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Abstract. Updatable encryption (UE) allows to periodically rotate encryption keys without the
need to decrypt and re-encrypt already encrypted data. In this work, we present an attack which
is not covered by prior ciphertext-independent UE security notions and which seems problematic
in practice; namely, an adversary would record available information (i.e., ciphertexts, all update
tokens) in the lifetime of the system and simply would wait for a single key leakage.
To mitigate such an attack, we require a more fine-grained ciphertext-update approach where
ciphertexts are allowed to expire after some time. Our threefold contribution is as follows:
a) First, we introduce a UE CPA security notion to allow fine-grained updatability. It focuses

on UE schemes where the token can only forwardly update the ciphertext and thus reduces
complexity compared to prior models. Additionally, it introduces the concept of expiry epochs,
i.e., ciphertexts can lose the ability of being updatable after a certain time. This is determined
at the time of encryption and captures the above mentioned attack.

b) Second, we present and prove secure the first UE scheme with such properties. We construct
it from standard assumptions (e.g., the SXDH assumption in prime-order bilinear groups)
using the well-known dual system paradigm. To overcome the hurdles towards UE with such
strong properties, we require novel construction and adapted proof techniques. Noteworthy,
our optimized UE scheme enjoys sublinear key and ciphertext sizes.

c) Finally, as an extension, we introduce a novel approach of constructing UE which significantly
departs from previous ones and in particular views UE from the perspective of puncturable en-
cryption (Green and Miers, S&P’15). We introduce a variant of puncturable encryption called
ciphertext-puncturable encryption (CPE) which generalizes UE and may be of independent
interest.

1 Introduction

When outsourcing the storage of data, the primary measure to protect its confidentiality is encryp-
tion. However, a compromise of the respective encryption key(s) will potentially expose the entire
data to unauthorized parties and may cause severe damage. Consequently, it is widely considered a
good practice to periodically rotate encryption keys. Major providers of cloud storage services such
as Google1, Microsoft2 or Amazon3 recommend this practice and sometimes it is even mandated by
regulations [Bar16, PCI22]. This raises the immediate question of how to efficiently update already
outsourced encrypted data to new keys. An obvious solution for key-rotation is to download the data,
decrypt it locally under the old key, re-encrypt it under a new key, and upload it again. Unfortunately,
this imposes a significant overhead and soon becomes impractical.

Updatable Encryption. At CRYPTO 2013, Boneh, Lewi, Montgomery, and Raghunathan [BLMR13]
proposed the concept of updatable encryption (UE). UE is a symmetric encryption primitive that ad-
dresses this problem by allowing to update ciphertexts to new keys without the requirement for de-
cryption by means of a so-called update token. UE schemes can be ciphertext-dependent [BLMR13,
EPRS17, BEKS20, CLT20] where the update token depends on the specific ciphertext to be updated
and, thus, to compute the update token, a part of every ciphertext needs to be downloaded. Or, and
from an efficiency point more desirable, quite a number of recent works deal with UE schemes that
are ciphertext-independent [LT18, KLR19, BDGJ20, Jia20, Nis22, GP22] such that a single compact
update token can update any ciphertext (and, consequently, the token must be independent of the
number of ciphertexts in the system). In the remainder of this work, we focus on UE schemes with

1 https://cloud.google.com/kms/docs/key-rotation
2 https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
3 https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
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ciphertext-independent updates and will simply call them UE schemes. Such an UE scheme consists of
the usual algorithms (Gen,Enc,Dec) for key-generation, encryption, and decryption. Time is discretized
in so-called epochs and Gen produces an initial secret key K1 (for epoch 1). Additionally, there is an
algorithm Next which takes a key Ke and outputs a fresh next-epoch key Ke+1 along with a so-called
update token ∆e+1. This update token can be used by a semi-trusted party to update ciphertexts under
key Ke for epoch e to ciphertexts for epoch e+ 1 under key Ke+1 via an algorithm Update.

Forward- and Post-Compromise Security. For UE, a formal study of forward security (i.e., leak-
ing the current key does not endanger old ciphertexts) and post-compromise security (i.e., leaking the
current key does not endanger new ciphertexts) was initiated by Lehmann and Tackmann [LT18]. Se-
curity for UE essentially requires that fresh and updated ciphertexts are indistinguishable even if the
adversary can compromise keys and update tokens adaptively. A central question is how much infor-
mation can be given to an adversary to still achieve reasonable security guarantees. For instance, key
and ciphertext updates in UE can be bi-directional meaning that keys as well as ciphertexts can be
updated via the token in the forward and the backward direction. This is suboptimal from a security
perspective and was already observed by Lehmann and Tackmann [LT18]. Ideally, we want UE schemes
where solely the ciphertext can be updated in the forward direction as this would arguably yield the
most natural form of UE. However, most known UE constructions have bi-directional key and ciphertext
updates [LT18, BDGJ20, Jia20, Nis22], some have key updates in the backward direction [Nis22, GP22],
and only one UE scheme has solely ciphertexts updatable in the forward direction [Nis22]. Unfortunately,
even having strong guarantees such as the ones provided by the construction in [Nis22], security guaran-
tees for old ciphertexts, i.e., forward security, cannot be truly captured and met by any of the known UE
models and constructions respectively. We believe that this constitutes a weakness and should therefore
be considered in UE models.

Motivating Stronger Guarantees. When looking at state-of-the-art UE security models [BDGJ20,
Jia20, Nis22, GP22]4 it can be observed that they do not capture an attack which seems problematic
in practice. Namely, an adversary would record available information (i.e., ciphertexts Ce, all update
tokens ∆e+1) in the lifetime of the system and simply would wait for a single key leakage Ke′ in epoch e′

with e′ > e. Such single key leakage allows to completely break confidentiality of all ciphertexts captured
before and we dub it “record now, leak later” attack.

Indeed, if we want to mitigate such type of attack, we must introduce a more fine-grained adjustment
of the updatability of ciphertexts. The reason is that correctness of UE requires each ciphertext Ce to be
updatable ad infinitum in the forward direction given the respective update tokens. As a consequence,
the above mentioned attack cannot be mitigated in all known models. We will discuss these definitional
issues and implications in more detail below.

Revisiting UE Security Models. Our discussion uses Fig. 1 to illustrate the most important aspects
of the security notions5 (starting from [LT18, BDGJ20] up to this work) from its weakest to its strongest
form by means of the maximum information available to an adversary. We stick to a single insulated
region6 around challenge epoch e∗, i.e., the epoch in which the adversary needs to distinguish ciphertexts,
which simplifies the description.

Let Ke and ∆e+1 be the key and the token for epoch e, respectively. The task of an adversary is
to distinguish an encryption under a key Ke∗ in a challenge epoch e∗ from one that is updated from
some epoch ẽ < e∗. A key concept in prior UE models is that of a “firewall” which prevents trivial
wins. For the weakest form of UE with bi-directional key and ciphertext updates, there needs to be a
firewall estart before and eend after the challenge epoch e∗ (indicated by red boxes in Fig. 1). In between,
all update tokens can be revealed. Prior to estart and after eend, the adversary can obtain all keys and
update tokens. Now the critical restrictions are that in estart, only the key is revealed as otherwise in
UE schemes with bi- or forward-directional key updates, the adversary could trivially compute a key
for the target epoch e∗. In eend, neither the key nor the update token are revealed. Otherwise, due to

4 Our focus is on the established game-based security models. However, we want to note that recent works also
study UE in composable frameworks and in particular the framework of constructive cryptography [LR21,
FMM21].

5 Our focus is on the CPA notions, but the same issues transfer to stronger notions.
6 An insulated region [BDGJ20] contains epochs where the adversary is only allowed to query update tokens
and cannot trivially decrypt the challenge ciphertext.
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Fig. 1. (a) Example of information an adversary is allowed to obtain in known CPA notions for UE schemes
with bi-directional key and ciphertext updates. (b) Example of information an adversary is allowed to obtain in
our EE-IND-UE-CPA experiment. First, we can allow to give out a key and a token in estart, and, second, expiry
epochs (exemplary eexp = e∗ here) allow to hand out all keys and tokens after eexp (green box). Hence, in this
specific case, our model allows even to release all tokens and keys except the key for e∗ obviously.

correctness, the adversary could update the challenge ciphertext into one epoch where it holds a key
and could trivially win.

Let us now dig deeper into the directionality features of keys and in particular look at the case where
update tokens do not allow key updates in the forward direction. Here, we have to look at the epochs
before the challenge epoch e∗ as tokens should not even allow to move keys forward. We observe that
for such UE schemes, we can remove the firewall at estart entirely and hand out all keys as well as tokens
up to e∗ to the adversary. This change gives rise to what Nishimaki in [Nis22] calls UE with backward-
directional key updates. However, when we look at the epochs after the challenge epoch e∗, the situation
gets more subtle. Therefore, let us recall that the correctness of UE requires that ciphertexts can be
updated ad infinitum, i.e., the update capability never expires (meaning that updates of ciphertexts via
a token in any epoch is always possible already by the correctness definition in UE). This in particular
means that if old ciphertexts and update tokens are not properly deleted or kept stored intentionally
by a server, even if after many updates (or, key-rotations) a newer key leaks, it will still be possible
to decrypt an old ciphertext by simply updating it to the respective epoch. Moreover, Jiang Galteland
and Pan [GP22] recently formally7 showed that even UE schemes with no-directional key updates are
equivalently secure to UE schemes with backward-directional key updates in prior models. Hence, this
means that even “ideal” UE constructions with solely forward-directional ciphertext updates and no-
directional key updates cannot give any true forward-security guarantees in current models (i.e., once a
key leaks, old ciphertexts are in danger).

Extended UE Security with Expiry Epochs. We believe that forward security is an important
feature for UE in practice and should be inherently considered in full in the UE regime.8 This can be
enforced by restricting the update capabilities of UE (which were initially not foreseen) and to the best
of our knowledge we do not see any other way. In particular, we introduce the concept of expiry epochs
such that for every ciphertext, one can decide how long updates should yield decryptable ciphertexts,
i.e., encryption in epoch i is performed as Ce,eexp ← Enc(Ke,M, eexp) and when epoch eexp is reached, a
ciphertext cannot longer be updated into a decryptable ciphertext. Note that an update token should
still work for all ciphertexts that have an expiry epoch in the future. Also, by virtually never letting
ciphertexts expire, i.e., using eexp = 2λ for all encryptions with security parameter values λ ∈ N, we are
essentially back in the currently strongest models [Nis22, GP22] but with less complex bookkeeping.

This conceptually simple modification has an interesting effect. Namely, as we show in this work,
to meet our proposed UE security notion, we at least require the UE scheme to solely allow ciphertext
updates via the token in the forward direction. So far such UE schemes are only known to exist by
relying on indistinguishability obfuscation (IO) [Nis22]. Despite the simplicity of the conceptual modifi-
cation, it even requires more and this makes the task of constructing a UE scheme achieving our notion

7 Informally, this was also mentioned in [MPW22].
8 By introducing firewalls, prior work offers only a very weak form of forward security by restricting access to
tokens artificially.
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non-trivial (there exists no such UE scheme so far). Moreover, since UE is inspired mainly by practice,
we want constructions from standard assumptions and where key and ciphertext sizes are as compact as
possible, but certainly sublinear in the maximum number of possible epochs. While compactness can be
achieved in weaker models [BDGJ20, Jia20, Nis22], this important feature turned out to be non-trivial
in our model.

UE From a Puncturable Perspective. As an extension, we offer a novel view of UE from the per-
spective of Puncturable Encryption (PE). We recall that PE, introduced by Green and Miers in [GM15],
is a tag-based public-key (or secret-key [SYL+18, AGJ21, BDdK+21]) encryption primitive with an
additional puncturing algorithm that takes a secret key and a tag t as input, and produces an up-
dated (punctured) secret key. This key is able to decrypt all ciphertexts except those tagged with t
and (updated) secret keys can be iteratively punctured on distinct tags. PE is a versatile primitive
that has already found numerous applications and in particular where strong forward security is re-
quired [GM15, CHN+16, CRRV17, BMO17, DKL+18, GHJL17, DJSS18, DRSS21, DGJ+21].

One can observe that the core goal in UE, i.e., that newer (as well as updated) ciphertexts can no
longer be decrypted by older keys, is abstractly reminiscent of puncturing when viewing tags as epochs.
As in UE one however has to update ciphertexts and keys, puncturing needs to happen on both in
a synchronized way. In particular, one needs to guarantee that old (non-updated) ciphertexts are no
longer decryptable, while one should be able to include old ciphertexts that are still decryptable (by
updating them). Consequently, when puncturing keys, one needs some information which can be used
to parametrize ciphertext puncturing, i.e., to exclude certain ciphertexts from being punctured.

In a nutshell, we introduce the concept of Ciphertext Puncturable Encryption (CPE) that can be
viewed as a symmetric PE scheme (Gen,KPunc,Enc,Dec) with an additional algorithm ExPunc to control
which ciphertexts are excluded from puncturing. Such a scheme is associated to a polynomial sized set
of sequence tags, e.g., (1, . . . , n), as well as an unbounded ciphertext-tag space T . KPunc sequentially
punctures keys on sequence tags, i.e., removes the ability to decrypt ciphertexts tagged under them step
by step. In addition KPunc can take a set of tags S ⊆ T (or a special tag ∀) and outputs a puncture
token, which can then be used to exclude ciphertexts carrying tags in S from puncturing (in case of
∀ all ciphertext can be excluded). As in PE, in CPE ciphertexts are computed w.r.t. a tag t ∈ T ,
but additionally take an “expiry-tag” eexp from the set of sequence tags. The semantics of CPE are
now as follows. Old ciphertexts with sequence tags on which a key has been punctured can no longer be
decrypted. A puncture token can be used to exclude ciphertexts from being punctured and thus updated
in a way that they can still be decrypted. However, if eexp is reached, then they are automatically and
implicitly punctured and cannot be excluded from puncturing anymore. The tags t ∈ T can be used to
make the exclusion from puncturing more fine-grained, i.e., puncture tokens that have been computed
with respect to some tag t can only exclude ciphertexts tagged with t from puncturing, as long as their
eexp has not been reached.

We show that CPE implies UE with expiry epochs and provide a CPE construction from standard
assumption. While the so obtained UE is similar to our direct sublinear UE construction, it is slightly less
efficient and the security proof is more involved. Besides implying UE, it is however a stronger primitive.
We believe that it provides an interesting abstraction for protected outsourced file storage with forward-
security and fine-grained secure shredding of files (in the vein of puncturable key wrapping [BGP22],
but augmented with efficient key rotation).

Our Contribution. Briefly summarized, our contribution is as follows:
a) First, we simplify and extend the state-of-the-art UE CPA security models [Jia20, Nis22, GP22] to

capture the guarantees provided by UE schemes that restrict the function of update tokens to cipher-
text updates in the forward direction only. In particular, our model — which we dub EE-IND-UE-CPA
— reduces complexity concerning the leakage-profile paradigm which made existing UE models
rather cumbersome. Importantly, we introduce expiry epochs as a fine-grained updatability feature
of UE. By letting ciphertexts expire, we can mitigate the “record now, leak later” attack already
discussed above. In such a case, the adversary in our model is able to query all update tokens and
almost all secret keys (excluding secret keys that allow trivial wins only). Moreover, we show that
our notion implies the most recent standard CPA UE notion due to [Nis22, GP22] if we set the
expiry epoch for all ciphertexts to be exponential in the security parameter (e.g., to 2λ).

b) Second, we construct a UE scheme that is secure in our model and thus yields the first UE scheme
with such strong properties. Moreover, its security is based on standard assumptions. Concretely,
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we instantiate our construction from the standard d-Lin assumption (where for d = 1 we get SXDH)
in prime-order bilinear groups using the well-known dual system paradigm [Wat09, Lew12]. Indeed,
to overcome the hurdles towards UE with such strong properties, we require novel construction and
adapted proof techniques based on the dual-system groups approach due to Chen-Wee and Gong et
al. [CW13, GCTC16]. Noteworthy, our optimized UE scheme enjoys sublinear key and ciphertext
sizes. In Fig. 2, we provide a brief comparison of UE schemes.

c) As an extension, we introduce a novel primitive dubbed Ciphertext Puncturable Encryption (CPE)
which we believe provides an easier intuition towards UE. The insight here is that updating a ci-
phertext in UE via a token is related to puncturing operations on ciphertexts. Furthermore, we show
a concrete asymptotically efficient construction of such a CPE scheme from the same assumptions
used in b). We believe that the ciphertext puncturing in CPE will further increase the applicability
of the already very useful concept of puncturable encryption [GM15] and might be of independent
interest.

Schemes key-sizes ct-sizes tok-sizes security model dir. (key) dir. (ct) assumption

BMLR+ [LT18] O(1) O(1) O(1) weak IND-UE-CPA SM bi bi KH-PRF

RISE [LT18] O(1) O(1) O(1) r-IND-UE-CPA SM bi bi DDH

∗SHINE [BDGJ20] O(1) O(1) O(1) d-IND-UE-CCA IC bi bi DDH

Jiang [Jia20] O(1) O(1) O(1) r-IND-UE-CPA SM bi bi LWE

Nishimaki [Nis22] O(1) O(1) O(1) r-IND-UE-CPA SM backw forw LWE

Nishimaki [Nis22] O(1) O(1) O(1) r-IND-UE-CPA SM - forw IO, OWF

GP [GP22] O(e) O(e) O(e) r-IND-UE-CPA SM backw forw PKE

Ours (Sec. 3.3) O(λ2) O(log2 eexp) O(1) EE-IND-UE-CPA SM - forw SXDH

Fig. 2. Overview of IND-UE-CPA secure (ciphertext-independent) UE schemes. The number of possibly allowed
updates is 2λ and with eexp ≤ 2λ we denote the expiry epoch of a ciphertext, for security parameter λ; with e the
current UE epoch. With d-IND-UE-CPA or r-IND-UE-CPA, we mean security under deterministic or randomized
updates, where EE-IND-UE-CPA only considers randomized updates and represents our model. IC and SM stand
for Ideal Cipher and Standard Model. KH-PRF stands for key-homomorphic PRF.

1.1 Overview of Our Techniques

We give an overview of how to instantiate a UE scheme in such a strong model with a proof sketch. More-
over, we discuss the generalization of UE via the notion of ciphertext puncturable encryption (CPE).

Our Simple UE Construction with Expiry Epochs.We start with our simple construction and use
ideas developed within to later give an optimized version with sublinear keys and ciphertexts. We rely on
the well-known dual-system paradigm initiated by Waters [Wat09] and, in particular, use an abstraction
due to Chen-Wee and Gong et al. [CW13, GCTC16] that can be instantiated from standard assump-
tions in the standard model. Quite surprisingly, such a dual-system group (DSG) abstraction gives us
freedom in constructing the desired UE functionalities. However, we deviate in the proof methodology
and have to develop new ideas along the way. Loosely speaking, DSGs have three groups (G,H, GT )
with an associated bi-linear map e : G × H → GT and a linear mapping function m. Moreover, such
groups have the properties:

Subgroup indistinguishability: Two-way sampling of (a) a normal distribution and (b) a semi-functional
distribution with higher entropy in G and H.
Associativity: For all (g0, . . . , gλ) ∈ Gλ+1 and all (h0, . . . , hλ) ∈ Hλ+1, it holds that e(g0, hi) = e(gi, h0),
for all i ∈ [λ] and normal distribution samplings.
Orthogonality and Protectiveness: For all s← SampS(pp; rs), for random coins rs and public parameters
pp, and all (h0, . . . , hλ) ∈ Hλ+1, it holds that e(s, hi) = 1, for all i ∈ [λ]. For all k ← SampK(pp) and
all (g0, . . . , gλ) ∈ Hλ+1, it holds that e(g0, k) = 1. For all h ∈ H, it holds e(s, h) = SampGT(m(h); rs).
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Parameter hiding: Normal distributions in G and H can be sampled using public parameters pp only.
The semi-functional distributions sampling has λ units of information-theoretically embedded entropy
(even if pp is given).

An exemplary description of our simple UE construction is as follows. Informally (but sufficient for
transporting our ideas), the initial UE key is

K1 = (h0, k1 · h1, h2, . . . , hλ,m(k1), pp),

generated via Gen(λ). The encryption algorithm Enc(K1,M, eexp = 2) can use this key to compute
a (first-epoch) ciphertext, here for simplicity with expiry epoch eexp = 2, for s = SampS(pp; rs) and
e(s, k1) = SampGT(m(k1); rs) with uniform exponent rs:

C1 = (C0, C1, C2, CT ) = (s · g0, g1, g2, e(s, k1) ·M),

The next algorithm Next(K1) computes a token

∆2 = (D0, D1, D2) = (h′0, δ · h′2,m(k1 · δ)),

where δ is essentially a ”tweak” between epoch 1 and 2 sampled from the normal distribution in H. It
is important to “hide” the tweak as otherwise such a token could be used to undo the forward update.
The updated key is

K2 = (K ′0,K
′
1,K

′
3, . . . ,K

′
λ,K

′
T , pp) = (h0, k1 · δ︸ ︷︷ ︸

k2

·
2∏

i=1

hi, h3, . . . , hλ,m(k1 · δ︸ ︷︷ ︸
k2

), pp).

See that h2 is now part of the product in K ′1. Moreover, in the real scheme, we use perfect re-
randomization of the key components K ′1, . . . ,K

′
λ, but we skip over it here for depicting purposes.

The ciphertext update is performed as follows: first, using the token ∆2, we compute the tweak δ in the
target group GT by

e(s, δ) =
e(C0, D1)

e(D0, C2)
=

e(s, δ) ·
1︷ ︸︸ ︷

e(s, h′2) ·
1︷ ︸︸ ︷

e(g0, δ) ·e(g0, h′2)
e(h′0, g2)

.

Second, by the pairing properties, the updated ciphertext is constructed as

C2 = (C ′0, C
′
1, C

′
T ) = (s · g0,

2∏
i=1

gi, e(s, k1 · δ︸ ︷︷ ︸
k2

) ·M).

See that the element g2 is now included in the product of C ′1. In the real scheme, we use perfect re-
randomization of rs, but we skip over it here for depicting purposes. Decryption in epoch 2 is done via
M =

e(C ′1,K
′
2) · C ′T

e(C ′0,K
′
1)

=
e(
∏2

i=1 gi, h0) · e(s, k2) ·M
e(s · g0, k2 ·

∏2
i=1 hi)

=
e(
∏2

i=1 gi, h0) · e(s, k2) ·M
e(s, k2) · e(g0,

∏2
i=1 hi)

.

See that update and decryption succeed due to the associativity, orthogonality, and protectiveness
properties of DSG samplings in G and H. Moreover, it is straightforward to generalize the above scheme
for any epoch e.

The idea of the proof is to first make the challenge ciphertext semi-functional via introducing semi-
functional components into such a ciphertext (via subgroup indistinguishability of DSG). It is important
to note that such a semi-functional ciphertext can be decrypted by key elements coming from the normal
distribution, but will fail with high probability for semi-functional key components. This is exactly what
we will use in the remainder of the proof where we carefully introduce uniform randomness into each
key component which has key elements associated to the challenge ciphertext. This is done as in the
usual dual-system paradigm where we can embed uniform randomness into key components that are
not “prefixes” of the challenge ciphertext (via subgroup indistinguishability and parameter hiding of
the underlying DSG). This is the main hurdle and we need to develop new proof techniques along the
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way as keys and tokens in UE are information-theoretically related (and the adversary can query parts
of them). To give a glimpse on the concrete technique, we can observe that one can use the token
∆e∗ = (D0, D1, D2), for challenge epoch e∗, to embed such a random element (since the token is not a
prefix of the challenge ciphertext as otherwise it could be used to undo the update operation). See that
such a token can be used to compute the key Ke∗ (without re-randomization but sufficient for depicting
the idea) as

Ke∗ = (h0, ke∗−1 ·D1︸ ︷︷ ︸
ke∗−1·δ·he∗

·
e∗−1∏
i=1

hi, he∗+1, . . . , hλ,m(ke∗), pp).

Via parameter hiding, we embed a uniform element (ĥ)α into the second component of ∆e∗ = (D0, D1,

D2) = (h0, δ · (ĥ)α · he∗ ,m(ke∗)) which results in uniform keys Ke′ from epoch e∗ onwards, i.e., with
e′ > e∗, and security readily follows.

We believe that our simple UE scheme above can be useful for scenarios where key updates do not
happen very often (as the ciphertexts and keys are linear in the number of epochs). However, for the
general scenario of many updates, we are able to lift our above approach to construct a UE scheme that
only has sublinear ciphertext and key sizes. This requires more care and a more involved construction
as well as proof techniques. (We give more details in the respective sections.) Although the overall
construction approach is very similar to the one sketched scheme above, we additionally need a clever
encoding (due to Drijvers, Gorbunov, Neven, and Wee [DGNW20, Sec. 4.2]) with an adapted novel
dual-system proof. The hurdle to overcome is that we now have more key elements where we need to
embed uniform randomness since the token ∆e∗ cannot be longer used to compute the key in epoch e∗.
This results in a slightly more involved proof with a larger security loss, but yields a UE construction
with sublinear keys and ciphertexts in the number of allowed updates from standard assumptions in the
standard model.

Ciphertext-Puncturable Encryption (CPE) Construction. The CPE construction follows the
approach of the encoding-based approach for UE above. However, one additional feature of CPE is
that ciphertexts are tagged, which results in an even more involved proof strategy compared to the UE
construction with sublinear keys and ciphertexts above. The hurdle is that the adversary can now query
tokens in specific epochs which cannot puncture the challenge ciphertext, but have key elements that
could be used to derive information on the challenge key. Fortunately, this can be solved via carefully
embedding also randomness in such tokens, again utilizing our dual-system proof methodology and
security can be shown. The final CPE scheme has ciphertext and key sizes sublinearly in the number of
allowed punctures.

1.2 Notation

For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter. For a finite set S, we denote by
s← S the process of sampling s uniformly from S. For an algorithm A, let y ← A(λ, x) be the process
of running A on input (λ, x) with access to uniformly random coins and assigning the result to y. (We
may omit to mention the λ-input explicitly and assume that all algorithms take λ as input.) To make
the random coins r explicit, we write A(λ, x; r). We say an algorithm A is probabilistic polynomial time
(PPT) if the running time of A is polynomial in λ. A function f is negligible if its absolute value is
smaller than the inverse of any polynomial (i.e., if ∀c∃k0∀λ ≥ k0 : |f(λ)| < 1/λc).

1.3 Outline of the paper

In Sec. 2, we present our security model with expiry epochs and discuss relations to previous models. In
Sec. 3, we present two UE construction, one with linear and one with sublinear keys and ciphertexts and
prove them secure in our UE model. Finally, in Sec. 4 we introduce Ciphertext Puncturable Encryption
(CPE), present a concrete construction thereof and discuss how we can instantiate UE from CPE.
Moreover, we briefly discuss other applications of CPE.
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2 Updatable Encryption with Expiry Epochs

We define UE with expiry epochs in ciphertexts which allow ciphertexts to being excluded from updates.
We build on the recent UE models [Jia20, Nis22, GP22], but dealing solely with the natural form of
updatability namely security for UE schemes with forward-directional ciphertext updates. This allows to
reduce the security model complexity compared to prior UE models significantly (i.e., extra bookkeeping
of gained adversarial information via leakage profiles is not necessary).

The main idea of UE with expiry epochs is the following. On the very high level, all operations
are bound to discrete epochs 1, 2, . . . where keys and ciphertexts as well as so-called update tokens
are associated to. System setup Gen creates a first-epoch symmetric key K1. With this key, one can
create a first-epoch ciphertext C1,eexp ← Enc(K1,M, eexp), for some message M and expiry epoch eexp,
and, e.g., outsource C1,eexp to some semi-trusted third-party. With probabilistic algorithm Next, K1 can
be updated to K2 while also an update token ∆2 is generated. With ∆2, a semi-trusted third-party,
e.g., an outsourced service provider, can update C1 to C2,eexp ← Update(∆2, C1,eexp) such that C2,eexp is
“consistent” with K2. Correctness guarantees that decryption of C2,eexp yields M = Dec(K2, C2,eexp) as
intended if the ciphertext is not expired already (and so on). More formally:

Definition 1. A UE scheme UE with message spaceM consist of the PPT algorithms (Gen, Next, Enc,
Update, Dec):
Gen(λ): on input security parameter λ, the key generation algorithm outputs an initial (symmetric) key

K1.
Next(Ke): on input key Ke, the key update algorithm outputs an updated key Ke+1 for the next epoch

together with an update token ∆e+1.
Enc(Ke,M, eexp): on input key Ke, a message M ∈ M, and expiry epoch eexp, encryption outputs a

ciphertext Ce,eexp or ⊥.
Update(∆e+1, Ce,eexp): on input an update token ∆e+1 and a ciphertext Ce,eexp , decryption outputs an

updated ciphertext Ce+1,eexp or ⊥.
Dec(Ke, Ce,eexp): on input key Ke and a ciphertext Ce,eexp , decryption outputs M ∈M∪ {⊥}.

Correctness. For all λ, e ∈ N, for K1 ← Gen(λ), for all i ∈ {1, . . . , e}, for all (Ki+1, ∆i+1)← Next(Ki),
for all M ∈ M, for all eexp ∈ N, for all j ∈ {1, . . . , e + 1}, for all Cj,eexp ← Enc(Kj ,M, eexp), we
require that M = Dec(Ke, Ce,eexp) holds if eexp ≥ j, also for all Cj′+1,eexp ← Update(∆j′+1, Cj′,eexp) with
j′ ∈ {j + 1, . . . , e}.
Security notion. We particularly consider the attack that an adversary can use a token ∆e to update a
key Ke to Ke−1 (i.e., yielding a key that is consistent with epoch-(e−1) ciphertexts). This is because one
could build an UE scheme that has “backward-directional”9 key updates and this would still be secure
in common UE models. Indeed, formally shown only recently by Galteland Jiang and Pan [GP22], UE
with backward-directional key updates are equivalently secure in common UE models to UE schemes
that do not allow such key updates. Since we want ciphertexts that can expire, the token in the expiry
epoch should not be of help to update a key from the next epoch to the current expiry one.

We will dub our CPA security notion with expiry epochs EE-IND-UE-CPA. Essentially, it ensures
that fresh and updated ciphertexts are indistinguishable even if the adversary has access to keys and
update tokens adaptively. We define:

Definition 2 (EE-IND-UE-CPA security). A UE scheme UE is EE-IND-UE-CPA-secure iff for any
PPT adversary A, the advantage function

Advee-ind-ue-cpaUE,A (λ) :=
∣∣∣Pr [Expee-ind-ue-cpaUE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expee-ind-ue-cpaUE,A is defined as in Fig. 3.

On post-compromise and forward security. Since tokens cannot be used to update keys, we achieve
post-compromise security (PCS) – where by PCS we loosely speaking mean: once an old key leaks, future
ciphertexts are not in danger even in the presence of tokens. Moreover, by requiring in our model that
a current-epoch key cannot be updated via a token and tokens cannot be used to update ciphertexts
from Ce to Ce−1 together with expiry epochs allows us to achieve forward security (FS) when keys are

9 We refer to [Nis22] for nomenclature direction discussions and definitions on UE.
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Experiment Expee-ind-ue-cpaUE,A (λ)
K1 ← Gen(λ), phase = 0, e = 1, c = 0,∆1 = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,Next′,Update′,Corrupt,Chall,GetUpdC∗

(λ)
if b = b′ and A is valid, then return 1 else return 0

Oracles
Enc′(M, eexp) : run Ce,eexp ← Enc(Ke,M, eexp) and set L∗ := L∗ ∪ (c, e, Ce,eexp), c = c+ 1. Return Ce,eexp .
Next′ : run (Ke+1,∆e+1) ← Next(Ke). If phase = 1 and e < e∗exp, run C∗

e+1,b ← Update(∆e+1, C
∗
e,b). Set

e = e+ 1.
Update′(Ce−1,eexp) : if (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. Run Ce,eexp ← Update(∆e, Ce−1,eexp) and set
L∗ := L∗ ∪ (c, e, Ce,eexp), c = c+ 1. Return Ce,eexp .

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′} and return ∆e′ .

Chall(M,Ce−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. If b = 0,
set C∗

e,0 ← Enc(Ke,M, eexp), else C∗
e,1 ← Update(∆e, Ce−1,eexp). Set C∗ = C∗∪ (e, C∗

e,b), e
∗ = e, e∗exp = eexp,

and return C∗
e,b.

GetUpdC∗ : If phase = 0 or e > e∗exp, return ⊥. Set C∗ := C∗ ∪ (e, C∗
e,b) and return C∗

e,b.

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,b) /∈ C∗ holds. (No trivial win via retrieved keys.)
2) For all e′ ∈ K∗ with e∗ < e′ ≤ e∗exp and (e′ − 1, C∗

e′−1,b) ∈ C∗, e′ − 1 /∈ D∗ holds. (No trivial win via
updating a retrieved challenge ciphertext via a token.)

Fig. 3. Our EE-IND-UE-CPA security notion for UE schemes with expiry epochs.

leaked beyond that expiry epoch of a ciphertext — where by FS we mean, again loosly speaking: once
a key leaks, expired ciphertexts are not in danger even in presence of tokens. Recall that by correctness
of UE schemes without expiry epochs, such strong from of FS cannot be met (i.e., once a key leaks,
old ciphertexts are immediately in danger when access to all tokens is granted). Indeed, known UE
schemes do not support expiry epochs and have to mitigate this issue by artificially disallowing access
to a certain token after the challenge ciphertext was produced, which however results in only a very
weak form of FS.

2.1 Relation to Other UE Security Notions

Our security notions imply IND-UE-CPA security [GP22, Nis22, Jia20]. Moreover, we can even show
that our notion implies a simple and plausible ciphertext indistinguishability notion where challenge
ciphertexts with different expiry epochs are indistinguishable in the same challenge epoch.

EE-IND-UE-CPA implies IND-UE-CPA for UE with eexp = 2λ. The security notions of IND-
UE-CPA as given in [GP22, Nis22, Jia20] are closely related to ours with the exception that ours allows
expiry epochs. In the following, we show that our notions imply the prior CPA notion for an UE scheme
with eexp = 2λ for large enough λ ∈ N via a simple reduction. Before that, we recap the IND-UE-CPA
notion.

We adapt the most recent IND-UE-CPA notion from [GP22] (which is also used in [Nis22, Jia20])
and left out unnecessary details such as deterministic updates, CCA, and some sets for the leakage
profiles. Indeed, to show our implication, we require that any successful IND-UE-CPA adversary yields
a successful EE-IND-UE-CPA adversary. The contrary does not hold. The reason is that in such a
hypothetical reduction, we cannot simulate encryption queries and a valid challenge with different expiry
epochs, and certainly cannot provide the token ∆e∗exp+1 to the EE-IND-UE-CPA adversary as this would
yield a trivial win via the non-validity of the adversary in the IND-UE-CPA security experiment. Notably,
here the currently strongest notion of IND-UE-CPA is presented, i.e., security for backward-directional
key updates.

Definition 3 (IND-UE-CPA security [GP22]). A UE scheme UE is IND-UE-CPA-secure iff for any
PPT adversary A, the advantage function

Advind-ue-cpaUE,A (λ) :=
∣∣∣Pr [Expind-ue-cpaUE,A (λ) = 1

]
− 1/2

∣∣∣
9



Experiment Expind-ue-cpaUE,A (λ)
K1 ← Gen(λ), phase = 0, e = 1, c = 0,∆1 = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,Next′,Update′,Corrupt,Chall,GetUpdC∗

(λ)
if b = b′ and A is valid, then return 1 else return 0

Oracles
Enc′(M) : run Ce ← Enc(Ke,M) and set L∗ := L∗ ∪ (c, e, Ce), c = c+ 1. Return Ce.
Next′ : run (Ke+1,∆e+1)← Next(Ke). If phase = 1, run C∗

e+1,b ← Update(∆e+1, C
∗
e,b). Set e = e+ 1.

Update′(Ce−1) : if (·, e− 1, Ce−1) /∈ L∗, return ⊥. Run Ce ← Update(∆e, Ce−1) and set L∗ := L∗ ∪
(c, e, Ce), c = c+ 1. Return Ce.

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′} and return ∆e′ .

Chall(M,Ce−1) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1) /∈ L∗, return ⊥. If b = 0, set
C∗

e,0 ← Enc(Ke,M), else C∗
e,1 ← Update(∆e, Ce−1). Set C∗ = C∗ ∪ (e, C∗

e,b), e
∗ = e, and return C∗

e,b.
GetUpdC∗ : If phase = 0, return ⊥. Set C∗ := C∗ ∪ (e, C∗

e,b) and return C∗
e,b.

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,b) /∈ C∗ holds. (No trivial win via retrieved keys.)
2) For all e′ ∈ K∗ with e∗ < e′ and (e′ − 1, C∗

e′−1,b) ∈ C∗, e′ − 1 /∈ D∗ holds. (No trivial win via updating
a retrieved challenge ciphertext via a token.)

Fig. 4. The IND-UE-CPA security notion for UE schemes.

is negligible in λ, where Expind-ue-cpaUE,A is defined as in Figure 4.

In [Nis22, GP22], efficient UE schemes were presented that fulfill the IND-UE-CPA notion. Those
schemes allow key updates in the backwards direction. We briefly want to mention that any potential
UE scheme that allows key updates in the backward direction cannot be EE-IND-UE-CPA-secure. The
reason is that our notion allows the adversary to query the update token ∆eexp+1 in the expiry epoch and
the key Keexp+1 right after the expiry epoch of the challenge ciphertext. In a backward-directional key
update setting, the adversary can take Keexp+1 and ∆eexp+1 to derive Keexp which results in a adversarial
win in our notion. Hence, this yields a trivial UE scheme separation between IND-UE-CPA and EE-
IND-UE-CPA security as we strictly have to rely on UE schemes with no-directional key updates.

However, we can show that any EE-IND-UE-CPA-secure UE scheme with fixed eexp = 2λ is also
IND-UE-CPA secure relating the notions for exponential expiry-epoch values. Let UE∞ be a UE scheme
with expiry epochs set always to eexp = 2λ for large-enough λ ∈ N.

Lemma 1. If UE∞ is EE-IND-UE-CPA-secure, then UE∞ is IND-UE-CPA-secure. Concretely, for any
PPT adversary A in the IND-UE-CPA security notion there is a PPT distinguisher D in the EE-IND-
UE-CPA security notion such that

Advind-ue-cpaUE∞,A (λ) ≤ Advee-ind-ue-cpaUE∞,D (λ).

Proof. D starts A with λ and has to present a consistent view for A. Therefore, D forwards oracles
queries for Enc′,Next′,Update′,Corrupt,Chall and GetUpdC∗ directly to it’s EE-IND-UE-CPA challenger
(using eexp = 2λ).

Since we have e < eexp always in the reduction (as the current epoch e evolves only sequentially),
those queries are consistent. The only crucial point here is the validity of D. For D to be valid, we need
that A does not have queried 1) keys in challenge-equal epochs and 2) update tokens in epochs for which
A has queried a key in the next epoch (but depending on eexp in A’s view). However, since e < eexp
always in the reduction, those validity constraints for A are essentially D’s validity constraints. Hence,
if A is valid and successful in the sense of IND-UE-CPA on UE∞, D yields a successful PPT adversary
on UE∞ in the EE-IND-UE-CPA notion. ⊓⊔

Ciphertext Indistinguishability for Different Expiry Epochs. Next we introduce a simple and
natural relaxation of our EE-IND-UE-CPA security notion, which we dub EE-IND-UE-ENC, to show
security of ciphertexts under different expiry epochs but in the same challenge epoch. See that such a
property is not immediately achieved in our stronger EE-IND-UE-CPA notion since there we guarantee
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indistinguishability of fresh and updated ciphertexts that have the same expiry epoch in the same
challenge epoch. However, as we show, our EE-IND-UE-CPA implies the EE-IND-UE-ENC notion.

Essentially, such a notion is strongly related to the common IND-UE-ENC notions [LT18], but
adapted to expiry epochs. Particularly, we allow the adversary to output different expiry epochs as
a challenge together with two chosen messages for a challenge epoch. The goal of the adversary is
to distinguish which of the challenge messages was encrypted for which expiry epoch depending on a
uniform bit b. Essentially, b determines if M0 is encrypted for eexp,0 or for eexp,1 while M1 is encrypted
for the other expiry epoch mimicking that no PPT adversary can distinguish two different messages for
two different expiry epochs within a target epoch.

The intuition is that in our EE-IND-UE-CPA notion the adversary is capable of querying encryptions
(through Enc′) for different expiry epochs in the challenge epoch. While this intuitively yields ciphertext
indistinguishability for different expiry epochs, we want to make it more formal next. The key feature
is that the adversary queries the challenge oracle Chall with two messages and two expiry epochs of
its choice. In the challenge phase, it has to distinguish for which expiry epoch which message was
encrypted, where the choice in the challenge ciphertexts is determined by a uniformly random bit b
which the adversary has to guess to succeed in the notion.

Definition 4 (EE-IND-UE-ENC security). A UE scheme UE is EE-IND-UE-ENC-secure iff for any
PPT adversary A, the advantage function

Advee-ind-ue-encUE,A (λ) :=
∣∣∣Pr [Expee-ind-ue-encUE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expee-ind-ue-encUE,A is defined as in Figure 5.

Experiment Expee-ind-ue-encUE,A (λ)
K1 ← Gen(λ), phase = 0, e = 1, c = 0,∆1 = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,Next′,Update′,Corrupt,Chall,GetUpdC∗

(λ)
if b = b′ and A is valid, then return 1 else return 0

Oracles
Enc′(M) : run Ce ← Enc(Ke,M) and set L∗ := L∗ ∪ (c, e, Ce), c = c+ 1. Return Ce.
Next′ : run (Ke+1,∆e+1) ← Next(Ke). If phase = 1, run C∗

e+1,0 ← Update(∆e+1, C
∗
e,0) and C∗

e+1,1 ←
Update(∆e+1, C

∗
e,1). Set e = e+ 1.

Update′(Ce−1) : if (·, e− 1, Ce−1) /∈ L∗, return ⊥. Run Ce ← Update(∆e, Ce−1) and set L∗ := L∗ ∪
(c, e, Ce), c = c+ 1. Return Ce.

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′} and return ∆e′ .

Chall(M∗
0 ,M

∗
1 , e

∗
exp,0, e

∗
exp,1) : if phase = 1, return ⊥. Set phase = 1. If b = 0, set C∗

e,0 ← Enc(Ke,Mb, e
∗
exp,0),

else C∗
e,1 ← Enc(Ke,M1−b, e

∗
exp,1). Set C∗ = C∗ ∪ (e, C∗

e,0, C
∗
e,1), e

∗ = e, and return C∗
e,0, C

∗
e,1.

GetUpdC∗ : If phase = 0, return ⊥. Set C∗ := C∗ ∪ {(e, C∗
e,0, C

∗
e,1)} and return (C∗

e,0, C
∗
e,1).

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,0, C
∗
e′,1) /∈ C∗ holds. (No trivial win via retrieved keys.)

2) For all e′ ∈ K∗ with e∗ < e′ ≤ max(e∗exp,0, e
∗
exp,1) and (e′ − 1, C∗

e′−1,0, C
∗
e′−1,1) ∈ C∗, e′ − 1 /∈ D∗ holds.

(No trivial win via updating the retrieved challenge ciphertexts via a token.)

Fig. 5. The EE-IND-UE-ENC security notion for UE schemes with expiry epochs.

Lemma 2. If UE is an EE-IND-UE-CPA-secure UE scheme with expiry epochs, then UE is EE-IND-
UE-ENC-secure. Concretely, for any PPT adversary A there is a distinguisher D such that

Advee-ind-ue-encUE,A (λ) ≤ 2 · Advee-ind-ue-cpaUE,D (λ).

Proof. D starts A with λ and has to present a consistent view for A. Therefore, D forwards oracles
queries for Enc′,Next′,Update′, and Corrupt directly to it’s EE-IND-UE-CPA challenger. The answers
of Enc′,Update′, and Corrupt provide a consistent view for A as they are the same in both experiments.
Next′ switches the epochs in the pre-challenge epochs.

If A queries Chall with (M∗0 ,M
∗
1 , e
∗
exp,0, e

∗
exp,1), D queries its Chall-oracle with M∗0 ,M

∗
1 , e
∗
exp,0 and its

Enc′-oracle with (M∗b , e
∗
exp,1), for uniform b ← {0, 1}. D retrieves C∗e,0 from Chall and C∗e,1 from Enc′
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which D both forwards to A as the answer of A’s Chall-oracle. In half of the cases, this yields a consistent
contribution for A’s challenge ciphertexts.

In the challenge phase, Next′ switches the epochs and lets the EE-IND-UE-CPA challenger updates
the challenge ciphertext C∗e,0 while C∗e,1 is updated via the Update′-oracle (which is possible since C∗e,1
is a valid ciphertext queried from D’s Enc′-oracle). If A queries the updated challenge ciphertexts, D
returns those.

For D to be valid, we need that A does not have queried 1) keys in challenge-equal epochs and 2) up-
date tokens in epochs for which A has queried a key in the next epoch (depending on max(e∗exp,0, e

∗
exp,1)).

Those validity constraints for A directly transfer to D’s validity constraints. Hence, if A is valid and
successful in the sense of EE-IND-UE-ENC on UE, D yields a successful PPT adversary on UE in the
EE-IND-UE-CPA notion. ⊓⊔

3 Constructions of UE with Expiry Epochs

We continue with constructing EE-IND-UE-CPA-secure UE schemes. Before that, we recap necessary
building blocks such as pairings, group generator, and dual-system groups which provide us with a
modular approach towards our goal.

3.1 Preliminaries and Dual System Groups

Notations. We write v = (vi)i∈[n], for n ∈ N. We may also write vectors in bold fonts which depends
on the context, i.e., we use a component-wise multiplication of vectors, i.e., v · v′ = (v1, . . . , vn) ·
(v′1, . . . , v

′
n) = (v1 · v′1, . . . , vn · v′n).

Pairings. Let G,H, GT be cyclic groups. A pairing e : G×H→ GT is a map that is bilinear (i.e., for
all g, g′ ∈ G and h, h′ ∈ H, we have e(g · g′, h) = e(g, h) · e(g′, h) and e(g, h · h′) = e(g, h) · e(g, h′)), non-
degenerate (i.e., for generators g ∈ G, h ∈ H, we have that e(g, h) ∈ GT is a generator), and efficiently
computable.

Group generator. Let G(λ, n′) be a group generator that generates the tuple (G,H, GT , N, g, h,
(gpi

)i∈[n′], e), for a pairing e : G × H → GT , for composite-order groups G,H, GT , all of known group
order N = p1 · · · pn′ , generators g, h, (gpi

)i∈[n′], and for Θ(λ)-bit primes (pi)i.

Dual System Groups. We recap a special variant of dual-system groups (DSGs) due to Gong et
al. [GCTC16] (which is based on [CW13]). We only need a relaxed version of their DSG. We want
emphasize that we left out unnecessary features and did not add anything to the syntax, correctness,
or security. Hence, we can safely assume that our relaxed version is implied by the full DSG version
from [GCTC16] and we give a concrete prime-order instantiation from the standard d-Lin assumption
in the standard model inSubsection A.Starting from the initial work by Waters [Wat09], the richness
of the dual-system paradigm was demonstrated in several prior works already (e.g., [LW10, LW11,
OT12, CW13, HKS15, AHY15, GCD+16, GCTC16, GWW19, GW20]). The concept of [GCTC16] is
particularly useful as it provides us with functionalities that are also essential in the UE paradigm with
solely ciphertext updates in the forward direction. This connection is new and enriches the applica-
tions of the dual-system paradigm. Our (relaxed) DSG DSG consists of the PPT algorithms (SampP,

SampG,SampH,SampS,SampK, ŜampG, ŜampH):
SampP(λ, n): sample (G,H, GT , N, (gpi)i∈[n′], e) ← G(λ, n′), for fixed integer n′. Define m : H → GT

to be linear map, let ĝ and ĥ be group elements generated by gs and hs, respectively (see below).
Further, pars, p̂arsmay contain arbitrary information. Output public parameters pp = (G,H, GT , N,

e,m, pars) and secret parameters sp = (ĝ, ĥ, p̂ars)
SampG(pp): output g = (g0, . . . , gn) ∈ Gn+1.
SampS(pp): output S ∈ G.
SampH(pp): output h = (h0, . . . , hn) ∈ Hn+1.
SampK(pp): output K ∈ H.

ŜampG(pp, sp): output ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1 and gs ∈ G.

ŜampH(pp, sp): output ĥ = (ĥ0, . . . , ĥn) ∈ Hn+1 and hs, ha ∈ H.
Remark. SampG,SampS,SampH and SampK sample from a “normal” distribution (used for correctness)

while ŜampG and ŜampH sample from a “semi-functional” distribution (used in the security proof). When
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proving UE security, we can switch UE ciphertexts and keys to semi-functional ones. The essence of
dual system is then carried out, namely, semi-functional ciphertexts and keys are incompatible meaning
that we can derive at a stage where the UE ciphertexts carry a uniformly random group element and
indistinguishability can be shown.

Correctness. For all λ, n ∈ N, for all pp (generated via SampP(λ, n)):

Projectiveness. m(h)s = e(SampS(pp; s), h), for all s ∈ Z∗N and h ∈ H.
Orthogonality. e(S, hi) = 1 and e(g0,K) = 1, for all i ∈ [n], (h0, . . . , hn)← SampH(pp), S ← SampS(pp),

(g0, . . . )← SampH(pp), and K ← SampK(pp).
Associativity. e(g0, hi) = e(gi, h0), for all i ∈ [n], (g0, . . . , gn) ← SampG(pp) and (h0, . . . , hn) ←

SampH(pp).
G-H-subgroups. The outputs of SampG(pp) and SampS(pp) are uniformly distributed over the generators

of non-trivial subgroups of Gn+1 and G, respectively. The outputs of SampH(pp) and SampK(pp)
are uniformly distributed over the generators of non-trivial subgroups of Hn+1 and H, respectively.

Security. For all λ, n ∈ N, for all (pp, sp)← SampP(λ, n):

Orthogonality. m(ĥ) = 1.

Non-degeneracy. ĥ lies in a subgroup of hs, gs lies in a subgroup of ĝ.
Left-subgroup indistinguishability (LS). For any PPT D, AdvlsDSG,D(λ, n) :=

|Pr [D(pp,g) = 1]− Pr [D(pp,gĝ) = 1]|

is negligible in λ, for g← SampG(pp) and (ĝ, ·)← ŜampG(pp, sp).
Right-subgroup indistinguishability (RS). For any PPT D, AdvrsDSG,D(λ, n) :=

∣∣∣Pr [D(pp, ĥ,gĝ,h) = 1
]
− Pr

[
D(pp, ĥ,gĝ,hĥ) = 1

]∣∣∣
is negligible in λ, for g ← SampG(pp), ĝ, ·) ← ŜampG(pp, sp), h ← SampH(pp), and (ĥ, ·, ·) ←
ŜampH(pp, sp).

Parameter-hiding. The distributions {pp, ĝ, ĥ, ĝ, ĥ} and {pp, ĝ, ĥ, ĝĝ′, ĥĥ′} are identically distributed,

for (ĝ = (ĝ0, . . . , ĝn), gs) ← ŜampG(pp, sp), (ĥ = (ĥ0, . . . , ĥn), hs, ha) ← ŜampH(pp, sp), ĝ′ =

(1, gγ1
s , . . . , gγn

s ), and ĥ′ = (1, hγ1
s , . . . , hγn

s ), for γ1, . . . , γn ← ZN .
Computational non-degeneracy (ND). For any PPT D, AdvndDSG,D(λ, n) :=

∣∣∣Pr [D(pp,S · gĝ,K · ĥα, e(S,K)) = 1
]
− Pr

[
D(pp,S · gĝ,K · ĥα, R = 1

]∣∣∣
is negligible in λ, for S = (S, 1, . . .), S ← SampS(pp), g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp),
K ← SampK(pp), α← ZN , and R← GT .

Remark. The properties have the following implications which we will need later on. From orthog-
onality and projectiveness, we retrieve e(S, ĥ) = 1. By projectiveness, it holds m(K)s · m(K ′)s =
e(SampS(pp; s),K) · e(SampS(pp; s),K ′) = m(K ·K ′)s, for s ∈ Z∗N , and K,K ′ ∈ H. Moreover, by pro-

jectiveness and G-subgroups, we have m(K)s · m(K)s
′
= e(SampS(pp; s),K) · e(SampS(pp; s′),K) =

e(gs+s′ ,K) = m(K)s+s′ , for K ∈ H and suitable generator g ∈ G.

3.2 Constructing UE Schemes with Expiry Epochs

The main idea to construct UE schemes with expiry epochs from DSG is the following. In each epoch e,
keys and ciphertexts are consistent in the sense that the associativity, orthogonality, and protectiveness
properties of DSG ensure correctness. A token ∆e+1 is generated with a tweak δ that “lifts” keys and
ciphertexts from epoch e to e+ 1. It is important to hide such a tweak in the token (since otherwise a
token can undo a ciphertext update).
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Construction of UE from DSG
Gen(λ) : compute (pp, sp) ← SampP(pp, poly(λ)), set n = poly(λ), sample (h0, . . . , hn) ← SampH(pp), k1 ← SampK(pp)
and return K1 = (h0, k1 · h1, k2, . . . , hn,m(k1), pp).

Next(Ke) : for Ke = (T0, T1, Te+1, . . . , Tn,m(ke), pp), sample δ ← SampK(pp) and (h0, . . . , hn), (h
′
0, . . . , h

′
n) ←

SampH(pp), and return

∆e+1 = (h0, δ · he+1,m(ke · δ))

Ke+1 = (T0h
′
0, T1 · δ · Te+1

e+1∏
i=1

h
′
i, Te+2h

′
e+2, . . . , Tnh

′
n,m(ke · δ), pp).

Remark. δ is the “tweak” towards the new key; h0, he+1 hide the tweak while the h′
i-values re-randomize the new key.

Enc(Ke,M, eexp) : for Ke = (. . . ,m(ke), pp), sample (g0, . . . , gn) ← SampG(pp), S ← SampS(pp; s), for s ← Z∗
N . If eexp >

n(λ), then set eexp = ⌊poly(λ)⌋. Return

Ce = (Sg0,
e∏

i=1

gi, ge+1, . . . , geexp ,m(ke)
s ·M).

Update(∆e+1, Ce) : for ∆e+1 = (D0, D1,m(ke+1)) and Ce = (S0, S1, Se+1, . . . , Seexp , ST ), sample S ← SampS(pp; s′), for

s′ ← Z∗
N , (g′

0, . . . , g
′
n)← SampG(pp), compute m(δ)s =

e(S0,D1)

e(D0,Se+1)
, and return

Ce+1 = (S0Sg
′
0, S1Se+1

e+1∏
i=1

g
′
i, Se+2g

′
e+2, . . . , Seexpg

′
eexp

, STm(δ)
s
m(ke+1)

s′
).

Dec(Ke, Ce) : for Ke = (T0, T1, . . .) and Ce = (S0, S1, . . . , ST ) return

M = SGT
·
e(T0, S1)

e(S0, T1)
.

Correctness of UE
1) Correct decryption of epoch-e ciphertexts:

M = ST ·
e(T0, S1)

e(S0, T1)
= m(ke)

s ·M ·
e(h0,

∏e
i=1 gi)

e(Sg0, ke
∏e

i=1 hi)
=

m(ke)
s

e(S, ke)
·M = M,

where m(ke)
s = e(S, ke), for some s ∈ Z∗

N , e(S, hi) = 1, for all i ∈ [e], and e(g0, ke) = 1 due to projectiveness,
orthogonality, and associativity.

2) Correct updates of epoch-e to epoch-(e + 1) ciphertexts:

Ce+1 = (S
′′
g
′′
0 ,

e+1∏
i=1

g
′′
i , g

′′
e+2, . . . , g

′′
eexp

,m(ke+1)
s+s′ ·M),

where S′′ = SampS(pp; s+ s′), (g′′
0 , . . . , g′′

n) = SampG(pp; s+ s′), m(ke+1)
s+s′ = m(ke)

s ·m(δ)s ·m(ke+1)
s′ , for m(δ)s =

e(S0,D1)

e(D0,Se+1)
=

e(Sg0,δhe+1)

e(h0,ge+1)
, due to to projectiveness, orthogonality, associativity, and G-H-subgroups.

Fig. 6. Construction of UE from DSG with correctness.

Blinding the tweak with a uniform epoch-specific term he+1 helps us where the corresponding element
ge+1 is only present in ciphertexts for epoch e, but will not be made available in ciphertexts for epoch
e + 1. This construction strategy also ensures that the token cannot be used to update keys in any
direction as such a token is not “compatible” with neither Ke nor Ke+1. Moreover, the update via a
token only works as long as eexp is not reached and “update” ciphertext elements . . . , geexp are available.
In that sense, the ciphertext as well as the key will shrink the further epochs progress.

Definition 5 (UE Construction). The construction of a UE scheme UE from DSG DSG with correct-
ness is shown in Fig. 6. Security is proved in Theorem 1.

We now prove security of UE and provide detailed information about the game hops in the beginning
of the proof of the following theorem.

Theorem 1. If DSG is a DSG scheme, then UE is IND-UE-CPA-secure. Concretely, for any PPT ad-
versary A and n = poly(λ), it holds:

Advind-ue-cpaUE,A (λ) ≤ AdvlsDSG,D1
(λ, n) + 2 · AdvrsDSG,D2

(λ, n)/n+ AdvndDSG,D3
(λ, n).

Proof. We proceed in a sequence of games:

Game 0. The IND-UE-CPA experiment.
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Game 1. Fresh encryption of C∗e,1 in Chall-oracle by using Dec and Enc instead of Update. This is a
conceptional change. Here, we use the fact that fresh ciphertexts and updated ciphertexts are indistin-
guishable.
Game 2. The challenge ciphertext(s) are semi-functional (via left-subgroup indistinguishability (LS)).
This is a property that comes from the underlying DSG assumption and is a common hybrid step in
proving constructions secure in the dual-system paradigm.
Game 3. The keys and tokens are generated directly in the Next′ oracle (instead of calling Next).
Moreover, the token is used to generate the next key. We observe that a token ∆e∗ can be used to
compute the corresponding key Ke∗ . This is a crucial change as we prepare the embedding of uniform
randomness into ∆e∗ . See that such a token by construction must not carry a prefix of the challenge
ciphertext in challenge epoch e∗.
Game 4. The token ∆e∗ and the keys Ke, for challenge epoch e∗ and e ≥ e∗, are pseudo-normal (via
right-subgroup indistinguishability (RS)). This is a common next step in many dual-system proofs to
prepare the embedding of uniform elements.
Game 5. The token ∆e∗ and the keys Ke, for challenge epoch e∗ and e ≥ e∗, are pseudo-normal semi-
functional (via parameter-hiding). This is further common step in many dual-system proofs to prepare

the embedding of a uniform element. The result is that ∆e∗ now carries a uniform element (ĥ)α. By
the argument we prepared in Game 3, this also ensures that keys Ke, for e ≥ e∗, also have such a
uniform blinding term.
Game 6. The token ∆e∗ and the keys Ke, for challenge epoch e∗ and e ≥ e∗, are semi-functional (via
right-subgroup indistinguishability (RS)). This is a common next step in many dual-system proofs to
finalize the embedding of a uniform element.
Game 7. The message in the challenge ciphertext(s) is a uniform GT -element (via computational non-
degeneracy (ND)). In this game, the message is independent of the bit b and security readily follows.

Let SA,j be the event that A succeeds in Game j. We highlight changes boxed.

Lemma 3 (Game 0 to Game 1). For any PPT adversary A, it holds: |Pr [SA,0]− Pr [SA,1] | = 0.

Proof. This is a conceptional change. The Chall oracle in Game 1 is as follows:

Chall(M,Ce−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. If b = 0,
set C∗e,0 ← Enc(Ke,M, eexp), else run decryption as

M ′ ← Dec(Ke−1, Ce−1,eexp) and C∗e,1 ← Enc(Ke,M
′, eexp) .

Set C∗ = C∗ ∪ (e, C∗e,b), e
∗ = e, e∗exp = eexp, and return C∗e,b.

Due to correctness (i.e., via perfect re-randomization), the ciphertexts derived from Enc and Update for
an epoch e yield the same distribution. Hence, such a change cannot be detected by A.

Lemma 4 (Game 1 to Game 2). For any PPT adversary A there is a distinguisher D on LS such
that |Pr [SA,1]− Pr [SA,2] | ≤ AdvlsDSG,D(λ, n).

Proof. The input is provided as (pp,T), where T = (T0, . . . , Tn) is either g or gĝ, for g = (g0, . . . , gn)←
SampG(pp) and (ĝ = (ĝ0, . . . , ĝn), ·)← ŜampG(pp, sp). The Chall oracle in Game 2 is as follows:

Chall(M,Ce−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. Set

C∗e,0 = (S · T0,

e∏
i=1

Ti, Te+1, . . . , Teexp ,m(ke)
s ·M)

C∗e,1 = (S · T0,

e∏
i=1

Ti, Te+1 . . . , Teexp ,m(ke)
s ·M ′)

for M ′ ← Dec(Ke∗−1, Ce∗−1,eexp), S ← SampS(pp; s) , and s← Z∗N . Set C∗ = C∗ ∪ (e, C∗e,b), e
∗ = e,

e∗exp = eexp, and return C∗e,b.
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If T = g, then the challenge ciphertext(s) are distributed as in Game 1. If T = gĝ, then the challenge
ciphertext(s) are distributed as in Game 2.

Lemma 5 (Game 2 to Game 3). For any PPT adversary A, it holds: |Pr [SA,2]− Pr [SA,3] | = 0.

Proof. This is a conceptional change. The Next′-oracle in Game 3 is as follows (where we directly
compute ∆e+1 and Ke+1 instead of calling Next, use ∆e+1 to compute Ke+1, and store ki-elements):

Next′ : for Ke = (T0, T1, Te+1, . . . , Tn,m(ke), pp), sample

δ ← SampK(pp) and (h0, . . . , hn), (h
′
0, . . . , h

′
n)← SampH(pp) , store ke+1 := ke · δ

and compute

∆e+1 = (h0, δ · he+1,m(ke+1)) =: (D0, D1, D2)

Ke+1 = (T0 D0 h′0, T1 · D1 Te+1h
′
e+1

e∏
i=1

hi h
′
i, Te+2 he+2 h′e+2, . . . ,

Tn hn h′n, D2 , pp).

If phase = 1 and e < e∗exp, run C∗e+1,b ← Update(∆e+1, C
∗
e,b). Set e = e+ 1.

See that we can safely use the above boxed hi-elements used to compute ∆e+1 for Ke+1 as those
elements are perfectly re-randomized by the h′i-elements (due to the G-H-subgroups property) which
yields a consistent distribution for Ke+1. (Looking ahead, in the remaining game hops, we will use such
a change to embed a uniformly random element in ∆e∗ and Ke, for e ≥ e∗.)

Lemma 6 (Game 3 to Game 4). For any PPT adversary A there is a distinguisher D on RS such
that |Pr [SA,3]− Pr [SA,4] | ≤ AdvrsDSG,D(λ, n)/n.

Proof. The input is provided as (pp, ĥ,gĝ,T), where T = (T0, . . . , Tn) is either h or hĥ, for h =

(h0, . . . , hn) ← SampH(pp), (ĥ = (ĥ0, . . . , ĥn), ·, ·) ← ŜampH(pp, sp), and gĝ = (g0ĝ0, . . . , gnĝn). The
reduction guesses the challenge epoch e∗ ← [n]. The Next′ (epoch e∗−1 only) and Chall oracles in Game
4 are:

Next′ : for Ke∗−1 = (T ∗0 , T
∗
1 , T

∗
e∗ , . . . , T

∗
n ,m(ke∗−1), pp), sample δ ← SampK(pp) and (h′0, . . . , h

′
n) ←

SampH(pp), store ke∗ := ke∗−1 · δ, and compute

∆e∗ = ( T0 , δ · Te∗ ,m(ke∗)) =: (D0, D1, D2)

Ke∗ = (T ∗0D0h
′
0, T

∗
1 ·D1 · T ∗e∗h′e∗

e∗−1∏
i=1

Ti h
′
i, Te∗+1 Te∗+1 h′e∗+1, . . . ,

Tn Tn h′n, D2), pp).

If phase = 1 and e < e∗exp, run C∗e∗,b ← Update(∆e∗ , C
∗
e∗−1,b). Set e = e+ 1.

Chall(M,Ce∗−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e∗ − 1, Ce∗−1,eexp) /∈ L∗, return ⊥. Set

C∗e∗,0 = (S · g0ĝ0,
e∗∏
i=1

giĝi, ge∗+1ĝe∗+1, . . . , geexp ĝeexp ,m(ke∗)
s ·M)

C∗e∗,1 = (S · g0ĝ0,
e∗∏
i=1

giĝi, ge∗+1ĝe∗+1, . . . , geexp ĝeexp ,m(ke∗)
s ·M ′),

forM ′ ← Dec(Ke∗−1, Ce∗−1,eexp), for S ← SampS(pp; s), for s← Z∗N . Set C∗ = C∗∪(e, C∗e∗,b), e∗exp = eexp,
and return C∗e∗,b.

If T = h, then the token ∆e∗ and the keys Ke, for e ≥ e∗, are distributed as in Game 3. If T = hĥ, then
the token ∆e∗ and the keys Ke, for e ≥ e∗, are distributed as in Game 4. This game hop introduces a
loss of a factor n = poly(λ).
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Lemma 7 (Game 4 to Game 5). For any PPT adversary A, it holds: |Pr [SA,4]− Pr [SA,5] | = 0.

Proof. We use the parameter-hiding property which states that the distributions

{pp, ĝ, ĥ, ĝ, ĥ} and {pp, ĝ, ĥ, ĝĝ′, ĥĥ′}

are identically distributed, for (ĝ = (ĝ0, . . . , ĝn), gs) ← ŜampG(pp, sp), (ĥ = (ĥ0, . . . , ĥn), hs, ·) ←
ŜampH(pp, sp), ĝ′ = (1, gγ1

s , . . . , gγn
s ), and ĥ′ = (1, hγ1

s , . . . , hγn
s ), for γ1, . . . , γn ← ZN .

This is reminiscent of Lemma 11 in [GCTC16] and we information-theoretically embed (ĥ)α. This
results in a pseudo-normal semi-functional token ∆e∗ and keys Ke, for e ≥ e∗. As shown in [GCTC16],

due to non-degeneracy, we have that (hs)
α′

can be replaced by some suitable (ĥ)α, for suitable α, α′ ∈
ZN . This can be embeded into ∆e∗ (which the adversary can query) since no (prefix) element ge∗ ĝe∗ is
present in the challenge ciphertext(s). Since ∆e∗ is used to compute keys Ke, for e ≥ e∗, the blinding

term (ĥ)α is embedded in all remaining epoch keys as well. This is crucial as we need to blind all
occurrences of Ke∗ . Particular, see that ke∗k

−1
e∗−1 = δ which is why we start from the token ∆e∗ which

has information on δ embedded. The Next′ (epoch e∗ − 1 only) and Chall oracles in Game 5 are:

Next′ : forKe∗−1 = (T ∗0 , T
∗
1 , T

∗
e∗ , . . . , T

∗
n ,m(ke∗−1), pp), sample α← Z∗N , δ ← SampK(pp), (h′0, . . . , h

′
n)←

SampH(pp), store ke∗ := ke∗−1 · δ, and compute

∆e∗ = (h0ĥ0, δ · (ĥ)α · he∗ ĥe∗ ,m(ke∗)) =: (D0, D1, D2)

Ke∗ = (T ∗0D0h
′
0, T

∗
1 ·D1 · h′e∗

e∗−1∏
i=1

hi ĥih
γi
s h′i, he∗+1 ĥe∗+1h

γe∗+1
s h′e∗+1,

. . . , hn ĥnh
γn
s h′n, D2, pp).

If phase = 1 and e < e∗exp, run C∗e∗,b ← Update(∆e∗ , C
∗
e∗−1,b). Set e = e+ 1.

Chall(M,Ce∗−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e∗ − 1, Ce∗−1,eexp) /∈ L∗, return ⊥. Set

C∗e∗,0 = (Sg0ĝ0,

e∗∏
i=1

gi ĝig
γi
s , ge∗+1 ĝe∗+1g

γe∗+1
s , . . . , geexp ĝeexpg

γeexp
s ,m(ke∗)

s ·M),

C∗e∗,1 = (Sg0ĝ0,

e∗∏
i=1

gi ĝig
γi
s , ge∗+1 ĝe∗+1g

γe∗+1
s , . . . , geexp ĝeexpg

γeexp
s ,m(ke∗)

s ·M ′),

for M ′ ← Dec(Ke∗−1, Ce∗−1,eexp), for S ← SampS(pp; s), for s ← Z∗N , and (g0, . . . , gn) ← SampG(pp).
Set C∗ = C∗ ∪ (e, C∗e∗,b), e

∗
exp = eexp, and return C∗e∗,b.

It is important to note that essentially (ĥ)α “blinds” the key element ke∗ which is used in the epoch-e∗

challenge ciphertext via m(ke∗). See that all remaining keys in epochs e > e∗ also have this blinding
term.

Lemma 8 (Game 5 to Game 6). For any PPT adversary A there is a distinguisher D on RS such
that |Pr [SA,5]− Pr [SA,6] | ≤ AdvrsDSG,D(λ, n)/n.

Proof. The input is provided as (pp, ĥ,gĝ,T), where T = (T0, . . . , Tn) is either h or hĥ, for h =

(h0, . . . , hn) ← SampH(pp), (ĥ = (ĥ0, . . . , ĥn), ·, ·) ← ŜampH(pp, sp), and gĝ = (g0ĝ0, . . . , gnĝn). The
reduction guesses e∗ ← [n]. The Next′ (epoch e∗ − 1 only) and Chall oracles in Game 6 are as follows:

Next′ : forKe∗−1 = (T ∗0 , T
∗
1 , T

∗
e∗ , . . . , T

∗
n ,m(ke∗−1), pp), sample α← Z∗N , δ ← SampK(pp), (h′0, . . . , h

′
n)←

SampH(pp), store ke∗ := ke∗−1 · δ, and compute

∆e∗ = ( T0 , δ · (ĥ)α · Te∗ ,m(ke∗)) =: (D0, D1, D2)

Ke∗ = (T ∗0D0h
′
0, T

∗
1D1T

∗
e∗h
′
e∗

e∗−1∏
i=1

Ti h
′
i, T
∗
e∗+1 Te∗+1 h′e∗+1, . . . , T

∗
n Tn h′n, D2, pp).

If phase = 1 and e < e∗exp, run C∗e∗,b ← Update(∆e∗ , C
∗
e∗−1,b). Set e = e+ 1.
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Chall(M,Ce∗−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e∗ − 1, Ce∗−1,eexp) /∈ L∗, return ⊥. Set

C∗e∗,0 = (S · g0ĝ0,
e∗∏
i=1

giĝi, ge∗+1ĝe∗+1, . . . , geexp ĝeexp ,m(ke∗)
s ·M),

C∗e∗,1 = (S · g0ĝ0,
e∗∏
i=1

giĝi, ge∗+1ĝe∗+1, . . . , geexp ĝeexp ,m(ke∗)
s ·M ′),

forM ′ ← Dec(Ke∗−1, Ce∗−1,eexp), for S ← SampS(pp; s), for s← Z∗N . Set C∗ = C∗∪(e, C∗e∗,b), e∗exp = eexp,
and return C∗e∗,b.

If T = h, then the token ∆e∗ and the keys Ke, for e ≥ e∗, are distributed as in Game 6. If T = hĥ,
then the token ∆e∗ and the keys Ke,for e ≥ e∗, are distributed as in Game 5. This game hop introduces
a loss of a factor n = poly(λ).

Lemma 9 (Game 6 to Game 7). For any PPT adversary A there is a distinguisher D on ND such
that |Pr [SA,6]− Pr [SA,7] | ≤ AdvndDSG,D(λ, n).

Proof. The input is provided as (pp,Sgĝ,K · (ĥ)α,T), where T is either e(S,K) or R ← GT , for g ←
SampG(pp), (ĝ, ·)← ŜampG(pp, sp), and (h)← SampH(pp), (ĥ, ·, ·)← ŜampH(pp, sp), S ← SampS(pp),

S = (1, 0, . . .),K ← SampK(pp). We implicitly set δ = K · k−1e∗−1 where ke∗−1 is known to the reduction.

The Next′ (only for e∗ − 1) and Chall oracles are:

Next′ : for Ke∗−1 = (T ∗0 , T
∗
1 , T

∗
e∗ , . . . , T

∗
n ,m(ke∗−1), pp), sample α ← Z∗N , (h0, . . . , hn)(h

′
0, . . . , h

′
n) ←

SampH(pp), and compute

∆e∗ = (h0, δ · (ĥ)α · he∗ ,m( K · (ĥ)α )) =: (D0, D1, D2)

Ke∗ = (T ∗0D0h
′
0, T

∗
1D1T

∗
e∗h
′
e∗

e∗−1∏
i=1

hih
′
i, T
∗
e∗+1he∗+1h

′
e∗+1, . . . , T

∗
nhnh

′
n, D2, pp).

If phase = 1 and e < e∗exp, run C∗e∗,b ← Update(∆e∗ , C
∗
e∗−1,b). Set e = e+ 1.

Chall(M,Ce∗−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e∗ − 1, Ce∗−1,eexp) /∈ L∗, return ⊥. Set

C∗e∗,0 = (S · g0ĝ0,
e∗∏
i=1

giĝi, ge∗+1ĝe∗+1, . . . , geexp ĝeexp ,T ·M)

C∗e∗,1 = (S · g0ĝ0,
e∗∏
i=1

giĝi, ge∗+1ĝe∗+1, . . . , geexp ĝeexp ,T ·M ′)

for M ′ ← Dec(Ke∗−1, Ce∗−1,eexp). Set C∗ = C∗ ∪ (e, C∗e∗,b), e
∗
exp = eexp, and return C∗e∗,b.

See that m(K · (ĥ)α) = m(K) holds. If T = e(S,K), then the challenge ciphertext(s) are distributed as
in Game 6. If T = R, then the challenge ciphertext(s) are distributed as in Game 7.

Lemma 10 (Game 7). For any PPT adversary A, Pr [SA,7] = 1/2 holds.

Proof. In Game 7, for (uniform) b ∈ {0, 1}, we provide A with challenge ciphertext(s) that include a
uniform GT -element instead of a A-chosen b-dependent message. Hence, b is completely hidden from
A’s view.

Taking Lemmata 3, 4, 5, 6, 7, 8, 9, and 10 together, shows Theorem 1. ⊓⊔

18



3.3 UE with Expiry Epochs with Sublinear Keys and Ciphertexts

We now give an adaption of our UE scheme with sublinear key and ciphertext sizes dubbed UE∗. Such
a construction is more involved than the construction and the proof of UE. We start with encoding of
epochs as a first step.

Encoding of epochs. We use the encoding function of the recent work due to Drijvers, Gorbunov,
Neven, and Wee [DGNW20, Sec. 4.2]. They give a function e that maps tags t = (t1, . . .) ∈ {1, 2}≤λ−1,
for λ = ⌊log2 n⌋, to epochs [n]:

e(t) = 1 +

|t|∑
i=1

(1 + (2λ−i − 1)(ti − 1)).

Moreover, t is the inverse function that maps epochs e ∈ [n] to tags {1, 2}≤λ−1:

t(e) =


ε if e = 1

t(e− 1)||1 if |t(e− 1)| < λ− 1

t||2 if |t(e− 1)| = λ− 1,

for longest string t such that t||1 is a prefix of t(e− 1). Furthermore, they define sets Γt ⊂ {1, 2}≤λ−1
for each t such that:

Γt = {t} ∪ {t||2 : t||1 prefix of t}.

The properties of Γt are: (1) t ⪯ t′ ⇔ ∃u ∈ Γt such that u is a prefix of t′, (2) ∀t, it holds Γt(e(t)+1) =
Γt\{t} if |t| = λ−1 or Γt(e(t)+1) = (Γt\{t})∪{t||1, t||2} otherwise, (3) ∀t′ ≻ t, it holds ∀u′ ∈ Γt′ ,∃u ∈ Γt

such that u is a prefix of u′.
The main construction idea is the following. The first ingredient is the above encoding mapping

epochs to encoded tags. See that such tags have only length of λ − 1 while allowing 2λ epochs. One
can think of it as a binary-tree encoding as discussed in detail in [DGNW20, Sec. 4.2] where nodes are
labeled as time epochs. However, this is not sufficient and we need a second ingredient, namely group
elements from the DSG, to support such an encoding in the final UE scheme. Inspired by [DGNW20]
but used in the DSG context, we can carefully stick together all ingredients and we adapt our security
proof for UE to prove security also for UE∗. With this, we are able to lift our linear-size UE construction
UE to a sublinear-size UE scheme UE∗. Again, keys and ciphertexts in each epoch are consistent. The
keys and the ciphertexts are now generated differently where the encoding function comes in. This
results in several key and ciphertext parts where all key parts now carry the main key elements as well.
For ciphertext, the main hurdle is the common randomness that blinds the message part where such a
randomness has to be included in all ciphertext parts.

Definition 6 (UE∗ construction). The construction of a UE scheme UE∗ from DSG and correctness
is shown in Fig. 7 and in Fig. 8, respectively. Security is proved in Theorem 2.

In general, constructing the ciphertexts yields no problem (given our DSG abstraction), the keys
now have several parts where we need to embed uniform randomness. This is the main hurdle in the
proof and we therefor have to carefully embed uniform randomness in a step-by-step fashion. First, we
start with making ciphertexts semi-functional. Then, we can embed randomness via parameter hiding
in the token ∆e∗ to it semi-functional (see that it does not contain any prefix of the challenge ciphertext
elements). Afterwards, we embed uniform randomness in the key Ke′ (if queried by the adversary) or
the key Ke∗exp

(if Ke′ was not queried). See that such keys can be made semi-functional trivially since
if Ke′ is queried, by the validity requirement, no token ∆e′ is allowed to be queried. Otherwise, if Ke′

is not queried, Ke∗exp
can be made semi-functional since such a key does not have any prefix element of

the challenge ciphertext (as the challenge ciphertext has already expired in e∗exp). In that sense, security
follows readily and we formally prove the theorem below.

Theorem 2. If DSG is a DSG scheme, then UE∗ is EE-IND-UE-CPA-secure. Concretely, for any PPT
adversary A, it holds:

Advee-ind-ue-cpaUE∗,A (λ) ≤ AdvlsDSG,D1
(λ, λ) + 2 · (|Γt(e∗exp)

|+ 1) · AdvrsDSG,D2
(λ, λ)/poly(λ)

+ AdvndDSG,D3
(λ, λ)/poly(λ).
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Construction of UE∗ from DSG
Gen(λ) : compute (pp, sp) ← SampP(pp, λ), sample (h0, . . . , hλ) ← SampH(pp), k1 ← SampK(pp) and return K1 =
({K′

1},m(k1), pp), with K′
1 = (h0, k1 · h1, . . . , hλ).

Next(Ke) : for Ke = ({K′
u : u ∈ Γt(e)},m(Ke), pp), if |t(e)| < λ−1, then find K′

t(e) = (T0, T1, T|t(e)|+1, . . . , Tλ), compute

K
′
t(e+1) = (T0, T1 · T|t(e)|+1, T|t(e)|+2, . . . , Tλ),

K
′
t(e+2) = (T0, T1 · T 2

|t(e)|+1, T|t(e)|+2, . . . , Tλ),

Sample δ ← SampK(pp) and (h0, . . . , hλ), (hu,0, . . . , hu,λ)u∈[|Γt(e+1)|] ← SampH(pp), for t(e+ 1) = (t(e+ 1)1, . . . , t(e+

1)|t(e+1)|), compute

∆e+1 = (h0, δ ·
|t(e+1)|∏

i=1

h
t(e+1)i
i ,m(ke · δ)),

K
′′
u = (T

′
u,0hu,0, T

′
u,1 · δ ·

|u|∏
i=1

h
ui
u,i, T

′
u,|u|+1hu,|u|+1, . . . , T

′
u,λhu,λ),

for {K′
u = (T ′

u,0, . . . , T
′
u,λ) : u = (u1, . . .) ∈ Γt(e+1)}. Set Ke+1 = ({K′′

u : u ∈ Γt(e+1)},m(ke · δ), pp) and return

(∆e+1, Ke+1).
Enc(Ke,M, eexp) : for Ke = (. . . ,m(Ke), pp), sample (gu,0, . . . , gu,λ)u∈Γt(e)\Γt(eexp+1)} ← SampG(pp), S ← SampS(pp; s),

for s← Z∗
N , and return

Ce,eexp = ({(Sgu,0,

|u|∏
i=1

g
ui
u,i, gu,|u|+1, . . . , gu,λ) : u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)},m(ke)

s ·M).

Update(∆e+1, Ce,eexp ) : if e < eexp, return ⊥. For ∆e+1 = (D0, D1,m(ke+1)) and Ce,eexp = ({C′
u : u ∈ Γt(e)},m(ke)

s ·M),

if |t(e)| < λ− 1, then find C′
t(e) = (S0, S1, S|t(e)|+1, . . . , Sλ), compute

C
′
t(e+1) = (S0, S1 · S|t(e)|+1, S|t(e)|+2, . . . , Sλ),

C
′
t(e+2) = (S0, S1 · S2

|t(e)|+1, S|t(e)|+2, . . . , Sλ).

Sample S ← SampS(pp; s′), for s′ ← Z∗
N , (gu,0, . . . , gu,λ)u∈Γt(e+1)

← SampG(pp), compute m(δ)s =
e(St(e+1),0,D1)

e(D0,St(e+1),1)
and

C
′′
u = (Su,0Sgu,0, Su,1

|u|∏
i=1

g
ui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λgu,λ),

for {C′
u = (Su,0, . . . , Su,λ) : u = (u1, . . .) ∈ Γt(e)\Γt(eexp+1)}. Return Ce+1,eexp = ({C′′

u : u ∈ Γt(e+1)},m(ke·δ)s+s′ ·M).

Dec(Ke, Ce,eexp ) : for Ke = ({K′
u : u ∈ Γt(e)},m(Ke), pp) and Ce,eexp = ({C′

u : u ∈ Γt(e)}, ST ), find K′
t(e) = (T0, T1, . . .)

and C′
t(e) = (S0, S1, . . .), and return

M = ST ·
e(T0, S1)

e(S0, T1)
.

Fig. 7. Construction of UE∗ from DSG.

1) Correct decryption of epoch-e ciphertexts:

M = ST ·
e(T0, S1)

e(S0, T1)
= m(ke)

s ·M ·
e(h0,

∏e
i=1 gi)

e(Sg0, ke
∏e

i=1 hi)
=

m(ke)
s

e(S, ke)
·M = M,

where m(ke)
s = e(S, ke), for some s ∈ Z∗

N , e(S, hi) = 1, for all i ∈ [e], and e(g0, ke) = 1 due to projectiveness,
orthogonality, and associativity.

2) Correct updates of epoch-e to epoch-(e+1) ciphertexts Ce+1,eexp = ({C′′
u : u = (u1, . . .) ∈ Γt(e+1)},m(ke+1)

s+s′ ·M):

C
′′
u = (Su,0Sgu,0, Su,1

|u|∏
i=1

g
ui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λgu,λ),

where S ← SampS(pp; s′), for s′ ← Z∗
N , (gu,0, . . . , gu,λ)u∈Γt(e+1)

← SampG(pp), m(ke+1)
s+s′ = m(ke)

s · m(δ)s ·

m(ke+1)
s′ , for m(δ)s =

e(St(e+1),0,D1)

e(D0,St(e+1),1)
, due to to projectiveness, orthogonality, associativity, and G-H-subgroups.

Fig. 8. Correctness of UE∗.

Proof. We proceed similarly as in the proof of Theorem 1. However, we have to carefully introduce
randomness in token ∆e∗ and keys Ke, for e ≥ e′, for a specific “window” epoch e′ ≤ e∗exp, in a slightly
different way to make them semi-functional. Let SA,j be the event that A succeeds in Game j. We
proceeds with main changes here solely and box them.
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Lemma 11 (Game 0 to Game 1). For any PPT adversary A, it holds:

|Pr [SA,0]− Pr [SA,1] | = 0.

Proof. This is a conceptional change (exactly as in the proof of Lemma 3). The Chall oracle in Game 1
is as follows:

Chall(M,Ce−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. If b = 0,

set C∗e,0 ← Enc(Ke,M, eexp), else run M ′ ← Dec(Ke−1, Ce−1,eexp) and C∗e,1 ← Enc(Ke,M
′, eexp) . Set

C∗ = C∗ ∪ (e, C∗e,b), e
∗ = e, e∗exp = eexp, and return C∗e,b.

Due to correctness (i.e., via perfect re-randomization; cf. Fig. 8), the ciphertexts derived from Enc and
Update for an epoch e yield the same distribution. Hence, such a change cannot be detected by A.

Lemma 12 (Game 1 to Game 2). For any PPT adversary A there is a distinguisher D on LS such
that

|Pr [SA,1]− Pr [SA,2] | ≤ AdvlsDSG,D(λ, λ).

Proof. The input is provided as (pp,T), where T = (T0, . . . , Tλ) is either g or gĝ, for g = (g0, . . . , gλ)←
SampG(pp) and (ĝ = (ĝ0, . . . , ĝλ), ·)← ŜampG(pp, sp). The Chall oracle in Game 2 is as follows:

Chall(M,Ce−1,eexp) : if phase = 1, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,eexp) /∈ L∗, return ⊥. Set

C∗e,0 = ({(ST0gu,0,

|u|∏
i=1

Tui
i gui

u,i, T|u|+1gu,|u|+1, . . . , Tλgu,λ)

: u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)},m(ke)
s ·M)

C∗e,1 = ({(ST0gu,0,

|u|∏
i=1

Tui
i gui

u,i, T|u|+1gu,|u|+1, . . . , Tλgu,λ)

: u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)},m(ke)
s ·M ′)

for (gu,0, . . . , gu,λ)u=(u1,...)∈Γt(e)\Γt(eexp+1)
← SampG(pp) , for S ← SampS(pp; s) with s← Z∗N , and

for M ′ ← Dec(Ke−1, Ce−1,eexp). Set C∗ = C∗ ∪ (e, C∗e,b), e
∗ = e, e∗exp = eexp, and return C∗e,b.

If T = g, then the challenge ciphertext(s) are distributed as in Game 1. If T = gĝ, then the challenge
ciphertext(s) are distributed as in Game 2.

Lemma 13 (Game 2 to Game 3.1.0). For any PPT adversary A, it holds:

|Pr [SA,2]− Pr [SA,3.1.0] | = 0.

Proof. This is a conceptional change. The Next′-oracle in Game 3.0.0 is as follows (where we alter Ke+1

after calling Next):

Next′ : run (K ′e+1, ∆
′
e+1) ← Next(Ke). For K ′e+1 = ({(Tu,0, Tu,1, Tu,|u|+1, . . . , Tu,λ) : u ∈ Γt(e+1)},

m(Ke), pp) and ∆′e+1 = (D0, D1, D2), sample (h0, . . . , hλ), (hu,0, . . . , hu,λ)u∈Γt(e+1)
← SampH(pp), and

compute

∆e+1 = (D0h0, D1 ·
|t(e+1)|∏

i=1

h
t(e+1)i
i , D2),

K ′u = (Tu,0hu,0, Tu,1

|u|∏
i=1

hui
u,i, Tu,|u|+1hu,|u|+1, . . . , Tu,λhu,λ), for all u ∈ Γt(e+1). Set

Ke+1 = ({K ′u : u ∈ Γt(e+1)},m(Ke), pp) .

If phase = 1 and e < e∗exp, run C∗e+1,b ← Update(∆e+1, C
∗
e,b). Set e = e+ 1.
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See that we can use the above boxed H-elements to perfectly re-randomize ∆′e+1 and K ′e+1 which is due
to the G-H-subgroups property which ensures that the above token ∆e+1 and key Ke+1 have the same
distribution as the token and key output by Next, respectively.

Lemma 14 (Game 3.i.0 to Game 3.i.1). For any PPT adversary A there is a distinguisher D on
RS such that

|Pr [SA,3.i.0]− Pr [SA,3.i.1] | ≤ AdvrsDSG,D(λ, λ)/poly(λ),

for i ∈ [|Γt(e∗exp)
|+ 1].

Proof. The input is provided as (pp, ĥ,gĝ,T), where T = (T0, . . . , Tλ) is either h or hĥ, for h =

(h0, . . . , hλ) ← SampH(pp), (ĥ = (ĥ0, . . . , ĥλ), ·, ·) ← ŜampH(pp, sp), and gĝ = (g0ĝ0, . . . , gλĝλ). We
guess the challenge, expiry, and “window” epochs ê∗, ê∗exp, ê

′ ← [⌊poly(λ)⌋] and abort if e∗ ̸= ê∗ or

e∗exp ̸= ê∗exp or ê∗ < ê′ ≤ ê∗exp. The Next′ and Chall oracles are as follows:

Next′ : run (K ′e+1, ∆
′
e+1)← Next(Ke). ForK

′
e+1 = ({(Tu,j,0, Tu,j,1, Tu,j,|u|+1, . . . , Tu,j,λ) : u ∈ Γt(e+1), j ∈

[|Γt(e+1)]|],m(Ke), pp) (we can assume a natural order in K ′e+1 indexed by j) and ∆′e+1 = (D0, D1, D2),
sample (h0, . . . , hλ), (hu,0, . . . , hu,λ)u∈Γt(e+1)

← SampH(pp), and compute

∆e+1 =


(D0 T0 , D1 ·

∏|t(e+1)|
i=1 T

t(e+1)i
i , D2) (i = 0 ∧ e = ê∗ − 1)

(D0h0, D1 · (ĥ)α ·
∏|t(e+1)|

i=1 h
t(e+1)i
i , D2) (i ≥ 1 ∧ e = ê∗ − 1)

(D0 T0 , D1 ·
∏|t(e+1)|

i=1 T
t(e+1)i
i , D2) otherwise,

K
′
u =



(Tu,j,0hu,0, Tu,j,1 · (ĥ)α ·
∏|u|

i=1 h
ui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ) (e = ê′ − 1)

(Tu,j,0hu,0, Tu,j,1 · (ĥ)α ·
∏|u|

i=1 h
ui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ) (j < i ∧ e = ê∗exp)

(Tu,j,0 T0 , Tu,j,1 ·
∏|u|

i=1 T
ui
i , Tu,j,|u|+1 T|u|+1 , . . . , Tu,j,λ Tλ ) (j = i ∧ e = ê∗exp)

(Tu,j,0hu,0, Tu,j,1 ·
∏|u|

i=1 h
ui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ) (j > i ∧ e = ê∗exp)

(Tu,j,0hu,0, Tu,j,1 ·
∏|u|

i=1 h
ui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ) otherwise,

for all u ∈ Γt(e+1) and α← ZN . Set Ke+1 = ({K ′u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1 and

e < e∗exp, run C∗e+1,b ← Update(∆e+1, C
∗
e,b). Set e = e+ 1.

Chall(M,Cê∗−1,ê∗exp) : if phase = 1, return ⊥. Set phase = 1. If (·, ê∗ − 1, Cê∗−1,ê∗exp) /∈ L∗, return ⊥. Set

C∗ê∗,0 = ({(S g0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . , gλĝλ gu,λ)

: u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},m(kê∗)
s ·M)

C∗ê∗,1 = ({(S g0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . , gλĝλ gu,λ)

: u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},m(kê∗)
s ·M ′),

for (gu,0, . . . , gu,λ)u=(u1,...)∈Γt(ê∗)\Γt(ê∗exp+1)
← SampG(pp), for S ← SampS(pp; s) with for s ← Z∗N , and

for M ′ ← Dec(Ke−1, Ce−1,eexp), . Set C∗ = C∗ ∪ (ê∗, C∗ê∗,b), e
∗ = ê∗, e∗exp = ê∗exp, and return C∗ê∗,b.

See that by validity condition 2), A is not allowed to query a token ∆e′ with e∗ < e′ ≤ e∗exp when it

has queried a key Ke′ . Hence, we can safely embed an ĥ-element in Ke′ since no information on ĥ is
given out in ∆e′ due to orthogonality (i.e., m(ĥ) = 1). Moreover, if T = h, then the token ∆e∗ and the

key Ke∗exp+1 are distributed as in Game 3.i.0. If T = hĥ, then the token ∆e∗ and the key Ke∗exp+1 are
distributed as in Game 3.i.1. This reduction looses a polynomial factor due to guessing.

Lemma 15 (Game 3.i.1 to Game 3.i.2). For any PPT adversary A, it holds:

|Pr [SA,3.i.1]− Pr [SA,3.i.2] | = 0,

for i ∈ [|Γt(e∗exp)
|+ 1].
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Proof. This step is exactly the same as in the proof of Theorem 1; however, we have to do this for all
i to ensure that all key elements and the token are semi-functional, i.e., for all key elements in the set
Γt(e∗exp)

and for the token ∆e∗ , we can information-theoretically embed (ĥ)α step-by-step for each i.

Lemma 16 (Game 3.i.2 to Game 3.i.3). For any PPT adversary A there is a distinguisher D on
RS such that

|Pr [SA,3.i.4]− Pr [SA,3.i.5] | ≤ AdvrsDSG,D(λ, λ)/poly(λ),

for i ∈ [|Γt(e∗exp)
|+ 1].

Proof. In this step, we undo the game hop from Lemma 14. As a result, we now have a uniform element
(ĥ)α embedded in the i-th key and in the token. If T = hĥ, then the token ∆e∗ and the key Ke∗exp+1 are
distributed as in Game 3.i.2. If T = h, then the token ∆e∗ and the key Ke∗exp+1 are distributed as in
Game 3.i.3 where up to the i-th key element of Ke∗exp+1, all elements are semi-functional. This reduction
looses a polynomial factor.

Lemma 17 (Game 3.|Γt(e∗exp)
|+ 1.3 to Game 4). For any PPT adversary A there is a distinguisher

D on ND such that

|Pr
[
SA,3.|Γt(e∗exp)|+1.3

]
− Pr [SA,4] | ≤ AdvndDSG,D(λ, n)/poly(λ),

for i ∈ [|Γt(e∗exp)
|+ 1].

Proof. The input is provided as (pp,Sgĝ,K · (ĥ)α,T), where T is either e(S,K) or R ← GT , for

g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp), and h ← SampH(pp), S ← SampS(pp), S = (S, 1, 0, . . .),
K ← SampK(pp). We guess the challenge, expiry, and “window” epochs ê∗, ê∗exp, ê

′ ← [⌊poly(λ)⌋] and
abort if e∗ ̸= ê∗ or e∗exp ̸= ê∗exp or ê∗ < ê′ ≤ ê∗exp. The Next′ and Chall oracles are as follows:

Next′ : run (K ′e+1, ∆
′
e+1) ← Next(Ke). (We additionally assume that δ which is sampled in Next is

available in Next′ as well as k1 sampled in Gen in the beginning of the experiment.) For K ′e+1 =
({(Tu,0, Tu,1, Tu,|u|+1, . . . , Tu,λ) : u ∈ Γt(e+1)},m(Ke), pp), and ∆′e+1 = (D0, D1, D2), store δe+1 = δ,

ke+1 = δ · ke (for e = ê∗ − 1, we set K · k−1ê∗−1 as “delta” and K as key in epoch e∗, implicitly), sample
(h0, . . . , hλ), (hu,0, . . . , hu,λ)u∈Γt(e+1)

← SampH(pp), and compute

∆e+1 =

(h0, K · (ĥ)α · k−1e ·
∏|t(e+1)|

i=1 h
t(e+1)i
i , m(ke ·K · (ĥ)α · k−1e ) ) (e = ê∗ − 1)

(D0h0, D1 ·
∏|t(e+1)|

i=1 h
t(e+1)i
i , D2) otherwise

and K ′u ={
(Tu,0hu,0, Tu,1 · K · (ĥ)α · δ−1

ê∗ · k
−1
ê∗−1 ·

∏|u|
i=1 h

ui
u,i, Tu,|u|+1hu,|u|+1, . . . , Tu,λhu,λ) (e = ê′ − 1)

(Tu,j,0hu,0, Tu,j,1 ·
∏|u|

i=1 h
ui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ) otherwise

for all u ∈ Γt(e+1) and α← ZN . Set Ke+1 = ({K ′u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1 and e < e∗exp,
run C∗e+1,b ← Update(∆e+1, C

∗
e,b). Set e = e+ 1.

Chall(M,Cê∗−1,ê∗exp) : if phase = 1, return ⊥. Set phase = 1. If (·, ê∗ − 1, Cê∗−1,ê∗exp) /∈ L∗, return ⊥. Set

C∗ê∗,0 = ({(Sg0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . , gλĝλ gu,λ)

: u = (u1, . . .) ∈ Γt(ê∗)\Γt(ê∗exp+1)},T ·M)

C∗ê∗,1 = ({( Sg0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . , gλĝλ gu,λ)

: u = (u1, . . .) ∈ Γt(ê∗)\Γt(ê∗exp+1)},T ·M ′),

for (gu,0, . . . , gu,λ)u=(u1,...)∈Γt(ê∗)\Γt(ê∗exp+1)
← SampG(pp), for S ← SampS(pp; s) with for s ← Z∗N , and

for M ′ ← Dec(Kê∗−1, Cê∗−1,ê∗exp). Set C
∗ = C∗ ∪ (ê∗, C∗ê∗,b), e

∗ = ê∗, e∗exp = ê∗exp, and return C∗ê∗,b.
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See that m(K ·(ĥ)α) = m(K) holds. Hence, no information on (ĥ)α is given out via m in ∆e∗ . Moreover,

if the adversary queries Ke′ (by validity, it is not allowed to have queried ∆e′−1), then (ĥ)α hides

Ke′ . As a consequence, all following keys including Ke∗exp+1 also have the blinding term (ĥ)α. Now, if
T = e(S,K), then the challenge ciphertext(s) are distributed as in Game 3.|Γt(e∗exp)

| + 1.3. If T = R,

then the challenge ciphertext(s) are distributed as in Game 4.

Lemma 18 (Game 4). For any PPT adversary A, Pr [SA,4] = 1/2 holds.

Proof. In Game 4, for (uniform) b ∈ {0, 1}, we provide A with challenge ciphertext(s) that include a
uniform GT -element instead of a A-chosen b-dependent message. Hence, b is completely hidden from
A’s view.

Taking Lemmata 11, 12, 13, 14, 15, 16, 17, and 18 together, shows Theorem 2. ⊓⊔

4 Extension: UE from a Puncturable Encryption Perspective

We introduce a novel primitive dubbed Ciphertext Puncturable Encryption (CPE), provide a CPE
security model, and show how to construct UE with expiry epochs from CPE. Finally, we give an
instantiation of CPE under standard assumptions. CPE essentially views UE from the perspective of
puncturable encryption [GM15].

4.1 Ciphertext Puncturable Encryption

Recall that the distinguishing feature of CPE is that, besides sequence tags in keys and ciphertexts,
it uses tags for ciphertexts and tokens can be associated to tags or not. Only ciphertexts with tags in
tokens can excluded from being punctured. However, there is one exception, a token can be constructed
to be working for all ciphertexts denoted by symbol ∀ in the token. Moreover, because of tags, CPE is
stronger than our UE definition as it allows the adversary to even query more tokens (since those can be
crafted in a more fine-grained way via tags now). Noteworthy, keys are agnostic of tags and, hence, the
restriction of querying keys are the same in UE and CPE. As a consequence, CPE yields an even more
fine-grained primitive compared to what our UE definition offers and might be of independent interest.

Definition 7. A Ciphertext Puncturable Encryption (CPE) scheme CPE for sequences (1, . . . , poly(λ))10,
ciphertext-tag space T , and message spaceM consists of the PPT algorithms (Gen,KPunc,Enc,ExPunc,
Dec):

Gen(λ) : on input security parameter λ, outputs initial key K1.
KPunc(Ke,S) : on input key Ke for sequence element e and ciphertext tags S ⊆ T or S = ∀, if S ⊆ T ,

outputs a punctured key Ke+1 and tag-specific tokens (∆e+1,t)t∈S ; otherwise, if S = ∀, outputs a
punctured key Ke+1 and (universal) token ∆e+1,∀.

Enc(Ke, t,M, eexp) : on input key Ke, ciphertext tag t ∈ T , message M ∈ M, and expiry sequence
element eexp, outputs a ciphertext Ce,t,eexp or ⊥.

ExPunc(∆e+1,t′ , Ce,t,eexp) : on input token ∆e+1,t′ and ciphertext Ce,t,eexp , outputs a ciphertext Ce+1,t,eexp

if t′ ∈ {t, ∀} and e < eexp; otherwise outputs ⊥.
Dec(Ke, Ce′,t,eexp) : on input keyKe and ciphertext Ce,t,eexp , outputs messageM ∈M if e = e′; otherwise

outputs ⊥.
Correctness. For all λ ∈ N, for e ∈ [⌊poly(λ)⌋], for K1 ← Gen(λ), for all i ∈ {1, . . . , e}, for any
S ∈ T ∪ {∀}, for all (Ki+1, ∆i+1,S) ← KPunc(Ki,S), for all M ∈ M, for all expiry sequence elements
eexp ∈ N, for all t ∈ T , for all j ∈ {1, . . . , e + 1}, for all Cj,t,eexp ← Enc(Kj , t,M, eexp), we require that
M = Dec(Ke, Ce,t,eexp) holds if eexp ≥ e, also for Cj′+1,t,eexp ← ExPunc(∆j′+1,t′ , Cj′,t,eexp) with t′ ∈ {t, ∀}
and j′ ∈ {j + 1, . . . , e}.
Security notion. We define IND-CPE-CPA which guarantees that freshly generated ciphertexts cannot
be distinguished from ones that are exclude from puncturing similarly to UE, but we give more power
to the adversary as it is allowed to even query more tokens. This is particularly the case in the epoch
e′ where the adversary queried a key Ke′ and the challenge ciphertext is not expired, i.e., e′ ≤ eexp. In

10 We can use any arbitrarily ordered sequence, but stick to integers for simplicity.
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our UE definition, the adversary is not allowed to query a token ∆e′ while in CPE, we allow querying
tokens ∆e′,S that do not incorporate update capabilities for the challenge tag t∗, i.e., t∗ /∈ S or S ≠ ∀.
This introduces more subtleties not only in the construction but also in the security proof. Due to the
versatile features of our DSG abstraction (which allows also querying of tags adaptively), we are able
to formally prove security.

Definition 8 (IND-CPE-CPA security). A CPE scheme CPE is IND-CPE-CPA-secure iff for any PPT
adversary A, the advantage function

Advind-cpe-cpaCPE,A (λ) :=
∣∣∣Pr [Expind-cpe-cpaCPE,A (λ) = 1

]
− 1/2

∣∣∣
is negligible in λ, where Expind-cpe-cpaCPE,A is defined as in Fig. 9.

Experiment Expind-cpe-cpaCPE,A (λ)
K1 ← Gen(λ), phase = 0, e = 0,S = ∅, c = 0,∆1,∀ = ⊥
L∗ := ∅, C∗ := ∅,K∗ := ∅,D∗ := ∅, b← {0, 1}
b′ ← AEnc′,KPunc′,ExPunc′,Corrupt,Chall,CPuncC∗

(λ)
if b = b′ and A is valid, then return 1 else return 0

Oracles
Enc′(t,M, eexp) : run Ce,t,eexp ← Enc(Ke, t,M, eexp) and set L∗ := L∗ ∪ (c, e, Ce,t,eexp), c = c + 1. Return
Ce,t,eexp .

KPunc′(S ′) : run (Ke+1, (∆e+1,t)t∈S′)← KPunc(Ke,S ′). If phase = 1, e < e∗exp, and t∗ ∈ S ′ or S ′ = ∀, run
C∗

e+1,t∗,b ← ExPunc(∆e+1,t∗ , C
∗
e,t∗,b) (if t∗ ∈ S ′) or C∗

e+1,t∗,b ← ExPunc(∆e+1,∀, C
∗
e,t∗,b) (if S ′ = ∀). Set

e = e+ 1 and S = S ′.
ExPunc′(Ce−1,t,eexp) : if (·, e− 1, Ce−1,t,eexp) /∈ L∗, or if t /∈ S and S ≠ ∀, return ⊥. Run Ce,t,eexp ←
ExPunc(∆e,t, Ce−1,t,eexp) (if t ∈ S) or Ce,t,eexp ← ExPunc(∆e,∀, Ce−1,t,eexp) (if S = ∀) and set L∗ :=
L∗ ∪ (c, e, Ce,t,eexp), c = c+ 1. Return Ce,t,eexp .

Corrupt(inp, e′) : if e′ > e, return ⊥. If inp = key, set K∗ = K∗ ∪ {e′} and return Ke′ . If inp = token, set
D∗ = D∗ ∪ {e′,S} and return (∆e′,t)t∈S .

Chall(M,Ce−1,t,eexp) : if phase = 1, or if t /∈ S and S ≠ ∀, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,t,eexp) /∈
L∗, return ⊥. If b = 0, set C∗

e,t,0 ← Enc(Ke, t,M, eexp), else C∗
e,t,1 ← ExPunc(∆e,t, Ce−1,t,eexp) (if t ∈ S)

or C∗
e,t,1 ← ExPunc(∆e,∀, Ce−1,t,eexp) (if S = ∀). Set C∗ = C∗ ∪ (e, C∗

e,t,b), e
∗ = e, t∗ = t, e∗exp = eexp, and

return C∗
e,t,b.

CPuncC∗ : If phase = 0 or e > e∗exp, return ⊥. Set C∗ := C∗ ∪ (e, C∗
e,t,b) and return C∗

e,t,b.

A is valid iff :
1) For all e′ ∈ K∗, (e′, C∗

e′,b) /∈ C∗ holds. (No trivial win via retrieved keys.)
2) For all e′ ∈ K∗ with e∗ < e′ ≤ e∗exp and (e′ − 1, C∗

e′−1,t∗,b) ∈ C∗, (e′ − 1,S ′) /∈ D∗ for S ′ = ∀ or t∗ ∈ S ′

holds. (No trivial win via updating a retrieved challenge ciphertext via a token.)

Fig. 9. Our IND-CPE-CPA security notion for CPE.

4.2 Generic UE Construction from CPE

We can see that UE is essentially an epoch-based version of CPE (i.e., where sequence elements corre-
spond to epochs) and we set S = ∀ as input to key puncturing KPunc. Moreover, we fix the ciphertext-tag
set of CPE to a singleton T = {t} for any arbitrary tag t. Particularly, we use key puncturing for generat-
ing the next UE key (i.e., “puncturing” on the CPE sequence element e) and use exclude puncturing for
ciphertexts to update ciphertext to the next epoch (where ciphertext with expired epochs are punctured).
Encryption and decryption directly map to UE’s encryption and decryption functionality, respectively.
Let CPE = (CPE.Gen,CPE.KPunc,CPE.Enc,CPE.ExPunc,CPE.Dec) be a CPE with tag space T = {t}
and message spaceMCPE. We construct a UE scheme UE = (Gen,Next,Enc,Update,Dec) with message
spaceM :=MCPE. The construction with correctness is given in Fig. 10. We prove security in Theorem
3.

Theorem 3. If CPE is IND-CPE-CPA secure, then UE is EE-IND-UE-CPA secure. Concretely, for any
PPT adversary A there is a distinguisher D in the IND-CPE-CPA security experiment, such that

Advind-cpe-cpaCPE,D (λ) ≥ Advind-ue-cpaUE,A (λ).
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Gen(λ) : return K1 ← CPE.Gen(λ). (Implicitly, we setM =MCPE.)
Next(Ke) : return (Ke+1,∆e+1)getsCPE.KPunc(Ke, ∀).
Enc(Ke,M, eexp) : return Ce,eexp ← CPE.Enc(Ke, t, eexp,M).
Update(∆e+1, Ce,eexp): return Ce+1,eexp ← CPE.ExPunc(Ce,eexp ,∆e+1).
Dec(Ke, Ce) : return M := CPE.Dec(Ke, Ce,eexp).

Correctness of CPE: See that this directly translates from the CPE scheme, i.e., the ciphertexts that
were computed by Enc and/or updated via Update can be decrypted by Dec if the keys are consistent (i.e.,
for the same epoch) and the ciphertext is not expired.

Fig. 10. Construction of UE from CPE with correctness.

Proof. We show the theorem by constructing a PPT distinguisher D in the IND-CPE-CPA security ex-
periment with CPE as defined in Figure 9 from any successful PPT adversary A in the EE-IND-UE-CPA
security with UE as defined in Figure 3. D runs A(λ). Let CPE.Enc′,KPunc,ExPunc,CPE.Corrupt,
CPE.Chall,CPE.CPuncC∗ be the CPE oracles. A’s oracle queries are answered as follows:

Enc′(M, eexp) : return Ce,eexp ← CPE.Enc′(M, t, eexp), for t the element in the singleton T .
Next′ : run KPunc(∀).
Update′(Ce−1,eexp) : return Ce,eexp ← ExPunc(Ce−1,eexp).

Corrupt(inp, e′) : return the result of CPE.Corrupt(inp, e′). (This is either a key or a token depending on
inp.)

Chall(M,Ce−1,eexp) : return C∗e,b ← CPE.Chall(M,Ce−1,eexp).

CPuncC∗ : return C∗e,b ← CPE.CPuncC∗.

We conclude that D provides a consistent view for A. If A is a successful PPT adversary in the
EE-IND-UE-CPA security experiment with UE (see that also the validity conditions of CPE subsumes
the validity conditions of UE), then D is a successful PPT adversary in the IND-CPE-CPA security
experiment with CPE. ⊓⊔

4.3 CPE from Standard Assumptions

We construct a CPE scheme from DSG (and, hence, from standard assumptions) along the way of the
construction of UE with sublinear parameter sizes in Construction 6. The distinguishing feature to UE∗

is that tokens can be associated to ciphertext tags (i.e., which ciphertexts should be excluded from
puncturing) instead of universal token as in UE∗ that work always for all ciphertext in the respective
epoch.

The proof of security is slightly more involved than proving UE schemes with sublinear parameter
sizes in Theorem 2 and augments such a proof in the sense that the adversary is now able to query even
more tokens. That means that we cannot simply argue that a queried key Ke′ can be made independent
of the challenge key Ke∗ , for e∗ < e′ ≤ e∗exp, since in CPE the adversary is allowed to query a token
∆e′ (where such a token now could be used to retrieve information on the challenge key). Fortunately,
due to properties of the DSG, we can also embed uniform randomness in such a token (since such token
must however not have any prefix elements of the challenge ciphertext; otherwise, validity would not be
achieved as the challenge ciphertext could be trivially decrypted).

Definition 9 (CPE Construction). The construction of a CPE scheme CPE from DSG DSG is shown
in Fig. 11 and correctness in Fig. 12. (We box main changes to the DSG-to-UE∗ construction with
sublinear parameter sizes as both constructions rely on the same construction paradigm.) We prove
security in 4.
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Construction of CPE from DSG

Gen(λ) : compute (pp, sp) ← SampP( λ + 1 ), set T = Z∗
N , sample (h0, . . . , hλ+1) ← SampH(pp), k1 ← SampK(pp) and

return K1 = ({K′
1},m(k1), pp), with K′

1 = (h0, k1 · h1, . . . , hλ).
Remark. We assume that tags in T are integers in Z∗

N for simplicity. Also see that we use λ + 1 as input to SampP as
this will give us one additional element for embedding the identity.

KPunc(Ke,S) : for Ke = ({K′
u : u ∈ Γt(e)},m(Ke), pp), if |t(e)| < λ − 1, then find K′

t(e) = (T0, T1, T|t(e)|+1, . . . , Tλ),
compute

K
′
t(e+1) = (T0, T1 · T|t(e)|+1, T|t(e)|+2, . . . , Tλ),

K
′
t(e+2) = (T0, T1 · T 2

|t(e)|+1, T|t(e)|+2, . . . , Tλ),

Sample δ ← SampK(pp) and (h0, . . . , hλ+1), (hu,0, . . . , hu,λ+1)u∈[|Γt(e+1)|] ← SampH(pp), for t(e + 1) = (t(e +

1)1, . . . , t(e + 1)|t(e+1)|), compute

∆e+1 =

(∆e+1,t)t∈S = (h0, δ · h
t
λ+1

∏|t(e+1)|
i=1 h

t(e+1)i
i ,m(ke · δ))t∈S (if S ̸= ∀)

(h0, δ ·
∏|t(e+1)|

i=1 h
t(e+1)i
i ,m(ke · δ)) (if S = ∀)

K
′′
u = (T

′
u,0hu,0, T

′
u,1 · δ ·

|u|∏
i=1

h
ui
u,i, T

′
u,|u|+1hu,|u|+1, . . . , T

′
u,λhu,λ),

for {K′
u = (T ′

u,0, . . . , T
′
u,λ) : u = (u1, . . .) ∈ Γt(e+1)}. Set Ke+1 = ({K′′

u : u ∈ Γt(e+1)},m(ke · δ), pp) and return

(∆e+1, Ke+1).
Enc(Ke, t,M, eexp) : for Ke = (. . . ,m(Ke), pp), sample (gu,0, . . . , gu,λ+1)u∈Γt(e)\Γt(eexp+1)} ← SampG(pp), S ←
SampS(pp; s), for s← Z∗

N , and return Ce,t,eexp =

({(Sgu,0,

|u|∏
i=1

g
ui
u,i, gu,|u|+1, . . . , gu,λ, g

t
u,λ+1 ) : u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)},m(ke)

s ·M).

ExPunc(∆e+1,t′ , Ce,t,eexp ) : if e < eexp or t
′
/∈ {t, ∀} , return ⊥. For ∆e+1,t = (D0, D1,m(ke+1)) and Ce,t,eexp = ({C′

u :

u ∈ Γt(e)},m(ke)
s ·M), if |t(e)| < λ− 1, then find C′

t(e) = (S0, S1, S|t(e)|+1, . . . , Sλ), compute

C
′
t(e+1) = (S0, S1 · S|t(e)|+1, S|t(e)|+2, . . . , Sλ+1 ),

C
′
t(e+2) = (S0, S1 · S2

|t(e)|+1, S|t(e)|+2, . . . , Sλ+1 ).

Sample S ← SampS(pp; s′), for s′ ← Z∗
N , (gu,0, . . . , gu,λ+1)u∈Γt(e+1)

← SampG(pp), compute m(δ)s =
e(S0,D1)

e(D0,S1 Sλ+1 )

(where Sλ+1 is only present if t′ ̸= ∀) and

C
′′
u = (Su,0Sgu,0, Su,1

|u|∏
i=1

g
ui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λgu,λ, Su,λ+1g

t
u,λ+1 ),

for {C′
u = (Su,0, . . . , Su,λ) : u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)}. Return Ce+1,t,eexp = ({C′′

u : u ∈ Γt(e+1)},m(ke · δ)s+s′ ·
M).

Dec(Ke, Ce,t,eexp ) : for Ke = ({K′
u : u ∈ Γt(e)},m(Ke), pp) and Ce,t,eexp = ({C′

u : u ∈ Γt(e)}, ST ), find K′
t(e) =

(T0, T1, . . .) and C′
t(e) = (S0, S1, . . .), and return

M = ST ·
e(T0, S1)

e(S0, T1)
.

Fig. 11. Construction of CPE from DSG.

1) Correct decryption ciphertexts:

M = ST ·
e(T0, S1)

e(S0, T1)
= m(ke)

s ·M ·
e(h0,

∏e
i=1 gi)

e(Sg0, ke
∏e

i=1 hi)
=

m(ke)
s

e(S, ke)
·M = M,

where m(ke)
s = e(S, ke), for some s ∈ Z∗

N , e(S, hi) = 1, for all i ∈ [e], and e(g0, ke) = 1 due to projectiveness,
orthogonality, and associativity.

2) Correctness for excluding ciphertexts Ce+1,t,eexp = ({C′′
u : u = (u1, . . .) ∈ Γt(e+1)},m(ke+1)

s+s′ ·M) from puncturing:

C
′′
u = (Su,0Sgu,0, Su,1

|u|∏
i=1

g
ui
u,i, Su,|u|+1gu,|u|+1, . . . , Su,λ g

t
u,λ+1 ),

where S ← SampS(pp; s′), for s′ ← Z∗
N , (gu,0, . . . , gu,λ)u∈Γt(e+1)

← SampG(pp), m(ke+1)
s+s′ = m(ke)

s · m(δ)s ·

m(ke+1)
s′ , for m(δ)s =

e(St(e+1),0,D1)

e(D0,St(e+1),1)
, due to to projectiveness, orthogonality, associativity, and G-H-subgroups.

Fig. 12. Correctness of CPE.
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Theorem 4. If DSG is a DSG scheme, then CPE is IND-CPE-CPA-secure. Concretely, for any PPT
adversary A, it holds:

Advind-cpe-cpaCPE,A (λ) ≤ AdvlsDSG,D1
(λ, λ+ 1) + 2 · (|Γt(e∗exp)

|+ q)·

AdvrsDSG,D2
(λ, λ+ 1)/poly(λ) + AdvndDSG,D3

(λ, λ+ 1)/poly(λ),

with q number of tag-based token queries.

Proof. We proceed similarly as in the proof of Theorem 2 for UE∗ and only focus on the main differences
here as both proofs follow the same proof paradigm. However, since more tokens can be given out in
CPE compared to UE, the proof is more complex as those tokens might reveal information on the
challenge keys which has to dealt with. Moreover, we map the symbol ∀ to the integer 0 for ease of proof
exposition. Let SA,j be the event that A succeeds in Game j. We highlight changes boxed.

Lemma 19 (Game 0 to Game 1). For any PPT adversary A, it holds:

|Pr [SA,0]− Pr [SA,1] | = 0.

Proof. This is a conceptional change as in the proof of Lemma 11 where we change the behavior of the
challenge oracle such that we use a fresh encryption instead of updating the ciphertext provided by A.
Since the change is agnostic of the tag (and independent of the tokens), this can be carried out exactly
as in Lemma 11.

Lemma 20 (Game 1 to Game 2). For any PPT adversary A there is a distinguisher D on LS such
that

|Pr [SA,1]− Pr [SA,2] | ≤ AdvlsDSG,D(λ, λ+ 1).

Proof. The input is provided as (pp,T), where T = (T0, . . . , Tλ+1) is either g or gĝ, for g = (g0, . . . ,

gλ+1) ← SampG(pp) and (ĝ = (ĝ0, . . . , ĝλ+1), ·) ← ŜampG(pp, sp). The Chall oracle in Game 2 is as
follows:

Chall(M,Ce−1,t,eexp) : if phase = 1, or if t /∈ S and S ≠ ∀, return ⊥. Set phase = 1. If (·, e− 1, Ce−1,t,eexp)
/∈ L∗, return ⊥. Set

C
∗
e,t,0 = ({(ST0gu,0,

|u|∏
i=1

T
ui
i g

ui
u,i, T|u|+1gu,|u|+1, . . . , T

t
λ+1g

t
u,λ+1) : u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)},m(ke)

s ·M)

C
∗
e,t,1 = ({(ST0gu,0,

|u|∏
i=1

T
ui
i g

ui
u,i, T|u|+1gu,|u|+1, . . . , T

t
λ+1g

t
u,λ+1) : u = (u1, . . .) ∈ Γt(e) \ Γt(eexp+1)},m(ke)

s ·M ′
),

for M ′ ← Dec(Ke∗−1, Ce∗−1,eexp), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(e)\Γt(eexp+1)
← SampG(pp), S ←

SampS(pp; s), for s← Z∗N . Set C∗ = C∗ ∪ (e, C∗e,t,b), e
∗ = e, t∗ = t, e∗exp = eexp, and return C∗e,t,b.

If T = g, then the challenge ciphertext(s) are distributed as in Game 1. If T = gĝ, then the challenge
ciphertext(s) are distributed as in Game 2.

Lemma 21 (Game 2 to Game 3.1.0). For any PPT adversary A, it holds:

|Pr [SA,2]− Pr [SA,3.1.0] | = 0.

Proof. This is a conceptional change. The Next′-oracle in Game 3.0.0 is as follows (where we alter Ke+1

after calling Next):

KPunc′(S ′) : run (K ′e+1, ∆
′
e+1) ← KPunc(Ke,S ′). For K ′e+1 = ({(Tu,0, Tu,1, Tu,|u|+1, . . . , Tu,λ) : u ∈

Γt(e+1)},m(Ke), pp) and ∆′e+1 = (Dt,0, Dt,1, Dt,2)t∈S′∪{∀}, sample (ht,0, . . . , ht,λ+1)t∈S′∪{∀}, (hu,0, . . . ,
hu,λ+1)u∈Γt(e+1)

← SampH(pp), and compute

∆e+1 = (Dt,0ht,0, Dt,1 · ht
t,λ+1 ·

|t(e+1)|∏
i=1

h
t(e+1)i
t,i , Dt,2)t∈S′ ,

K ′u = (Tu,0hu,0, Tu,1

|u|∏
i=1

hui
u,i, Tu,|u|+1hu,|u|+1, . . . , Tu,λhu,λ),
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for all u ∈ Γt(e+1). Set Ke+1 = ({K ′u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1, e < e∗exp, and t∗ ∈ S ′ or
S ′ = ∀, run C∗e+1,t∗,b ← ExPunc(∆e+1,t∗ , C

∗
e,t∗,b) or C∗e+1,t∗,b ← ExPunc(∆e+1,∀, C

∗
e,t∗,b), respectively.

Set e = e+ 1.

See that the essential difference to the proof of Lemma 13 is the construction of the tokens where there
might be tag-associated elements embedded now which require an according re-randomization with such
a tag. (See that we set t = 0 if S ′ = ∀.)

Lemma 22 (Game 3.i.0 to Game 3.i.1). For any PPT adversary A there is a distinguisher D on
RS such that

|Pr [SA,3.i.0]− Pr [SA,3.i.1] | ≤ AdvrsDSG,D(λ, λ+ 1)/poly(λ),

for i ∈ [|Γt(e∗exp)
|+ q] and q the number of tag-based tokens queried in e∗ − 1 and ê′.

Proof. The input is provided as (pp, ĥ,gĝ,T), where T = (T0, . . . , Tλ+1) is either h or hĥ, for h =

(h0, . . . , hλ+1)← SampH(pp), (ĥ = (ĥ0, . . . , ĥλ+1), ·, ·)← ŜampH(pp, sp), and gĝ = (g0ĝ0, . . . , gλ+1ĝλ+1).
We guess the challenge, expiry, and “window” sequence elements ê∗, ê∗exp, ê

′ ← [⌊poly(λ)⌋] and abort if

e∗ ̸= ê∗ or e∗exp ̸= ê∗exp, ê
′ ≤ ê∗ or ê′ > ê∗exp. The KPunc′ and Chall oracles are as follows:

KPunc′(S ′) : run (K ′e+1, ∆
′
e+1)← KPunc(Ke,S ′). ForK ′e+1 = ({(Tu,j′′,0, Tu,j′′,1, Tu,j′′,|u|+1, . . . , Tu,j′′,λ) :

u ∈ Γt(e+1), j
′′ ∈ [|Γt(e+1)]|],m(Ke), pp) (we can assume a natural order in K ′e+1) and ∆′e+1 =

(Dt,0, Dt,1, Dt,2)t∈S′∪{∀}, sample (ht,0, . . . , ht,λ+1)t∈S∪{∀}, (hu,0, . . . , hu,λ+1)u∈Γt(e+1)
← SampH(pp),

and for the (j, j′)-th query (j-th token with its j′-th tag-based part, (j, j′) ∈ [q′]× [qt] with q = q′+ qt)
compute

∆
′
e+1 =


(Dt

j′ ,0
ht

j′ ,0
, Dt

j′ ,1
· h

t
j′

t
j′ ,λ+1 · (ĥ)

α ·
∏|t(e+1)|

i=1 h
t(e+1)i
t
j′ ,i

, Dt
j′ ,2

)t
j′∈S′∪{∀} (j + j′ < i + 1 ∧ (e = ê∗ − 1 ∨ e = ê′ − 1))

(Dt
j′ ,0

T0 , Dt
j′ ,1
· T

t
j′

λ+1 ·
∏|t(e+1)|

i=1 T
t(e+1)i
i , Dt

j′ ,2
)t

j′∈S′∪{∀} (j + j′ = i + 1 ∧ (e = ê∗ − 1 ∨ e = ê′ − 1))

(Dt
j′ ,0

ht
j′ ,0

, Dt
j′ ,1
· h

t
j′

t
j′ ,λ+1 ·

∏|t(e+1)|
i=1 h

t(e+1)i
i , Dt

j′ ,2
)t

j′∈S′∪{∀} otherwise,

K
′
u =

(Tu,j′′,0 T0 , Tu,j′′,1 ·
∏|u|

i=1 T
ui
i , Tu,j′′,|u|+1 T|u|+1 , . . . , Tu,j′′,λ Tλ ) (q + j′′ = i ∧ e = e∗exp)

(Tu,j,0hu,0, Tu,j,1 ·
∏|u|

i=1 h
ui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ) otherwise,

for all u ∈ Γt(e+1), and α ← ZN . Set Ke+1 = ({K ′u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1, e < e∗exp,
and t∗ ∈ S ′ or S ′ = ∀, run C∗e+1,t∗,b ← ExPunc(∆e+1,t∗ , C

∗
e,t∗,b) or C

∗
e+1,t∗,b ← ExPunc(∆e+1,∀, C

∗
e,t∗,b),

respectively. Set e = e+ 1.
Chall(M,Cê∗−1,t∗,ê∗exp) : if phase = 1, return ⊥. Set phase = 1. If (·, ê∗ − 1, Cê∗−1,t∗,ê∗exp) /∈ L∗, return ⊥.
Set

C∗ê∗,t∗,0 = ({(S g0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

(gλ+1ĝλ+1)
t∗ gt

∗

u,λ+1) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},m(kê∗)
s ·M),

C∗ê∗,t∗,1 = ({(S g0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

(gλ+1ĝλ+1)
t∗ gt

∗

u,λ+1) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},m(kê∗)
s ·M ′),

for M ′ ← Dec(Ke∗−1, Ce∗−1,eexp), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(ê∗)\Γt(ê∗exp+1)
← SampG(pp), S ←

SampS(pp; s), for s← Z∗N . Set C∗ = C∗ ∪ (ê∗, C∗ê∗,t∗,b), e
∗ = ê∗, e∗exp = ê∗exp, and return C∗ê∗,t∗,b.

If T = h, then the token ∆e∗,t with t ∈ {t∗,∀}, the token ∆e′,t with t /∈ {t∗,∀}, and the key Ke′ (if Ke′

is queried) or the key Ke∗exp+1 (if Ke′ is not queried) are distributed as in Game 3.i.0. If T = hĥ, then
those are distributed as in Game 3.i.1. This reduction looses a polynomial factor.

Lemma 23 (Game 3.i.1 to Game 3.i.2). For any PPT adversary A, it holds:

|Pr [SA,3.i.1]− Pr [SA,3.i.2] | = 0,

for i ∈ [|Γt(e∗exp)
|+q] and a large-enough e(λ) polynomial in λ and qthe number of tag-based token queries.
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Proof. This step is the same as in the proof of Theorem 2; we have to do this for all i, i.e., for all key
elements in the setΓt(e′) (if Ke′ is queried) or in Γt(e∗exp)

(if Ke′ is not queried) and for all tag-based

token queries q. As a result, we can information-theoretically embed (ĥ)α step-by-step for each i. See
that by validity condition 2), A is not allowed to query a token ∆e′,t with e∗ < e′ ≤ e∗exp and t = t∗ or

t = S when it has queried a key Ke′ . Hence, we can use the same argument here to embed an ĥ-element
in Ke′ since no information on ĥ is given out in ∆e′ due to orthogonality (i.e., m(ĥ) = 1). Moreover,

since Ke∗exp+1 does not have any prefixes of the challenge ciphertext, we can safely embed (ĥ)α (if Ke′

was not queried; otherwise, (ĥ)α has already been embedded in such a key).

Lemma 24 (Game 3.i.2 to Game 3.i.3). For any PPT adversary A there is a distinguisher D on
RS such that

|Pr [SA,3.i.4]− Pr [SA,3.i.5] | ≤ AdvrsDSG,D(λ, λ+ 1)/poly(λ),

for i ∈ [|Γt(e∗exp)
|+ q] and q number of tag-based token queries.

Proof. In this step, we undo the game hop from Lemma 22. As a result, we now have a uniform element
(ĥ)α embedded in key and in the token queries for Ke′ ,Ke∗exp+1 and ∆e∗ , ∆e′ . If T = hĥ, then the tokens
∆e∗ , ∆e′ and the keys Ke′ ,Ke∗exp+1, are distributed as in Game 3.i.2. If T = h, then those are distributed
as in Game 3.i.3. This reduction looses a polynomial factor.

Lemma 25 (Game 3.|Γt(e∗exp)
|+ q.3 to Game 4). For any PPT adversary A there is a distinguisher

D on ND such that

|Pr
[
SA,3.|Γt(e∗exp)|+q.5

]
− Pr [SA,4] | ≤ AdvndDSG,D(λ, λ+ 1)/poly(λ),

for i ∈ [|Γt(e∗exp)
|+ 1] and q number of tag-based token queries.

Proof. The input is provided as (pp,Sgĝ,K · (ĥ)α,T), where T is either e(S,K) or R ← GT , for

g ← SampG(pp), (ĝ, ·) ← ŜampG(pp, sp), and h ← SampH(pp), S ← SampS(pp), S = (S, 1, 0, . . .),
K ← SampK(pp). We guess the challenge, expiry, and “window” sequence elements ê∗, ê∗exp, ê

′ ← [⌊e(λ)⌋]
and abort if e∗ ̸= ê∗ or e∗exp ̸= ê∗exp or ê∗ < ê′ ≤ ê∗exp. The Next′ and Chall oracles are as follows:

KPunc′(S ′) : run (K ′e+1, ∆
′
e+1) ← KPunc(Ke,S ′). (We additionally assume that δ which is sampled

in KPunc is available in KPunc′ as well as k1 sampled in Gen in the beginning of the experiment.)
For K ′e+1 = ({(Tu,j′′,0, Tu,j′′,1, Tu,j′′,|u|+1, . . . , Tu,j′′,λ) : u ∈ Γt(e+1), j

′′ ∈ [|Γt(e+1)]|],m(Ke), pp) (we
can assume a natural order in K ′e+1) and ∆′e+1 = (Dt,0, Dt,1, Dt,2)t∈S′∪{∀}, store δe+1 = δ, ke+1 =

δ · ke (for e = ê∗ − 1, we set K · k−1ê∗−1 as “delta” and K as key in epoch e∗, implicitly), sample
(ht,0, . . . , ht,λ+1)t∈S∪{∀}, (hu,0, . . . , hu,λ+1)u∈Γt(e+1)

← SampH(pp), and for the (j, j′)-th (j-th token

with its j′-th tag-based part) query compute

∆
′
e+1 =


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e+1 ·

∏|t(e+1)|
i=1 h

t(e+1)i
t
j′ ,i

,m( K · (ĥ)α ))t
j′∈S′∪{∀} (e = ê∗ − 1)

(Dt
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j′ ,0

, Dt
j′ ,1
· h

t
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t
j′ ,λ+1 · (K · (ĥ)α ·

e′∏
e∗

δ
−1
i · ke′ ·

∏|t(e+1)|
i=1 h

t(e+1)i
t
j′ ,i

,m( K · (ĥ)α ·
e′∏
e∗

δ
−1
i ))t

j′∈S′∪{∀} (e = ê′ − 1)

(Dt
j′ ,0

ht
j′ ,0

, Dt
j′ ,1
· h

t
j′

t
j′ ,λ+1 ·

∏|t(e+1)|
i=1 h

t(e+1)i
i , Dt

j′ ,2
)t

j′∈S′∪{∀} otherwise,

K
′
u =


(Tu,j′′,0hu,0, Tu,j′′,1 · K · (ĥ)α ·

e∗exp+1∏
i=e∗+1

δi ·
∏|u|

i=1 h
ui
u,i, Tu,j′′,|u|+1hu,|u|+1, . . . , Tu,j′′,λhu,λ) (e = e∗exp)

(Tu,j,0hu,0, Tu,j,1 ·
∏|u|

i=1 h
ui
u,i, Tu,j,|u|+1hu,|u|+1, . . . , Tu,j,λhu,λ) otherwise,

for all u ∈ Γt(e+1), and α ← ZN . Set Ke+1 = ({K ′u : u ∈ Γt(e+1)},m(Ke), pp). If phase = 1, e < e∗exp,
and t∗ ∈ S ′ or S ′ = ∀, run C∗e+1,t∗,b ← ExPunc(∆e+1,t∗ , C

∗
e,t∗,b) or C

∗
e+1,t∗,b ← ExPunc(∆e+1,∀, C

∗
e,t∗,b),

respectively. Set e = e+ 1.
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Chall(M,Cê∗−1,ê∗exp) : if phase = 1, return ⊥. Set phase = 1. If (·, ê∗ − 1, Cê∗−1,ê∗exp) /∈ L∗, return ⊥. Set

C∗ê∗,t∗,0 = ({( Sg0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

( gλĝλ+1 gu,λ+1)
t∗) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},T ·M)

C∗ê∗,t∗,1 = ({( Sg0ĝ0 gu,0,

|u|∏
i=1

(giĝi)
ui gui

u,i, g|u|+1ĝ|u|+1 gu,|u|+1, . . . ,

( gλ+1ĝλ+1 gu,λ+1)
t∗) : u = (u1, . . .) ∈ Γt(ê∗) \ Γt(ê∗exp+1)},T ·M ′),

for M ′ ← Dec(Kê∗−1, Cê∗−1,ê∗exp), for (gu,0, . . . , gu,λ+1)u=(u1,...)∈Γt(ê∗)\Γt(ê∗exp+1)
← SampG(pp), S ←

SampS(pp; s), for s← Z∗N . Set C∗ = C∗ ∪ (ê∗, C∗ê∗,t∗,b), e
∗ = ê∗, e∗exp = ê∗exp, and return C∗ê∗,t∗,b.

See that m(K ·(ĥ)α) = m(K) holds. Hence, no information on (ĥ)α is given out via m in ∆e∗ . Moreover,
if the adversary queried Ke′ (by validity, it is not allowed to have queried ∆e′−1,t with t ∈ {t∗,∀}), then
(ĥ)α hides all key elements in Ke′ . Otherwise, if the adversary did not query Ke′ , then (ĥ)α blinds the
key elements in Ke∗exp

. Now, if T = e(S,K), then the challenge ciphertext(s) are distributed as in Game
3.|Γt(e∗exp)

|+ q.3. If T = R, then the challenge ciphertext(s) are distributed as in Game 4.

Lemma 26 (Game 4). For any PPT adversary A, Pr [SA,4] = 1/2 holds.

Proof. In Game 4, for (uniform) b ∈ {0, 1}, we provide A with challenge ciphertext(s) that include a
uniform GT -element instead of a A-chosen b-dependent message. Hence, b is completely hidden from
A’s view.

Taking Lemmata 19, 20, 21, 22, 23, 24, 25, and 26 together, shows Theorem 4. ⊓⊔

Applications of CPE beyond UE. CPE provides an interesting abstraction for outsourced file storage
with forward-security and fine-grained secure shredding of files. In a recent work, Backendal, Günther
and Paterson [BGP22] introduced such a so-called protected file storage (PFS) setting and show how this
can be instantiated via puncturable key wrappingIn (introduced in the same work). Loosely speaking,
Backendal et al. achieve forward-security via key-rotation (but this requires to download, decrypt and
re-encrypt of all file encryption keys) and the shredding of files is achieved via key-puncturing.

We observe that the concept of sequence tags in CPE (used as expiry epochs when instantiating
UE from CPE) allows to implement the fine-grained forward-security aspect via efficient key-rotation
(though in contrast to [BGP22] via help of the server). Moreover, the ciphertext-tag space in CPE pro-
vides an additional dimension for granularity which allows to implement a secure fine-grained shredding
of files, i.e., via puncturing of the ciphertext (by excluding them from updates). We hope that CPE will
find additional applications in this and beyond this context and leave a more detailed study to future
work.

Acknowledgements. We thank the anonymous reviewers for valuable feedback. This project has re-
ceived funding from the European Union’s Horizon 2020 ECSEL Joint Undertaking project under grant
agreement n◦783119 (SECREDAS) and n◦826610 (Comp4Drones), and by the Austrian Science Fund
(FWF) and netidee SCIENCE grant P31621-N38 (PROFET).

References

[AGJ21] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols and efficient forward
security for TLS 1.3 0-rtt. J. Cryptol., 34(3):20, 2021.

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. A framework for identity-based en-
cryption with almost tight security. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 521–549. Springer, Heidelberg, November / December 2015.

[Bar16] Elaine Barker. Recommendation for key management. NIST Special Publication 800-57 Part 1,
Revision 4, 2016. http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4.

31

http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4


[BDdK+21] Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager, and Lise Millerjord. Sym-
metric key exchange with full forward security and robust synchronization. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, 2021.

[BDGJ20] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang. Fast and secure updatable en-
cryption. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 464–493. Springer, Heidelberg, August 2020.

[BEKS20] Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih. Improving speed and security in
updatable encryption schemes. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 559–589. Springer, Heidelberg, December 2020.

[BGP22] Matilda Backendal, Felix Günther, and Kenneth G. Paterson. Puncturable key wrapping and its
applications. Cryptology ePrint Archive, Paper 2022/1209, ASIACRYPT 2022 (to appear), 2022.
https://eprint.iacr.org/2022/1209.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic
PRFs and their applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013.
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A Concrete Instantiation Under the d-Lin Assumption

For completeness, we provide the concrete DSG instantiation of Gong et al. [GCTC16]. The pairing
operation is defined as ê((a1,a2), (b1,b2)) = e(a1,b1)/e(a2,b2). Let πL, πM , πR be function that map
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the leftmost d columns, the d+ 1-th column, and rightmost column of a matrix. We require the d-LIN
assumption:

d-LIN assumption. For any PPT adversary D, we have that the function

Advd−LING,D (λ) :=|Pr
[
D(pars, gad+1(s1+···+sd)) = 1

]
− Pr

[
D(pars, gad+1(s1+···+sd)+sd+1) = 1

]
|

is negligible in λ, where (G,H, GT , p, e)← G(λ, 1), s1, . . . , sd+1, a1, . . . , ad ← Zp, for pars := (G,H, GT ,
p, e, g, h, ga1 , . . . , gad+1 , ga1s1 , . . . , gadsd), for generators g and h of G and H, respectively.11

The DSG construction (adapted mostly verbatim from [GCTC16]) is as follows (we omit the algo-
rithm SampGT since we directly use the respective values):

(pp, sp)← SampP(λ, n): sample (G1,G2, G
′
T , p, g1, g2, gT , g

′
1, g
′
2, e
′) ← G(λ, 1) and set G := Gd+2

1 ×
Gd+2

1 ,H := Gd+2
2 × Gd+2

2 , GT := G′T , e := e′, g := g1, h := g2. Furthermore, sample matrices

B,B∗ ← GLd+2(Zp) with B⊤B∗ = Id+2 and A0, . . . ,An ← Z(d+2)×(d+2)
p , and sample diagonal

matrix R ∈ GLd+2(Zp) with the right-most two diagonal entries being 1. Then, set

D := πL(B),Di := πL(BAi),D
∗ := πL(B

∗R),D∗i := πL(B
∗A⊤i R)

m := πM (B),mi := πM (BAi),m
∗ := πM (B∗R),m∗i := πM (B∗A⊤i R),

f := πR(B), fi := πR(BAi), f
∗ := πR(B

∗R), f∗i := πR(B
∗A⊤i R),

for all i ∈ [n] ∪ {0}, and function m((gb1
2 , gb2

2 )) := e(g1, g2)
b1 , for all b1,b2 ∈ Zd+2

p . Define ĝ :=

(g0, gf ), ĥ := (h0, hf∗) and output

pp := (G,H, GT , p, g, h, gT , ê,m, gD, gD0 , . . . , gDn , hD∗
, hD∗

0 , . . . , hD∗
n)

sp := (ĝ, ĥ, gm, gm0 , . . . , gmn , gf , gf0 , . . . , gfn , hm∗
, hm∗

0 , . . . , hm∗
n , hf∗ , hf∗0 , . . . , hf∗n).

g← SampG(pp): sample s← Zd
p and output g := ((gD0s, gDs), (g0, gD1s), . . . , (g0, gDns)).

ĝ← ŜampG(pp, sp): sample ŝ ← Zp and output ĝ := ((gŝf0 , gŝf ), (g0, gŝf1), . . . , (g0, gŝfn)) and gs :=
(g0, gŝf ).

h← SampH(pp, sp): sample r← Zd
p and output h := ((h0, hD∗r), (h0, hD∗

1r), . . . , (h0, hD∗
nr)).

ĥ← ŜampH(pp): sample r̂ ← Zp and output ĥ := ((h0, hr̂f∗), (h0, hr̂f∗1 ), . . . , (h0, hr̂f∗n)) and hs :=
(h0, hr̂f∗), ha := (h0, hr̂m∗

).
S ← SampS(pp): sample s← Zd+2

p and output S := (gs, g0).

K ← SampK(pp): sample k← Zd+2
p and output K := (hD∗k, hD0k).

Correctness and security. All correctness and security claims carry over from [GCTC16] since no
changes in the assumptions or distributions were made.

11 The original definition of d-LIN requires a1, . . . , ad, sd+1 ← Zp; however, as in [CW14, Remark 12], we allow
for a negligible difference of (d+ 1)/p in the Advd−LIN

G,D function.
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