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Abstract. Updatable encryption (UE) allows to periodically rotate encryption keys without
the need to decrypt and re-encrypt already encrypted data. This is achieved by means of
an update token that allows to perform the ciphertext update via any semi-trusted party.
Unfortunately, apart from a recent UE construction from indistinguishability obfuscation
(Nishimaki, ePrint’21), in all existing constructions the update token provides additional
functionality and at least allows to downgrade keys. Such a leakage is undesirable and leads
to rather involved and complex security models. A recent UE model due to Jiang (Asi-
acrypt’20), extending the model of Boyd et al. (Crypto’20), explicitly considers these di-
rectionality and leakage issues, and left open the construction of UE schemes where keys
cannot be transformed via a token in any direction (aka UE schemes with “no-directional”
key updates).
In this work, we solve the problem via our threefold contribution:
i) We introduce a simpler and cleaner UE CPA security notion extending prior models.

It focuses on UE schemes with no-directional key updates and thus avoids the use of
rather complex leakage profiles for UE. Moreover, it introduces the concept of expiry
epochs, i.e., ciphertexts can lose the ability of being updatable after a certain time. This
is determined at the time of encryption and inherently requires the no-directional key
update feature of UE schemes.

ii) We introduce a novel approach of constructing UE with no-directional key updates which
significantly departs from previous ones and in particular views UE from the perspective
of puncturable encryption (Green and Miers, S&P’15). As a stepping stone, we introduce
a variant of puncturable encryption called ciphertext puncturable encryption (CPE).
This turns out to be a useful abstraction on our way to construct UE and may be of
independent interest.

iii) Finally, we present a CPE instantiation from standard assumptions (i.e., the standard
d-Lin assumption in prime-order bilinear groups) which via ii) yields the first UE scheme
with no-directional key updates and expiry epochs from standard assumptions.
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1 Introduction

When outsourcing the storage of data, the primary measure to protect its confidentiality is encryp-
tion. However, a compromise of the respective encryption key(s) will potentially expose the entire
data to unauthorized parties and may cause severe damage. Consequently, it is widely considered
a good practice to periodically rotate encryption keys. Major providers of cloud storage services
such as Google1, Microsoft2 or Amazon3 recommend this practice and some industries even require
it [PCI16]. This raises the immediate question of how to efficiently update already outsourced en-
crypted data to new keys. An obvious solution for key-rotation is to download the data, decrypt it
locally under the old key, re-encrypt it under a new key, and upload it again. Unfortunately, this
imposes a significant overhead and soon becomes impractical, especially if the amount of outsourced
data is huge.

As a remedy, Boneh et. al [BLMR13] proposed the concept of updatable encryption (UE). UE is
a symmetric encryption primitive that addresses this problem by allowing to update ciphertexts to
new keys without the requirement for decryption. It consists of the usual algorithms (Gen,Enc,Dec)

1 https://cloud.google.com/kms/docs/key-rotation
2 https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
3 https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
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for key-generation, encryption, and decryption. Time is discretized in so-called epochs and Gen
produces an initial secret key K1 (for epoch 1). Additionally, there is an algorithm Next which
takes a key Ki and outputs a fresh next-epoch key Ki+1 along with a so-called update token ∆i+1.
This update token can be be used by a semi-trusted party to update ciphertexts under key Ki for
epoch i to ciphertexts for epoch i + 1 under key Ki+1 via an algorithm Update. UE schemes can
be ciphertext-dependent [BLMR13, EPRS17, BEKS20, CLT20] where the update token depends
on the specific ciphertext to be updated and, thus, to compute the update token a part of every
ciphertext needs to be downloaded. Or, and from an efficiency point more desirable, UE schemes
can be ciphertext-independent [LT18, KLR19, BDGJ20, Jia20, Nis21] such that a single compact
update token ∆i+1 can update any ciphertext from epoch i to i + 1. In the remainder of this
work, we focus on UE schemes with ciphertext-independent update and will simply call them UE
schemes. Security for UE essentially guarantees that the updated ciphertexts are indistinguishable
from fresh encryptions, with Boyd et al. [BDGJ20] representing the state-of-the-art model which
was recently extended by Jiang [Jia20] to consider directionality.

UE schemes might use deterministic or randomized updates. While encryption clearly needs
to be randomized, the situation is less clear for updates. Deterministic updates avoid the use of
randomness on the server side and enable an easier design of CCA secure UE schemes (cf. [KLR19]
and [BDGJ20]). However, as a consequence of being deterministic, they require a rather severe
weakening of the security model and in particular prevent the adversary from seeing the update to-
ken before the challenge epoch. While omitting this single token may sound like a minor difference,
this excludes attacks that track ciphertexts or determine the existence of ciphertexts at a certain
point in time already via the model. As this additional leakage can only increase the number of
potential attacks, the use of randomized updates seems advisable.

The motivating questions. Intuitively, one would expect that in UE the only functionality of
an update token is to update ciphertexts in the forward-direction from one to the next epoch.
Interestingly, however, in all known UE schemes with the exception of a recent UE scheme from
indistinguishability obfuscation by Nishimaki [Nis21]4, update tokens can also be used to at least
update keys in the backward direction. We will go through the different possibilities of key updates

Fig. 1. UE schemes can by construction leak future keys (forward-directional key updates) or past keys
(backward-directional key updates). Schemes that have bi-directional key updates leak in both directions,
the future and the past. When considering ciphertexts instead of keys, forward-directionality is required
per correctness. But schemes may additionally have backward-directional ciphertext updates and are then
said to provide bi-directional ciphertext updates.

in a step-by-step fashion now (cf. Figure 1). We start with UE schemes that allow only key up-
dates in the forward-direction. To see why such updates are a problem, for instance assume that all
ciphertexts have been updated from epoch i to epoch i+1. In UE, one assumes that when this hap-
pens all old ciphertexts from epoch i are then deleted. Now, if an adversary manages to compromise
some (old) key Ki and update token ∆i+1, this should intuitively not endanger confidentiality of
ciphertexts in epoch i+ 1. However, if an UE scheme allows key updates in the forward-direction,
one can use ∆i+1 to upgrade the key Ki to Ki+1 and then decrypt all the future data. Moreover, an
UE scheme may allow to downgrade keys from epoch i+1 to epoch i. The associated issues are more
subtle, but as we discuss in Section 2, such UE schemes also have unwanted side-effects. Lastly, we
can have UE schemes with ciphertext updates in backward direction. Ignoring forward-directional
key updates for a moment, this is also not desirable as adversaries that retrieve some old secret key
Ki in epoch i and the token ∆i+1 can also downgrade ciphertexts from epoch i+ 1 to epoch i and
simply decrypt. Besides being counter-intuitive, these issues result in security models that have to

4 This has been proposed in concurrent and independent work and will be discussed below.
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deal with these inferred information to explicitly exclude such cases from constituting an attack,
and, hence, such models are quite involved as they have to track those leakages.

The discussion of directionality in UE was raised by Lehmann and Tackmann [LT18]. To prevent
attacks like the ones mentioned above and to capture the “right intuition” of the security of UE, one
requires UE schemes with so-called no-directional key and forward-directional ciphertext updates.
In such schemes, update tokens are not helpful to update keys in either direction and ciphertexts
can only be updated into the future. Indeed, as discussed by Jiang [Jia20] and Nishimaki [Nis21],
such UE schemes with no-directional key updates are strictly stronger than UE schemes with at
least backward-directional key updates5 already in the model of Jiang [Jia20] extending the one
due to Boyd et al. [BDGJ20]. However, the Jiang model is quite involved due to rather complex
leakage-profile paradigm to capture all the “unnatural” attacks above coming from UE schemes
with at least backward-directional key updates. In this work we ask:

What is a clean and strong security notion for UE schemes?

On the way to answer the above question, we additionally introduce the notion of expiry epochs
for UE and argue that this feature makes UE even more natural (since ciphertexts can now expire)
to prevent certain types of attacks that seem to be relevant in practice.

Apart from providing strong security guarantees in the sense of indistinguishabilty under cho-
sen plaintext attacks (EE-IND-UE-CPA)6, the construction of UE schemes with no-directional key
updates from standard assumptions has so far been elusive and in this work we further ask:

Is it possible to construct provably secure UE schemes with no-directional key updates (in our
strong model) from standard assumptions?

1.1 Our contribution

Our contribution is three-fold:
i) We revisit the IND-UE-CPA security of UE schemes and present a cleaner and simpler model

that is capable of capturing the guarantees provided by UE with no-directional key updates,
yielding progress towards answering the first question. In particular, our model does not need
the complex leakage-profile paradigm or the insulated regions (IR) approach which made exist-
ing UE models rather cumbersome. Our model explicitly focuses on no-directional key updates
and, consequently, we can give the adversary all updates tokens and all secret keys except for
the target-end epoch and the target epochs, respectively, to prevent trivial wins. This massively
reduces oracle calls and checks for trivial wins due to leaking tokens or keys. We furthermore
introduce expiry epochs as a feature of UE that extends and generalizes the security model for
no-directional key updates due to Jiang [Jia20]. By letting ciphertexts expire, we capture the
“wait for one key leakage and update all ciphertexts captured in past epochs to the leaking-key
epoch”-type of attacks which we consider as a relevant attack in current ciphertext independent
UE schemes.

ii) As a second contribution, we introduce a novel primitive dubbed Ciphertext Puncturable En-
cryption (CPE) which we believe provides an easier intuition towards our UE constructions
with no-directional key updates and then build such a UE scheme from any CPE scheme. Fur-
thermore, we show a concrete asymptotically efficient construction of such a scheme. While
CPE is slightly more powerful than what is required for UE with no-directional key updates
(mainly as CPE has tags from a certain tag space that can be adaptively queried), interest-
ingly, we were not able to construct such UE schemes from tools that are weaker than those
required to instantiate CPE. Moreover, we believe that the ciphertext puncturing in CPE will
further increase the applicability of the already very useful puncturable-encryption primitive
and might be of independent interest.

5 Jiang [Jia20] speaks of uni-directional UE schemes which we refer to ones that allow to upgrade keys
but prevent downgrades. Recently, Nishimaki [Nis21] showed that one can consider directionality more
nuanced as there can be schemes that prevent forward but allow backward-directional key updates.

6 As Nishimaki [Nis21], we only deal with a CPA-like UE notion starting from the model of Jiang. Cur-
rently, indistinguishabilty under chosen-ciphertext attacks (IND-UE-CCA) seems to be hard to achieve
with our constructional approach and we leave it as interesting open problem. See paragraph on CCA
security for more information.
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iii) Finally, we present the first UE scheme with no-directional key updates and expiry epochs
via ii). Concretely, we instantiate it from the standard d-Lin assumption (where for d = 1
we get UE with no-directional key updates from SXDH) in prime-order bilinear groups using
the well-known dual system paradigm. In Figure 2, we provide a brief comparison of our UE
constructions with other UE schemes.

Schemes key-sizes ct-sizes tok-sizes security model dir. (key) dir. (ct) assumption

BMLR+ [BLMR13, LT18] O(1) O(1) O(1) weak IND-UE-CPA SM bi bi KH-PRF

RISE [LT18] O(1) O(1) O(1) r-IND-UE-CPA SM bi bi DDH

SHINE0 [BDGJ20] O(1) O(1) O(1) d-IND-UE-CCA IC bi bi DDH

MirrorSHINE [BDGJ20] O(1) O(1) O(1) d-IND-UE-CCA IC bi bi DDH

OCBSHINE [BDGJ20] O(1) O(1) O(1) d-IND-UE-CCA IC bi bi DDH

Jiang [Jia20] O(1) O(1) O(1) r-IND-UE-CPA SM bi bi DLWE

Nishimaki [Nis21] O(1) O(1) O(1) r-IND-UE-CPA SM backw forw LWE

Nishimaki [Nis21] O(1) O(1) O(1) r-IND-UE-CPA SM no forw IO, OWF

Ours O(log2 n) O(log2 p) O(1) EE-IND-UE-CPA SM no forw SXDH

Fig. 2. Overview of ciphertext-independent UE schemes with at least some form of weak IND-UE-CPA se-
curity due to [BDGJ20]. With n we denote the total number of epochs and with p = 2` ≤ n we denote the
expiry epoch of a ciphertext, with some ` ∈ N with ` ≤ λ. With d-IND-UE-CPA or r-IND-UE-CPA, we mean
security under deterministic or randomized updates, where EE-IND-UE-CPA only considers randomized up-
dates and represents our model with expiry epochs. IC and SM stand for Ideal Cipher and Standard Model.
KH-PRF, DDH, (D)LWE, IO, OWF and SXDH stand for key-homomorphic pseudo-random function, deci-
sional Diffie-Hellman, (decisional) learning with errors, indistinguishability obfuscation, one-way function,
and symmetric extended Diffie-Hellman, respectively. The version of the concurrent and independent work
of Nishimaki [Nis21] was retrieved from ePrint on 16th of December 2021.

Independent concurrent work. In an independent and concurrent work, Nishimaki [Nis21] also
studies the construction of no-directional UE schemes. Besides providing the already mentioned sep-
aration of UE schemes with bi- and backward-directional key updates in the model of Jiang [Jia20],
he also provides constructions of UE schemes with backward and no-directional key updates. Com-
pared to our no-directional scheme (see Figure 2), which can be instantiated from standard tools,
his construction relies on indistinguishability obfuscation (IO). While his schemes have parameters
sizes independent of the system parameters, despite recent progress in IO [JLS20, GJLS21] towards
constructions under simple-to-state or even standard assumptions, their practical efficiency is still
elusive. Furthermore, our construction techniques clearly differ since he deals with IO-based (and
lattice-based) constructions.

More related work. Besides the already mentioned work on ciphertext independent and cipher-
text dependent UE schemes [BLMR13, EPRS17, LT18, KLR19, BDGJ20, BEKS20, CLT20, Jia20],
recently there has also been increased interest in studying UE in composable frameworks such
as the universal composability (UC) framework [JKR19], the framework of constructive cryp-
tography [dVR21, FMM21], and UE for onion routing [KHRS21]. Furthermore, Sehrawat and
Desmedt [SD19] introduced bi-homomorphic lattice-based pseudo-random functions (PRFs) which
are PRFs that are key-homomorphic (as used for the first UE schemes in [BLMR13]) and addition-
ally partially-input homomorphic. As an application, they present UE schemes with unidirectional
ciphertext but bidirectional key updates. While this is an interesting step towards UE schemes
with unidirectional ciphertext and key updates, their scheme suffers from the drawback that for
each ciphertext, the data owner needs to sample a random data-block identifier which needs to be
privately shared with the server. Consequently, the state of the data owner (i.e., the secret key) is
linear in the number of ciphertexts (which is not the case for our constructions).

A primitive that seems closely related to UE is uni-directional proxy re-encryption (PRE) for-
malized by Ateniese et al. [AFGH05] and in particular multi-hop variants thereof [Gen09, CCL+14,
PRSV17, DN21] (henceforth UM-PREs). We recall that a UM-PRE scheme is a public-key encryp-
tion scheme, where given secret key A and public key pkB one can compute a re-key rkA→B that
translates ciphertexts under pkA to ones under pkB and this process can be applied multiple times.
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While this intuitively seems to match UE when converted to it in the obvious way, there are sub-
tleties that need to be discussed when aiming for UE schemes with strong guarantees. UM-PRE
schemes and their established CPA security notions [AFGH05, Coh19, FKKP19] do not require
that original and re-encrypted ciphertexts are of the same form and thus indistinguishable. And
indeed, lattice-based constructions [PRSV17] or generic constructions from any PKE and garbled
circuits [DN21] do trivially yield distinguishable ciphertexts due to the growing noise and the
linear growth of ciphertexts respectively. What remains from known constructions is UM-PRE
constructed from fully homomorphic encryption (FHE) using bootstrapping [Gen09], obfuscators
for re-encryption (realized via FHE with bootstrapping) [CCL+14] and constructions from any
PKE and probabilistic indistinguishability obfuscation [DN21]. Consequently, the state-of-the-art
in UM-PRE, even when ignoring that the security notions do not support the required features, i.e.,
indistinguishability of ciphertexts or expiry epochs in a black-box way, seems no fruitful avenue
towards reasonably practical UE solutions with no-directional key updates and at that point it
seems more promising to take a different path.

On stronger (i.e., chosen-ciphertext) security for UE. Klooß et al. in [KLR19] initiated the
study of (replayable) chosen ciphertext security for UE schemes and since then (R)CCA security
has been treated in subsequent works in the ciphertext-dependent [BDGJ20, BEKS20, CLT20]
and ciphertext-independent [BDGJ20] setting. There is only one approach to CCA security for
ciphertext-independent UE schemes Klooß et al. in [KLR19] which does not rely on schemes with
deterministic updates. We currently do not see a suitable approach to provide (R)CCA security
for stronger UE schemes with no-directional key updates and in particular for our concrete in-
stantiations, but consider this an interesting question for future research. Hence, as it is also done
in the concurrent and independent work of Nishimaki [Nis21], in this work, we solely deal with
chosen-plaintext security. This already turned out to be non-trivial to achieve.

2 Motivation and Overview of Our Techniques

In this section, we motivate our techniques concerning the contribution and give an overview
of i) our extended UE security model with expiring epochs, ii) UE from a puncturable-encryption
perspective, and iii) instantiating ciphertext puncturable encryption from standard assumptions.

2.1 Extended and simpler security model with expiry epochs

We will now use Figure 3 to illustrate the most important aspects of the CPA notion of Jiang [Jia20]
(extending Boyd et al. [BDGJ20]) for UE schemes with bi/forward-directional key and ciphertext
updates (which strengthen and simplify previous models [LT18, KLR19]) by means of the maximum
information available to an adversary.

Let Ki and ∆i+1 be the key and the token for epoch i, respectively. The task of an adversary
is to distinguish an encryption under a key Ke∗ in a challenge epoch e∗ from one that is updated
from some epoch ẽ < e∗. The key concept in common UE security models (particularly, in [LT18,
BDGJ20, Jia20, Nis21]) is that of a firewall which prevents trivial wins and there is a firewall estart
before and eend after the challenge epoch e∗ (indicated by red boxes in Figure 3). In between, all
update tokens can be revealed and prior to estart and after eend the adversary can obtain all keys
and update tokens.7 Previous work captures trivial wins via so-called leakage profiles where such
firewalls have to be present to be able to prove security. Now the critical restrictions are that in estart
only the key is revealed, as otherwise in UE schemes with bi or forward-directional key updates,
the adversary could trivially compute a key for the target epoch e∗, and in eend neither the key
nor the update token are revealed. Otherwise, due to correctness, the adversary could update the
challenge ciphertext into one epoch where it holds a key and could trivially win.

Let us now dig deeper into the directionality features of keys and in particular look at the case
where update tokens do not allow key upgrading. Here, we have to look at the epochs before the
challenge epoch e∗, as tokens should not even allow upgrades of keys. We observe for such UE
schemes, we can remove the firewall at estart entirely and hand out all keys and tokens up to e∗ to
the adversary.

7 There can be more so-called isolated regions (IRs) that are bounded by firewalls, but we only focus on
the one containing the challenge epoch (cf. [BDGJ20]).
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Fig. 3. (a) Example of information an adversary is allowed to obtain in known CPA notions [LT18, BDGJ20,
Jia20] for UE schemes with bi-directional key and ciphertext updates. (b) Example of information an
adversary is allowed to obtain in our EE-IND-UE-CPA experiment for UE schemes with no-directional key
updates. We are able to remove the left firewall estart and expiry epochs (exemplary eexp = e∗ here) allow
to hand out all keys and tokens after eexp (green box). Hence, in this specific case, our model allows even
to release all tokens and keys except the key for challenge epoch e∗ obviously.

This change gives rise to what Nishimaki in [Nis21] calls UE with backward-directional key
updates, i.e., downgrading of keys is possible, but upgrading of keys is not possible. However, when
we look at the epochs after the challenge epoch e∗, the situation gets more subtle. Therefore, let
us recall that the correctness of UE requires that ciphertexts can be updated ad-infinitum, i.e.,
the update capability never expires. This in particular means that if old ciphertexts and update
tokens are not properly deleted or kept stored intentionally by a server, even if after many updates
(key-rotations) a newer key leaks, it will still be possible to decrypt an old ciphertext by simply
updating it to the respective epoch.

Note that due to correctness, even UE schemes that do not allow downgrades of keys do not
help to protect against this threat. To prevent these types of attacks and provide strong forward-
security guarantees, we introduce an enhancement yielding a generalization of the CPA model with
no-directional key updates by Jiang.

Namely, we introduce the concept of “expiry epochs” such that for every ciphertext, one can de-
cide how long updates should yield decryptable ciphertexts, i.e., encryption in epoch i is performed
as Ci,eexp ← Enc(Ki,M, eexp) and when epoch eexp is reached, a ciphertext cannot longer be updated
into a decryptable ciphertext. Note that an update token should still work for all ciphertexts that
have an expiry date in the future. Also, by setting no expiry date for ciphertexts, i.e., eexp = ∞,
we are back in the model of Jiang (without leakage profiles).

Jiang [Jia20] already provided a detailed discussion for UE with no-directional key updates
and its leakage profiles with winning conditions in her model, but we want to make the common
model even more compact and intuitive, particularly, by removing the complex leakage-profile
paradigm. Note that this gives strong post-compromise guarantees without relying on artificial
model restrictions (i.e., the left firewall), as now a leaked key, i.e, Ki, even when everything is
available to the adversary does not endanger ciphertexts produced in epochs j > i due the no-
directional key update feature.

With this concept, the above mentioned key-downgrade attack is mitigated for all keys that
are leaked after the expiry date of a ciphertext as long as the key updates are at most in the
forward-direction, i.e., key downgrades are prevented. To see this, note that in UE schemes with
backward-directional key updates even with expiry date, the attack is not prevented as one could
simply downgrade the leaked key back into the respective epoch of the ciphertext. But this is
not possible with forward-directional key updates and, thus, particularly for no-directional key
updates. Having no-directional key updates in addition also provides the stronger post-compromise
guarantees as discussed above, making no-directional UE schemes with expiry epochs a desirable
goal.

How forward and post-compromise security is modeled. We briefly recall the forward
and post-compromise security (FS and PCS) guarantees. As already implicit in Jiang [Jia20], via
forward-directionality in key-updates, we achieve strong PCS security. By requiring in our model
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that a current-epoch key cannot be downgraded and tokens cannot be used to downgrade cipher-
texts, together with expiry epochs allows us to achieve strong FS in particular when downgrading
goes below the expiry epoch.

2.2 UE from a puncturable-encryption perspective

For our UE constructions, we significantly depart from previous work and view UE from the per-
spective of Puncturable Encryption (PE). We recall that PE, introduced by Green and Miers
in [GM15], is a tag-based public-key encryption primitive with an additional puncturing algorithm
that takes a secret key and a tag t as input, and produces an updated secret key. This updated
(punctured) secret key is able to decrypt all ciphertexts except those tagged with t and (updated)
secret keys can be iteratively punctured on distinct tags. PE found numerous applications from non-
interactive messaging [GM15], watermarking [CHN+16], chosen-ciphertext secure FHE [CRRV17],
searchable encryption [BMO17], forward-secure proxy re-encryption [DKL+18] to forward-secret
zero round-trip time (0-RTT) key-exchange protocols [GHJL17, DJSS18, DGJ+21] and has been
extended in several ways [WCW+19, DKL+18] while the design of novel PE schemes is still on-
going [SSS+20, SDLP20, DRSS21]. Despite being slightly different in their concrete formulation
(e.g., allowing single or multiple tags per ciphertext), existing PE schemes all provide the same
puncturing functionality as discussed above. Notable, we define CPE as a symmetric-key primitive
extending the definitions of PE used in prior work [SYL+18, AGJ19, AGJ21, BDdK+21].

We observe the following similarity between UE with no-directional key updates and (symmet-
ric) PE. The core guarantee in a UE scheme is that newer (as well as updated) ciphertexts can no
longer be decrypted by older keys. This is abstractly reminiscent of puncturing when we view tags
as epochs, i.e., associate ciphertexts to all epochs and puncture keys on epochs, such that they
no longer can be used for decryption. As in UE, one however has to update ciphertexts and keys,
puncturing needs to happen on both in a synchronized way and in particular one needs to guarantee
that old (non-updated) ciphertexts are no longer decryptable, while one should be able to include
old ciphertexts that are still decryptable (by updating them). Consequently, when puncturing keys,
one needs some information which can be used to parametrize ciphertext puncturing, i.e., to update
ciphertexts. Realizing this feature augments the known PE functionalities as we will discuss. The
challenging issue from a UE perspective is now that one needs to prevent “unpuncturing,” i.e.,
even if keys and update information leak, it should not be possible to remove tags from newer
ciphertexts (downgrade ciphertexts in the language of UE) as well as use the update information
to synchronize old keys to new keys and thus ciphertexts (no-directionality of key updates in the
language of UE).

We now extend the functionality of puncturing from keys only as in PE to also allow punc-
turing of ciphertexts via the notion of ciphertext puncturable encryption (CPE). A CPE scheme
can abstractly be viewed as a (symmetric) PE scheme (Gen,KPunc,Enc,Dec) with an additional
algorithm CPunc to puncture ciphertexts. However, there are some significant differences compared
to conventional non-interactive PE (particularly, puncturings on keys and ciphertexts now happen
in a synchronized manner via a puncture token).

More concretely, keys in CPE are initially associated to the entire tag space T (which is here
considered to be an ordered set of polynomial size in the security parameter). As in PE, in CPE
ciphertexts are computed w.r.t. a tag set T ′ ⊆ T . This happens via Enc by either taking no tag at all,
which means that ciphertexts carry all tags in T . Or one provides an “expiry-tag” texp which means
that a ciphertext carries all tags t ∈ T with t ≤ texp. When it comes to puncturing, keys can be
incrementally punctured on tags, whereas in contrast to conventional PE, this puncturing results in
an updated key. Consequently, also the ciphertext puncturing needs to output a ciphertext towards
the new punctured key. Otherwise, if one does not synchronize the key and ciphertext puncturing
process, old keys might be able to still decrypt punctured ciphertexts, a property we want to avoid
(and is related to achieve strong post-compromise and forward security).

The key puncturing on tag t produces a puncturing token ∆t. Ciphertext puncturing is not a
fully public and stand-alone operation, but requires the puncturing token ∆t to keep ciphertexts
and keys in synchronization. The idea is that a ciphertext produced under a key (punctured on set
of tags t) using this token can be punctured on tag t and results in a new ciphertext under the new
key punctured on tags t∪{t}. Thereby, key puncturings can happen on any not necessarily ordered
sequence of tags iteratively and ciphertexts can be punctured using the corresponding puncture
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tokens in an arbitrary order. The semantics of CPE is now that a key Kt punctured on t can only
decrypt ciphertexts as long as the ciphertext still caries some non-punctured tag t /∈ ~t. Observe
that this allows to put an expiry-tag on ciphertexts by creating a ciphertext with respect to some
tag texp; as soon as the key and the ciphertext are punctured on all tags ti ≤ texp, a ciphertext
puncturing fails. In Figure 4, we give a brief overview of the differences between (symmetric) PE
and CPE puncturing.

PE: Kt Kt∪{t} Ct

CPE: Kt Kt∪{t} Ct Ct∪{t}
∆t

Fig. 4. Overview on how puncturing takes place in PE and CPE. In PE, Ct is not punctured while in CPE,
Ct can be punctured via ∆t while ∆t cannot unpuncture Ct∪{t}. Furthermore, ∆t cannot transform Kt or
Kt∪{t} in any direction. Kt∪{t} and Ct∪{t} have to be in sync for successful decryption.

To construct UE with no-directional key updates from CPE, let CPE = (Gen,Enc,KPunc,CPunc,
Dec) be a CPE scheme and we view the tag space T = {1, 2, . . . , n} of CPE as a polynomially
bounded ordered set of epochs with n being polynomially bounded in the security parameter. Now,
we compute all ciphertexts with respect to the entire tag space T (or expiry-tag texp in Enc when
provided). The intuition of the construction is as follows: our initial key K1 is derived from the
key key punctured on tag 1 of the CPE scheme and every update of the key from epoch e to e+ 1
represents a puncturing of the key on the epoch number e + 1 (viewed as tag), setting the key
Ke+1 to Kt with t = {1, . . . , e+ 1}. The update token ∆e+1 for ciphertexts from period e to e+ 1
represents the CPE puncture token ∆e+1 and updating ciphertexts from e to e+ 1 corresponds to
puncturing ciphertexts on tag e + 1. Encrypting then amounts to using the encryption algorithm
of the CPE using the respective key Kt (with t = {1, . . . , e + 1)} of the CPE. Correctness and
security guarantees carry over as we will show.

2.3 CPE construction from standard assumptions

In this section, we showcase our CPE construction by combining Lewko’s approach for unbounded
hierarchical identity-based encryption (HIBE) [Lew12] with the binary-tree encryption (BTE) ap-
proach due to Canetti, Halevi, and Katz [CHK03] via the dual-system paradigm in the composite-
order setting. Later we will present a prime-order instantiation of our combined approach using
(extended) dual system groups [CW13, GCTC16]. The hardest part in our UE-from-CPE con-
struction is to provide key and ciphertext sizes sub-linear in the security parameter.8 This can be
achieved since UE is essentially a sequence version of CPE where we will traverse a binary tree
(which holds keys and ciphertext elements) in pre-order yielding the desired properties for UE.

As the name suggests, the BTE approach organizes binary identities {0, 1}` (which we view
as tags) in a binary tree, where prefix identities/tags at some level < ` can delegate keys to its
descendant entities, but cannot decrypt ciphertexts intended for other (hierarchical) identities/tags.
Say, a key K0 can be used to derive keys K00,K01 for both descendant identities/tags 00 and 01,
but neither K00 nor K01 can decrypt ciphertexts for K0. We will extend this approach to have an
analog delegation for ciphertext tags by maintaining a binary tree for each ciphertext as well.

Now, let us consider a complete binary tree (labeled ε at the root) and the usual labeling of left
and right child with 0 and 1 respectively, yielding leafs labeled by some tags {0, 1}`. Consequently,
for a height-` binary tree, we have an ordered tag space T of 2` elements by starting the ordering
with left-most leaf. The natural approach following [GHJL17] is that puncturing of a tag t ∈ {0, 1}`
in the tree results in deriving BTE keys for prefix tags which are not ancestors of the corresponding
leaf and deleting all other keys, i.e., truncating the tree accordingly. Note that this allows to derive
keys for all non-punctured leaves aka tags. We observe that we can do the delegation on ciphertexts
as well which is reminiscent of Lee et al. [LCL+13]. Unfortunately, their scheme has no feature on
delegating keys for tags and we do not see how to straightforwardly synchronize both in their setting

8 Since UE is mainly motivated by practice, constructing UE scheme with sub-linear size parameters
seems to be the goal (particularly, when comparing the construction with the simple download, decrypt,
encrypt under new key, and upload approach).
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while achieving our strong CPE security requirements particularly towards forward security and
post-compromise security.
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Fig. 5. Example of a CPE key Kt0 = (K1
t0 ,K

01
t0 ,K

001
t0 ) and ciphertext Ct0 = (C1

t0 , C
01
t0 , C

001
t0 , e(g, gαt0 )r ·M)

that have been punctured on t0. Only the boxed elements have to be stored and the remaining elements
can be derive from those.

To construct a CPE scheme, we implicitly arrange tags for ciphertexts in a binary tree as well,
analogously to keys. The root of the key delegation tree is associated with the initial key Kε while
the root of the ciphertext delegation tree is Cε,texp . In Figure 5, we give an example of how the
ciphertexts and keys are constructed and where the tag t0 is already punctured.

In our construction, keys and ciphertexts are a certain combination of the keys and ciphertexts
in Lewko’s approach enhanced with the techniques due to Canetti, Halevi, and Katz’ (CHK) BTE
work. As said, we will only showcase our results on the very high level and the composite-order
setting here, but in the actual construction later, we will use the prime-order instantiation of the
combined approach. Lewko’s approach works in the bi-linear setting, where e : G×G→ GT denotes
the pairing, for groups G,GT of composite-order. Moreover, we lift Lewko’s approach to the CHK
setting where now the keys and ciphertexts are built as

Kt = (g, v, (g0,i, g1,i)i, e(g, g)αt , (Kti
i )i) and Ct =

(
(Ctii )i, e(g, g

αt)r ·M
)
, for

Kti
i = (Ki,0,Ki,1,Ki,2, . . . ,Ki,2`) =

gαt , gsi , vαt ·
`′=|ti|∏
j=1

gsiti,j ,j ,
gsi0,`′+1, . . . , g

si
0,`

gsi1,`′+1, . . . , g
si
1,`

 ,

Ctii = (Ci,0, Ci,1, Ci,2, . . . , Ci,2`) =

gr · vwi , gwi ,

`′=|ti|∏
j=1

gwi
ti,j ,j

,
gwi
0,`′+1, . . . , g

wi
0,`

gwi
1,`′+1, . . . , g

wi
1,`

 ,

for global randomness r, local randomnesses si, wi, and prefix tags ti = (ti,1, . . . , ti,`′) ∈ {0, 1}`
′≤`

(according to the tree configuration). Furthermore, g, v, g0,i, g1,i are uniform group elements from
G and M denotes the message. Decryption works as in Lewko’s approach and we want to show the
puncturing part here (which is very similar to decryption). The puncture token is

∆t = (∆0, ∆1, ∆2) =

gαt , gs
′
, vαt ·

|t|∏
j=1

gs
′

j,tj , e(g, g
αt)

 ,

for uniform exponent αt (which will act as a uniform linear shift in exponent), uniform randomness
s′ and some unpuctured tag t ∈ {0, 1}`. This puncture token can be used to retrieve the element
e(g, gαt)r by “decrypting” Cti (which is derived from some Ctii since t was not punctured yet) with
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∆t:

e(g, gαt)r =
e(C0, ∆0) · e(C2, ∆1)

e(C1, ∆2)
=
e(gr ·��vwi , gαt) ·

���
���

��
e(
∏|t|
j=1 g

wi
tj ,j

, gs
′
)

((((
(((

(((
e(gwi , vαt

∏|t|
j=1 g

s′

tj ,j
)

.

The e(g, gαt) element from ∆t and e(g, gαt)r element just computed can now be used to update
the αt-component in Kt and Ct (via properties of the pairing), respectively, yielding

Kt∪{t} = (g, v, (g0,i, g1,i)i, e(g, g
αt+αt) , (K

t′i
i )i)

Ct∪{t} =

(
(C

t′i
i )i, e(g, g

αt+αt)r ·M
)
,

where (K
t′i
i )i and (C

t′i
i )i contain delegated key and ciphertext elements for tags t′i using the method-

ology explained above and in Figure 5. This yields a consistent key and ciphertext for punctured
tags t ∪ t. The tags (t′i)i correspond to the prefixes of all unpunctured tags as in Figure 5.

The crucial feature here is that the puncture token ∆t and the key Kt∪{t} cannot be used to
produce a valid key Kt (and, hence, key unpuncturing is prevented). This is due to that the node
in the key tree corresponding to t is delegated and cannot be recovered anymore.

Similarly, the puncture token ∆t and the key Kt cannot be used to produce a valid key Kt∪t.
This is due to the fact that ∆t is tailored towards a specific tag t and, hence, the key parts (not
associated to t) cannot be updated to a valid key that excludes t. This is also the reason why you
cannot downgrade the ciphertext Ct∪t to Ct via the puncture token ∆t since the tag t was already
punctured in the Ct∪t-associated tree configuration.

Furthermore, we want to emphasize that re-randomization is necessary to prevent mix-and-
match attacks. Keys and ciphertexts can be publicly re-randomized straightforwardly.

We want to emphasize that the depicted scheme above serves only as a showcase of our CPE
techniques. Our concrete construction is in the prime-order setting (due to efficiency reasons). In
this sequel, we borrow ideas from Chen and Wee [CW13] as well as Gong et al. [GCTC16] where
latter proved the Lewko approach [Lew12] secure in the prime-order setting. Fortunately, as we will
argue in the respective section, a slight simplification of the Gong et al. security properties already
suffices to prove our CPE secure. However, we have to carefully examine the proof since our CPE
is not exactly comparable to Lewko’s approach.

Alternative viewpoint. We can view our approach in terms of forward-secure cryptography
(originating from works due to Günther [Gün90], Diffie et al. [DvW92], and Anderson [And00] on
forward-secure key-exchange and signatures). In particular, forward-secure public-key encryption
(fs-PKE) due to Canetti et al. [CHK03] is closely related to parts of our approach (essentially
the BTE approach). In fs-PKE, keys are associated to a time tk allowing to decrypt ciphertexts
encrypted for such time. While keys can be non-interactively updated to any time t′k > tk, cipher-
texts cannot be updated. Lee et al. [LCL+13] introduced the concept of self-updatable encryption
(SUE). In a SUE scheme a ciphertext and a secret key (generated via a master secret key) are
associated with a time tc and tk respectively. A user can decrypt a ciphertext with time tc using
a secret key with time tk if tk ≥ tc. Additionally, ciphertexts can be updated by anyone to any
time t′c > tc. However, keys in SUE cannot be updated and we do not see how to straightforwardly
equip their approach with key updating. (The main reason is the shared global randomness we need
across the ciphertext tree and which is only present in Lewko’s HIBE-based approach.) We want to
mention that both works also apply the Binary-Tree Encryption (BTE) approach [CHK03]. While
puncturable encryption (PE) closely mirrors fs-PKE (since keys can be punctured), our approach
extends fs-PKE and SUE to allow updating secret keys and ciphertexts consistently via puncture
tokens in CPE yielding new application areas such as UE.

Outline of the paper. In Section 3, we present preliminaries. In Section 4, we present our
strengthened and simplified security model starting from the UE framework of Boyd et al. [BDGJ20]
to reflect no-directional key updates and a simpler security model for such a feature. In Section 5,
we introduce Ciphertext Puncturable Encryption (CPE) along with our security model. Then, in
Section 5.2, we proceed to show how to instantiate UE with no-directional key updates from any
CPE scheme satisfying our security notion. Finally, in Section 6, we present our construction of CPE
from the dual system paradigm along with a discussion for our rationale of this choice. Moreover,
we give a concrete instantiation of CPE under the d-Lin assumption in prime-order bilinear groups.
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3 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter. For a finite
set S, we denote by s ← S the process of sampling s uniformly from S. For an algorithm A, let
y ← A(λ, x) be the process of running A on input (λ, x) with access to uniformly random coins
and assigning the result to y. (We may omit to mention the λ-input explicitly and assume that all
algorithms take λ as input.) To make the random coins r explicit, we write A(λ, x; r). We say an
algorithm A is probabilistic polynomial time (PPT) if the running time of A is polynomial in λ.
A function f is negligible if its absolute value is smaller than the inverse of any polynomial (i.e.,
if ∀c∃k0∀λ ≥ k0 : |f(λ)| < 1/λc). We may write q = q(λ) if we mean that the value q depends
polynomially on λ. We write sets in bold font, e.g., v = {v1, . . . , vn} for a set of size n ∈ N and
with components v1, . . . , vn. (We may also write v = (vi)i∈[n] or even v = (vi)i in this case.) We
may also write vectors in bold fonts which depends on the context, i.e., we use a component-wise
multiplication of vectors, i.e., v · v′ = (v1, . . . , vn) · (v′1, . . . , v′n) = (v1 · v′1, . . . , vn · v′n).

Pairings. Let G,H, GT be cyclic groups of order n′. A pairing e : G × H → GT is a map that is
bilinear (i.e., for all g, g′ ∈ G and h, h′ ∈ H, we have e(g · g′, h) = e(g, h) · e(g′, h) and e(g, h · h′) =
e(g, h) · e(g, h′)), non-degenerate (i.e., for generators g ∈ G, h ∈ H, we have that e(g, h) ∈ GT is a
generator), and efficiently computable.

Group generator. Let G(λ, n′) be a group generator that, given security parameter λ and integer
n′, generates the tuple (G,H, GT , N, g, h, (gpi)i∈[n′], e), for a pairing e : G×H→ GT , for composite-
order groups G,H, GT , all of known group order N = p1 · · · pn′ , generators gG, hH, (gpi)i∈[n′], and
for Θ(λ)-bit primes (pi)i. As a special case, let SG(λ, n′) be a group generator similar to G except
that it outputs (G, GT , N, g, (gpi)i∈[n′], e), for symmetric pairing e : G×G→ GT .

d-LIN assumption. For any PPT adversary D, we have that the function

Advd−LING,D (λ) :=|Pr
[
D(pars, gad+1(s1+···+sd)) = 1

]
− Pr

[
D(pars, gad+1(s1+···+sd)+sd+1) = 1

]
|

is negligible in λ, where (G,H, GT , p, e) ← G(λ, 1), s1, . . . , sd+1, a1, . . . , ad ← Zp, for pars :=
(G,H, GT , p, e, g, h, ga1 , . . . , gad+1 , ga1s1 , . . . , gadsd), for generators g and h of G and H, respectively.9

4 Updatable Encryption with No-Directional Key Updates and Expiry
Epochs

In this section, we recap updatable encryption with no-directional key updates and the enhancement
of expiry epochs. We build on the recent UE models [BDGJ20, Jia20] dealing solely with the natural
form of updatability namely security for UE schemes with no-directional key updates and forward-
directional ciphertext updates. This allows to simplify the security model for UE with no-directional
key updates significantly by avoiding the use of the rather complicated leakage-profile paradigms
(which come into play when considering weaker UE schemes that do not provide no-directionality
of keys).

The main idea of UE with expiry epochs is the following. On the very high level, all operations
are bound to discrete epochs 1, 2, . . . where keys and ciphertexts as well as so-called update tokens
are associated to. System setup Gen creates a first-epoch symmetric key K1. With this key, one
can create a first-epoch ciphertext C1,eexp ← Enc(K1,M, eexp), for some message M and expiry
epoch eexp, and, e.g., outsource C1,eexp to some semi-trusted third-party. With probabilistic Next,
K1 can be updated to K2 while also an update token ∆2 is generated. With ∆2, a semi-trusted
third-party, e.g., an outsourced service provider, can update C1 to C2,eexp ← Update(∆2, C1,eexp)
such that C2,eexp is “consistent” with K2. Correctness guarantees that decryption of C2,eexp yields
M = Dec(K2, C2,eexp) as intended if the ciphertext is not expired already (and so on). More formally:

Definition 1. A UE scheme UE with message space M consist of the PPT algorithms (Gen, Next,
Enc, Update, Dec):

9 The original definition of d-LIN requires a1, . . . , ad, sd+1 ← Zp; however, as in [CW14, Remark 12], we
allow for a negligible difference of (d+ 1)/p in the Advd−LIN

G,D function.

11



Gen(λ): on input security parameter λ, the key generation algorithm outputs an initial key K1.
Next(Ke): on input key Ke for e ∈ [e(λ) − 1]10, the key update algorithm outputs an updated key

Ke+1 for next epoch together with an update token ∆e+1.
Enc(Ke,M, eexp): on input key Ke, a message M ∈ M, and expiry epoch eexp, for e, eexp ∈ [e(λ)],

encryption outputs a ciphertext Ce,eexp .
Update(∆e+1, Ce,eexp): on input an update token ∆e+1 and a ciphertext Ce,eexp , decryption outputs

an updated ciphertext Ce+1,eexp or ⊥.
Dec(Ke, Ce,eexp): on input key Ke and a ciphertext Ce,eexp , decryption outputs M ∈M∪ {⊥}.
Correctness. Correctness ensures that an update of a valid ciphertext Ce,eexp (via ∆e+1) from
epoch e to e+ 1 yields a valid ciphertext Ce+1,eexp that can be decrypted under the epoch key Ke+1

which is derived from via Next(Ke) if the ciphertext is not already expired, i.e., eexp ≥ e + 1 must
hold for correct decryption in epoch e+ 1.

More formally, for all λ ∈ N, for K1 ← Gen(λ), for all e ∈ [e(λ)− 1], for all

(Ke+1, ∆e+1)← Next(Ke),

for all M ∈M, for all eexp ∈ [e(λ)], for all e′ ∈ [e(λ)], for all

Ce′,eexp ← Enc(Ke′ ,M, eexp),

we require that M = Dec(Ke′ , Ce′,eexp) holds if eexp ≥ e′.
Moreover, for all j ∈ {0, 1, . . .}, for all

C ′j+1,eexp ← Update(∆e+1, C
′
j,eexp)

where C ′0,eexp = Ce,eexp , we have that M = Dec(Ke′ , C
′
e′,eexp

) holds if eexp ≥ e′.

Security notion. We particularly consider the attack that an adversary can downgrade keys using
tokens. This is because one could build an UE scheme that has no forward-directional but can have
backward-directional key updates and this would still be secure in the model of Boyd et al. and
Jiang (cf. [Nis21]). Since we want ciphertexts that can expire, token in the expiry epoch should not
be of help to downgrade a key from the next epoch.

We will dub our CPA security notion with expiry epochs EE-IND-UE-CPA. Essentially, it ensures
that fresh and updated ciphertexts are indistinguishable even if the adversary has access to keys and
update tokens. (In particular, we want a strong and natural CPA notion capturing all attacks we
described.) We say that an UE scheme is EE-IND-UE-CPA-secure if any PPT adversary A succeeds
in the following experiment only with probability negligibly larger than 1/2.

The experiment starts by computing the initial secret key K1 ← Gen(λ) and computes all secret
keys and update tokens by iteratively invoking (Ke+1, ∆e+1) ← Next(Ke), for e ∈ [be(λ)c − 1].
During the experiment, the adversary has access to an encryption oracle Enc′. The adversary first
outputs the target epoch e∗, the “firewall” epoch eend, as well as a target ciphertext’s expiry epoch
eexp. Furthermore, the experiment tosses a coin b← {0, 1} and returns b if the the target epoch is
not within the firewall boundaries, i.e., eend ≤ e∗, or if the challenge ciphertext expires before the
target epoch, i.e., eexp < e∗.

During the experiments, the adversary receives all keys except for the epochs e∗, . . . ,min(eend, eexp)
where the adversary has access to the challenge ciphertext from e∗ onwards (to avoid trivial wins).
Moreover, it receives all update tokens with one exception, namely if eexp ≥ eend, then it does not
receive the token for eend.

At some point, the adversary outputs a target message and a target ciphertext for any prior-
challenge epoch ẽ < e∗ with associated expiry epoch eexp. If the target ciphertext was not queried
in any epoch prior to the challenge epoch, then the experiment outputs bit b.11 If the bit b = 0,
then the experiment encrypts the message which yields a fresh challenge ciphertext with expiry
tag eexp for target epoch e∗; otherwise, the experiments updates the adversarial target ciphertext
to the current target epoch e∗. The resulting challenge ciphertext is send to the adversary and it
eventually outputs a guess b′ and succeeds if b = b′. More formally:

10 For any polynomial integer e in the security parameter λ.
11 This enforces that we only deal with honestly generated ciphertexts that can be tracked as in previous

UE models, particularly as in [LT18, BDGJ20, Jia20].
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Definition 2 (EE-IND-UE-CPA security). A UE scheme UE is EE-IND-UE-CPA-secure iff for any
PPT adversary A, the advantage function

Advee-ind-ue-cpaUE,A (λ) :=
∣∣∣Pr

[
Expee-ind-ue-cpaUE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expee-ind-ue-cpaUE,A is defined as in Figure 6.

Experiment Expee-ind-ue-cpaUE,A (λ)
K1 ← Gen(λ)
for e ∈ [be(λ)c − 1] do

(Ke+1,∆e+1)← Next(Ke)
L := ∅, b← {0, 1}
(e∗, eend, eexp, st)← AEnc′(λ)
if eend ≤ e∗ or eexp < e∗

then return b
~Ke := (Ke)e∈[be(λ)c]\{e∗,...,min(eend,eexp)}
if eexp ≥ eend then
~∆e+1 :=(∆e+1)e∈[be(λ)c−1]\{eend}

else
~∆e+1 :=(∆e+1)e∈[be(λ)c−1]

(M∗, C∗ẽ,ẽexp , st)←AEnc′( ~Ke, ~∆e+1, st)
if (ẽ, C∗ẽ,ẽexp) 6∈ L ∨ ẽ ≥ e

∗ ∨ ẽexp 6= eexp
then return b

for e = ẽ+ 1, . . . , e∗ do
C∗e,eexp ← Update(∆e, C

∗
e−1,eexp)

C∗0 ← Enc(Ke∗ ,M
∗, eexp)

C∗1 := C∗e∗,eexp
b′ ← AEnc′(C∗b , st)
if b = b′ then return 1 else return 0

Explanation

// Initial key

// All keys and tokens

// Initialize list and bit

// Target, end, and expiry epochs

// Abort if not correctly distributed

// All keys

// All tokens except the one for eend

// All tokens

// Run A on keys and tokens

// Abort if C∗ẽ,ẽexp is invalid

// Update to pre-target epoch

// Fresh ciphertext

// Updated ciphertext

// Run A on challenge ciphertext

// Check winning condition

Encryption oracle
Enc′(e,M, eexp) : on input epoch e ∈ [be(λ)c], message M ∈ M, and expiry epoch eexp, returns

ciphertext Ce,eexp ← Enc(Ke,M, eexp) and sets L := L ∪ (e, Ce,eexp).

Fig. 6. The EE-IND-UE-CPA security notion for UE.

On the adversarially chosen target, firewall end, and expiry epochs. We let the adversary
output the target epoch e∗, the firewall end epoch eend, and the expiry epoch eexp before seeing
any keys and tokens (however, it can query ciphertexts). This is done to simplify the description
of the model and is asymptotically equivalent to the adaptive notions in [LT18, BDGJ20, Jia20]
due to the fact that epochs evolve sequentially and, hence, only polynomially many epochs and a
single target epoch exist. We argue that any successful adversary in adaptive UE setting can be
transformed in a successful adversary in our UE setting generically with a reduction loss polynomial
in the security parameter.

Such simple reduction would guess the target epoch e∗, the firewall epoch eend, and the expiry-
epoch eexp for the adaptive UE adversary while outputting e∗, estart, eexp to our challenger. This
challenger would generate all keys and tokens and send the respective values to the reduction
which are used to answer the oracle queries by the adaptive adversary. If the adaptive adversary
decides to query a challenge in e∗, we forward the challenge ciphertext to the adaptive adversary.
Note that the reduction is also capable of answering requested update tokens until eend for our
setting as well as requests for further keys and update tokens until be(λ)c. Encryption queries from
the adaptive adversary can be answered directly since the reduction has all keys for all epochs.

If the adaptive UE adversary outputs its guess, then the reduction returns this guess to the
our challenger. In any other cases, the reduction outputs a random bit b′ ← {0, 1}. Now, if the
adaptive adversary is successful with probability ε, then the reduction yields a successful adversary
in our sense and it runs in PPT. Since be(λ)c is polynomially bounded, we have that the success
probability of the reduction is bounded by ε/e(λ)3 which is significant.

How forward and post-compromise security is modeled. As already implicit in Jiang [Jia20],
via forward-directionality in key-updates, we achieve strong post-compromise security. By requiring
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in our model that a current-epoch key cannot be downgraded and update tokens cannot be used
to downgrade ciphertexts, together with expiry epochs allows us to achieve strong forward security
in particular when downgrading goes below the expiry epoch.

5 Updatable Encryption with No-Directional Key Updates and Expiry
Epochs from Ciphertext Puncturable Encryption

In this section, we introduce a novel primitive dubbed Ciphertext Puncturable Encryption (CPE),
provide a CPE security model, and show how one can construct UE with no-directional key updates
and expiry epochs from CPE. Essentially, CPE views our strong variant of UE from a puncturable-
encryption perspective.

5.1 (Symmetric) ciphertext puncturable encryption

Ciphertext Puncturable Encryption (CPE) augments plain Puncturable Encryption (PE) [GM15,
GHJL17, DJSS18, DKL+18, SSS+20, SDLP20] to also support “puncturing” of ciphertexts instead
of puncturing keys only. We recall that despite being slightly different in their concrete formulation
(e.g., allowing single or multiple tags per ciphertext), existing PE schemes all provide the same
basic idea in their functionality, i.e., that they allow to puncture (secret) keys in a way that they
can no longer decrypt certain ciphertexts. The distinguishing feature of our CPE is that puncturing
on keys is synchronized with ciphertext puncturings. Notable, we define CPE as a symmetric-key
primitive extending the definitions of PE used in prior work [SYL+18, AGJ19, AGJ21, BDdK+21].

A CPE scheme has the syntax of a symmetric PE scheme, i.e., consisting of the PPT algorithms
Gen, Enc, Dec, KPunc, but has an additional ciphertext-puncturing algorithm CPunc. In plain
symmetric PE, only keys are punctured on any sequence of tags. In our PE variant, ciphertexts can
be additionally punctured on any sequence of tags. The correctness now guarantees that a key can
decrypt a ciphertext as long as there is at least one tag from an ordered tagspace T = {t1, t2, t3, . . .}
on which neither the key K nor the ciphertext C have been punctured. For example, if K is
punctured on tag t1 and C is punctured on t1, t2, then decryption succeeds since neither K nor
C was punctured on t3 for example. This may sound counter-intuitive (essentially because as it
seems that one can always decrypt if the tag space is large enough), but as we will see next via
introducing expiry tags it exactly serves our desired purpose (and is indeed different to plain PE).

More precisely, a simple translation of key puncturing of plain PE to ciphertext puncturing in
CPE introduces the problem that ciphertexts can be decrypted at any time, particularly, if the
tag space is of exponential size. Essentially, in PE one starts with an unpunctured key and is
able to add tags from an exponentially large tag space to that key which translate to ciphertext
puncturing in the sense that the ciphertext is now valid for many keys when crafted. To mitigate
this, we introduce an “expiry tag” for ciphertexts such that after all tags smaller or equal to this
tag are punctured in the ciphertext, the corresponding key cannot decrypt this tagged ciphertext
anymore. Note that below we use the convention that if no expiry tag texp < max(T ) is desired for
Enc, we simply treat the supplied tag as texp = max(T ).

Ciphertext puncturing is not a fully public operation but requires some puncture token which is
obtained from the respective key puncturing. Hence, we have a “coupled” synchronization between
key and ciphertext puncturing via a puncture token, e.g., ∆t that is used for ciphertext puncturing
on tag t to make it consistent with puncturings on secret keys.

We now define CPE with its correctness and security notions.

Definition 3 (Ciphertext Puncturable Encryption). A Ciphertext Puncturable Encryption
(CPE) scheme CPE with ordered tag space T of polynomial size in the security parameter λ and
message space M consists of the PPT algorithms (Gen,KPunc,Enc,CPunc,Dec):

Gen(λ) : on input security parameter λ, outputs initial key K.
KPunc(K, t) : on input key K and tag t ∈ T , outputs a punctured key K ′ and a puncture token

∆t.
Enc(K,M, texp) : on input key K, message M ∈ M, and expiry tag texp ∈ T , outputs a ciphertext

C.
CPunc(C,∆t) : on input ciphertext C and puncture token ∆t, outputs a punctured ciphertext C ′.
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Dec(K,C) : on input key K and ciphertext C, outputs message M ∈M or ⊥.

Correctness. Correctness ensures that for all punctured keys, the ciphertexts under the corre-
sponding key are successfully decryptable as long as not all tags smaller or equal than the expiry
tag of those ciphertexts are punctured from the key.

More concretely, for all λ, n ∈ N, for all Kε ← Gen(λ), for all {tj}j∈[n] ∈ (T )n and any (arbitrary
interleaved) sequence of invocations of

(Kj , ∆tj )← KPunc(Kj−1, tj),

where j ∈ [n] and K0 := Kε, for all M ∈M, for all {texp,i}i∈[n] ∈ (T )n with texp,i ≥ max(t1, . . . , tn),
for all Ci ← Enc(Ki,M, texp,i), we require that Dec(Ki, Ci) = M , for i ∈ [n] ∪ {0} holds.

Furthermore, for any (arbitrary interleaved) sequence of invocations of

C ′j ← CPunc(C ′j−1, ∆tj ),

where j ∈ {j′, j′ + 1, . . . , n} for j′ ← [n] ∪ {0}, C ′j−1 := Cj−1, we require that Dec(Kj , C
′
j) = M

holds.

Intuition of our security notions for CPE. Compared to plain PE, we now use puncture tokens
not present in PE which introduces higher burdens on the security guarantees. See that such
puncture tokens can potentially be used to also puncture keys or even unpuncture keys and/or
ciphertexts. In that vein, we define an indistinguishability-based notion, dubbed IND-CPE-CPA,
which guarantees that freshly generated ciphertexts cannot be distinguished from punctured ones.
Of course, the adversary must not trivially win the game, hence, we also require that no tags up
to the expiry tag of the challenge ciphertext are left in keys and ciphertexts. In particular, we only
want to allow puncturing of ciphertexts via the puncture token, but keys must not be eligible to
being punctured/unpunctured via tokens. This carried out via a key-puncturing oracle which the
adversary can query to retrieve punctured keys and tokens.

IND-CPE-CPA security. We say that a CPE scheme is IND-CPE-CPA-secure if any PPT adversary
succeeds in the following experiment only with probability negligibly larger that 1/2.

The experiment starts by computing the initial key Kε ← Gen(λ). The key is not punctured
as indicated by ε and will be punctured on tags via an oracle KPunc′ during the experiment.
During the entire experiment, the adversary has access to encryption oracle Enc′. Let Kt be the
key associated to the (currently largest) punctured-tag set t. As in previous PE schemes, we define
the notion in a tag-selective setting, i.e., the adversary in the initialization phase has to first commit
to a target tag t∗, expiry tag t∗exp, and a “window” tag t∗win. With this window tag, we want to allow
the adversary to puncture the challenge ciphertext (on ordered tags t∗, . . . , t∗win) without being able
to trivially decrypt it; t∗exp denotes the expiry tag of the target and challenge ciphertexts. After the

initialization phase, the adversary then has fully adaptive access to a KPunc′-oracle. Notably, the
adversary retrieves Kε in the initialization phase.

At some point, the adversary outputs a target message M∗ and a target ciphertext C∗t,t∗exp that

was not punctured on t∗ yet. The experiment iteratively proceeds with puncturing the current key
on all tags tj ≤ t∗ to retrieve (Kj , ∆tj ). Furthermore, the experiment tosses a coin b. If b = 0, then
it computes a fresh encryption C0 of the target message M∗ under the latest punctured key using
Enc and expiry tag t∗exp; otherwise, if b = 1, then it computes a punctured ciphertext C1 using
CPunc with ∆t∗ . The adversary eventually outputs a guess b′ where the experiment returns 1 if
b′ = b. Figure 7 depicts the experiment.

Definition 4 (IND-CPE-CPA security). A CPE scheme CPE is IND-CPE-CPA-secure iff for any
valid PPT adversary A the advantage function

Advind-cpe-cpaCPE,A (λ) := |Pr
[
Expind-cpe-cpaCPE,A (λ) = 1

]
− 1/2 |

is negligible in λ, where Expind-cpe-cpaCPE,A is defined as follows:

5.2 UE with no-directional key updates and expiring ciphertexts from CPE

In this section, we construct updatable encryption with no-directional key updates and expiry
epochs from ciphertext puncturable encryption. We can see that UE is essentially a sequenced
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Experiment Expind-cpe-cpaCPE,A (λ)
Kε ← Gen(λ)
b← {0, 1}, L := ∅, t := ∅
(t∗, t∗win, t

∗
exp, st)← AEnc′(λ,Kε)

if t∗win ≤ t∗ or t∗exp < t∗

then return b
(M∗, C∗t′,t′exp , st)← AEnc′,KPunc′(st)

if (t, C∗t′,t′exp) /∈ L or t′exp 6= t∗exp
then return b

K0 := Kt, C0 := C∗t′,t′exp
For all (t1, t2, . . . , tn) with tj /∈ t and tj ≤ t∗,

(Ktj ,∆tj )← KPunc(Ktj−1 , tj)
Cj ← CPunc(Cj−1,∆tj )
Kt := Ktj , t := t ∪ {tj}

C0 ← Enc(Kt,M
∗, t∗exp)

C1 := Cn
b′ ← AEnc′,KPunc′(Cb, (Ktj )tj 6=t∗ , (∆tj )j , st)
if b = b′ then return 1 else return 0

Explanation

// Initial key

// Retrieve target, window, and expiry tags

// Abort if not correctly distributed

// Retrieve targets

// Abort if not correctly distributed

// Puncture all tags ≤ t∗ to avoid trivial wins

// Fresh challenge ciphertext

// Punctured challenge ciphertext

// Run A on challenge

// Check winning condition

Encryption oracle
Enc′(M, texp) : on input M and texp, compute Ct,texp ← Enc(Kt,M, texp), set L := L ∪ {(t, Ct,texp)}.

Return Ct,texp .

Key puncturing oracle
KPunc′(t) : on input t, if t ∈ t, return ⊥. Otherwise, compute (K′t∪{t},∆

′
t) ← KPunc(Kt, t), set

Kt := K′t∪{t} and t := t ∪ {t}.
– If t ∈ {t∗, . . . ,min(t∗exp, t

∗
win)} then set K′t := ⊥, else set K′t := Kt.

– If t∗exp ≥ t∗win and t = t∗win then set ∆′t := ⊥.
– Return (K′t,∆

′
t).

Fig. 7. The IND-CPE-CPA security notion for CPE.

version of CPE, i.e., in the speak of CPE, we only have ordered tags which we map to epochs
sequentially. Particularly, we use key puncturing for generating the next UE key (i.e., puncturing
the old-epoch key) and use ciphertext puncturing for updating ciphertexts (i.e., puncturing old-
epoch ciphertexts). Encryption and decryption directly map to UE’s encryption and decryption, re-
spectively. More concretely, let CPE = (CPE.Gen,CPE.KPunc,CPE.Enc,CPE.CPunc,CPE.Dec) with
message space MCPE and tag space T = {1, 2, . . . , be(λ)c} be a CPE scheme. We present our UE
scheme UE = (Gen,Next,Enc,Dec) with message space M :=MCPE in Figure 8 and further show
correctness as well as EE-IND-UE-CPA security.

Gen(λ) : compute Kε ← CPE.Gen(λ) and (K1,∆1)← CPE.KPunc(Kε, 1), and return K1.
Next(Ke) : return

(Ke+1,∆e+1)← CPE.KPunc(Ke, e+ 1).

Enc(Ke,M, eexp) : return
Ce,eexp ← CPE.Enc(Ke,M, eexp).

Update(∆e+1, Ce,eexp): return

Ce+1,eexp ← CPE.CPunc(Ce,eexp ,∆e+1).

Dec(Ke, Ce) : return
M := CPE.Dec(Ke, Ce,eexp).

Fig. 8. Construction of UE from CPE.

For correctness, see that this directly translates from the CPE scheme, i.e., the ciphertexts that
were computed by Enc and/or updated via Update can be decrypted by Dec if the keys match and
the ciphertext is not expired.
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Theorem 1. If CPE is IND-CPE-CPA secure, then UE is EE-IND-UE-CPA secure. Concretely, for
any PPT adversary A there is a distinguisher D in the IND-CPE-CPA security experiment, such
that Advind-cpe-cpaCPE,D (λ) ≥ Advee-ind-ue-cpaUE,A (λ).

Proof. We show the Theorem by constructing a PPT distinguisher D in the IND-CPE-CPA se-
curity experiment with CPE as defined in Figure 7 from any successful PPT adversary A in the
EE-IND-UE-CPA security with UE as defined in Figure 6.

Description of reduction. D starts A and receives (e∗, eend, eexp). If the A-input does not have
the right distribution as defined in Figure 6, then output b← {0, 1}. D then outputs

(t∗ := e∗, t∗win := eend, t
∗
exp := eexp)

to its IND-CPE-CPA challenger. Then, D queries its key-puncture oracle ({Ke,⊥}, {∆e,⊥}) ←
KPunc′(Ke−1, e) (with K0 = Kε), for all e ∈ [be(λ)c], from its IND-CPE-CPA challenger. See that
D does not receive keys Ke for e = e∗, . . . ,min(eend, eexp) and no update token ∆eend+1 for eend if
eexp ≥ eend. D sets ∆1 := ⊥. If eexp ≥ eend, then D sends

~Ke = (Ke)e∈[be(λ)c]\{e∗,...,eend} and ~∆e+1 = (∆e+1)e∈[be(λ)c]\{eend}

to A. Otherwise, i.e., if eexp < eend, then D sends to A:

~Ke = (Ke)e∈[be(λ)c]\{e∗,...,eexp} and ~∆e+1 = (∆e+1)e∈[be(λ)c].

During the reduction, encryption queries in epoch e ∈ [be(λ)c] to Enc′(M, e′exp) with expiry epoch

e′exp are forwarded to D’s encryption oracle which returns Ce,e′exp ← Enc′(M, e′exp) and set L :=
L∪{(e, Ce,e′exp)}. D receives (M∗, C∗ẽ,eexp) from A and checks if (ẽ, C∗ẽ,eexp) ∈ L and returns b← {0, 1}
if not. If ẽ < e∗ − 1, then iteratively run

C∗e,eexp ← Update(C∗e−1,eexp , ∆e),

for e = ẽ + 1, . . . , e∗ − 1. D forwards (M∗, C∗e∗−1,eexp) to its IND-CPE-CPA challenger. D receives
(Cb, ·, ∆e∗) and forwards Cb to A. Eventually, A outputs a guess b′ which is forwarded to D’s
challenger.

Analysis of reduction. The IND-CPE-CPA distinguisher D is able to provide a consistent view
for EE-IND-UE-CPA adversary A for keys (Ke)e. Enc

′-answers also yield a consistent view for A, for
all e ∈ [be(λ)c]. Now, if A is a successful PPT adversary in the EE-IND-UE-CPA security experiment
with UE, then D is a successful PPT adversary in the IND-CPE-CPA security experiment with CPE
which shows the Theorem. ut

6 CPE from d-Lin from Standard Assumptions

We recall that due to Günther et al. [GHJL17], we know that we can obtain Puncturable Encryp-
tion (PE) in bilinear groups and in particular from any hierarchical any identity-based encryption
(HIBE) scheme [HL02, GS02, BBG05]. However, for our CPE construction which also allows “dele-
gation” of ciphertexts, basing it on plain HIBE (or BTE as a relaxation) techniques does not work.
But as we have discussed in Section 2, we can utilize underlying building blocks used to prove strong
security of HIBEs, namely the dual system group (DSG) abstraction due to Chen-Wee and Gong
et al. [CW13, GCTC16] which can be instantiated from the standard d-Lin assumption in prime-
order bilinear groups in the standard model. Interestingly, the dual-system approach provides us
with elements we need for puncturing ciphertext elements and to prove security quite conveniently.
The richness of such dual-system proof paradigm was demonstrated in several prior works already
(e.g., [Wat09, LW10, LW11, OT12, CW13, HKS15, AHY15, GCD+16, GCTC16, GWW19, GW20]).

The concept of (Extended) Dual System Groups (EDSGs) [CW13, GCTC16] is particularly
useful to prove BTE/HIBE schemes strongly secure. The main observation for our intentions is that
plain EDSG also provides elements that we can use for puncturing ciphertexts. In their HIBEs-
from-EDSG work [GCTC16], Gong et al. simply did not need such elements (as HIBEs/BTEs do
not provide such a feature), but as it turns out, those elements are of central interest for us to
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allow puncturing of ciphertexts and beyond. To look ahead, a puncture token will be a uniform
BTE key (determined by the tag to be punctured on) under a uniform main secret key without
delegating features and will only work for updating the intended ciphertext which yields the desired
functionality (since such tokens cannot update keys).

On a specific note it is important to say that we only have to deal with one challenge ciphertext
(that can be punctured with respective tags adaptively) and one challenge secret key (that also
can be punctured with respective tags adaptively) which allows us to simplify the underlying dual-
system instantiation in the sense that we do not need the “full power” thereof. This has the benefit
that the proof can be adapted quite straightforwardly to our setting (nevertheless, we carefully
examine it in this work). All in all, this broadens the use of the dual-system paradigm to further
application domains such as puncturable and updatable encryption.

6.1 Dual system groups

We will now recap EDSGs and, in particular, we only need a relaxed version of it and not all features
of the EDSG from [GCTC16]. We want emphasize that we only left out not necessary features and
did not add anything to the syntax, correctness, or security. Hence, we can safely assume that
our relaxed version is implied by the full EDSG version of [GCTC16]. Our relaxed EDSG EDSG

consists of the PPT algorithms (SampP,SampG,SampH,SampS,SampK, ŜampG, ŜampH):
SampP(λ, n): parameter sampling, given security parameter λ and parameter n ∈ N, samples

(G,H, GT , N, (gpi)i∈[n′], e)← G(λ, n′), for n′ determined in SampP, and outputs public param-

eters pp = (G,H, GT , N, e,m, pars) and secret parameters sp = (ĥ, p̂ars), where m : H → GT
is a linear map, ĥ 6= 1 is an element of the group generated by hs (see ŜampH) and gs is an

element of the group generated by ĝ 6= 1 (see ŜampG), and pars, p̂ars may contain arbitrary
information.

SampG(pp): given pp, outputs g = (g0, . . . , gn) ∈ Gn+1.
SampH(pp): given pp, outputs h = (h0, . . . , hn) ∈ Hn+1.
SampS(pp): given pp, outputs S ∈ G.
SampK(pp): given pp, outputs K ∈ H.

ŜampG(pp, sp): given pp and sp, outputs ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1 and gs ∈ G.

ŜampH(pp, sp): given pp and sp, outputs ĥ = (ĥ0, . . . , ĥn) ∈ Hn+1 and hs, ha ∈ H.

Correctness of EDSG. For correctness, for all λ ∈ N, for all integers n = n(λ) > 1, for all pp,
where pp is the first output of SampP(λ, n), we require:
Projective. For all s← Z∗N , for all h ∈ H, we have m(h)s = e(SampS(pp; s), h).
Orthogonality. For all (h0, . . . , hn) ∈ Hn+1 ← SampH(pp) and S ← SampS(pp), we require

e(S, hi) = 1, for all i ∈ [n]. For all (g0, . . . , gn) ∈ Hn+1 ← SampH(pp) and K ← SampS(pp), we
require e(g0,K) = 1.

Associativity. For all (g0, . . . , gn)← SampG(pp) and for all (h0, . . . , hn)← SampH(pp), we require

e(g0, hj) = e(gj , h0),

for all j ∈ [n].
G- and H-subgroups. The outputs of SampG and SampK are uniformly distributed over the

generators of non-trivial subgroups of G and Gn+1, respectively (that only depend on pp).
The outputs of SampH and SampS are uniformly distributed over the generators of non-trivial
subgroups of H and Hn+1, respectively (that only depend on pp).

Security of EDSG. For security, for all λ ∈ N, for all integers n = n(λ) > 1, for all (pp, sp) ←
SampP(λ, n), we require:

Orthogonality. For m specified in pp, for ĥ specified in sp, we require m(ĥ) = 1. (Note that by

the projective property, for S as the output of SampS(pp), we have e(S, ĥ) = 1.)

Non-degeneracy. For any hs which is the second-to-last output of ŜampH(pp, sp), ĥ lies in a

subgroup group of hs. For any gs which is the last output of ŜampG(pp, sp), gs lies in a subgroup
group of ĝ.

Left-subgroup indistinguishability (LS). For any PPT adversaryD, we have that the function

AdvlsEDSG,G,D(λ, n) := |Pr [D(pp,g) = 1]− Pr [D(pp,gĝ) = 1] |
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is negligible in λ, where g← SampG(pp) and ĝ← ŜampG(pp, sp).
Right-subgroup indistinguishability (RS). For any PPT adversary D, we have that the func-

tion

AdvrsEDSG,G,D(λ, n) := |Pr
[
D(pp, ĥ,gĝ,h) = 1

]
− Pr

[
D(pp, ĥ,gĝ,hĥ) = 1

]
|

is negligible in λ, where g← SampG(pp), ĝ, ·)← ŜampG(pp, sp), h← SampH(pp), and (ĥ, ·, ·)←
ŜampH(pp, sp), for ĥ specified in sp.

Parameter-hiding. The distributions {pp, ĝ, ĥ, ĝ, ĥ} and {pp, ĝ, ĥ, ĝĝ′, ĥĥ′} are identically dis-

tributed, where (ĝ = (ĝ0, . . . , ĝn), gs)← ŜampG(pp, sp), (ĥ = (ĥ0, . . . , ĥn), hs, ha)← ŜampH(pp, sp),

ĝ′ = (1, gγ1s , . . . , g
γn
s ), and ĥ′ = (1, hγ1s , . . . , h

γn
s ), for γ1, . . . , γn ← ZN and ĝ, ĥ specified in sp.

Computational non-degeneracy (ND). For any PPT adversary D, we have that the function

AdvndEDSG,G,D(λ, n) := |Pr
[
D(pp,S · gĝ,K · ĥα, e(S,K)) = 1

]
− Pr

[
D(pp,S · gĝ,K · ĥα, R = 1

]
|

is negligible in λ, where S = (S, 1, . . . , 1) with S ← SampS(pp), g ← SampG(pp), (ĝ, ·) ←
ŜampG(pp, sp), K ← SampK(pp), h← SampH(pp), for ĥ specified in sp, for α← ZN , R← GT .

Construction of EDSG in prime-order groups. In comparison to the Gong et al. EDSG [GCTC16],
we only omitted the 2nd LS and the asymmetric parameter-hiding properties to have a more con-
cise presentation (and we do not need such properties in our instantiation due to the fact that we
do not deal with many independent ciphertext instances sharing the same public key, a property
Gong et al. need). For completeness, we provide their concrete prime-order instantiation which we
denote as EDSG below inSubsection 6.4.We conclude:

Corollary 1. EDSG is an EDSG under the d-Lin assumption.

6.2 Helper algorithms

To construct a ciphertext puncturable encryption scheme from extended dual system groups, we
implicitly arrange tags of the CPE scheme associated to the key or ciphertext in a complete binary
tree, i.e., the nodes represent a prefix bit representation of the tags and the root of the tree
is associated with the initial key Kε or ciphertext Cε,texp of the CPE (as also discussed in the
introduction with Figure 5).

We define additional PPT helper algorithms KTrunc and CTrunc within a CPE scheme to prune
the tree to output a punctured key-token pair and a punctured ciphertext, respectively, which
in turn will correspond to CPE’s KPunc and CPunc algorithms, respectively. Encryption is done
according to an (already punctured) key where the ciphertext parts are built according to the
pruned tree.

Intuition of KTrunc. Essentially, KTrunc takes the current binary-tree configuration as provided
in the key (i.e., which tags are already punctured and, hence, how the tree is pruned for such tags
analogously to Figure 5 in the motivation section). It receives an input tag t that will be punctured.
KTrunc first finds all nodes from the root to the associated leaf of tag t. (Since those nodes can be
used to derive a secret key for tag t.) It delegates the key nodes on that path such that no ancestor
nodes for t are available anymore and keeps the other key nodes. Furthermore, a puncture token is
generated for t. Such puncture token can only be used for ciphertexts that do not have t punctured
already. The result is a pruned tree configuration that excludes key material for t for the new set
of punctured tags t ∪ {t}. The concrete PPT algorithm works as follows:

KTrunc(Kt, t) : on input key Kt = (pp,m(mskt),Kt,1, . . . ,Kt,j), for some integer j ∈ O(λ), output
punctured key-token pair according to t = (t1, . . . , t`) ∈ {0, 1}` as follows:

1 Find the unique inner or leaf node key element Kt,i which is associated to a unique prefix
of t. Such unique node always exists, otherwise t would have been punctured already.

2a. If Kt,i is associated to an inner node, derive key elements hanging from the path to t by
iteratively calling KDel on all prefixes of t starting from the node associated to Kt,i and
set K ′t := (pp,m(mskt),K

′
t,≤j ,K

′
t,j+1,K

′
t,j+2, . . . ), where K ′t,≤j is the same as in Kt, but

without Kt,i, and K ′t,j+1,K
′
t,j+2, . . . are those derived delegated key elements via KDel

hanging from the path to t.

19



2b. If Kt,i is associated to a leaf node, then set K ′t := (pp,m(mskt),K
′
t,≤j), where K ′t,≤j is

the same as in Kt, but without the leaf-node associated key element Kt,i.
3. Sample δ ← SampK(pp) and for all K ′t-elements K ′t,i =: (h0,mskt · · · , . . .), compute
K ′t∪{t},i := (h0,mskt · δ · · · , . . .) and set K ′t∪{t} := (pp,m(mskt · δ), (K ′t∪{t},i)i)

4. Sample (h0, . . . , h2`)← SampH(pp) and compute ∆t := (h0, δ ·
∏`
i=1 h2i−ti ,m(δ ·mskt)).

5. Re-randomize K ′t∪{t} to obtain K ′′t∪{t} ← KRerand(K ′t∪{t}).

5. Output (K ′′t∪{t}, ∆t).

Intuition of CTrunc. Essentially, CTrunc works analogously to KPunc, but for ciphertexts. It takes
the current tree configuration as provided in the ciphertext (i.e., which tags are already punctured
and, hence, how the tree is pruned for such tags). It further receives an input tag t that will be
punctured with the help of a puncture token ∆t. CTrunc first finds all elements from the root to
the associated leaf of tag t. (Since those elements can be used to derive a potentially decryptable
ciphertext element for tag t.) It delegates the ciphertext elements on that path such that no ancestor
elements for t are available anymore and keeps the other ciphertext elements. The result is a pruned
tree configuration that excludes ciphertext material for t for the new set of punctured tags t∪ {t}.
The PPT algorithm works as follows:

CTrunc(Ct,texp , ∆t∪{t}) : on input ciphertext Ct,texp = ((Ct,i)i∈[j], . . . ,m(mskt)
s ·M)), for some in-

teger j ∈ O(λ), and ∆t = (∆0, ∆1) = (h0, δ ·
∏`
i=1 h2i−ti , ·mskt) output a punctured ciphertext

as follows:
1 Find the unique inner or leaf node ciphertext element Ct,i which is associated to a unique

prefix of t. Such unique node always exists, otherwise t would have been punctured already.
2a. If Ct,i is associated to an inner node, derive delegated ciphertexts hanging from the path

to t by iteratively calling CDel on all prefixes of t starting from the node associated to Ct,i

and set C ′t := (C ′t,≤j , C
′
t,j+1, C

′
t,j+2, . . . ), where C ′t,≤j is the same as Ct,texp , but without

Ct,i, and C ′t,j+1, C
′
t,j+2, . . . are those ciphertext elements derived via CDel hanging from

the path to t.
2b. If Ct,i is associated to a leaf node, then set C ′t := C ′t,≤j , where C ′t,≤j is the same as Ct,texp ,

but without the leaf associated ciphertext Ct,i.

3. Let Ct,i = (C0, C1, . . .) = (S · g0,
∏`
j=1 g2j−tj , . . . ) be the ciphertext associated to t found

in the previous step. Compute

e(S, δ) :=
e(C0, ∆1)

e(C1, ∆0)
=
e(S · g0, δ ·

∏`
j=1 h2j−tj )

e(
∏`
j=1 g2j−tj , h0)

(1)

and m(mskt)
s ·M · e(S, δ) ·M) = e(S,mskt) · e(S, δ) ·M) = m(mskt · δ)s ·M .

4. Set C ′t∪{t},texp := ((C ′′t∪{t},i)i, e(S
′,mskt·δ)·M), for fresh S′ = S·S′′ with S′′ ← SampS(pp; s′′)

using m(δ · mskt)s′′ = e(S′′, δ · mskt) for uniform s′′ ← ZN . Furthermore, use S′′ to re-
randomize the first components of C ′′t∪{t},i)i to derive (C ′′t∪{t},texp := (C ′′t∪{t},i)i, e(S

′,mskt ·
δ) ·M).

5. Re-randomize all elements in C ′′t∪{t},texp by computing C ′′′t∪{t} ← CRerand(C ′′t∪{t},texp,i).

6. Output C ′′′t∪{t},texp .

Intuition of KDel, KRerand, CDel, SCDel and CRerand. Essentially, KDel delegates secret key
material as done in binary-tree encryption key delegation where KRerand re-randomizes the key
material. CDel delegates ciphertext material as done in the ciphertext delegation for normal cipher-
text (as discussed in the motivation section) where CRerand re-randomizes the ciphertext material.
The concrete PPT algorithms work as follows:

KDel(Kt,i, t`′) : on input key Kt,i = (K0,K, . . . ,K2`) and bit t`′ , output

(K0,K ·K2`′−t`′ ,K2`′+1, . . . ,K2`).

KRerand(Kt) : on input key Kt = (pp,m(mskt), (Kt,i)i) with

Kt,i = (Ki,0,Ki,Ki,2`′+1, . . . ,Ki,2`),
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for all i, sample fresh (h0, h1, . . . , h2`)← SampH(pp), and compute

K ′t,i := (Ki,0 · h0,Ki ·
`′∏
j=1

h′2j−tj ,Ki,2`′+1 · hi,2`′+1, . . . ,Ki,2` · h2`),

where t = (t1, . . . , t`′) is the key element associated prefix. Output (pp,m(mskt), (K
′
t,i)i).

CDel(Ct,i, t`′) : on input ciphertext Ct,i =: (C0, C, · · · , C2`′−1, C2`′ , . . . , C2`) for bit t`′ , output

(C0, C · C2`′−t`′ , C2`′+1, . . . , C2`).

CRerand(Ct,texp) : on input ciphertext Ct,texp = ((Ct,i)i,m(mskt) ·M) with

Ct,i = (C0, C, · · · , C2`′+1, . . . , g2`),

for prefix (t1, . . . , t`′), for all i, sample (g0, g1, . . . , g2`)← SampG(pp), and compute

C ′t,i := (C0 · g0, C ·
`′∏
j=1

g2j−ptj , C2`′+1g2`′+1, . . . , C2`g2`).

Output Ct,texp = ((C ′t,i)i,m(mskt) ·M).

6.3 CPE construction

Let EDSG = (SampP,SampG,SampH,SampS,SampK, ŜampG, ŜampH) be an EDSG scheme. We
will construct a CPE scheme CPE = (Gen,KPunc,CPunc,Enc,Dec) with message space M := GT
and tag space T := {0, 1}` (for ` = `(λ) determined in Kε after running SampP in Gen). The
construction of our CPE scheme CPE is given in Figure 9.

Gen(λ) : compute (pp, sp) ← SampP(λ, 2`), sample mskε ← SampK(pp) and (h0, . . . , h2`) ←
SampH(pp), and return key

Kε = (pp,m(mskε), h0,mskε, h1, . . . , h2`).

KPunc(Kt, t) : output punctured key and token (depending on puncture tag t ∈ T )

(Kt∪{t},∆t)← KTrunc(Kt, t).

Enc(Kt,M, texp) : for key Kt = (pp,m(mskt), (Ki,t)i), run (gi, gi,1, . . . , gi,2`) ← SampG(pp), S ←
SampS(pp; s), for s← ZN , find all unique tag prefixes ti = (ti,1, . . . , ti,ji) associated to inner or lead
nodes according to the configuration of the tree that can be used to derive tags from (T \ {t}) but
no tags after texp. For all i, compute

Ct,texp,i = (S · gi,0,
ji∏
j=1

gi,2j−ti,j , gi,ji+1 . . . , gi,2`),

and output ciphertext
Ct,texp = ((Ct,texp,i)i,m(mskt)

s ·M).

CPunc(Ct,texp ,∆t) : output punctured ciphertext (depending on ∆t)

Ct∪{t},texp ← CTrunc(Ct,texp ,∆t).

Dec(Kt, Ct,texp) : on input key Kt = (pp,m(mskt), (Kt,i)i) and ciphertext Ct,texp = ((Ct,texp,i)i, C)
use Kt,1 = (K0,K1, . . .) and Ct,texp,1 = (C0, C1, . . .), and output

M :=
e(C0,K)

e(C1,K1) · C .

Fig. 9. CPE from EDSG.
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Correctness of CPE. See that Dec outputs

M :=
e(C0,K)

e(C1,K1) · C
=

e(S · g0,mskt ·
∏j1
j=1 h2j−ti)

e(
∏j1
j=1 g2j−ti , h0) ·m(mskt)s

·M,

for some t = (t1, . . . , tj1). Particularly, see that correctness holds due to EDSG’s associativity (i.e.,
e(g0, hi) = e(gi, h0)), orthogonality (i.e., e(S, hi) = 1 and e(g0,K) = 1), and projective (i.e.,
m(mskt)

s = e(SampS(pp; s),mskt)) properties (cf. Dec in Figure 9).
Furthermore, see that in the above construction one can puncture keys and ciphertext with

tags from T in arbitrary order; the resulting key decrypts the corresponding ciphertext correctly
as puncturing of keys and ciphertexts stay in-sync.

IND-CPE-CPA security of CPE. Our proof strategy is very similar to the dual system proof strategy
framework of [CW13, GCTC16]. We define auxiliary PPT algorithms:

A pseudo-normal ciphertext Ĉε,texp is generated via

Ênc(mskε,M, texp; gĝ) = (Sg0ĝ0,

`−`′∏
i=1

g2i−ti ĝ2i−ti , . . . , g2`ĝ2`, e(S,mskε) ·M),

with texp = 2`
′
, for tag prefix ti ∈ {0, 1}≤`−`

′
for tags smaller or equal than texp (which excludes

tag prefixes for tags greater than texp), g = (g0, . . . , g2`)← SampG(pp), (ĝ = (ĝ0, . . . , ĝ2`), ·)←
ŜampG(pp, sp), S ← SampS(pp), and mskε ← SampK(pp).

A pseudo-normal key K̂ε is generated via

Ext(mskε; hĥ) = (pp,m(mskε), h0ĥ0,mskε, . . . , h2`ĥ2`),

for h = (h0, . . . , h2`) ← SampH(pp), (ĥ = (ĥ0, . . . , ĥ2`), ·, ·) ← ŜampH(pp, sp), and mskε ←
SampK(pp).

A semi-functional (pseudo-normal) key K̂ε is generated via

Ext((ĥ)α ·mskε; hĥ) = (pp,m(mskε), h0ĥ0, (ĥ)α ·mskε, . . . , h`ĥ`),

for α ← ZN , h = (h0, . . . , h2`) ← SampH(pp) and (ĥ = (ĥ0, . . . , ĥ2`), ·, ·) ← ŜampH(pp, sp),

and mskε ← SampK(pp). If ĥ is not present, the key is called semi-functional.

Theorem 2. If EDSG is an EDSG scheme, then CPE is IND-CPE-CPA-secure. Concretely, for any
PPT adversary A there are distinguishers D1 on LS, D2, D3 on RS, D4 on ND, respectively,

Advind-cpe-cpaCPE,A (λ) ≤ AdvlsEDSG,G,D1
(λ, 2`) + AdvrsEDSG,G,D2

(λ, 2`)

AdvrsEDSG,G,D3
(λ, 2`) + AdvndEDSG,G,D4

(λ, 2`). (2)

Proof. We show the IND-CPE-CPA security of CPE for any PPT adversary A in a sequence of games
where we successively change the games until we arrive at a game where A has only negligible
advantage (i.e., success probability of 1/2). Let SA,j be the event that A succeeds in Game j. We
want to explicitly mention that the key puncturing oracle KPunc′ works as defined in the security
experiment for CPE. We give an overview how the challenge ciphertexts and the secret keys are
derived in Table 1.

Game 0. The IND-CPE-CPA experiment.
Game 1 Instead of directly using the ciphertext input by A, the distinguisher decrypts and re-

encrypts again starting from a ciphertext for mskε ← SampK(pp). The change is conceptional.
Also we re-write how the initial key is derived.

Game 2. The challenge ciphertext is pseudo-normal.
Game 3. The keys are pseudo-normal.
Game 4. The keys are semi-functional pseudo-normal.
Game 5. The keys are semi-functional.
Game 6. The challenge ciphertext message is a uniform GT -element.
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Challenge ciphertext Keys Assumption

Game 0 Not used Not used -

Game 1 Ênc(mskε,M
∗
b , texp;g) Ext(mskε;h) -

Game 2 Ênc(mskε,M
∗
b , texp;gĝ) As in Game 1 LS

Game 3 As in Game 2 Ext(mskε;hĥ) RS

Game 4 As in Game 2 Ext((ĥ)α ·mskε;hĥ) Parameter hiding

Game 5 As in Game 2 Ext((ĥ)α ·mskε;h) RS

Game 6 Ênc(mskε, R, texp;gĝ), for R← GT As in Game 5 Non-degeneracy

Table 1. Output of Ênc and Ext to generate (challenge) ciphertexts and keys, for α← ZN , g← SampG(pp),

for ĝ ← ŜampG(pp, sp), for h ← SampH(pp), and ĥ ← SampH(pp, sp). The differences between games are
given by underlining.

Lemma 1 (Game 0 to Game 1). For Game 0 and Game 1 are perfectly indistinguishable, i.e.,

|Pr [SA,0]− Pr [SA,1] | = 0. (3)

Proof. The is a conceptional change in the security experiment and, hence, does not change the
view of A. Instead of using the A-provided ciphertext C∗t′,t′exp as input to CPunc to compute the

challenge ciphertext, D decrypts M ← Dec(Kt, C
∗
t′,t′exp

) (after checking that t = t′ and t′exp = t∗exp),

re-encrypts again by computing
Cj ← CPunc(Cj−1, ∆tj ),

for C0 ← Enc(Kε,M, t∗exp), for all tj ∈ t′′, for t′′ the largest set in L (after puncturing key Kt with
all tags smaller or equal to t∗exp not already included in t).

This change cannot be noticed by A since the now crafted challenge ciphertext has the same
distribution as C∗t′′,t′exp (starting puncturing from C∗t′,t′exp) due to the perfect re-randomization prop-

erties of G-elements as output by SampG(pp). Furthermore, we write Ext(mskε; h) to derive the
first key which is only a re-write in different form to make the input of SampH explicit.

Lemma 2 (Game 1 to Game 2). Under LS of EDSG, Game 1 and Game 2 are computationally
indistinguishable. Concretely, for any PPT adversary A in the IND-CPE-CPA security experiment
with CPE there is a distinguisher D on LS such that

|Pr [SA,1]− Pr [SA,2] | ≤ AdvlsEDSG,G,D(λ, 2`). (4)

Proof. In Game 1, the challenge ciphertext is normal in the sense of CPE while in Game 2, the
challenge ciphertext is pseudo-normal.

Description. The challenge input is provided as (pp,T), where T is either g or gĝ, for pp =

(G,H, GT , N, e, pars), g← SampG(pp), and (ĝ, ·)← ŜampG(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on t∗, t∗win, t
∗
exp). During the experiment, let t the currently largest tag set in L.

D samples mskε ← SampK(pp) and sets Kε := Ext(mskε; h), for h ← SampH(pp), and sets
L := L ∪ {({ε},Kε,⊥)}. D starts A with λ and, during the entire experiment, answers Enc′ and
KPunc′ queries depending on A-provided tags t∗, t∗win, t

∗
exp. During the experiment, D can punctures

keys (Kt∪{t}, ∆t)← KPunc(Kt, t) for any t ∈ T . Those keys are used to answer Enc′ oracle queries.
When A outputs the target message and ciphertext (M∗0 , C

∗
t′,t′exp

), D outputs b← {0, 1} if C∗t′,t′exp
was not queried before or t′ 6= t, t′exp 6= t∗exp; otherwise, D decrypts message M∗1 := Dec(Kt, C

∗
t′,t′exp

).

Furthermore, A punctures keys via KPunc for all tags smaller or equal to t∗. D computes

C0 ← Ênc(mskε,M
∗
b , t
∗
exp; T)

and Cj ← CPunc(Cj−1, ∆tj ), for all tj in (currently largest) t in L and all j. D sends to A:

(Ct, (Ktj )tj 6=t∗ , (∆tj )j).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.
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Analysis. If T = g, then the challenge ciphertext is distributed identically as in Game 1. Otherwise,
i.e., if T = gĝ, then the challenge ciphertext is distributed identically as in Game 2. Hence, (4)
follows. We want to mention that A only receives tokens to puncture ciphertexts up to min(t∗win, t

∗
exp).

Since A does not receive corresponding keys, also the further puncturings of the challenge ciphertext
stay unnoticed in the view of A due to LS. Furthermore, due to G subgroup property, punctured
challenge ciphertexts do not reveal any further information.

Lemma 3 (Game 2 to Game 3). Under RS of EDSG, Game 2 and Game 3 are computationally
indistinguishable. Concretely, for any PPT adversary A in the IND-CPE-CPA security experiment
with CPE, there is a distinguisher D on RS such that

|Pr [S2]− Pr [S3] | ≤ AdvrsEDSG,G,D(λ, 2`). (5)

Proof. In Game 2, we have normal secret keys while in Game 3 we have pseudo-normal secret keys.

Description. The challenge input is provided as (pp, ĥ,gĝ,T), where T is either h or hĥ, for pp

as before, for ĥ specified in sp, for g ← SampG(pp), (ĝ, ·)← ŜampG(pp, sp), and h← SampH(pp),

(ĥ, ·)← ŜampH(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on t∗, t∗win, t
∗
exp). During the experiment, let t the currently largest tag set in L.

First, D samples mskε ← SampK(pp), computes

Kε := Ext(mskε; T),

and sets L := L ∪ {({ε},Kε,⊥)}. D starts A with λ and, during the entire experiment, answers
Enc′ and KPunc′ queries depending on A-provided tags t∗, t∗win, t

∗
exp. During the experiment, D can

punctures keys (Kt∪{t}, ∆t) ← KPunc(Kt, t) for any t ∈ T . Those keys are used to answer Enc′

oracle queries.
When A outputs the target message and ciphertext (M∗0 , C

∗
t′,t′exp

), D outputs b← {0, 1} if C∗t′,t′exp
was not queried before or t′ 6= t, t′exp 6= t∗exp; otherwise, D decrypts message M∗1 := Dec(Kt, C

∗
t′,t′exp

).

Furthermore, A punctures keys via KPunc for all tags smaller or equal to t∗. D computes

C0 ← Ênc(mskε,M
∗
b , t
∗
exp; gĝ)

and Cj ← CPunc(Cj−1, ∆tj ), for all tj in (currently largest) t in L and all j. D sends to A:

(Ct, (Ktj )tj 6=t∗ , (∆tj )j).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = h, then the secret keys are distributed identically as in Game 2. Otherwise, i.e.,
if T = hĥ, then the secret keys are distributed identically as in Game 3. Since A does not receive
corresponding keys, also the further puncturings of the challenge ciphertext stay unnoticed in the
view of A due to LS. Furthermore, due to G subgroup property, punctured challenge ciphertexts
do not reveal any further information.

Lemma 4 (Game 3 to Game 4). We have

|Pr [S3]− Pr [S4] | = 0. (6)

Proof. In Game 3, we have pseudo-normal secret keys while in Game 3 we have pseudo-normal semi-
functional secret keys. We set Kε := Ext((ĥ)α ·mskε; hĥ), for uniform α ← ZN , h ← SampH(pp),

and ĥ ← ŜampH(pp, sp). This is reminiscent of Lemma 11 in [GCTC16]. Essentially, we use the

symmetric parameter-hiding property of EDSG to information-theoretically embed (ĥ)α. The results
in a pseudo-normal semi-functional key. As shown in [GCTC16], due to non-degeneracy, we have

that (ĥ)α can be replaced by some suitable (hs)
α′ , for (·, hs, ·) ← ŜampH(pp, sp) and suitable

α′ ∈ ZN .

Lemma 5 (Game 4 to Game 5). Under RS of EDSG hold, Game 4 and Game 5 are compu-
tationally indistinguishable. Concretely, for any PPT adversary A in the IND-CPE-CPA security
experiment with CPE, there is a distinguisher D on RS such that

|Pr [S4]− Pr [S5] | ≤ AdvrsEDSG,G,D(λ, 2`). (7)
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Proof. In Game 4 we have pseudo-normal semi-functional secret keys while in Game 5 we have
semi-functional secret keys.

Description. The challenge input is provided as (pp, ĥ,gĝ,T), where T is either h or hĥ, for pp

as before, for ĥ specified in sp, for g ← SampG(pp), (ĝ, ·)← ŜampG(pp, sp), and h← SampH(pp),

(ĥ, ·, ·)← ŜampH(pp, sp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on t∗, t∗win, t
∗
exp). During the experiment, let t the currently largest tag set in L.

First, D samples mskε ← SampK(pp), computes

Kε := Ext((ĥ)α ·mskε; T),

for uniform α← Z∗ord(H), and sets L := L∪{({ε},Kε,⊥)}. D starts A with λ and, during the entire

experiment, answers Enc′ and KPunc′ queries depending on A-provided tags t∗, t∗win, t
∗
exp. During

the experiment, D can punctures keys (Kt∪{t}, ∆t)← KPunc(Kt, t) for any t ∈ T . Those keys are
used to answer Enc′ oracle queries.

When A outputs the target message and ciphertext (M∗0 , C
∗
t′,t′exp

), D outputs b← {0, 1} if C∗t′,t′exp
was not queried before or t′ 6= t, t′exp 6= t∗exp; otherwise, D decrypts message M∗1 := Dec(Kt, C

∗
t′,t′exp

).

Furthermore, A punctures keys via KPunc for all tags smaller or equal to t∗. D computes

C0 ← Ênc(mskε,M
∗
b , t
∗
exp; gĝ)

and Cj ← CPunc(Cj−1, ∆tj ), for all tj in (currently largest) t in L and all j. D sends to A:

(Ct, (Ktj )tj 6=t∗ , (∆tj )j).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = hĥ, then the secret keys are distributed identically as in Game 4. Otherwise, i.e.,
if T = h, then the secret keys are distributed identically as in Game 5. Since A does not receive
corresponding keys, also the further puncturings of the challenge ciphertext stay unnoticed in the
view of A due to LS. Furthermore, due to G subgroup property, punctured challenge ciphertexts
do not reveal any further information.

Lemma 6 (Game 5 to Game 6). Under ND of EDSG hold, Game 5 and Game 6 are compu-
tationally indistinguishable. Concretely, for any PPT adversary A in the IND-CPE-CPA security
experiment with CPE, there is a distinguisher D on ND such that

|Pr [S4]− Pr [S5] | ≤ AdvndEDSG,G,D(λ, 2`). (8)

Proof. In Game 6, we replace the challenge message M∗b , for b ∈ {0, 1}, with a (fresh) uniformly
random GT -element. We argue with EDSG’s non-degeneracy property for this change.

Description. The challenge input is provided as (pp,Sgĝ,K · ĥα,T), where T is either e(S,K) or

R ← GT , for pp as before, for ĥ specified in sp, for g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp), and

(h)← SampH(pp), (ĥ, ·, ·)← ŜampH(pp, sp), S ← SampS(pp), S = (1, 0, . . .), K ← SampK(pp).
Internally, D keeps track of all keys and tokens queried to KPunc′ via initially empty set L

(depending on t∗, t∗win, t
∗
exp). During the experiment, let t the currently largest tag set in L.

D sets
Kε := Ext(K · ĥα; h),

for h← SampH(pp), and sets L := L∪{({ε},Kε,⊥)}. D starts A with (λ,Kε) and, during the entire
experiment, answers Enc′ and KPunc′ queries depending on A-provided tags t∗, t∗win, t

∗
exp. During

the experiment, D can punctures keys (Kt∪{t}, ∆t)← KPunc(Kt, t) for any A-chosen t ∈ T . Those
keys are used to answer Enc′ oracle queries.

When A outputs the target message and ciphertext (M∗0 , C
∗
t′,t′exp

), D outputs b← {0, 1} if C∗t′,t′exp
was not queried before or t′ 6= t, t′exp 6= t∗exp; otherwise, D decrypts message M∗1 := Dec(Kt, C

∗
t′,t′exp

).

Furthermore, A punctures keys via KPunc for all tags smaller or equal to t∗. D computes initial
ciphertext

C0 = (S · g0ĝ0, g1ĝ1, . . . , g2`ĝ2`,T ·M∗b )
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which is iteratively punctured with all tags from t ∈ t via Cj ← CPunc(Cj−1, ∆t). Afterwards, D
punctures all tags tj smaller or equal to t∗ (for positive integer j > 0) via

(Ktj , ∆tj )← KPunc(Ktj−1
, tj)

with t0 = t, and sends to A:
(Ct, (Ktj )tj 6=t∗ , (∆tj )j).

Eventually, A outputs a guess b′. D outputs 1 if b′ = b, else outputs 0.

Analysis. If T = e(S,K), then the challenge ciphertext is distributed identically as in Game 5.
Otherwise, i.e., if T = R, then the challenge ciphertext is distributed identically as in Game 6.
Particular, see that A only receives puncture tokens for t∗, . . . ,min(t∗win, texp∗). Furthermore, by the

orthogonality property of EDSG, we have m(ĥ) = 1.

Lemma 7 (Game 6). For any PPT adversary A in the IND-CPE-CPA security experiment with
CPE, it holds that

Pr [SA,6] = 1/2. (9)

Proof. In Game 6, for (uniform) b ∈ {0, 1}, we provide A with a challenge ciphertext that include
a uniform GT -element instead of a A-chosen b-dependent message. Hence, b is completely hidden
from A’s view.

Taking (3), (4), (5), (6), (7), (8), and (9) together, shows (2). ut

On parameter sizes. See that we are able to optimize parameter sizes of our CPE construction if
tags are punctured in order. Similarly to [CHK03] and [BBG05], we then achieve parameter sizes of
O(log2 n) for keys and O(log2 p) ciphertexts where n is the total number of epochs and p = 2` ≤ n
is defined by the expiry tag. Thereby, the tree is traversed in pre-order as describe in [CHK03,
Section 3.3].

6.4 Concrete instantiation under the d-Lin assumption

For completeness, we provide the concrete EDSG instantiation of Gong et al. [GCTC16]. The
pairing operation is defined as ê((a1,a2), (b1,b2)) = e(a1,b1)/e(a2,b2). Let πL, πM , πR be function
that map the leftmost d columns, the d + 1-th column, and rightmost column of a matrix. The
EDSG construction (adapted mostly verbatim from [GCTC16]) is as follows (we omit the algorithm
SampGT since we directly use the respective values):

(pp, sp)← SampP(λ, n): sample (G1,G2, G
′
T , p, g1, g2, gT , g

′
1, g
′
2, e
′)← G(λ, 1) and set G := Gd+2

1 ×
Gd+2

1 ,H := Gd+2
2 × Gd+2

2 , GT := G′T , e := e′, g := g1, h := g2. Furthermore, sample matrices

B,B∗ ← GLd+2(Zp) with B>B∗ = Id+2 and A0, . . . ,An ← Z(d+2)×(d+2)
p , and sample diagonal

matrix R ∈ GLd+2(Zp) with the right-most two diagonal entries being 1. Then, set

D := πL(B),Di := πL(BAi),D
∗ := πL(B∗R),D∗i := πL(B∗A>i R)

m := πM (B),mi := πM (BAi),m
∗ := πM (B∗R),m∗i := πM (B∗A>i R),

f := πR(B), fi := πR(BAi), f
∗ := πR(B∗R), f∗i := πR(B∗A>i R),

for all i ∈ [n] ∪ {0}, and function m((gb1
2 , gb2

2 )) := e(g1, g2)b1 , for all b1,b2 ∈ Zd+2
p . Define

ĝ := (g0, gf ), ĥ := (h0, hf
∗
) and output

pp := (G,H, GT , p, g, h, gT , ê,m, gD, gD0 , . . . , gDn , hD
∗
, hD

∗
0 , . . . , hD

∗
n)

sp := (ĝ, ĥ, gm, gm0 , . . . , gmn , gf , gf0 , . . . , gfn , hm
∗
, hm

∗
0 , . . . , hm

∗
n , hf

∗
, hf

∗
0 , . . . , hf

∗
n).

g← SampG(pp): sample s← Zdp and output g := ((gD0s, gDs), (g0, gD1s), . . . , (g0, gDns)).

ĝ← ŜampG(pp, sp): sample ŝ← Zp and output ĝ := ((gŝf0 , gŝf ), (g0, gŝf1), . . . , (g0, gŝfn)) and gs :=
(g0, gŝf ).

h← SampH(pp, sp): sample r← Zdp and output h := ((h0, hD
∗r), (h0, hD

∗
1r), . . . , (h0, hD

∗
nr)).
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ĥ← ŜampH(pp): sample r̂ ← Zp and output ĥ := ((h0, hr̂f
∗
), (h0, hr̂f

∗
1 ), . . . , (h0, hr̂f

∗
n)) and hs :=

(h0, hr̂f
∗
), ha := (h0, hr̂m

∗
).

S ← SampS(pp): sample s← Zd+2
p and output S := (gs, g0).

K ← SampK(pp): sample k← Zd+2
p and output K := (hD

∗k, hD0k).

Correctness and security. All correctness and security claims carry over from [GCTC16] since
no changes in the assumptions or distributions were made.
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