
On the CCA Compatibility of
Public-Key Infrastructure

Dakshita Khurana1? and Brent Waters2??

Abstract. In this work, we put forth the notion of compatibility of any
key generation or setup algorithm. We focus on the specific case of en-
cryption, and say that a key generation algorithm KeyGen is X-compatible
(for X ∈ {CPA,CCA1,CCA2}) if there exist encryption and decryption
algorithms that together with KeyGen, result in an X-secure public-key
encryption scheme.
We study the following question: Is every CPA-compatible key generation
algorithm also CCA-compatible? We obtain the following answers:
– Every sub-exponentially CPA-compatible KeyGen algorithm is

CCA1-compatible, assuming the existence of hinting PRGs and sub-
exponentially secure keyless collision resistant hash functions.

– Every sub-exponentially CPA-compatible KeyGen algorithm is also
CCA2-compatible, assuming the existence of non-interactive CCA2
secure commitments, in addition to sub-exponential security of the
assumptions listed in the previous bullet.

Here, sub-exponentially CPA-compatible KeyGen refers to any key gen-
eration algorithm for which there exist encryption and decryption algo-
rithms that result in a CPA-secure public-key encryption scheme against
sub-exponential adversaries.
This gives a way to perform CCA secure encryption given any public
key infrastructure that has been established with only (sub-exponential)
CPA security in mind. The resulting CCA encryption makes black-box
use of the CPA scheme and all other underlying primitives.

1 Introduction

Any public-key encryption scheme enables a receiver to recover the en-
crypted message only if they know a secret key corresponding to their
public key. But what if the receiver only ever published a verification key
for a digital signature scheme for which they possessed a signing key? Or
published a hard puzzle for which they possessed a solution?

This question was one of the original motivations for the study of
witness encryption. Garg et al. [14] showed that it is possible to encrypt
a message so that it can only be opened by a recipient who knows an
NP witness, assuming the existence of an appropriate witness encryption

? University of Illinois Urbana-Champaign. dakshita@illinois.edu.
?? University of Texas at Austin and NTT Research. bwaters@cs.utexas.edu.

scheme. Put differently, assuming an appropriate witness encryption, al-
most any KeyGen algorithm that outputs a hard-to-invert string and a
corresponding secret (such as a verification and signing key pair for a sig-
nature scheme) can be used to derive CPA-secure public key encryption.

In this work, we generalize this study. We put forth the notion of
compatibility of any key generation or setup algorithm, while focusing on
the specific case of encryption schemes. Here, recall that semantic secu-
rity of (public key) encryption in [15] was only the first step towards
formalizing security of encryption schemes. Semantic security, or equiva-
lently indistinguishability-based security against chosen plaintext attacks
(CPA) requires that encryptions of every pair of plaintexts appear in-
distinguishable to a computationally bounded attacker. Unfortunately,
starting with the attacks of Bleichenbacher [4] against PKCS#1, it was
quickly realized that systems that only satisfy CPA security often fail in
practice. As a result, security against adaptive chosen ciphertext attacks
(or, CCA security) has been accepted as the standard requirement from
encryption schemes that need to withstand active attacks [8,26,11,29].
This guarantees security even against attackers that make oracle decryp-
tion queries to keys they do not have. If the adversary only has access to a
decryption oracle before obtaining the challenge ciphertext, the resulting
scheme is said to be CCA1 secure. On the other hand, if the adversary
has access to the decryption oracle both before and after obtaining the
challenge ciphertext, the resulting scheme is CCA2 secure.

We investigate whether arbitrary setup of KeyGen algorithms can be
used to derive CCA-secure schemes. We will say that a key generation
algorithm KeyGen is X-compatible (for X ∈ {CPA,CCA1,CCA2}) if there
exist encryption and decryption algorithms that together with KeyGen,
result in an X-secure public-key encryption scheme. As already discussed,
the existence of (extractable) witness encryption suffices to prove CPA-
compatibility for many non-trivial KeyGen algorithms. The focus of our
work is to take a closer look at CCA-compatibility.

Specifically, we analyze what it takes for a KeyGen algorithm to be
CCA-compatible. Our primary result stated informally, is the following:

It is always possible to get CCA secure encryption from any KeyGen
procedure that gives rise to (sub-exponentially secure) CPA encryption.

Combined with the CPA-compatibility of non-trivial KeyGen, this also
implies CCA-compatibility of many non-trivial KeyGen algorithms.

This also means that we can always achieve CCA security using keys
for cryptosystems that were originally deployed for CPA mode, without

2

having to modify the public key. This would allow parties with access to
public key infrastructures that have been established with only CPA secu-
rity in mind, to use these infrastructures to perform CCA secure encryp-
tion instead. For instance, over the years, multiple encryption schemes
have been developed that satisfy IND-CPA security alone. A recent ex-
ample that gained some popularity is the messaging service telegram,
that supplies end-to-end encryption using a new protocol employing AES,
RSA, and Diffie-Hellman key exchange. Recently, [17] showed that this
protocol is not IND-CCA secure. Our result ensures that (under reason-
able cryptographic assumptions) careful participants can use the same
underlying infrastructure to engage in encrypted communication without
worrying about CCA2 attacks. Alternatively, suppose a user or an orga-
nization sets up what is supposed to be a CCA secure system, but the
underlying computational assumption turned out to be false. For exam-
ple, perhaps an attack on DDH was found in a specific group [7], and the
scheme is somehow adjusted to recover CPA security. Then, the scheme
can also be adjusted to recover CCA security (under our assumptions),
with the same infrastructure as that used for CPA security. In these set-
tings, while one could potentially ask users to switch to using a new key
from the same system, changing an entire public key infrastructure would
be far more cumbersome. We note that simple key encapsulation strate-
gies would be insufficient: for example, sampling the key for a CCA secure
encryption scheme and encapsulating it using a key for the original CCA-
insecure infrastructure would not lead to the resulting ciphertext being
CCA secure.

Preliminary Solutions in Idealized Models. In idealized models, there are
known methods that implicitly allow one to obtain CCA security from any
CPA-compatible KeyGen algorithm. For instance, in the Random Oracle
model, the famous Fujisaki-Okamoto transform [12] converts any CPA
secure encryption scheme to a CCA secure one, with the same KeyGen
algorithm. We are interested in whether a similar effect can be achieved
in the plain model.

A natural approach without a random oracle would be to leverage a
common reference string (CRS) and implement the Naor-Yung method-
ology [26,11] using simulation-sound NIZKs. We recall that the Naor-
Yung (CCA secure) encryption of a message typically consists of two
encryptions, under independent public keys, of the same message; and
a simulation-sound NIZK proof that both ciphertexts encrypt the same
message. If implemented naively, it appears that the KeyGen algorithm

3

for the resulting CCA mode would have to output two independent pub-
lic keys corresponding to the underlying CPA secure scheme. Even if we
found a method to get rid of the second key, this still requires partic-
ipants to place their trust in a central setup assumption to enable the
(simulation-sound) NIZK. Given this state of affairs, we ask if it is possi-
ble to obtain CCA secure encryption by relying on the KeyGen algorithm
of any CPA secure encryption scheme:

– in the plain model without assuming setup, CRS, or a random oracle,

– with black-box use of the CPA scheme (and additional primitives),

– and while making the weakest possible cryptographic assumptions.

Our Results. We take a novel approach to obtain a plain model solu-
tion that makes black-box use of the CPA scheme, and does not re-
sort to NIZK (or NIWI) style assumptions. Specifically, we demonstrate
CCA1-compatibility of any sub-exponentially CPA-compatible KeyGen al-
gorithm while making black-box use of hinting PRGs and sub-exponential
keyless collision resistant hash functions. We also demonstrate CCA2-
compatibility of any sub-exponentially CPA-compatible KeyGen algorithm
while additionally making black-box use of non-interactive CCA secure
commitments. Such commitments were recently obtained [13] based on
black-box use of subexponential one-way functions in BQP, and sub-
exponential quantum-hard one-way functions, in addition to the assump-
tions listed above. Alternatively, these can be based on sub-exponential
time-lock puzzles [24,13] in addition to the assumptions listed above. We
informally summarize our results below.

Informal Theorem 1 Every sub-exponentially CPA-compatible KeyGen
algorithm against non-uniform adversaries is also CCA1-compatible against
uniform adversaries, assuming the existence of hinting PRGs and sub-
exponential keyless collision-resistant hash functions against uniform ad-
versaries.

Informal Theorem 2 Every sub-exponentially CPA-compatible KeyGen
algorithm against non-uniform adversaries is also CCA2-compatible against
uniform adversaries, assuming the existence of sub-exponential hinting
PRGs, sub-exponential keyless collision-resistant hash functions against
uniform adversaries and sub-exponential non-interactive CCA secure com-
mitments.

4

2 Our Technique

2.1 Background: A variant of Koppula-Waters [22]

Our starting point is a variant of the recent Koppula-Waters [22] approach
to achieving CCA1 secure encryption based on CPA secure encryption and
a new primitive they introduced, called a hinting PRG. A hinting PRG
satisfies the following property: for a uniformly random short seed s, the
matrix M obtained by first expanding PRG(s) = z0z1z2 . . . zn, sampling
uniformly random v1v2 . . . vn, and setting for all i ∈ [n], Msi,i = zi and
M1−si,i = vi, should be indistinguishable from a uniformly random ma-
trix. Hinting PRGs are known based on CDH, LWE [22]. (One can also
pursue a similar path using any circular secure symmetric key encryp-
tion [20] in lieu of the Hinting PRG.) Koppula and Waters [22] also require
the CPA scheme to have two properties. First, the scheme should have
perfect decryption correctness for most public/secret keys and second,
any ciphertext should be decryptable given the encryption randomness.

Now, the KeyGen algorithm of the CCA1 scheme constructed by [22,20]
executes the CPA KeyGen setup twice to obtain two independent pub-
lic/secret key pairs, denoted by (pk0, sk0) and (pk1, sk1). Additionally,
the CCA1 KeyGen algorithm samples and outputs the public param-
eters pp of an equivocal commitment scheme. To encrypt a message
m, the encryption algorithm chooses a seed s ← {0, 1}n and computes
H(s) = z0z1 . . . zn, where H is a hinting PRG. It uses z0 to mask the
message m; that is, it computes c = m ⊕ z0. The remaining ciphertext
will contain n ‘signals’ that help the decryption algorithm to recover s
bit by bit, which in turn will allow it to compute z0 and hence unmask c.

The ith signal (for each i ∈ [n]) has three components c0,i, c1,i, c2,i.
If the ith bit of s is 0, then c0,i is an encryption of a random string yi
using the public key pk0 and randomness zi, and c1,i is an encryption
of yi using pk1 (encrypted using true randomness). If the ith bit of s is
1, then c0,i is an encryption of yi using public key pk0 (encrypted using
true randomness), c1,i is an encryption of yi using public key pk1 and
randomness zi. In both cases, c2,i is an equivocal commitment to si using
randomness yi. As a result, half the ciphertexts are encryptions with
fresh randomness, while the remaining are encryptions with blocks of the
hinting PRG output being used as randomness, and the positioning of
the random/pseudorandom encryptions reveals the seed s.

The decryption algorithm first decrypts each c0,i (using secret key is
sk0) to obtain y1y2 . . . yn. It then checks if c2,i is an equivocal commitment
to 0 with randomness yi. If so, it guesses that si = 0, else it guesses that

5

si = 1. With this estimate for s, the decryption algorithm can compute
H(s) = z0z1 . . . zn and then compute c ⊕ z0 to recover the message m.
The decryption algorithm needs to enforce additional checks to prevent
malicious decryption queries (made during the CCA1 experiment). In
particular, the decryption algorithm needs to check that the guess for s
is indeed correct. It conducts the following checks and outputs z0 ⊕ c if
they all pass.

– If the ith bit of s is guessed to be 0, then the decryption algorithm
checks that c0,i is a valid ciphertext - it simply re-encrypts yi using
randomness zi and checks if this equals c0,i. Recall that the decryption
procedure, before guessing the ith bit of s to be 0, also checks that c2,i
is a commitment to 0 with randomness yi.

– If the ith bit of s is guessed to be 1, then the decryption algorithm first
recovers the message underlying ciphertext c1,i. Note that c1,i should
be encrypted using randomness zi, hence using zi, one can recover
message ỹi from c1,i (using the randomness recovery property of the
PKE scheme). It then re-encrypts ỹi and checks if it is equal to c1,i,
and also checks that c2,i is a commitment to 1 with randomness ỹi.

Inadequacies of this transformation. At this point, we are far from having
established CCA1 compatibility of arbitrary CPA infrastructure due the
following reasons:

1. The transformation described so far crucially uses equivocal commit-
ments, which require trusted setup or a common reference/random
string, and this is something that we would like to avoid.

2. This transformation makes use of two public keys, and we are only
guaranteed to get a single key from existing setup.

In fact, achieving CCA2 security is even more complex: in particular,
the CCA2 setup in the transformation of [22] must also contain pairwise
independent hash functions h1, h2, . . . , hn. These are used to prevent the
adversary from mauling the challenge ciphertext into related ciphertexts
and querying the decryption oracle on these ciphertexts.

In the coming section, we discuss how to achieve CCA1 compatibility
by eliminating the two problems listed above. In the section after that,
we discuss the more complex case of CCA2 compatibility.

2.2 Techniques for CCA1 Compatibility

To address the first item listed above, we rely on equivocal commitments
without setup, that satisfy binding against uniform adversaries. The re-

6

sulting CCA1 compatibility is also established against uniform PPT ad-
versaries. We briefly recall how such equivocal commitments can be ob-
tained based on keyless collision resistant hash functions against uniform
adversaries [10,16,2,13]: the commit algorithm samples a uniformly ran-
dom seed for a strong extractor, g ← {0, 1}κ and a value v in the domain
of a sufficiently compressing keyless collision resistant hash function. A
commitment to a bit b is given by the string H(v), (Ext(g, v)⊕ b).

We use the resulting commitment scheme to generate c2,i values in
the outline described above. Note that this commitment scheme cannot
be efficiently equivocated by uniform adversaries, since that would lead
to an efficient uniform algorithm that finds collisions in the hash function
H. On the other hand, our proof of security will rely on the fact that most
strings in the support of the commitment can be non-uniformly equivo-
cated. Next, we discuss how to argue security when using these equivocal
commitments in the transformation described above.

Arguing Security. To argue security, first observe that the equivocal
commitment satisfies computational binding against PPT adversaries,
which makes it infeasible for a CCA1 adversary to query the challenger
on ambiguous ciphertexts that pass the decryption checks but potentially
decrypt to different values under sk0 and sk1. This is because for such
ciphertexts, for some i ∈ [n], the component c2,i is both a commitment
to 0 with randomness yi recovered from c0,i and a commitment to 1 with
randomness ỹi recovered from c1,i: clearly violating the binding property
of the commitment scheme.

At the same time, the equivocality of the commitment enables the
challenger to set for every i ∈ [n], the values c2,i that are both commit-
ments to 0 with randomness yi and 1 with randomness ỹi. Next, via a
careful hybrid argument that relies on perfect correctness of the encryp-
tion scheme, the binding property of the equivocal commitment and CPA
security of the public key encryption scheme, the challenge ciphertext can
be modified and made ambiguous: this means that in the challenge cipher-
text for every i ∈ [n], c0,i is an encryption of yi, c1,i is a non-interactive
commitment to ỹi, c2,i an equivocal commitment: i.e., a commitment to
0 with randomness yi and to 1 with randomness ỹi.

At a very high level, this involves changing values encrypted under
c0,i and c1,i by relying on CPA security of the encryption scheme. Values
encrypted under c1,i can be modified relatively easily because only the
secret key sk0 is used to perform decryption queries. Arguing security
when changing values encrypted under c0,i requires more care: in partic-

7

ular, such an argument is possible only if sk0 is no longer used to answer
the adversary’s decryption queries. Therefore we first switch to using an
alternative decryption strategy that relies on sk1 instead of sk0 to decrypt
the adversary’s ciphertexts. Unambiguity of the adversary’s ciphertexts
helps ensure that alternative decryption yields the same outputs as the
original decryption strategy. When using alternate decryption, it becomes
possible to change values encrypted under c0,i since sk0 is no longer being
used.

At the end of this argument, information about the hinting PRG seed
s has almost been removed from the ciphertext, except that for all i
where si = 0, csi,i is encrypted using randomness ri which came from
running the hinting PRG on s; whereas c1−si,i is encrypted using uniform
randomness. These can all be replaced with uniformly random values
by the property of the hinting PRG, thereby eliminating all information
about s, and therefore m, from the ciphertext.

So far, the construction and security argument also relied on the use
of two public/private key pairs. But as already pointed out, a CPA-
compatible KeyGen algorithm will output a single public and private key.
Next, we discuss how to eliminate the need for the second key.

Removing the second key via Non-interactive Commitments.
Here, we begin by observing that the actual decryption algorithm only
makes use of the secret key sk0, and does not need the second secret key
sk1. It recovers messages underlying c1,i for all i ∈ [n] where si = 1, using
the randomness zi that was supposedly used to create c1,i.

As a result, the actual decryption algorithm does not need to effi-
ciently decrypt c1,i and has no use for the secret key sk1. Therefore, we
eliminate the need for the second public key by setting the strings c1,i
to be non-interactive perfectly binding commitments that do not require
any public keys or public parameters, and where the committed message
can be efficiently recovered given the randomness used to commit. Lom-
bardi and Schaeffer [25] showed that such commitments can be obtained
from any perfectly correct public-key encryption scheme. Specifically, we
modify the encryption algorithm so that if si = 0, c1,i is a non-interactive
commitment to 0n using true randomness, and if si = 1, then c1,i is a
non-interactive commitment to a random string xi using randomness zi.
The remaining parts {c0,i, c2,i}i∈[n] will remain unmodified.

Now recall that the security argument outlined above points to an al-
ternative decryption strategy that does actually use sk1, instead of sk0, to
efficiently decrypt the adversary’s ciphertexts. However, this alternative

8

decryption algorithm is only used in a few hybrids in the proof of security,
and when using non-interactive commitments, we allow these hybrids to
inefficiently recover the values committed under c1,i by running an ex-
ponential time brute-force algorithm that checks all possible randomnees
values that could potentially be used to build c1,i.

In order to make the hybrid strategy still go through, we rely on com-
plexity leveraging: we set security parameters so that all other primitives
are secure against adversaries that can run in time large enough to exe-
cute the brute-force algorithm that recovers values committed under c1,i
for i ∈ [n]. Specifically, we assume that the CPA encryption scheme to be
upgraded has security parameter k and is 2k

e
secure for some constant

0 < e < 1. We also assume that the keyless collision-resistant hash func-
tion responsible for the binding property of the equivocal commitments is
2k

ε
-secure for some constant 0 < ε < 1, and we set the security parameter

for the non-interactive commitment to be kmin(e,ε).

Additional Details of the Proof. We now provide additional details
on the proof of CCA1 security of the resulting scheme. Recall that in
the CCA1 security game, the adversary is allowed access to a decryption
oracle before the challenge phase, where the adversary outputs m0,m1

and then obtains an encryption of mb for b sampled uniformly at random.

We develop a sequence of hybrid experiments where the decryption
oracle as well as the challenge ciphertext are modified in small increments,
and where the first hybrid corresponds to providing the adversary access
to the actual decryption oracle together with an encryption of mb and
the last one corresponds to providing the adversary access to the actual
decryption oracle together with an encryption of uniform randomness.

The very next hybrid experiment is an exponential time hybrid that
samples equivocal commitments {c2,i}i∈[n] for the challenge ciphertext,
together with randomness {y0,i}i∈[n] and {y1,i}i∈[n] that can be used to
equivocally open these commitments to 0 and 1 respectively.

The third hybrid additionally modifies the components c1,i to “drown”
out information about s via noise. In particular, while in the real game,
the values c1,i are always commitments to ysi,i, in the challenge ciphertext
these values are modified to become commitments to y1,i, irrespective of
what si is. On the other hand, the values c0,i remain encryptions of ysi,i,
exactly as in the real experiment. In spite of the fact that equivocation
takes exponential time, the proof of indistinguishability between this hy-
brid and the previous one does not need to rely on an exponential time
reduction. Instead, we observe that the equivocal commitment strings

9

{c2,i}i∈[n] together with their openings can be fixed non-uniformly and in-
dependently of the strings c1,i, and therefore these hybrids can be proven
indistinguishable based on non-uniform hiding of the non-interactive com-
mitment scheme. Since we must carefully manipulate the randomness used
for {c1,i}i∈[n] in both games, this hybrid requires a delicate argument.

The fourth hybrid modifies the decryption oracle so that instead of de-
crypting using the secret key of the public key encryption scheme, decryp-
tion is performed by running in time exponential in the security parameter
of the commitment scheme (specifically, in time 2k

min(e,ε)
) and performing

a brute-force search for the randomness used to create the commitments
{c1,i}i∈[n]. This hybrid is only indistinguishable from the previous one if
an adversary cannot find ciphertexts that decrypt differently when using
the secret key of the encryption scheme versus the brute-force algorithm
discussed above. This hybrid requires a subtle argument that relies on the
fact that no adversary can query the decryption oracle with “ambiguous”
ciphertexts, in spite of being provided such ciphertexts in the challenge
phase. Specifically, we crucially use the fact that the adversary does not
observe any equivocations before obtaining the challenge ciphertext, and
therefore cannot query the decryption oracle with any “ambiguous” ci-
phertexts (as this would lead to the adversary breaking binding of the
equivocal commitment). This is the primary reason that we only obtain
CCA1 security.

In the fifth hybrid, some of the challenge ciphertext values, that are
independent of the message being encrypted, are chosen ahead of time.
This maneuver helps us with the sixth hybrid, where in the challenge ci-
phertext, information about the PRG seed s is removed from the cipher-
text components {c1,i}i∈[n], making them all encryptions of y0,i instead
of being encryptions of ysi,i. Again, since we must carefully manipulate
the randomness used for {c0,i}i∈[n] in both games, this hybrid requires a
delicate argument.

In the seventh hybrid, we modify the decryption oracle again to go
back to using the secret key of the public key encryption scheme to de-
crypt. Note that the only remaining information about s is in the ran-
domness used to obtain {ci,0, ci,1}i∈[n] in the challenge ciphertext. In the
seventh and eighth hybrids, we carefully re-order the randomness and rely
on the security of the hinting PRG to switch to using uniform randomness
everywhere. This eliminates all information about s and therefore about
the message being encrypted in the challenge ciphertext.

10

2.3 Techniques for CCA2 Compatibility

We observe that the key barrier to proving CCA2 security in the hybrid
arguments outlined above is the specific hybrid that modifies the challenge
ciphertext so it contains a commitment to both a 0 and a 1. Given such
a ciphertext, in a CCA2 game, an adversary could generate new strings
that are a commitment to both a 0 and a 1, and use them to create
ambiguous ciphertexts. Arguing that this cannot happen requires us to
develop a much deeper technical toolkit.

Our first insight is that the requirement that an adversary, given an
ambiguous ciphertext, be unable to generate additional ambiguous ci-
phertexts is reminiscent of non-malleability. As such, we will rely on
non-interactive non-malleable (more precisely, CCA secure) commitments
without setup. Up until recently, there were perceived strong barriers to
obtaining non-malleable commitmens with less than 3 rounds of interac-
tion [28]. But a sequence of recent works obtained two round [19,24] and
even non-interactive [24,3,18,13] based on well-studied sub-exponential
hardness assumptions. In particular, a recent work [13] obains black-box
non-interactive non-malleable (and in fact CCA2 secure) commitments
assuming kelyess collision resistant hash functions, against uniform ad-
versaries.

Relying on CCA2 Secure Commitments. We now discuss modifications to
the CCA1 transformation discussed in the previous section. Specifically,
we will replace the non-interactive commitment (used to generate cipher-
text components {c1,i}i∈[n]) in the construction outlined above, with a
CCA2 secure commitment. Intuitively, using CCA2 secure commitments
ensures that no matter how we change the {c1,i}i∈[n] components in the
challenge ciphertext, the corresponding {c1,i}i∈[n] components in the ad-
versary’s decryption queries do not change (except in a computationally
indistinguishable way). Proving that the resulting protocol is actually a
CCA2 secure encryption scheme, is much trickier. We encounter several
technical barriers in this process, which we discuss below.

Arguing Security. Recall that in the CCA2 security game, the adversary
is allowed access to a decryption oracle both before and after the chal-
lenge phase, where the adversary outputs m0,m1 and then obtains an
encryption of mb for b sampled uniformly at random.

We will consider a sequence of hybrid experiments similar to the CCA1
setting, where the decryption oracle as well as the challenge ciphertext are
modified in small increments. The first hybrid corresponds to providing

11

the adversary access to the actual decryption oracle together with an
encryption of mb and the last one corresponds to providing the adversary
access to the actual decryption oracle together with an encryption of
uniform randomness.

The very next hybrid experiment, just like the CCA1 setting, is an
exponential time hybrid that samples equivocal commitments {c2,i}i∈[n]
for the challenge ciphertext, together with randomness {y0,i}i∈[n] and
{y1,i}i∈[n] that can be used to equivocally open these commitments to
0 and 1 respectively.

The third hybrid additionally modifies the components c1,i to “drown”
out information about s via noise. In particular, while in the real game,
the values c1,i are always commitments to ysi,i, in the challenge cipher-
text these values are modified to become commitments to y1,i, irrespective
of what si is. On the other hand, the values c0,i remain encryptions of
ysi,i, exactly as in the real experiment. At this point, the proof of indis-
tinguishability of hybrids already significantly diverges from the CCA1
setting. Specifically, the proof of indistinguishability between this hybrid
and the previous one, in the CCA1 setting, relied on non-uniform security
of the non-interactive commitment – in order to perform the exponential
time computation needed to equivocate the hash function. Here, we would
ideally like to rely on CCA secure commitments which are potentially
only secure against uniform adversaries (eg, the black-box construction
in [13] which is only secure against uniform adversaries). One option could
be to assume that the CCA2 commitment is “hard” against adversaries
running in time that is sufficient to compute openings of the equivocal
commitment.

In the fourth hybrid, we would like to modify the decryption oracle so
that instead of decrypting using the secret key of the public key encryp-
tion scheme, decryption is performed by running in time exponential in
the security parameter of the commitment scheme (specifically, in time

2k
min(e,ε)

) and performing a brute-force search for the randomness used to
create the commitments {c1,i}i∈[n]. This hybrid is indistinguishable from
the previous one only if an adversary cannot find ciphertexts that decrypt
differently when using the secret key of the encryption scheme versus the
brute-force algorithm discussed above: in other words if the adversary
cannot query the oracle with “ambiguous” ciphertexts.

This is where the CCA2 setting diverges most significantly from the
CCA1 setting. In the CCA1 setting, we could prove that the adversary
does not make ambiguous decryption queries by relying on uniform bind-
ing of the equivocal commitment, but this is no longer true in the CCA2

12

setting. Specifically, we need to rule out an adversary that given ambigu-
ous ciphertexts, creates new ones.

Therefore, in the proof, we will now have to rely on CCA2 commit-
ments to maintain an invariant across all the hybrids discussed above. The
invariant is as follows: except with negligible probability, the adversary
does not make any oracle query for which there exists some i ∈ [n] such
that the components (c0,i, c1,i) encrypt/commit to two different openings
of the string c2,i.

To ensure that this invariant holds in the initial hybrid that corre-
sponds to the real CCA2 experiment, we will use any adversary that
breaks the invariant to contradict the binding property of the equivo-
cal commitment. The corresponding reduction would have to extract two
openings for the same equivocal commitment string, from a decryption
query provided by the adversary. In particular, these openings will actu-
ally be the plaintexts underlying the ciphertext c0,i and the commitment
string c1,i. Extracting these two openings involves decrypting c0,i under
sk0, and brute-force breaking the CCA2 commitment string c1,i. This
use of brute force necessitates that the binding property of the equivocal
commitment be hard to break even in time that is sufficient to break the
CCA2 commitment.

But recall that arguing indistinguishability for the third hybrid actu-
ally required the exact opposite property: that the CCA2 commitment
be hard to break even by adversaries running in time that is sufficient
to compute openings of the equivocal commitment. It appears that we
are at an impasse here, since we need the equivocal commitment and the
CCA2 commitment to each take longer time to break than the other.
One way to resolve this is to rely on a non-uniform reduction to argue
indistinguishability between the second and third hybrids. But recall that
the underlying black-box CCA commitments of [13] achieve only uniform
security, at least when relying on on keyless collision resistant hash func-
tions against uniform adversaries.

Fortunately for us, it turns out that [13] prove a much stronger prop-
erty than uniform CCA security – they actually establish computation
enabled CCA security. The computation enabled property allows the at-
tacker to submit a randomized turing machine P at the beginning of the
game. The challenger can run the program P and output the result for
the attacker at the beginning of the game: crucially, the running time of
P can be much larger than the uniform running time allowed to the ad-
versary. This added property actually achieves a flavor of non-uniformity
that helps our argument go through, by allowing us to perform special

13

heavy computation at the beginning of the reduction between hybrids
2 and 3, while at the same time, allowing the binding property of the
equivocal commitment to be hard to break even in time that is sufficient
to break the CCA2 commitment.

Once we have these ingredients in place, we still need to ensure that
the invariant continues to hold in all the other hybrids described above.
This is tricky because checking the invariant involves decrypting {c0,i}i∈[n]
under sk0, and also finding the messages committed via the CCA2 com-
mitment strings {c1,i}i∈[n], which may not necessarily be an efficient pro-
cess. Recall that in the very next hybrid, we simply sample the commit-
ment strings in an equivocal way – this hybrid is statistically indistin-
guishable from the previous one, and therefore the invariant also holds
in this hybrid. In the hybrid after that, the commitment strings c1,i are
modified in the challenge ciphertext to drown out information about s.
Here, in order to prove that the invariant holds, we rely on CCA2 secu-
rity of the commitment to find the messages committed via the CCA2
commitment strings {c1,i}i∈[n] in all of the adversary’s queries.

In the fourth hybrid, we change the way the adversary’s queries are
decrypted: here, we can prove (this time, by relying on the invariant)
that the adversary does not make decryption queries that decrypt differ-
ently, except with negligible probability. In the next hybrid, we modify
the decryption oracle again to go back to using the secret key sk0 of the
public key encryption scheme to decrypt. At this point, we are no longer
able to argue that the invariant holds, but note that we only needed the
invariant to argue that the way the adversary’s queries are decrypted can
be changed without affecting the adversary’s advantage. Therefore, this
point on, we will not make any changes to how the adversary’s queries
are decrypted, and so all we will need to do is argue indistinguishability
of the subsequent hybrids. At this point, the only remaining informa-
tion about s is in the randomness used to obtain {ci,0, ci,1}i∈[n] in the
challenge ciphertext. In the next couple of hybrids, we carefully re-order
the randomness and rely on the security of the hinting PRG to switch
to using uniform randomness everywhere. All this while, we decrypt the
adversary’s oracle queries by breaking the CCA commitments (via brute-
force). As a result, our reductions run in superpolynomial time, and we
rely on sub-exponential hardness of the hinting PRG. This is different
from the CCA1 setting where we could first go back to decrypting the
adversary’s oracle queries in polynomial time and then rely on polynomial
hardness of the hinting PRG.

14

We provide some additional technical details about how we implement
the invariant discussed in this overview. Specifically, we insert a hybrid
after the first hybrid, where the experiment aborts (and the adversary
wins) if he makes an oracle query that breaks the invariant: that is, if the
adversary makes an oracle query for which there exists i ∈ [n] such that
the components (c0,i, c1,i) encrypt/commit to two different openings of the
string c2,i. This (inefficient) check is performed in all subsequent hybrids
up until the fourth one, where we change the way the adversary’s queries
are decrypted. We perform careful reductions to argue indistinguishabil-
ity of these hybrids while performing this inefficient check (as described
above). After the fourth hybrid, we no longer need the invariant and we
therefore remove this check before proceeding with subsequent hybrids.
This concludes an overview of our construction and proof of security.

2.4 On Security against Non-Uniform Adversaries

Very recently, the security of keyless hash functions against adversaries
with non-uniform advice has also been explored; in particular, [1,2,21] de-
fined and constructed keyless collision-resistant hash functions that sat-
isfy the following property: there exists a polynomial p(·) such that for
any polynomial s(·), any PPT adversary with s(κ) bits of non-uniform
advice cannot find more than p(s(κ)) pairs of collisions. Subsequently, [3]
used these hash functions and (sub-exponential) NIWIs to obtain one-
message zero-knowledge without trusted setup and a weak form of sound-
ness against provers with non-uniform advice.

We observe that relying on non-uniform secure primitives; more specif-
ically substituting keyless collision-resistant hash functions against uni-
form adversaries with keyless collision-resistant hash functions against
adversaries with non-uniform advice as described above, helps make our
CCA constructions secure against non-uniform adversaries. In other words,
we can make a stronger assumption on the underlying keyless hash func-
tion, to obtain stronger (non-uniform) security. The only difference would
be the observation that an adversary with polynomial advice can only find
polynomially many collisions, and therefore query the decryption oracle
with only polynomially many ambiguous ciphertexts – the answers to
which can be non-uniformly fixed and hardwired into the oracle.

2.5 On Setting Parameters for CCA Compatibility

For both the CCA1 and CCA2 transformations, our non-interactive com-
mitment scheme used to create {c1,i}i∈[n] needs to be easier to break

15

“along some axis of hardness” than the PKE scheme so that there is a
way to open it, while the PKE scheme is still hard. Our axis of choice in
this paper, is basic computation time. As a result, our theorem statement
requires the KeyGen algorithm to be sub-exponentially CPA compatible,
i.e. to give rise to a sub-exponentially secure CPA encryption scheme.
This could also potentially lead to issues if the original PKE scheme had
parameters “on edge” of being broken: since we would need commitment
scheme to be even easier to break in terms of computation time.

We point out that in these cases, there could be other different axes of
hardness (eg,time-lock puzzles [24,3]) that could be exploited to achieve
the same effect. As another example, following [18], one could show that
any KeyGen that gives rise to polynomially hard PKE scheme secure
against quantum adversaries can be combined with a commitment scheme
that is quantum in-secure, to achieve CCA compatibility. As a result,
there is still a way to open the commitments in BQP, while the CPA-
secure PKE scheme is still hard. These approaches could improve the
concrete parameters that one would need to use to instantiate these trans-
formations, and the exact axis of hardness can be chosen depending upon
the specifics of the application.

In the coming sections, we first discuss some key building blocks used
by our transformations in Section 3, and define the notion of compatibility
in Section 4. Next, we describe our CCA2 compatibility construction in
Section 5, with analysis and proof of security deferred to the full version.
We can use simpler assumptions and a simpler construction to achieve the
weaker goal of CCA1 compatibility, as discussed above. This construction
and analysis are deferred to the full version due to lack of space.

3 Preliminaries

In this section we will provide notions and security definitions for pub-
lic key encryption, keyless collision resistant hash functions and non-
interactive perfectly binding commitments. For public key encryption
we will formulate a definition that can capture IND-CPA, IND-CCA1
and IND-CCA2 security. For all of our definitions we will be explicit to
whether we are describing security against uniform or non-uniform ad-
versaries as our results will be sensitive to this nuance.

We will use κ to denote the security parameter. We will denote by
negl(κ) a function that is asymptotically smaller than the inverse of every
polynomial in κ.

16

Public Key Encryption

A public key encryption scheme is specified by a triple of algorithms
(KeyGen,Enc,Dec),where KeyGen(1κ; rKeyGen)→ (sk, pk), Enc(pk,msg; rEnc)→
ct and Dec(sk, ct)→ msg. These algorithms satisfy (perfect) correctness,
and IND-CPA/CCA1/CCA2 security, which we will describe below. In
addition, we require the following additional properties.

Security Parameter Retrievability. A PKE scheme is security parame-
ter retrievable if there exists a polynomial time algorithm RetrieveParam
that can extract the security parameter used to generate a public key.
More formally ∀κ, rKeyGen it must be that RetrieveParam(pk) = κ where
(sk, pk)← KeyGen(1κ; rKeyGen).

Message Recovery from Randomness. We will additionally assume a mes-
sage recovery from randomness property as given in [22]. Suppose that
ct is an encryption of message msg under a (valid) public key cpa.pk
and randomness r. Then the exists an algorithm CPA.Recover where
CPA.Recover(cpa.pk, ct, r) = msg.

The encryption algorithm of any IND-CPA secure PKE scheme can
be modified to include this property, as follows. Assume that messages
are n bits long. Then one can use n additional random coins r′ during
encryption and append msg ⊕ r′ to the end of the ciphertext. The mes-
sage can then be recovered from the random coins by a simple XOR
operation with r′. Moreover, since the r′ portion of the coins are not
used elsewhere in encryption, IND-CPA security is preserved. This sim-
ple transformation only modifies the encryption algorithm and not the
public key. Thus, from a compatibility perspective the setup algorithm
remains the same. Therefore in our presentation we will assume that the
public key encryption scheme has this property.

Security. We now describe security for public key encryption schemes.
We will present a single game of (full) chosen ciphertext security and
then derive IND-CCA-1 and IND-CPA security. We define the following
security game between a challenger C and a stateful attacker A.

1. C runs KeyGen(1κ; rKeyGen)→ (sk, pk) and gives pk to A.

2. A then is allowed to make oracle queries to the function Dec(sk, ·)
3. A submits two messages msg0,msg1 ∈M×M to C.
4. C chooses a coin b ∈ {0, 1} and outputs ct∗ ← Enc(pk,msgb; rEnc) for

random rEnc.

17

5. A then is allowed to make oracle queries to the function Dec(sk, ·)
with the restriction that ct∗ is not given as input to the oracle.

6. A outputs a bit b′.

We refer to the above security game as the IND-CCA2 security game. We
define IND-CCA1 security as above, with the exception that the attacker
is not allowed any decryption oracle queries in Step 5. We define the IND-
CPA security game as above with the exception that the attacker is not
allowed any decryption oracle queries in Step 2 and none in Step 5.

Definition 1 (Secure Public Key Encryption). We will say that
a public key encryption scheme is (IND-CCA2, IND-CCA1, IND-CPA)
secure if for all non-uniform poly-time attackers A there exists a negligible
function negl such that Pr[b′ = b] ≤ 1

2 +negl(κ) in the (IND-CCA2, IND-
CCA1, IND-CPA) security game.

Definition 2 (Uniform Secure Public Key Encryption). We will
say that a public key encryption scheme is (IND-CCA2, IND-CCA1, IND-
CPA) secure if for all poly-time uniform attackers A we have that there
exists a negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(κ) in the
(IND-CCA2, IND-CCA1, IND-CPA) security game.

In our construction we will also need to consider more fined-grained no-
tions of security where we will specify a time function T that the attacker
is allowed to run in. Typically, this will be used to specify security against
an attacker that runs in time subexponential in the security parameter.

Definition 3 (Non-uniform T -secure Public Key Encryption).
We will say that a public key encryption scheme is T -(IND-CCA2, IND-
CCA1, IND-CPA) secure if for every polynomial p(·), all non-uniform
attackers A running in time at most p(T (κ)) and with at most p(T (κ))
bits of advice there exists a negligible function negl such that Pr[b′ = b] ≤
1
2 + negl(κ) in the (IND-CCA2, IND-CCA1, IND-CPA) security game.

Definition 4 (Uniform T -secure Public Key Encryption). We
will say that a public key encryption scheme is T -(IND-CCA2, IND-
CCA1, IND-CPA) secure if for every polynomial p(·) and all uniform
attackers A running in time at most p(T (κ)) we have that there exists a
negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(κ) in the (IND-
CCA2, IND-CCA1, IND-CPA) security game.

18

Non-Interactive Perfect Binding Commitments

Definition 5 (Non-Interactive Perfectly Binding Commitments
with Non-Uniform Security). A non-interactive perfectly binding
commitment is specified by a poly-time computable randomized algorithm
Com that on input (1κ,msg; r) outputs a commitment string c of length
`(κ), where `(·) is a polynomially bounded function, satisfying:

– Perfect Binding: For all c ∈ {0, 1}∗, κ, @(msg0,msg1, r0, r1) such that
msg0 6= msg1, and c = Com(1κ,msg0; r0) and c = Com(1κ,msg1; r1).

– Computational Hiding: There exists a negligible function negl(·)
such that ∀msg0,msg1 ∈ {0, 1}∗ s.t. |msg0| = |msg1|, ∀ non-uniform PPT A,∣∣∣Pr[A (Com(1κ,msg0, r)) = 1]−Pr[A (Com(1κ,msg1, r)) = 1]

∣∣∣ ≤ negl(κ)

where M denotes message space and the probability is over r.

We will also assume a property of message recovery from randomness for
our commitment scheme. Suppose that c is a commitment of message msg
under randomness r. Then the exists an algorithm Com.Recover where
Com.Recover(c, r) = msg. A similar argument to the one given above for
public key encryption shows how one can derive a commitment scheme
with the message recover from randomness property from any ordinary
one. Finally, we will implicitly assume that any message m committed
to using security parameter 1κ can be retrieved with probability 1 by an
algorithm running in time 2κq(κ) for some polynomial function q. We
denote Com.Dec as the algorithm for doing this.

Equivocal Commitments without Setup

Equivocal commitments were proposed by DiCrescenzo, Ishai and Ostro-
vsky [9] as a bit commitment scheme with a trusted setup algorithm.
During normal setup, the bit commitment scheme is statistically binding.
However, there exists an alternative setup which produces public param-
eters along with a trapdoor, that produces commitments which can be
opened to either 0 or 1. Moreover, the public parameters of the normal
and alternative setup are computationally indistinguishable.

Here we will define a similar primitive, but without utilizing a trusted
setup algorithm. In order for such a notion to be meaningful, we will
require the commitment scheme to be computationally binding for any
uniform T -time attacker, but there will exist an algorithm running in
time poly(2κ) that can be opened to 0 or 1. Moreover, such a commitment
with one of the openings should be statistically indistinguishable from a
commitment created in the standard manner.

19

An equivocal commitment scheme without setup consists of 3 algorithms:

Equiv.Com(1κ, b)→ (c, d) is a randomized PPT algorithm that on input
a bit b and the 1κ outputs a commitment c and decommitment d.

Equiv.Decom(c, d)→ {0, 1,⊥} is a deterministic polytime algorithm that
takes in part of the commitment and it’s opening and reveals the bit
that it was committed to or ⊥ to indicate failure.

Equiv.Equivocate(1κ) → (c, d0, d1) is an (inefficient) randomized algo-
rithm that in input 1κ outputs decommitments to both 0 and 1.

An equivocal commitment is perfectly correct if ∀b ∈ {0, 1}

Pr

(c, d)← Equiv.Com(1κ, b)
b′ ← Equiv.Decom(c, d)

b′ = b

 = 1

An equivocal commitment is efficient if Equiv.Com and Equiv.Decom
run in poly(κ) time, and Equiv.Equivocate runs in time 2κ.

An equivocal commitment without setup scheme (Equiv.Com,Equiv.Decom,
Equiv.Equivocate) is said to be T (·) binding secure if for any uniform ad-
versary A running in time p(T (κ)) for some polynomial p, there exists a
negligible function negl(·) such that

Pr
[
(c, d0, d1)← A(1κ) : Equiv.Decom(c, d0) = 0 ∧ Equiv.Decom(c, d1) = 1

]
≤ negl(κ).

We sat that a scheme is equivocal if for all b ∈ {0, 1} the statistical
difference between the following two distributions is negligible in κ.

– D0 = (c, d) where Equiv.Com(1κ, b)→ (c, d).
– D1 = (c, db) where Equiv.Equivocate(1κ)→ (c, d0, d1).

We observe that our security definitions do not include an explicit hiding
property of a committed bit. This property is actually implied by our
equivocal property, and hiding will not be explicitly needed by our proof.

Hinting PRGs

We now provide the definition of hinting PRGs taken from [22]. Let n(·, ·)
be a polynomial. A n-hinting PRG scheme consists of two PPT algorithms
Setup,Eval with the following syntax.

Setup(1κ, 1`): The setup algorithm takes as input the security parameter
κ, and length parameter `, and outputs public parameters pp and
input length n = n(κ, `).

20

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as in-
put the public parameters pp, an n bit string s, an index i ∈ [n]∪{0}
and outputs an ` bit string y.

Definition 6. A hinting PRG scheme (Setup,Eval) is said to be secure if
for any PPT adversary A, polynomial `(·) there exists a negligible function
negl(·) such that for all λ ∈ N, the following holds:∣∣∣∣Pr

[
β ← A

(
pp,

(
yβ0 ,
{
yβi,b

}
i∈[n],b∈{0,1}

))]
− 1

2

∣∣∣∣ ≤ negl(λ)

where the probability is over (pp, n)← Setup(1κ, 1`(λ)), s← {0, 1}n, β ←
{0, 1}, y00 ← {0, 1}`, y10 = Eval(pp, s, 0), y0i,b ← {0, 1}` ∀ i ∈ [n], b ∈
{0, 1}, and y1i,si = Eval(pp, s, i), y1i,si ← {0, 1}

` ∀ i ∈ [n].

Computation Enabled CCA Commitments

We now define “computation enabled” CCA secure commitments [13]. In-
tuitively, these are tagged commitments where a commitment to message
m under tag tag and randomness r is created as CCA.Com(tag,m; r) →
Com. The scheme is statistically binding in that for all tag0, tag1, r0, r1
andm0 6= m1 we have that CCA.Com(tag0,m0; r0) 6= CCA.Com(tag1,m1; r1).

Our hiding property follows along the lines of chosen commitment se-
curity definitions [6] where an attacker gives a challenge tag tag∗ along
with messages m0,m1 and receives a challenge commitment Com∗ to ei-
ther m0 or m1 from the experiment. The attacker’s job is to guess the
message that was committed to with the aid of oracle access to an (ineffi-
cient) value function CCACom.Val where CCACom.Val(Com) will return m
if CCA.Com(tag,m; r) → Com for some r. The attacker is allowed oracle
access to CCACom.Val(·) for any tag 6= tag∗.

The computation enabled property allows the attacker to submit a
randomized turing machine P at the beginning of the game. The chal-
lenger will run the program P and output the result for the attacker at
the beginning of the game. This added property will be useful in our
proof of security. In addition, we require a message recovery from ran-
domness property, which allows one to open the commitment given all
the randomness used to generate said commitment.

A computation enabled CCA secure commitment is parameterized by
a tag space of size N = N(κ) and tags in [1, N]. It consists of 3 algorithms:

CCA.Com(1κ, tag,m; r) → Com is a randomized PPT algorithm that
takes as input the security parameter κ, a tag tag ∈ [N], a mes-

21

sage m ∈ {0, 1}∗ and outputs a commitment Com, including the tag
Com.tag. We denote the random coins explicitly as r.

CCACom.Val(Com)→ m∪⊥ is a deterministic inefficient algorithm that
takes in a commitment Com and outputs either a message m ∈ {0, 1}∗
or a reject symbol ⊥.

CCACom.Recover(Com, r)→ m is a deterministic algorithm which takes
a commitment Com and the randomness r used to generate Com and
outputs the underlying message m.

We now define the correctness, efficiency properties, as well as the
security properties of perfectly binding and message hiding.

A computation enabled CCA secure commitment scheme is perfectly
correct if the following holds. ∀m ∈ {0, 1}∗, tag ∈ [N] and r we have that

CCACom.Val(CCA.Com(1κ, tag,m; r)) = m.

A computation enabled CCA secure commitment scheme is efficient if
CCA.Com, CCACom.Recover run in time poly(|m|, κ), while CCACom.Val
runs in time poly(|m|, 2κ).

A computation enabled CCA secure commitment is perfectly binding
if ∀m0,m1 ∈ {0, 1}∗ s.t. m0 6= m1 there does not exist tag0, tag1, r0, r1
such that CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1).

Remark 1. We remark that this is implied by correctness, as we know
that if CCA.Com(1κ, tag0,m0; r0) = CCA.Com(1κ, tag1,m1; r1), then

m0 = CCACom.Val(CCA.Com(1κ, tag0,m0; r0))

= CCACom.Val(CCA.Com(1κ, tag1,m1; r1)) = m1,

but m0 6= m1, a contradiction.

We define our message hiding game between a challenger and an at-
tacker. The game is parameterized by a security parameter κ.

1. The attacker sends a randomized and inputless Turing Machine algo-
rithm P . The challenger runs the program on random coins and sends
the output to the attacker. If the program takes more than 22

κ
time to

halt, the outputs halts the evaluation and outputs the empty string.1

2. The attacker sends a “challenge tag” tag∗ ∈ [N].

1 The choice of 22κ is somewhat arbitrary as the condition is in place so that the game
is well defined on all P .

22

3. The attacker makes repeated commitment queries Com. If Com.tag =
tag∗ the challenger responds with ⊥. Otherwise it responds as

CCACom.Val(Com).

4. For some w, the attacker sends two messages m0,m1 ∈ {0, 1}w.
5. The challenger flips a coin b ∈ {0, 1} and sends Com∗ = CCA.Com(tag∗,mb; r)

for randomly chosen r.
6. The attacker again makes repeated queries of commitment Com. If

Com.tag = tag∗ the challenger responds with ⊥. Otherwise it sends

CCACom.Val(Com).

7. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b]− 1
2 where

the probability is over all the attacker and challenger’s coins.

Definition 7. An attack algorithm A is said to be e-conforming for some
real value e > 0 if:

1. A is a (randomized) uniform algorithm.
2. A runs in polynomial time.
3. The program P output by A in Step 1 of the game terminates in time

p(2κ
e
) and outputs at most q(κ) bits for some polynomial functions

p, q (For all possible random tapes given to the program P).

Definition 8. A computation enabled CCA secure commitment scheme
scheme given by algorithms (CCA.Com,CCACom.Val,CCACom.Recover) is
said to be e-computation enabled CCA secure if for any e-conforming ad-
versary A there exists a negligible function negl(·) such that the attacker’s
advantage in the game is negl(κ).

Definition 9. We say that our CCA secure commitment scheme can be
recovered from randomness if the following holds. For all m ∈ {0, 1}∗,
tag ∈ [N], and r, CCACom.Recover(CCA.Com(1κ, tag,m; r), r) = m.

Claim. Let (CCA.Com,CCACom.Val) be a set of algorithms which satisfy
the correctness, efficiency, binding and Definition 8. Then there exists a
set of algorithms (CCA′.Com,CCA′.Val, CCA′.Recover) which satisfy the
same properties as well as Definition 9.

Proof. Consider the following transformation:

RecoverRandom(NM = (CCA.Com,CCACom.Val))→ NM′ =

(CCA′.Com,CCA′.Val,CCA′.Recover) :

23

CCA′.Com(tag,m; r = (r0, r1)) : Let Com = CCA.Com(tag, r0), and c =
r1 ⊕m. Output (Com, c).

CCA′.Val(Com′ = (Com, c)) : Output CCACom.Val(Com).

CCA′.Recover(Com′ = (Com, c), r = (r0, r1)) : Output c⊕ r1.

We can see that correctness, efficiency and binding all hold if they do
in the underlying scheme as they call the underlying CCA.Com,CCACom.Val
once. To see that Definition 8 still holds, we can consider an attacker A
against NM′. We can construct an attacker for NM by taking the challenge
commitment Com, appending w uniformly random bits c′ to it, and run-
ning A on (Com, c′). Let m be the underlying message in Com. Since c′ is
independent and uniformly random, so is c′ ⊕m, meaning that (Com, c′)
produces a distribution of Com′ identical to CCA′.Com. Finally, we can see
that our transformation satisfies Definition 9 as c⊕r1 = m⊕r1⊕r1 = m.

Connecting to Standard Security We now connect our computation
enabled definition of security to the standard notion of chosen commit-
ment security. In particular, the standard notion of chosen commitment
security is simply the computation enabled above, but removing the first
step of submitting a program P . We prove two straightforward lemmas.
The first showing that any computation enabled CCA secure commitment
scheme is a standard secure one against uniform attackers. The second is
that any non-uniformly secure standard scheme satisfies e-computation
enabled security for any constant e ≥ 0.

Definition 10. A commitment (CCA.Com,CCACom.Val,CCACom.Recover)
is said to be CCA secure against uniform/non-uniform attackers if for
any poly-time uniform/non-uniform adversary A there exists a negligible
function negl(·) such that A’s advantage in the above game with Step 1
removed is negl(κ).

Claim. If (CCA.Com,CCACom.Val,CCACom.Recover) is an e-computation
enabled CCA secure commitment scheme for some e as per Definition 8,
then it is also a scheme that achieves standard CCA security against
uniform poly-time attackers as per Definition 10.

Proof. This follows from the fact that any uniform attacker A in the
standard security game with advantage ε(κ) = ε immediately implies an
e-conforming attacker A′ with the same advantage where A′ outputs a
program P that immediately halts and then runs A.

24

Claim. If (CCA.Com,CCACom.Val,CCACom.Recover) achieves standard
CCA security against non-uniform poly-time attackers as per Defini-
tion 10, then it is an e-computation enabled CCA secure commitment
scheme for any e as per Definition 8.

Proof. Suppose A is an e-conforming attacker for some e with some ad-
vantage ε = ε(κ). Then our non-uniform attacker A′ can fix the random
coins of A and to maximize its probability of success. Since now A is de-
terministic save for randomness produced by the challenger in step 5, this
deterministically fixes the P A sends, so A′ can fix the coins of P to max-
imize success. Thus, A′ can simulate A given the above aforementioned
random coins of A and the output of P , both of which are poly-bounded
by the fact that A is e-conforming. Since all non-challenger randomness
was non-uniformly fixed to maximize success, A′ has at least advantage
ε as well. By our definition of standard security hiding, the advantage of
A′ must be negligible, so A’s advantage must be as well.

Decryption in exponential time. We will implicitly assume that any mes-
sage m committed to using security parameter 1κ can be retrieved with
probability 1 by an algorithm running in time 2κq(κ) for some polynomial
function q. We denote CCACom.Dec as the algorithm for doing this.

4 Defining CCA Compatibility

In this section we provide formal definitions of what it means for a scheme
to be CPA/CCA compatible. This will be a property of any KeyGen algo-
rithm, and our main technical result will establish that CPA compatibility
implies CCA compatibility (under appropriate hardness assumptions).

Definition 11 (CPA Compatibility). An algorithm KeyGen is said
to be non-uniform (resp., uniform) T -CPA-compatible for T = T (κ) and
message spaceM(κ), if there exist poly-time algorithms Enc,Dec such that
(KeyGen,Enc,Dec) comprise a public key encryption scheme for message
spaceM(κ), that satisfies p(T)-IND-CPA according to Definition 3 (resp.,
Definition 4), for every polynomial function p(·).

Definition 12 (CCA1 Compatibility). An algorithm KeyGen is said
to be non-uniform (resp., uniform) T -CCA1-compatible for message space
M(κ), if there exist poly-time algorithms Enc,Dec such that (KeyGen,Enc,Dec)
comprise a public key encryption scheme for message space M(κ), that
satisfies p(T)-IND-CCA1 according to Definition 3 (resp., Definition 4),
for every polynomial function p(·).

25

Definition 13 (CCA2 Compatibility). An algorithm KeyGen is said
to be non-uniform (resp., uniform) T -CCA2-compatible for message space
M(κ), if there exist poly-time algorithms Enc,Dec such that (KeyGen,Enc,Dec)
comprise a public key encryption scheme for message space M(κ), that
satisfies p(T)-IND-CCA2 according to Definition 3 (resp., Definition 4),
for every polynomial function p(·).

Our main result is that any KeyGen that is non-uniform T (λ)-CPA-
compatible where T = 2λ

c
for any constant c > 0, is uniform λ-CCA1-

compatible and uniform λ-CCA2-compatible, under appropriate compu-
tational hardness assumptions.

5 On CCA2 Compatibility

Our Construction

Let κ denote the security parameter, 0 < δ < 1 be a constant and κ′ = κδ.
We now provide our construction of an IND-CCA2 secure encryption sys-
tem that uses any 2κ

′
-CPA compatible KeyGen algorithm, according to

Definition 11. Our construction relies on a hinting PRG, non-interactive
computation enabled CCA commitments and subexponentially secure
equivocal commitments.

Let (CPA.Enc,CPA.Dec) be the encryption and decryption algorithms
of the non-uniform 2κ

′
-IND-CPA secure public key encryption scheme with

randomness-recoverable ciphertexts and perfect decryption correctness,
that is guaranteed to exist by Definition 11. We will also assume that the
following exist:

– An equivocal commitment (Equiv.Com,Equiv.Decom,Equiv.Equivocate)
that is T = 2κ

′
binding secure.

– A 2κ
′
-secure hinting PRG scheme HPRG = (HPRG.Setup,HPRG.Eval)

against non-uniform adversaries.
– A non-interactive e-computation enabled CCA commitment scheme

represented by algorithms (CCA.Com,CCACom.Val,CCACom.Recover),
with security parameter κ′ and with e = 1/δ (for the same δ), such
that the commitment scheme can be broken in brute force in time 2κ

′
.

– An existentially unforgeable under chosen message attack (EUF-CMA)
signature (Signature.Setup,Sign,Verify) with security parameter κ′.

We will now describe our CCA secure public key encryption scheme
PKECCA = (KeyGen, CCA.Enc, CCA.Dec) with message space {0, 1}`(κ).
For simplicity of notation, we will skip the dependence of ` on κ. We will

26

also assume that the CPA scheme has message space {0, 1}κ+1 and uses
`(κ) bits of randomness for encryption.

KeyGen(1κ): The KeyGen algorithm outputs a public key cca.pk.

CCA.Enc(cca.pk,m ∈ {0, 1}`): The encryption algorithm is as follows:

1. It runs RetrieveParam(cca.pk)→ κ and then calculates κ′ = κδ.

2. It samples (HPRG.pp, 1n)← HPRG.Setup(1λ, 1`).

3. It then chooses s← {0, 1}n.

4. For each i ∈ [n], it chooses random ri ← {0, 1}` and sets r̃i =
HPRG.Eval(HPRG.pp, s, i).

5. For each i ∈ [n], it chooses vi ← {0, 1}κ. It sets σi = Equiv.Com(1κ, si; vi),
and yi = si|vi.

6. It sets c = HPRG.Eval(HPRG.pp, s, 0)⊕m and for each i ∈ [n]

– If si = 0, c0,i = CPA.Enc(cpa.pk, yi; r̃i), c1,i = CCA.Com(1κ
′
, vk, yi; ri).

– If si = 1, c0,i = CPA.Enc(cpa.pk, yi; ri), c1,i = CCA.Com(1κ
′
, vk, yi; r̃i).

2

7. It sets α =
(
HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)
.

8. It samples (vk, sk)← Signature.Setup(1κ
′
).

9. Finally, it computes τ = Sign(sk, α), and outputs (vk, α, τ) as the
ciphertext.

PKE.Find(cca.pk, cca.sk, α)

Inputs: Public Key cca.pk = cpa.pk

Secret Key cca.sk = cpa.sk

Ciphertext α =
(

HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)
Output: d ∈ {0, 1}n

– Let κ = RetrieveParam(cpa.pk).
– For each i ∈ [n], do the following:

1. Let mi = CPA.Dec(cpa.sk, c0,i).
2. If mi = 0|vi and σi = Equiv.Com(1κ, 0; vi), set di = 0. Else

set di = 1.
– Output d = d1d2 . . . dn.

Fig. 1. Routine PKE.Find

2 For ease of exposition we assume that ` coins are both used for encryption with
security parameter κ as well as a commitment with security parameter κ′. In practice
if one is less than then other the extraneous bits can be truncated.

27

PKE.Check(cca.pk, cca.ct, d)

Inputs: cca.pk = cpa.pk, cca.ct = (vk, α, τ) where

α =
(

HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)
, d ∈ {0, 1}n

Output: msg ∈ {0, 1}` ∪ ⊥

– Let κ = RetrieveParam(cpa.pk). Compute κ′ = κe.
– Let flag = true. For i = 1 to n, do the following:

1. Let r̃i = HPRG.Eval(HPRG.pp, d, i).
2. If di = 0, let m ← CPA.Recover(cpa.pk, c0,i, r̃i). Parse m =

(s′|v′) and perform the following checks. If any of the checks
fail, set flag = false and exit loop.
• s′ = 0, CPA.Enc(cpa.pk,m; r̃i) = c0,i.
• σi = Equiv.Com(1κ, s′; v′).

3. If di = 1, let m ← CCACom.Recover(1κ
′
, c1,i, r̃i). Parse m =

(s′|v′) and perform the following checks. If any of the checks
fail, set flag = false and exit loop.
• s′ = 1, CCA.Com(1κ

′
, vk,m; r̃i) = c1,i.

• σi = Equiv.Com(1κ, s′; v′).

– If flag = true, output c⊕ HPRG.Eval(HPRG.pp, d, 0). Else ⊥.

Fig. 2. Routine PKE.Check

CCA.Dec(cca.sk, cca.pk, cca.ct): Parse ciphertext cca.ct as (vk, α, τ) where

cca.sk = cpa.sk and α =
(
HPRG.pp, 1n, c, (c0,i, c1,i, σi)i∈[n]

)
. Output ⊥

if Verify(vk, α, τ) = 0. Otherwise, set d = PKE.Find(cca.pk, cca.sk, α)
(where PKE.Find is defined in Figure 1), and output PKE.Check(cca.pk,
cca.ct, d) (where PKE.Check is defined in Figure 2).

References

1. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision re-
sistant hash functions and their applications. In: Nielsen and Rijmen [27], pp.
133–161, https://doi.org/10.1007/978-3-319-78375-8_5

2. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm
for keyless hash functions. In: Diakonikolas, I., Kempe, D., Henzinger,
M. (eds.) Proceedings of the 50th Annual ACM SIGACT STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018. pp. 671–684. ACM (2018).
https://doi.org/10.1145/3188745.3188870

3. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: Beimel, A., Dziembowski, S. (eds.) Theory of Cryptography - 16th
International Conference, TCC 2018, Panaji, India, November 11-14, 2018, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 11239, pp. 209–234.
Springer (2018). https://doi.org/10.1007/978-3-030-03807-6 8

28

https://doi.org/10.1007/978-3-319-78375-8_5
https://doi.org/10.1145/3188745.3188870
https://doi.org/10.1007/978-3-030-03807-6_8

4. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on
the RSA encryption standard PKCS #1. In: Krawczyk [23], pp. 1–12.
https://doi.org/10.1007/BFb0055716, https://doi.org/10.1007/BFb0055716

5. Boldyreva, A., Micciancio, D. (eds.): Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part III, Lecture Notes in Computer Science,
vol. 11694. Springer (2019). https://doi.org/10.1007/978-3-030-26954-8, https://
doi.org/10.1007/978-3-030-26954-8

6. Canetti, R., Lin, H., Pass, R.: Adaptive Hardness and Composable Security in
the Plain Model from Standard Assumptions. In: Proceedings of the 51th Annual
IEEE Symposium on Foundations of Computer Science. pp. 541–550. FOCS ’10
(2010)

7. Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional diffie-hellman
problem for class group actions using genus theory. Cryptology ePrint Archive,
Report 2020/151 (2020), https://eprint.iacr.org/2020/151

8. Cramer, R., Shoup, V.: A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In: Krawczyk [23], pp. 13–25.
https://doi.org/10.1007/BFb0055717, https://doi.org/10.1007/BFb0055717

9. Crescenzo, G.D., Ishai, Y., Ostrovsky, R.: Non-interactive and non-
malleable commitment. In: Proceedings of the Thirtieth Annual ACM
STOC, Dallas, Texas, USA, May 23-26, 1998. pp. 141–150 (1998).
https://doi.org/10.1145/276698.276722, http://doi.acm.org/10.1145/276698.

276722

10. Damg̊ard, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In: Annual International
Cryptology Conference. pp. 250–265. Springer (1993)

11. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000). https://doi.org/10.1137/S0097539795291562, https:
//doi.org/10.1137/S0097539795291562

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptology 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-
011-9114-1, https://doi.org/10.1007/s00145-011-9114-1

13. Garg, R., Khurana, D., Lu, G., Waters, B.: Black-box non-interactive non-
malleable commitments. Manuscript (2020)

14. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. pp. 467–
476. ACM (2013). https://doi.org/10.1145/2488608.2488667, https://doi.org/

10.1145/2488608.2488667

15. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-9, https://

doi.org/10.1016/0022-0000(84)90070-9

16. Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing. In: Proceedings of the 16th Annual International Cryptol-
ogy Conference on Advances in Cryptology. pp. 201–215. CRYPTO ’96 (1996)

17. Jakobsen, J., Orlandi, C.: On the CCA (in)security of mtproto. In: Proc. of the 6th
Workshop on Security and Privacy in Smartphones Mobile Devices, SPSM@CCS
2016. pp. 113–116 (2016), http://dl.acm.org/citation.cfm?id=2994468

18. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quan-
tum supremacy. In: Boldyreva and Micciancio [5], pp. 552–582.

29

https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-030-26954-8
https://doi.org/10.1007/978-3-030-26954-8
https://doi.org/10.1007/978-3-030-26954-8
https://eprint.iacr.org/2020/151
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1145/276698.276722
http://doi.acm.org/10.1145/276698.276722
http://doi.acm.org/10.1145/276698.276722
https://doi.org/10.1137/S0097539795291562
https://doi.org/10.1137/S0097539795291562
https://doi.org/10.1137/S0097539795291562
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
http://dl.acm.org/citation.cfm?id=2994468

https://doi.org/10.1007/978-3-030-26954-8 18, https://doi.org/10.1007/

978-3-030-26954-8_18
19. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:

Umans [30], pp. 564–575. https://doi.org/10.1109/FOCS.2017.58, https://doi.

org/10.1109/FOCS.2017.58
20. Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor func-

tions via key-dependent-message security. In: Boldyreva and Micciancio [5], pp.
33–64. https://doi.org/10.1007/978-3-030-26954-8 2, https://doi.org/10.1007/
978-3-030-26954-8_2

21. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for para-
noids: Dealing with multiple collisions. In: Nielsen and Rijmen [27], pp. 162–
194. https://doi.org/10.1007/978-3-319-78375-8 6, https://doi.org/10.1007/

978-3-319-78375-8_6
22. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in

attribute-based encryption and predicate encryption. In: Boldyreva, A., Mic-
ciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11693, pp.
671–700. Springer (2019). https://doi.org/10.1007/978-3-030-26951-7 23, https:

//doi.org/10.1007/978-3-030-26951-7_23
23. Krawczyk, H. (ed.): Advances in Cryptology - CRYPTO ’98, 18th Annual Inter-

national Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, Lecture Notes in Computer Science, vol. 1462. Springer (1998).
https://doi.org/10.1007/BFb0055715, https://doi.org/10.1007/BFb0055715

24. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: Umans [30], pp. 576–587.
https://doi.org/10.1109/FOCS.2017.59, https://ieeexplore.ieee.org/xpl/

conhome/8100284/proceeding
25. Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive com-

mitments. Cryptology ePrint Archive, Report 2019/279 (2019), https://eprint.
iacr.org/2019/279

26. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM
STOC, 1990. pp. 427–437. ACM (1990). https://doi.org/10.1145/100216.100273,
https://doi.org/10.1145/100216.100273

27. Nielsen, J.B., Rijmen, V. (eds.): Advances in Cryptology - EUROCRYPT 2018
- 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceed-
ings, Part II, Lecture Notes in Computer Science, vol. 10821. Springer (2018),
https://doi.org/10.1007/978-3-319-78375-8

28. Pass, R.: Unprovable security of perfect NIZK and non-interactive non-
malleable commitments. Computational Complexity 25(3), 607–666 (2016).
https://doi.org/10.1007/s00037-016-0122-2, http://dx.doi.org/10.1007/

s00037-016-0122-2
29. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and

chosen ciphertext attack. In: Feigenbaum, J. (ed.) Advances in Cryptology —
CRYPTO ’91. pp. 433–444. Springer Berlin Heidelberg, Berlin, Heidelberg (1992)

30. Umans, C. (ed.): 58th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. IEEE Computer So-
ciety (2017), https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding

30

https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/BFb0055715
https://doi.org/10.1007/BFb0055715
https://doi.org/10.1109/FOCS.2017.59
https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding
https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2019/279
https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/978-3-319-78375-8
https://doi.org/10.1007/s00037-016-0122-2
http://dx.doi.org/10.1007/s00037-016-0122-2
http://dx.doi.org/10.1007/s00037-016-0122-2
https://ieeexplore.ieee.org/xpl/conhome/8100284/proceeding

	On the CCA Compatibility of Public-Key Infrastructure

