free radical isogenies are costly. Recall that radical isogenies
require an initial point P of order N to switch to the right Tate normal form,
depending on the direction of the isogeny. So, two kinds of curves in Tate
normal form arise: P belongs either to E[π − 1] or to E[π + 1]. Now, a
dummy-free chain of radical isogenies requires (at some steps of the group
action) to switch the direction of the isogenies, and therefore to switch to a
Tate normal form where P belongs to either E[π − 1] or E[π + 1]. As we
switch direction mi − |ei| times, this requires mi − |ei| torsion points. That
is, a dummy-free implementation of a chain of radical isogenies will require
at least (mi − |ei|) torsion points, which leaks information on ei. We can
make this procedure secure by sampling mi points every time, but this costs
too much. These costs could be decreased by pushing points through radical
isogenies, however, this is still not cost-e�ective. In any case, we will only
focus on dummy-based implementations of radical isogenies.

5 Implementation and performance benchmark

All the experiments presented in this section are centred on constant-time
CSIDH, CSURF and CRADS instantiations with 512-, 1024-, 1792-, 2048-
, 3072-, and 4096-bits. To be more precise, we restrict our experiments
to i) the most competitive CSIDH-con�gurations according to [15, 12], ii)
the CSURF-con�guration presented in [7, 8] and iii) the radical isogenies-
con�guration presented in [8]. As mentioned in Section 4, we only focus on
dummy-based variants such as MCR-style [18] and OAYT-style [20]. The
experiments using only radical isogenies of degree 2/4 are labelled CSURF,
whereas the experiments using both radical isogenies of degree 2/4 and 3/9
are labelled CRADS. When comparing totals, we assume one �eld squaring
costs what a �eld multiplication costs (S = M). The primes used are of the
form p = h ·

∏74
i=1 `i − 1, with h = 2k · 3. The key space size is about 2256.

On the optimal exponent bounds (�xed number of `i-isogenies required),
the results from [15] give ≈ 0.4% of saving in comparison to [12] (see Table 5
from [12]). The results from [15] are mathematically rich: analysis on the per-
mutations of the primes and the (integer) convex programming technique for
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determining an approximately optimal exponent bound. However, their cur-
rent Matlab-based code implementation from [15] only handles CSIDH-512
using OAYT-style prioritizing multiplicative-based strategies. Both works
essentially give the approximate same expected running time, and by sim-
plicity, we choose to follow [12], which more easily extends to any prime size
(for both OAYT and MCR styles). Furthermore, all CSIDH-prime instanti-
ations use the approximately optimal exponent bounds presented in [12].

To reduce the cost of exponentiations in radical isogenies, we used short
addition chains (found with [17]), which reduces the cost from 1.5 log(p)
(from square-and-multiply) to something in the range [1.05 log(p), 1.18 log(p)].
These close-to-optimal addition chains save at least 20% of the cost of an ex-
ponentiation used per (a�ne or projective) radical isogeny in constant-time.

Our CSURF and CRADS constant-time implementations evaluate the
group action by doing �rst performing the evaluation as CSIDH does on
the �oor of the isogeny graph, with the inclusion of radical isogenies as in
Algorithm 1. Afterwards we move to the surface to perform the remaining 4-
isogenies. So, the only curve arithmetic required is on Montgomery curves of
the form E/Fp : By2 = x3+Ax2+x. Concluding, we compare three di�erent
implementations which we name CSIDH, CSURF and CRADS. The CSIDH
implementation uses traditional Vélu's formulas to perform an `i-isogeny for
`i ≤ 101 and switches to

√
élu for `i > 101. The CSURF implementation

adds the functionality of degree 2/4 radical isogenies, while the CRADS
implementation uses radical isogenies of degree 2/4 and 3/9.

5.1 Performance benchmark

We compare the performance using a di�erent keyspace (i.e., di�erent bounds
(ei)) for CSIDH, CSURF, and CRADS than in [7, 8], where they have used
weighted L∞-norm balls for CSURF and CRADS to compare against an un-
weighted L∞-norm ball for CSIDH. As analysis from [15, 18, 12] shows, such
a comparison is unfair against CSIDH. We therefore use approximately opti-
mal keyspaces (using weighted L∞-norm) for CSIDH, CSURF and CRADS.

Suitable bounds. We use suitable exponent bounds for approximately
optimal keyspaces that minimize the cost of CSIDH, CSURF, and CRADS
by using a slight modi�cation of the greedy algorithm presented in [12], which
is included in the provided repository. In summary, the greedy algorithm
starts by increasing the exponent bound m2 ≤ 256 of two used in CSURF,
and then applies the exponent bounds search procedure for minimizing the
group action cost on the �oor (the CSIDH computation part). Once having
the approximately optimal bounds for CSURF, we proceed in a similar way
for CRADS: this time m2 is �xed and the algorithm increases the exponent
bound m3 ∈ J1 . . m2K until it is approximately optimal.
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Comparisons. The full results are given in Table 3. From Figure 1a we
see that CSURF and CRADS outperform CSIDH for primes of sizes 512 and
1024 bits, and is competitive for primes of sizes 1792 and 2048 bits. For larger
primes, CSIDH outperforms both CSURF and CRADS. Using OAYT-style,
CSURF-512 provides a speed-up over CSIDH-512 of 2.53% and CRADS-512
provides a speed-up over CSIDH-512 of 2.15%. The speed-up is reduced to
1.26% and 0.68% respectively for 1024 bits. For larger primes both CSURF
and CRADS do not provide speed-ups, because radical isogenies scale worse
than Vélu's (or

√
élu's) formulas (see Section 4.2). This is visible in Figure 1a

and Figure 1b.
Furthermore, the approximately optimal bounds we computed show that

the exponents m2 and m3 decrease quickly: from m2 = 32 and m3 = 12
for 512-bits, to e0 = e1 = 4 for 1792-bits, to e0 = e1 = 2 for 4096-bits.
When using MCR-style CSURF and CRADS are slightly more competitive,
although the overall cost is signi�cantly higher than OAYT-style. Table 3
presents the results obtained in this benchmark and highlights the best result
per parameter set.
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Figure 1: Relative di�erence between the number of �nite �eld multiplications required for CSURF
and CRADS in comparison to CSIDH. The percentage is based on the number of multiplications
required, and corresponds with an average over 1024 runs, assuming S = M.

Dummy-style 512-bits 1024-bits 1792-bits 2048-bits 3072-bits 4096-bits

CSIDH-OAYT 0.791 0.873 0.999 1.039 1.217 1.361

CSURF-OAYT 0.771 0.862 1.000 1.042 1.225 1.387
CRADS-OAYT 0.774 0.867 1.007 1.050 1.237 1.399

CSIDH-MCR 1.011 1.093 1.218 1.255 1.436 1.580
CSURF-MCR 0.980 1.074 1.211 1.253 1.443 1.594
CRADS-MCR 0.985 1.086 1.228 1.272 1.469 1.625

Table 3: Results for di�erent prime sizes. The numbers are given in millions of �nite �eld multi-
plications, and the results are the average over 1024 runs. The results count multiplication (M)
and squaring (S) operations, assuming S =M. Numbers in bold are optimal results for that prime
size.
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6 Concluding remarks and future research

We have implemented and improved the radical isogenies formulas and eval-
uation strategy, and evaluated their performance against state-of-the-art
CSIDH implementations in constant-time. In theory, fully projective radical
isogenies are almost twice as fast as a�ne radical isogenies in a constant time
implementation. However, when integrated as CSURF and CRADS, radical
isogenies provide only a minimal speed-up for a prime of 512 bits: about
2.53% and 2.15%, respectively (compared to state-of-the-art CSIDH). Fur-
thermore, larger (dummy-based) implementations of CSURF and CRADS
become less competitive to CSIDH as radical isogenies scale worse than
Vélu and

√
élu isogenies. In such instances (log(p) ≥ 1792 bits) the use of

constant-time radical isogenies even has a negative impact on performance.
Due to the large cost of a single exponentiation in large prime �elds, which is
required to compute radicals, it is unlikely that (a�ne or projective) radical
isogenies can bring any (signi�cant) speed-up. However, similar applications
of modular curves in isogeny-based cryptography could bring improvements
to current methods. Radical isogenies show that such applications do exist
and are interesting; they might be much more e�ective in isogeny-based cryp-
tography in other situations than CSIDH (or perhaps with di�erent prime
number shapes).
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