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Abstract: Galois and Fibonacci are two different configurations of stream ciphers.
Because the Fibonacci configuration is more convenient for cryptanalysis, most ciphers are
designed as Fibonacci-configured. So far, although many transformations between Fibonacci
and Galois configurations have been proposed, there is no sufficient analysis of their respec-
tive hardware performance. The 128-bit secret key stream cipher Espresso, its Fibonacci-
configured variant and linear Fibonacci variant have a similar security level. We take them
as examples to design the optimization strategies in terms of both area and throughput, in-
vestigate which configuration is more efficient in a certain aspect. The Fibonacci-configured
Espresso occupies 52 slices on Spartan-3 and 22 slices on Virtex-7, which are the minimum
solutions among those three Espresso schemes or even smaller than 80-bit secret key ciphers.
Based on our throughput improvement strategy, parallel Espresso design can perform 4.1
Gbps on Virtex-7 FPGA and 1.9 Gbps on Spartan-3 FPGA at most. In brief, the Fibonacci
cipher is more suitable for extremely resource-constrained or extremely high-throughput ap-
plications, while the Galois cipher seems like a compromise between area and speed. Besides,
the transformation from nonlinear feedback to linear feedback is not recommended for any
hardware implementations.

Keywords: lightweight cryptography; Espresso; FPGA Optimization; stream cipher;
Galois NFSR; Fibonacci NFSR

1 Introduction

The stream ciphers have high throughput for software applications and highly restricted resources
for hardware applications. Although some stream ciphers have been proved to contain design
flaws [1], [2], [3], but it is undeniable that in addition to security level, throughput and area are
also two significant factors for evaluating ciphers. Therefore, ECRYPT launched the eSTREAM
project [4], many stream ciphers for confidentiality, integrity and implementation efficiency have
been proposed and widely deployed, such as Trivium [5], Grain [6] and MICKEY [7]. Many
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security protocols based on the stream ciphers have also been accepted as international standards,
for example, the 3rd Generation Partnership Project (3GPP) specifies UEA2, UIA2 [8] based on
stream cipher SNOW 3G [9] and EEA3, EIA3 3GPP:EEA3 based on stream cipher ZUC [10].

Block cipher produces the ciphertext after nonlinear substitution with the plaintext input.
Different from block cipher, stream cipher is also regarded as a pseudo-random keystream gener-
ator and produces the keystream bits sequence with the same length as plaintext. The ciphertext
is generated bit by bit by XOR operation between plaintext and keystream. Generally, the sim-
plified model of stream cipher is divided into two parts: feedback shift register (FSR) and filter
function, as in Figure 1, The initial internal state of stream cipher is determined by the input
data, including the secret key and initial vector (IV). Then, the internal state, stored in FSR,
is updated in each round by the feedback function. When the feedback function in the FSR is
nonlinear, the FSR is also called nonlinear feedback shift register (NFSR). Conversely, when the
feedback function is linear, the register is called linear feedback shift register (LFSR). The filter
function outputs 1 bit as the keystream bit in each round according to the internal state.

The feedback shift register (FSR) is one of the most critical components of stream cipher,
which is divided into Galois configuration and Fibonacci configuration according to the feedback
bits. As in figure 1, the Fibonacci configuration is more straightforward. Every feedback shift
register only has one feedback function which feeds to the n − 1th bit at each round, the other
bits are consecutive moved one-bit step. Conversely, in the Galois configuration, the FSR has
any number of feedback functions.

n-1 n-2 0...

fn-1

FSR

n-1

FSR

feedback func.

fn-1 n-2fn-2 0f0...

feedback func.

Figure 1: The Fibonacci configuration (left) and the Galois configuration (right) of stream ciphers

The stream cipher contains Fibonacci NFSR or Fibonacci LFSR is named as Fibonacci-
configured cipher and the cipher contains Galois NFSR or LFSR is called as Galois-configured
cipher. Because Fibonacci FSR conforms to cryptanalysis formally, most of the stream ciphers
are designed in this configuration. For instance, Grain [6] consists of both Fibonacci NFSR and
Fibonacci LFSR, each series [11] [12] [13] in WG family contains a Fibonacci LFSR.

Meanwhile, previous work provided the universal transformations, which can transform the
Fibonacci-configured stream cipher and Galois-configured stream cipher to each other [14], and
even transform the nonlinear feedback shift register to linear feedback shift register [15].

The analysis and optimization of FSR determine the area occupation and throughput of
cipher implementations. In general, the depth of combinational logic circuits is smaller than that
in Fibonacci configuration, hence, the Galois-configured stream cipher has a higher maximum
frequency. The Galois-configured Grain [16] has a larger throughput of 41.3% than Fibonacci-
configured Grain. According to the transformation [14], the feedback login is divided into several
parts to drive various bits in feedback shift registers in Galois configuration, without adding any
extra feedback login. Therefore, the author implied that in TSMC 90nm ASIC technology library,
the circuit area of Galois-configured Grain is not much larger than that of Fibonacci-configured
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Grain, even smaller [16].

1.1 Espresso Stream Cipher

Espresso stream cipher was proposed in 2015 [17] considering hardware size and throughput
simultaneously. The original Espresso stream cipher, supporting 128-bit secret key is designed
in Galois configuration, consists of a 256-bit Galois-configured non-linear feedback shift register
(NFSR) with 14 individual feedback functions and a 20-variable keystream filter function. It
supports 128 bits secret key and 96 bits initial vector. The implementations on ATmega328P
and ESP8266 processors have shown that Espresso requires the minimum program size, global
variables storage and computation time among Grain v1, Grain 128 and Grain 128a [18].

Based on the transformation mentioned above, another two Espresso variants are introduced.
, Fibonacci-configured Espresso [17] (noted as Espresso-F) and Espresso-like LFSR filter gener-
ator [15] (noted as Espresso-L) have been introduced in the previous cryptography designs.

Espresso-F can be broken by related key chosen IV attack with 242 IVs and time complexity
264 [19], Espresso-L can be broken with time complexity 268.44 and 266.86 under standard algebraic
attack and the Ronjom-Helleseth attack respectively [15]. Although the cryptanalysis has proved
that the variants do not fulfill the 128-bit security level, they can still be accepted under certain
circumstances, such as for lightweight devices [20]. Consequently, the resource occupancy and
throughput analysis based on Espresso and its variants may provide guidance and references for
the selection of Galois or Fibonacci ciphers.

1.2 Related Work and Motivation

Unlike ASIC, the semicustom Field Programmable Gate Array (FPGA), including reconfigurable
combinational logic and flip-flops, is applied to shorten time-to-market, save development costs
and implement the domain-specific computing architecture. With those advantages, FPGA is
more and more adopted in numerous areas, such as military, industry network, IoT, aeronautics
and astronautics. Many kinds of ciphers are deployed in the programmable chips to not only
evaluate hardware efficiency but also provide security solutions for FPGA application, such as
WG-8 [21], Lizard [22], Grain [23] and Trivium [23].

The eSTREAM project’s [4] requirements for stream cipher are high throughput and more
hardware efficiency. Grain [6] and Trivium [5] are regarded as the pioneers of modern lightweight
cryptography, because of their compact architectures and efficient hardware performance with
only 80-bit security level. Trivium is considered as a kind of Galois-configured cipher and Grain
is a typical Fibonacci-configured cipher. So far, there is still no comprehensive discussion of both
advantages and disadvantages of Galois and Fibonacci configurations implemented on FPGA.
Meanwhile, Espresso and its variants provide an ideal condition for the discussion, they ensure
that in the case of similar cryptography attack complexity, the discussion can determine which
configuration is more recommended towards a particular scenario.

1.3 Our Contributions

In our paper, we firstly provide a brief overview of original Espresso (Galois configuration
[17]) and its variants, including Espresso-F in Fibonacci configuration [17] and Espresso-L, an
Espresso-like LFSR filter generator [15]. Based on that, Espresso and its variants are deployed
on Xilinx FPGA toward the minimum area and highest throughput, respectively. We then in-
vestigate which is the smallest solution aimed for 256 bits NFSR implementation. After that, a
hybrid architecture is proposed for throughput improvement, where Espresso initializes serially
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and produces multiple keystream bits with a parallel architecture in the running phase during
each clock, thus, throughput increases significantly.

We noticed that, unlike AISC implementations, Fibonacci-configured cipher is more area-
saved than Galois-configured cipher on FPGA, but the latter is faster. For example, on Virtex-7
FPGA, Fibonacci-configured Espresso only occupies 22 slices with a maximum frequency of 427.2
MHz, while Galois-configured Espresso occupies 25 slices, with a maximum frequency of 491.4
MHz. The reason is that though both NFSRs have the same number of logic gates [14], Galois
NFSR feedback functions are independent to be synthesized as look-up-tables, the minimum
reconfigurable unit in FPGA, it will lead to more area than Fibonacci NFSR.

Besides, according to our throughput improvement strategy, Fibonacci configuration can
support a larger parallel width, i.e., support to use extra resources to increase the number of
keystream bits per cycle. The maximum throughput of Fibonacci-configured Espresso is 4.09
Gbps on Virtex-7 FPGA.

Based on our discussion, the transformation from Galois NFSR (original Espresso) to Fi-
bonacci LFSR (Espresso-L) will generate more complex circuit than that to Fibonacci NFSR
(Espresso-F). This kind of transformation should be avoided in FPGA implementation.

In brief, Fibonacci-configured stream cipher should be considered for scenarios with area
requirements and parallel Fibonacci-configured stream cipher should be used for high throughput
applications. Galois-configured stream cipher takes both throughput and area into account,
which is suitable for compact devices but slightly requires high throughput.

In a nutshell, we list several main contributions as following:

• We conclude three different configurations of Espresso stream cipher, the original Espresso
with Galois NFSR, the variant Espresso with Fibonacci NFSR and another variant Espresso
with Fibonacci LFSR. Meanwhile, the comparison of Espresso and its variants show that
Galois-configured cipher performs evidently faster than Fibonacci configured cipher on
FPGA, but the former occupies more slices. Espresso-like LFSR filter generator variant is
not recommended due to larger area and higher latency for hardware implementation and
weak resistance for security analysis.

• To deploy cipher on the resource-compact devices, we provide an area optimized method
with shift register look-up-table (SRL). According to the ratio of LUT to FF about dif-
ferent series FPGAs. We investigate the minimum area solution by enumerating the SRL
replacement length of consecutive registers fragment. Based on the method, the minimum
Espresso solution only takes 22 slices on Virtex-7 and 52 slices on Spartan-3. Our effi-
cient Espresso solutions can be deployed on tiny devices, especially emergent IoT wireless
devices.

• To fulfill the high throughput requirement, we propose a hybrid architecture which not only
realizes the 4-bit solution but improves the parallel width to 8-bit and 16-bit. In short,
the additional feedback functions tap more significant internal state bits than the serial
feedback function, where, the unloaded feedback function value will be used as a variable
if the variable index has been over-range. Although this method will cause more critical
path propagation delay, the throughput of 16-bit hybrid architecture can reach more than
4 Gbps on Virtex-7, satisfied high-speed demand.

The following sections are organized as follows. Section 2 lists some cipher variables and
notations. Section 2 provides a summary of Espresso design criteria and algorithm flow. The
original Espresso in Galois configuration is implemented on FPGA in Section 3, including se-
rial solution and hybrid solution. The Fibonacci-configured Espresso is described in Section 4.
What’s more, another throughput improved method achieving more than 4-bit parallel width is
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proposed. Section 5 briefs NFSR to Fibonacci LFSR transformation and provides implementa-
tion results on FPGA. The comparison between Espresso with its variants and other ciphers is
shown in Section 6. Finally, we conclude this paper in Section 7.

2 Overview of Espresso Stream Cipher

2.1 Design of Espresso Stream Cipher

Espresso stream cipher aims at lightweight and high-speed applications. It is designed under the
trade-off between hardware area and latency, with 128-bit secret key (k) and 96-bit initial vector
(v). Espresso is designed as the fastest lightweight cipher in below 1500 GEs area level, better
than Grain-128 and Trivium [17]. The block design diagram of Espresso stream cipher is shown
in Figure 2.

218 231

x52 x72

0 193

x29x12 x99x121 x8 x103 x5 x80 x6 x64 x4 x45 x3 x32

x218

x50 x159 x67 x90 x110
x137

x46 x141x117 x43 x118x103 x44 x102x40 x42 x83x8x189

x0

x41 x70

194 197194 197 198 201198 201 202 205202 205 206 209206 209 210 213210 213210 213 214 217214 217

252 255252 255248 251248 251244 247244 247240 243240 243232 235232 235 236 239236 239

x0

x218

Figure 2: The block diagram of Espresso stream cipher

As a stream cipher, Espresso has 256-bit nonlinear feedback shift register (NFSR) in Galois
configuration with 14 parallel feedback functions specified as follows:

f255(x) =x0 ⊕ x41x70

f251(x) =x252 ⊕ x42x83 ⊕ x8

f247(x) =x248 ⊕ x44x102 ⊕ x40

f243(x) =x244 ⊕ x43x118 ⊕ x103

f239(x) =x240 ⊕ x46x141 ⊕ x117

f235(x) =x236 ⊕ x67x90x110x137

f231(x) =x232 ⊕ x50x159 ⊕ x189

f217(x) =x218 ⊕ x3x32

f213(x) =x214 ⊕ x4x45

f209(x) =x210 ⊕ x6x64

f205(x) =x206 ⊕ x5x80

f201(x) =x202 ⊕ x8x103

f197(x) =x198 ⊕ x29x52x72x99

f193(x) =x194 ⊕ x12x121

(1)
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We can define those 14 bits in update set U :

U = {193, 197, 201, 205, 209, 213, 217, 231, 235, 239, 243, 247, 251, 255} (2)

Note set V includes all variables used in feedback function. The variable set V of Espresso
is:

V = {0, 3, 4, 5, 6, 8, 12, 29, 32, 40, 41, 42, 43, 44, 45, 46, 50, 52, 64, 67, 70, 72,

80, 83, 90, 99, 102, 103, 110, 117, 118, 121, 137, 141, 159, 189, 194, 198,

202, 206, 210, 214, 218, 232, 236, 240, 244, 248, 252}
(3)

The NFSR bits which are not in update set U are loaded from higher bits. Hence, Espresso
internal state update is as following:

xt+1
i =

{
fi(x), i ∈ U

xt
i+1, i 6∈ U

(4)

It also has a 20-variable nonlinear output function h(x) as keystream filter function, consists
of a 6-variable linear function and a 14-variable nonlinear function:

h(x) =x80 ⊕ x99 ⊕ x137 ⊕ x227 ⊕ x222 ⊕ x187 ⊕ x243x217 ⊕ x247x231 ⊕ x213x235

⊕x255x251 ⊕ x181x239 ⊕ x174x44 ⊕ x164x29 ⊕ x255x247x243x213x181x174

(5)

2.2 Espresso Algorithm Flow

Espresso as a keystream generator only has 2 phases, they are initialization and running phases.
Before executing 256 initialization rounds, the 256-bit NFSR is loaded with secret key (128 bits)
and initial vector bits (96 bits) as Formula 6. The initial internal state from x224 to x254 is
assigned as 1 to ensure there is no full-zero state in NFSR. The most significant bit x255 is set
to 0.

x0
i = ki, 0 ≤ i < 128

x0
i = vi−128, 128 ≤ i < 224

x0
i = 1, 224 ≤ i < 255

x0
i = 0, i = 255

(6)

The output bit from filter function h(x) result is fed into feedback functions f255(x) and
f217(x) as Formula 7 during initialization phase, and the remaining feedback functions are in-
variable in any phases. After 256 times update, the filter result h(x) is output as keystream, no
longer feeding to internal state update.

f217(x) =x218 ⊕ x3x32 ⊕ h(x)

f255(x) =x0 ⊕ x41x70 ⊕ h(x)
(7)

Espresso also introduces a pipeline circuit implementing the 20-variable filter function, shown
in Figure 3. As such 3-stage pipeline structure, Espresso has no valid output keystream at the
first 3 cycles after initialization. However, the combinational logic circuit is synthesized into
look-up-table, which packages 4 or 6 input variables. As a general rule, there are just 2 logic
levels about the filter function under Xilinx 7 series FPGA synthesize strategy. Therefore, it’s
useless to adopt the pipeline structure in the following FPGA implementation.
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Figure 3: The pipeline structure of Espresso filter function

3 Implementation of Galois-configured Espresso

In this section, we explore the efficient FPGA implementation strategies for Espresso stream
cipher in Galois configuration serially and parallelly. The hardware architectures in this section
and the following sections have no secret key storage component and the input vectors (k and v)
are loaded into Espresso hardware bit by bit. This is a common and acceptable FPGA hardware
performance evaluating method used for Grain [23], ZUC [24], Snow3g [24] and WG-8 [21].

3.1 Overview of Espresso FPGA Implementation

Field programmable gate array (FPGA) has been adopted everywhere, including IoT and ar-
tificial intelligence. Different from ASIC, FPGA can be reconfigured after manufacturing like
microprocessor, but the hardware circuit (registers, logic gate) can be directly mapped into
FPGA resources gearing to the needs of higher speed and lower power consumption. In our pa-
per, the optimized Espresso keystream generator architectures are deployed on Xilinx Spartan-3
and Virtex-7 FPGAs.

Take Galois-configured Espresso as an example, the architecture has clock port clk, reset port
rst, 1-bit width data input port in receiving secret key or initial vector from storage component
(testbench) and 1-bit width output port ks. It also has two output signal ports load for initial
data input enable and work for the keystream output enable after initialization. Hence, Espresso
or Espresso-F controller has 4 modes, they are IDLE, LOAD, INIT, WORK implemented as a
finite state machine (FSM) with 9-bit counter cnt. The FSM transformation is shown in Figure 4.
When counter increases to 256 during LOAD stage, the state machine transforms into the next
state INIT. When the counter overflows to 0 during INIT state, the state machine changes to
WORK and keeps that state until reset. Therefore, load signal is synchronous with the finite
state machine’s LOAD state and work is coincident with WORK state. The Espresso-like LFSR
filter generator has another procedure for loaded compensated internal state, we will discuss the
variant Espresso-L in Section 5.
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Figure 4: Espresso and Espresso-F FSM transformation diagram
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Figure 5: The consecutive register fragments optimized design

3.2 Efficient Implementation of NFSR

The 256-bit nonlinear feedback shift register is the only sequential logical component in Espresso
hardware determining the latency and area occupation. Galois NFSR includes 14 feedback func-
tions updating 14 bits internal state parallelly once triggered by clock edge. The combinational
logic circuit is synthesized as LUT, specially, 6-input LUT on Virtex-7 FPGA. Hence, the 20-
variable filter function of Espresso NFSR tapping 20 registers is no longer pipelined with only 2
logic levels.

The most commonly used method to reduce slices on FPGA is replacing consecutive registers
(synthesized as FFs) by shift register look-up-table (SRL). On 7 series FPGA, a LUT may also
be configured as SRL32 to substitute for 32-bit shift register at most, and 4-input LUT can be
synthesized as SRL16 on Spartan-3. However, the internal state of SRL cannot be detected by any
wire except an output port. Therefore, when cipher has a large number of consecutive internal
states, the SRL optimized method is evidently effective. For instance, Espresso’s registers from
x190 to x192 3 bits are not tapped for any function, the 3 flip-flops can be replaced by one SRL
to save area. This SRL output port is tapped as x190 and loaded from x192.

We define the consecutive register fragment from xa to xb as R(a, b), whose valid length is
equal to b − a − 1, representing xa and xb are implemented as flip-flops to keep only one logic
level between the optimized fragment beginning and ending at FFs. The fragment R(a, b) two
terminal bits xa and xb, which is tapped or updated by function. As the above example, the
register fragment R(189, 193) left-shown in Figure 5 is optimized designed as right-shown.

Each reconfigurable slice on Virtex-7 has 4 6-input LUTs and 8 flip-flops. In general term,
the ratio of LUT to FF in minimum area solutions should approach 1: 2. Noteworthily, the
ratio is not necessarily equal to 1: 2 by the reason of placing and routing. Moreover, with a
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Table 1: The Consecutive Register Fragments of Galois Espresso

No. Fragment Len. No. Fragment Len. No. Fragment Len. No. Fragment Len.

1 R(141, 159) 17 11 R(110, 117) 6 21 R(193, 197) 3 31 R(243, 247) 3
2 R(12, 29) 16 12 R(174, 181) 6 22 R(197, 201) 3 32 R(247, 251) 3
3 R(121, 137) 15 13 R(181, 187) 5 23 R(201, 205) 3 33 R(251, 255) 3
4 R(52, 64) 11 14 R(159, 164) 4 24 R(205, 209) 3 34 R(0, 3) 2
5 R(164, 174) 9 15 R(217, 222) 4 25 R(209, 213) 3 35 R(29, 32) 2
6 R(90, 99) 8 16 R(222, 227) 4 26 R(213, 217) 3 36 R(64, 67) 2
7 R(32, 40) 7 17 R(8, 12) 3 27 R(227, 231) 3 37 R(67, 70) 2
8 R(72, 80) 7 18 R(46, 50) 3 28 R(231, 235) 3 38 R(80, 83) 2
9 R(83, 90) 6 19 R(137, 141) 3 29 R(235, 239) 3 39 R(99, 102) 2
10 R(103, 110) 6 20 R(189, 193) 3 30 R(239, 243) 3 40 R(118, 121) 2

few LUTs are used for combinational logic function rather than shift register, replacing all 2-bit
length consecutive registers is discouraged. The smallest Espresso architecture has to consider
the trade-off between registers implemented by FFs and registers implemented by LUTs. Along
this line, we list all consecutive fragments in Table 1 according to the filter function, feedback
function tapped positions and feedback function updated positions.

Firstly, every consecutive register fragment with more than or equal to 5 bits length is synthe-
sized as SRL. Despite the longest fragment has 17-bit register, over the maximum SRL length 16
bits on 3 series FPGAs, there are 13 SRLs occupied not only on Virtex-7 but also on Spartan-3.
The 17-bit register fragment R(141, 159) is divided into 1-bit single register and 16-bit register,
thus the length changes to 16 bits which may be synthesized as one SRL16.

Secondly, based on above solution, we continue replacing 4 bits length fragments, R(159, 164),
R(217, 222) and R(222, 227). There are three more LUTs are used, shown Table 2. Noted that
there are 11 flip-flops reduced rather than 12 flip-flops, because the terminal bit x217 is driven
by feedback function f217(x), and insert another flip-flop will reduce one logic level to improve
frequency.

Finally, we replace 17 3-bit length fragments and 7 2-bit length fragments respectively. It’s
obvious that taking replacement on 3-bit and 2-bit fragments is not necessary on Virtex-7, shown
in Table 2. Until now, apply SRL optimization method for every more than or equal to 4 bits
length register fragment can lead to the minimum area on Virtex-7. Meanwhile, due to the
different ratio of LUT to FF between Virtex-7 and Spartan-3 FPGA, the same method should
be applied for Spartan-3 implementation toward the smaller solution. Table 2 also shows the
implementation results on Spartan-3. In brief, if a fragment includes more than 1 registers, it
should be replaced by SRL.

As a result, Espresso keystream generator architecture occupies 62 slices on Spartan-3 FPGA
and 25 slices on Vritex-7 FPGA at least.

3.3 Throughput Improvement in Hybrid Architecture

Galois-configured Espresso stream cipher performs high throughput, up to 2.22 Gbps under
90nm CMOS technology [17]. We can improve throughput further by redesigning the NFSR in
parallel. Denote parallel width w means parallelized cipher generates w keystream bits in each
clock. In serial solution, the feedback function fi(x) used to update xi, but in parallel solution,
the functions have to be copied for w times. Table 3 showing internal state update in serial will
be conducive to the comprehension and exploration of parallel scheme.
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Table 2: The Results of SRL Optimized Method in Galois Configuration

Device SRL replacement #LUT #LUT Area Freq. T./A.
R length ≥ /#FF as SRL (Slices) (MHz) (Mbps/Slices)

V
ir

te
x
-7 5 bits 45/148 13 30 572.1 19.07

4 bits 48/137 16 25 491.4 19.66
3 bits 65/93 33 29 445.6 15.37
2 bits 72/79 40 32 422.7 13.21

S
p

ar
ta

n
-3 5 bits 63/144 13 85 176.1 2.07

4 bits 66/133 16 79 179.3 2.27
3 bits 83/94 33 70 182.5 2.61
2 bits 90/80 40 62 198.5 3.20

Table 3: The Serially Update of the NFSR from x206 to x209

Round/Cycle x206 x207 x208 x209

t xt
206 xt

207 xt
208 xt

209

t + 1
xt+1
206 xt+1

207 xt+1
208 xt+1

209

xt
207 xt

208 xt
209 f209(xt)

t + 2
xt+2
206 xt+2

207 xt+2
208 xt+2

209

xt
208 xt

209 f209(xt) f209(xt+1)

t + 3
xt+3
206 xt+3

207 xt+3
208 xt+3

209

xt
209 f209(xt) f209(xt+1) f209(xt+2)

t + 4
xt+4
206 xt+4

207 xt+4
208 xt+4

209

f209(xt) f209(xt+1) f209(xt+2) f209(xt+3)
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Table 4: The Parallelly Update of the NFSR from x206 to x209

Cycle x206 x207 x208 x209

t xt
206 xt

207 xt
208 xt

209

t + 1 f0
209(xt) f1

209(xt) f2
209(xt) f3

209(xt)

Take a part of Espresso NFSR (from x206 to x209) as an example, the feedback function
f209(x) drives x209. At the next round (Round = t + 1), the NFSR part from xt+1

206 to xt+1
209 is

equal to xt
207, xt

208, xt
209 and f209(xt), which shifts one bit and loads the function f209(xt). After

that, the 4-bit NFSR part shifts one more bits at round t+ 2, changes to xt
208, xt

209, f209(xt) and
f209(xt+1). Meanwhile, f209(xt+1) take NFSR t + 1 round internal state as variable, which can
be calculated by shifting xt one bit. For the same reason, we can get the internal state at round
t + 3 and t + 4. Thus, Espresso can update multiple rounds in each cycle has been proved.

Here we define f j
i (x) used to update xi−(w−1−j) in each clock in parallel schemes, as Table 4.

Every index of f j
i (x) variables should add j on the basis of original index, similar as getting

the variables for function fi(x) at the next j rounds in serial. For example, function f209(x) =
x210 ⊕ x6x64 drives internal state x209, if we note the parallel width is 4 bits, there are another
4 inferred functions based on f209(x):

f0
209(x) =x210+0 ⊕ x6+0x64+0

f1
209(x) =x210+1 ⊕ x6+1x64+1

f2
209(x) =x210+2 ⊕ x6+2x64+2

f3
209(x) =x210+3 ⊕ x6+3x64+3

(8)

For the hybrid-designed Espresso, the cipher update by the Formula 4 before generating
keystream phase. After 256 clocks for initialization, Espresso update w rounds in each clock
following:

xt+1
i =

{
fw−1−j
i+j (x), ∃j : (i + j) ∈ U, j = 0, 1, ..., w − 1

xt
i+w, other

(9)

According to the above formulas, x206 updates by f0
209(x), x207 updates by f1

209(x), x208

updates by f2
209(x) and x209 updates by f3

209(x) respectively. Hence, the hybrid Espresso take
forward for 4 rounds once trigged by clock edge.

However, the minimum number of spare registers between tapped bit and the near bit in
update set U determines the maximum parallel width. If we increase one bit parallel (w = 5),
another additional function may be noted as f4

209(x) = x210+4 ⊕ x6+4x64+4. But the monomial
x210+4 is not correct because x213 is driven by another feedback function instead of the more
significant bit x214. Hence, one of the f4

209(x) variables is not existed in current internal state,
but equal to f0

213(x):
f4
209(x) = f0

213(x)⊕ x6+4x64+4 (10)

In this case, the data path of f4
209(x) based on f0

213(x) will lead to much latency and we will
adopt this method in the following Fibonacci variants Espresso hybrid architecture. Therefore,
we stipulate that the maximum parallel width of Galois Espresso is 4 bits. For example, Trivium
stream cipher has the maximum parallel width 64 because there are at least 64 non-tapped
iterations lower than modified bit [5].

We conclude the maximum parallel width in this method is wmax, which can be gotten by:

wmax = min(u− v + 1), (u ∈ U, v ∈ V, u > v) (11)
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Table 5: Implementation Results of Espresso Hybrid Architecture

Device Strategy #LUT Area Freq. Thro. T./A.
/#FF (Slices) (MHz) (Mbps) (Mbps/Slices)

Virtex-7
Serial 48/137 25 491.4 491.4 19.66
Hybrid x4 211/267 60 373.3 1493.1 24.88

Spartan-3
Serial 90/80 62 198.5 198.5 3.20
Hybrid x4 371/267 198 163.3 653.3 3.30

Furthermore, there is another problem which restricts Espresso parallelized implementation.
Espresso’s filter function h(x) variables x255, x247, x243 and x213 belong to set U , along the above
discussion, the variables of h1(x) function includes one more significant bit of h0(x) (i.e. h(x))
variables, but we can’t get the next bits in set U just according to current internal state.

In another way, the filter function is no more fed into NFSR after initialization. Espresso can
firstly update for 4 rounds and then produce 4 keystream bits, the 4 filter functions are noted as
h0(x), h−1(x), h−2(x) and h−3(x). Consequently, other device collects keystream from zw(t−2)
to zw(t−1)−1 at clock t rising edge, which represents once hybrid Espresso detects the first rising
edge in finite state machine WORK state, there is no valid keystream bit. Precisely, the first w
bits keystream z0, z1, ..., zw−1 are sampled at the second clock t = 2 rising edge during running
phase. That can be named as first update then filter strategy.

As a result, our optimized Espresso is designed in hybrid architecture, Espresso update serially
during load and initialization phases and update multiple rounds in each clock during processing
plaintext phase. The FPGA implement results are listed in Table 5.

4 Description and Implementation of Fibonacci-configured
Espresso

In this section, we will provide a brief description about Galois-to-Fibonacci transformation
method [14]. Subsequently, the serial and hybrid architectures are introduced for efficient FPGA
implementation.

4.1 Galois-to-Fibonacci Transformation

Fibonacci NFSR is a special kind of Galois NFSR, whose feedback functions fi(x) = xi+1 except
the most significant bit. For n-bit Fibonacci NFSR, the update set only has one element, U =
{n − 1}. Earlier research has concluded that Galois NFSR is more efficient due to the parallel
feedback functions [25], for example, Galois-configured Grain-80 [16] can perform 58% higher
frequency than that in Fibonacci configuration, but Fibonacci NFSR has significant advantages
for security analysis due to few number of feedback functions.

According to transformation method in [14], Espresso NFSR can be configured as two Fi-
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Figure 6: The block diagram of Fibonacci-configured Espresso-F

bonacci NFSRs, updated by function f255(x) and function f217(x):

f255(x) =fL(x)⊕ fN (x)

=x0 ⊕ x12 ⊕ x48 ⊕ x115 ⊕ x133 ⊕ x213

⊕x41x70 ⊕ x46x87 ⊕ x52x110 ⊕ x55x130 ⊕ x62x157 ⊕ x74x183 ⊕ x87x110x130x157

f217(x) =x218 ⊕ f ′N (x)

=x218

⊕x3x32 ⊕ x8x49 ⊕ x14x72 ⊕ x17x92 ⊕ x24x119 ⊕ x36x145 ⊕ x49x72x92x119

(12)

It’s evidently that f255(x) combines a 6-variable linear function fL(x) and a 12-variable
nonlinear function fN (x). Meanwhile, f217(x) has the similar specification, XORed by x218 and
shifted version of 12-variable nonlinear function f ′N (x). We can note the Fibonacci configuration
Espresso as Espresso-F, shown in Figure 6.

4.2 Efficient Implementation in Fibonacci Configuration

In the above transformation method, a Fibonacci-configured NFSR has one element in update
set U . Despite the fact that only one feedback function, the extra monomials in f255(x) are
shifted from other functions. Thus, the quantity of logic gates is theoretically constant between
Galois-configured NFSR and Fibonacci-configured NFSR. However, hardware implementation on
FPGA is different from that on ASIC, namely, combinational logic gate is synthesized as look-
up-table similar to distribute RAM stored the logic truth table. The special feature represents
several logic gates can be packaged into one LUT, the Fibonacci NFSR with larger depth of logic
circuit gates has significant advantage.

On another hand, only one bit x255 is driven by feedback function in Espresso-F, 13 update
tapped positions has been deleted, potentially forming longer consecutive register fragments. We
can also list all consecutive fragments in Table 6. The longest fragment is R(187, 213) with 25
bits length.
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Table 6: The Consecutive Register Fragments of Espresso-F

No. Fragment Len. No. Fragment Len. No. Fragment Len. No. Fragment Len.

1 R(187, 213) 25 12 R(157, 164) 6 23 R(115, 119) 3 34 R(251, 255) 3
2 R(145, 157) 11 13 R(174, 181) 6 24 R(133, 137) 3 35 R(0, 3) 2
3 R(99, 110) 10 14 R(74, 80) 5 25 R(183, 187) 3 36 R(14, 17) 2
4 R(119, 130) 10 15 R(3, 8) 4 26 R(213, 217) 3 37 R(29, 32) 2
5 R(164, 174) 9 16 R(24, 29) 4 27 R(218, 222) 3 38 R(41, 44) 2
6 R(62, 70) 7 17 R(36, 41) 4 28 R(227, 231) 3 39 R(49, 52) 2
7 R(137, 145) 7 18 R(87, 92) 4 29 R(231, 235) 3 40 R(52, 55) 2
8 R(17, 24) 6 19 R(110, 115) 4 30 R(235, 239) 3 41 R(130, 133) 2
9 R(55, 62) 6 20 R(222, 227) 4 31 R(239, 243) 3
10 R(80, 87) 6 21 R(8, 12) 3 32 R(243, 247) 3
11 R(92, 99) 6 22 R(32, 36) 3 33 R(247, 251) 3

Table 7: Results of SRL Optimized Method in Fibonacci Configuration

Device SRL replacement #LUT #LUT Area Freq. T./A.
R length ≥ /#FF as SRL (Slices) (MHz) (Mbps/Slices)

V
ir

te
x
-7 5 bits 44/147 14 28 533.3 19.05

4 bits 50/123 20 24 415.6 17.32
3 bits 64/81 34 22 427.2 19.42
2 bits 71/67 41 25 397.1 15.89

S
p

ar
ta

n
-3 5 bits 56/141 15 91 167.1 1.84

4 bits 62/117 21 79 172.6 2.19
3 bits 76/75 35 59 169.7 2.88
2 bits 83/61 42 52 195.4 3.76

Based on the table, we investigate the variation between area and SRL replaced fragment
threshold length, similar to the serial Galois Espresso discussion. The implementation results
are shown in Table 7. There are 25 slices occupied on Virtex-7 and 52 slices on Spartan-3.
Compared with Galois Espresso, the Fibonacci-configured Espresso-F uses less reconfigurable
resources. Although Espresso-F critical data path has less route delay with smaller placement,
more combinational logic level will lead to much propagation time. On balance, Fibonacci
configuration is smaller but slower than Galois configuration on FPGA.

It should be noted that R(187, 213) with 25 bits length is divided into R(187, 204) and
R(204, 213) on Spartan-3, because for 4-input LUT, the synthesized SRL maximum length is
24 = 16 bits. The solutions on Spartan-3 have one more SRL than that on Virtex-7.

4.3 Hybrid Fibonacci-configured Espresso Implementation

Fibonacci-configured Espresso consists of a 218-bit NFSR and a 38-bit NFSR driven by functions
f217(x) and f255(x) respectively. Compared with Galois feedback shift register, each Fibonacci
FSR has only one update function, thus, the Espresso-F update set UA and feedback function
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variable set VA are following:

UA = {217, 255}
VA = {0, 3, 8, 12, 14, 17, 24, 32, 36, 41, 46, 48, 49, 52, 55, 62, 70,

72, 74, 87, 92, 110, 115, 119, 130, 133, 145, 157, 183, 213, 218}
(13)

According to Formula 11, when the iteration element u in set U is 213 and v is 217, the
maximum parallel width wmax is still 5.

To make further investigation, we take the 5-bit parallel solution as an example:

f0
255(x) =f0

L(x)⊕ f0
N (x)

f1
255(x) =f1

L(x)⊕ f1
N (x)

f2
255(x) =f2

L(x)⊕ f2
N (x)

f3
255(x) =f3

L(x)⊕ f3
N (x)

f4
255(x) =f4

L(x)⊕ f4
N (x)

(14)

If we increase 1 more bit width to produce 6 keystream bits in each clock, the additional
function f5

255(x) should be:

f5
255(x) = f5

L(x)⊕ f5
N (x) = x0+5 ⊕ x12+5 ⊕ x48+5 ⊕ x115+5 ⊕ x133+5 + f0

217(x) + f5
N (x) (15)

Therefore, the 6 bits parallel width solution in Fibonacci configuration is shown in Figure 7.
We can find that f5

255 variable includes one bit from f0
217. Although this combining strategy

will cause much propagation time with longer data path, we can implement the 8-bit and 16-bit
parallel width Espresso-F solutions, shown in Table 8.

f255
5

0 216  

f217
0f217
0x218

f217
4f217
4

212

x222

…
 …

 

… … 217

f217
5f217
5x223

x0

x4

…
 …

 

x5

218 254  250 … … 255

f255
4f255
4

f255
0f255
0

Figure 7: The block diagram of hybrid Espresso-F x6

It should be noted that the multiple bits generation strategy of Espresso-F is not first update
then filter, but first filter then update, which means Espresso-F produces keystream bits z0, z1,
..., zw−1 directly at the first clock after initialization. Accordingly, w filter functions are listed
as h0(x), h1(x), ..., hw−1(x).
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Table 8: Implementation Results of Espresso-F Hybrid Architecture

Device Width #LUT Area Freq. Thro. T./A.
(bit) /#FF (Slices) (MHz) (Mbps) (Mbps/Slices)

V
ir

te
x
-7 1 64/81 22 427.2 427.2 19.42

4 207/267 60 348.2 1392.8 23.21
8 279/267 75 341.1 2728.5 36.38
16 415/267 112 255.4 4085.8 36.48

S
p

a
rt

a
n

-3 1 83/61 52 195.4 195.4 3.76
4 356/267 197 134.2 536.8 2.73
8 449/267 239 123.4 987.2 4.13
16 641/267 332 118.7 1899.1 5.72

0 13312 48 115 213 255

h(x)h(x)
z

104 bits

Figure 8: The block diagram of Fibonacci-configured Espresso-L

5 Description and Implementation of Espresso-like LFSR
filter generator

We have introduced the implementation of Fibonacci-configured Espresso stream cipher in the
last section. In this section, another transformation method from Galois NFSR to Fibonacci
LFSR with compensation lists is briefly summarized, noted as Espresso-L.

5.1 Galois NFSR to Fibonacci LFSR Transformation

Another Espresso variant [15] is same as a LFSR filter generator, consists of 256-bit LFSR and
104-variables keystream filter function, named as Espresso-L, shown in Figure 8. After shifting
all monomials to f255(x), the unique feedback function is linear function following:

f255(x) = x0 ⊕ x12 ⊕ x48 ⊕ x115 ⊕ x133 ⊕ x213 (16)

Denote m|d represents each variables xi in monomial m are change to xi+d. Compensation
list is generated during monomial transformation from fa(x) to fb(x), b = 255 in Espresso-L
configuration as Formula 17, where p ∈ U .

Cp =

{
0, p ≤ a

m|p−a−1, p > a
(17)

There are totally 14 compensation lists because 14 feedback functions are transformed to
f255(x). In order to achieve better comprehension, we note that f255(x) is also converted to itself
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f255(x), while every element in list C255 is equal to 0. We combine 14 lists as:

C[i] =
∑
p∈U

Cp[i] (18)

The compensated internal state x̂i is generated by x̂i = xi ⊕ C[i]. It’s obviously that the
compensated internal state x̂i, where i ≤ 193, are same as xi because compensation list C[i] is
empty.

The filter function h(x) variables xi are replaced by x̂i. And the 256 bits initial internal state
before rounding are also loaded as x̂0

i (i = 0, 1, ..., 255).

h(x) =x80 ⊕ x99 ⊕ x137 ⊕ x̂227 ⊕ x̂222 ⊕ x187 ⊕ x̂243x̂217 ⊕ x̂247x̂231 ⊕ x̂213x̂235

⊕x̂255x̂251 ⊕ x181x̂239 ⊕ x174x44 ⊕ x164x29 ⊕ x̂255x̂247x̂243x̂213x181x174

(19)

Until now, there are three Espresso modes, they are original Galois-configured Espresso,
Fibonacci-configured Espresso-F and Fibonacci-configured LFSR filter generator Espresso-L.

5.2 Hardware Design of Espresso-L

Due to the influence of compensation list, the initial internal state x̂0
i is changed to x0

i , in especial,
the 32 bits from x̂224

i to x̂256
i are no longer constant. There should be extra circuit realizing the

compensation list and state update, so another state is added based on Galois Espresso finite
state machine, SET state represents 256 bits internal state are XORed with C[i] respectively
after loading initial vector. The SET state lasts for one clock period before INIT state, shown
in Figure 9.

The internal states from x0 to x254 are updated following Formula 20, no longer just relying
the more significant bit xi+1. Hence, the SRL optimized is not available for Espresso-L, and each
register (synthesized to flip-flop) should be driven by multiplex circuit (synthesized to look-up-
table), which causes much more area.

xi =

{
xi ⊕ C[i], state = SET

xi+1, others
(20)

We implement the Espresso-L in both serial architecture and hybrid architecture, the results
are listed in Table 9. It’s obviously that Espresso-L requires much area for compensation list
and leads to much critical path delay because of 104-variables filter function.
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Table 9: Implementation Results of Espresso-L Variant

Device Width #LUT Area Freq. Thro. T./A.
(bit) /#FF (Slices) (MHz) (Mbps) (Mbps/Slices)

V
ir

te
x
-7 1 227/268 72 275.3 275.3 3.82

4 509/268 143 271.9 1087.5 7.61
8 572/268 153 269.0 2151.7 14.06
16 735/268 197 208.2 3330.6 16.91

S
p

a
rt

a
n

-3 1 550/268 303 113.8 113.8 0.38
4 1104/268 573 113.4 453.6 0.79
8 1209/268 624 98.2 785.2 1.26
16 1462/268 756 86.9 1390.6 1.84

5.3 Security Analysis on Galois-to-Fibonacci Transformation

So far, there is no method that evinces active attacks on original Espresso, but Galois-to-
Fibonacci transformation has been confirmed revealing possible security weakness [19] and [15].
Based on the transformation [14], another Fibonacci variant Espresso-A with two feedback func-
tion f254(x) and f255(x) has not 128-bit security level resistance, i.e. the 128-bit secret key can be
recovered with only two pairs of related key-IVs, less than 241 chosen IVs and O(264) computa-
tional complexity [19]. Meanwhile, the LFSR filter generator variant Espresso-L may be broken
with complexity O(268.44) under algebraic attack and O(266.86) under Ronjom-Helleseth attack
[15]. However, they are sufficiently to be used in the tiny devices. Besides, our results have
demonstrated that the Espresso-like LFSR filter generator cannot be implemented efficiently on
hardware. Therefore, the LFSR variant Espresso-L is not recommended for ultra-lightweight
cases.

6 Hardware Performance Comparison of Espresso and other
ciphers

6.1 Comparison of Espresso and its variants

In this paper, in Table 10, we investigate the hardware performance of the stream ciphers Espresso
and its two variants, who have the similar security level. Our optimizations and FPGA imple-
mentations aimed at evaluating the cipher’s hardware performance in Galois and Fibonacci
configuration, targeting for both high-speed and resource-constrained scenes.

The original Galois-configured Espresso has 14 bits internal state driven by the 14 feedback
functions. The minimum distance between them is 4 bits, so the original Espresso can be
upgraded to the parallel Espresso with 4 bits parallel width, which produces 4 bits keystream at
each clock.

The Fibonacci-configured Espresso (Espresso-F) consisting of 2 Fibonacci NFSRs, are trans-
formed [14] by the original Espresso. There are only 2 bits driven by the 2 feedback functions
respectively. Espresso-F is not constrained by the maximum parallel width of 4 bits and we
implement up to Espresso-F x16 to evaluate the throughput improvement strategy. The com-
parison between Galois-configured Espresso and Fibonacci-configured Espresso reveals which
configuration is more efficient for various FPGA applications.

As shown in Figure 10, for the serial or low-width parallel solutions (i.e. x4), the Galois
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Table 10: The Optimal Results of Espresso and its Variants on Spartan-3 FPGA

Cipher #LUTs Area Freq. Thro. T./A. Pow. T./P. T./(P. · A.)
(Variant) /#FFs (Slices) (MHz) (Mbps) (Mbps/ (mW) (Mbps/ (Mbps/

Slices) mW) (mW · Slices))

Espresso x1 [Sec. 3] 90/80 62 198.5 198.5 3.20 2 99.2 1.60
Espresso x4 [Sec. 3] 371/267 198 163.3 653.3 3.30 11 59.4 0.30
Espresso-F x1 [Sec. 4] 83/61 52 195.4 195.4 3.76 2 97.7 1.88
Espresso-F x4 [Sec. 4] 356/267 197 134.2 536.8 2.73 11 48.8 0.25
Espresso-F x8 [Sec. 4] 449/267 239 123.4 987.2 4.13 18 54.8 0.23
Espresso-F x16 [Sec. 4] 641/267 332 118.7 1899.1 5.72 33 57.5 0.17
Espresso-L x1 [Sec. 5] 550/268 303 113.8 113.8 0.38 9 12.6 0.04
Espresso-L x4 [Sec. 5] 1104/268 573 113.4 453.6 0.79 19 23.9 0.04
Espresso-L x8 [Sec. 5] 1209/268 624 98.2 785.2 1.26 31 25.3 0.04
Espresso-L x16 [Sec. 5] 1462/268 756 86.9 1390.6 1.84 46 30.2 0.04

Espresso Best Item -/- 52 198.5 1899.1 5.72 2 99.2 1.88

configuration has a higher throughput, but is larger than the Fibonacci configuration. The
reason is that the split combinational logic in the Galois configuration do not lead to much logic
level and route delay, but has to be synthesized in the extra look-up-tables.
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Figure 10: Area and throughput comparison between Espresso and its variants

Another variant is Fibonacci-configured Espresso 256-bit LFSR filter generator (Espresso-L),
transformed [15] from nonlinear FSR to linear FSR. Although there is only one simplified linear
feedback function, consisting of only 6 variables, much nonlinear feedback logic is shifted to filter
function, forming a 104-variables keystream filter function. This kind of transformation does not
increase the throughput or reduce the area, but is not conducive to hardware implementation.
The aggregate index Throughput/Area (T./A.) of Espresso-L x1 is only 11.9% of Espresso x1
and 10.1% of Espresso-F x1. This kind of cipher containing linear FSR may only be adopted on
specific programmable chips, which has coarse-grain reconfigurable linear feedback shift registers
[26], [27], [28].
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Table 11: The Optimal Results of Espresso and its Variants on Virtex-7 FPGA

Cipher #LUTs Area Freq. Thro. T./A. Pow. T./P. T./(P.· A.)
(Variant) /#FFs (Slices) (MHz) (Mbps) (Mbps/ (mW) (Mbps/ (Mbps/

Slices) mW) (mW· Slices))

Espresso x1 [Sec. 3] 48/137 25 491.4 491.4 19.66 1 491.4 19.66
Espresso x4 [Sec. 3] 211/267 60 373.3 1493.1 24.88 4 373.3 6.22
Espresso-F x1 [Sec. 4] 64/81 22 427.2 427.2 19.42 1 427.2 19.42
Espresso-F x4 [Sec. 4] 207/267 60 348.2 1392.8 23.21 3 464.3 7.74
Espresso-F x8 [Sec. 4] 279/267 75 341.1 2728.5 36.38 7 389.8 5.20
Espresso-F x16 [Sec. 4] 415/267 112 255.4 4085.8 36.48 9 454.0 4.05
Espresso-L x1 [Sec. 5] 227/268 72 275.3 275.3 3.82 4 68.8 0.96
Espresso-L x4 [Sec. 5] 509/268 143 271.9 1087.5 7.61 6 181.3 1.27
Espresso-L x8 [Sec. 5] 572/268 153 269.0 2151.7 14.06 9 239.1 1.56
Espresso-L x16 [Sec. 5] 735/268 197 208.2 3330.6 16.91 16 208.2 1.06

Espresso Best Item -/- 22 491.4 4085.8 36.48 1 491.4 19.66

Overall, in Figure 11, except Espresso-L, the Fibonacci variant support increase through-
put by large area, so it is more acceptable for high-throughput application without consider-
ing lightweight design. Meanwhile, the Espresso-F x1 is better performance than the original
Espresso x1 for compact devices, which does not need to process the large volume of data in a
short time. The Galois-configured Espresso seems to be moderate, it is not suitable for straight-
forward high-throughput applications, nor for resource-limited devices, but a trade-off between
the two factors. As a result, the Galois-configured cipher is able to balance speed and area.
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Figure 11: The hardware performance comparison among Espresso and Espresso-F

Besides, We list the optimal implementation results on Virtex-7 FPGA in Table 11 for
Espresso and its variants with serial and all typical parallel widths optimizations. The mini-
mum area of Espresso optimization on Virtex-7 FPGA only utilizes 22 slices and the highest
throughput of Espresso in hybrid architecture produces keystream with more than 4 Gbps.
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Table 12: Comparison with Other Stream Ciphers

Cipher Security #LUTs Area Freq. Thro. T./A. Devices Device
(Variant) Level /#FFs (Slices) (MHz) (Mbps) (Mbps/ Family

(bits) Slices)

Grain v1 [23] 80 -/- 44 196.0 196.0 4.45 S3 XC3S50
Grain v1 x16 [23] 80 -/- 348 130.0 2080.0 5.98 S3 XC3S50
MICKEY 2.0 [23] 80 -/- 115 233.0 233.0 2.03 S3 XC3S50
MICKEY 2.0 [24] 80 -/- 98 250.0 250.0 2.55 S3 XC3S700A
Trivium [23] 80 -/- 50 240.0 240.0 4.80 S3 XC3S50
Trivium [24] 80 -/- 149 326.0 326.0 2.19 S3 XC3S700A
WG-8 [21] 80 -/85 137 190.0 190.0 1.39 S3 XC3S1000
WG-8 x11 [21] 80 -/207 398 192.0 2112.0 5.31 S3 XC3S1000
E0 [24] 128 -/- 140 187.0 187.0 1.34 S3 XC3S700A
A5/1 [32] 128 -/- 57 174.0 174.0 3.05 S3 XC3S50
A5/1 x4 [32] 128 -/- 287 79.0 316.0 1.10 S3 XC3S50
ZUC [24] 128 -/- 1147 38.0 1216.0 1.06 S3 XC3S700A
Snow3g [24] 128 -/- 3559 104.0 3328.0 0.94 S3 XC3S700A
Grain v1 [22] 80 66/87 26 250.0 250.0 9.62 S7 XC7S50
Grain v1 x16 [22] 80 361/166 111 250.0 4000.0 36.03 S7 XC7S50
MICKEY 2.0 [22] 80 171214 51 250.0 250.0 4.90 S7 XC7S50
Trivium [22] 80 4932 22 385.0 385.0 17.50 S7 XC7S50
Lizard [22] 80 106/252 60 100.0 100.0 1.67 S7 XC7S50
Lizard x6 [22] 80 466/241 150 200.0 1200.0 8.00 S7 XC7S50

Espresso x1 [Sec. 3] 128 90/80 62 198.5 198.5 3.20 S3 XC3S50
Espresso x4 [Sec. 3] 128 371/267 198 163.3 653.3 3.30 S3 XC3S50
Espresso-F x1 [Sec. 4] 128 83/61 52 195.4 195.4 3.76 S3 XC3S50
Espresso-F x4 [Sec. 4] 128 356/267 197 134.2 536.8 2.73 S3 XC3S50
Espresso-F x8 [Sec. 4] 128 449/267 239 123.4 987.2 4.13 S3 XC3S50
Espresso-F x16 [Sec. 4] 128 641/267 332 118.7 1899.1 5.72 S3 XC3S50

6.2 Comparison of Espresso and other ciphers

Espresso stream cipher supports 128 bits secret key and 96 bits initial vector. The standardized
cipher supporting 128-bit secret key include stream ciphers SNOW3G [9], ZUC [10] and block
cipher AES [29]. In addition, the eStream portfolio lightweight stream ciphers with 80-bit secret
key include Trivium [5], Grain [6] and MICKEY [7]. Although some of the other stream ciphers,
such as A5/1 [30] for GSM and E0 [31] for Bluetooth, have been confirmed vulnerable to attacks
[1], [2], [3], we take their implementation results as references to evaluate Espresso hardware
adaptivity.

Table 12 compares our optimized Espresso implementations with other stream ciphers. Our
best Espresso FPGA implementations can achieve 52 slices and perform more than 1.8 Gbps on
Spartan-3. The results show that our optimized Espresso design on FPGA is the smallest and
most efficient (evaluated according to T./A.) solutions among 128-bit secret key ciphers, and it
is much smaller than MICKEY 2.0, less 10 slices larger than Grain and Trivium.
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7 Conclusions

In this paper, we concluded three stream ciphers Espresso and its variants, original Galois-
configured Espresso with 14 feedback functions, Fibonacci-configured Espresso consisting of 2
Fibonacci NFSRs and Fibonacci-configured Espresso 256-bit LFSR filter generator, to investigate
which configuration for stream cipher is more efficient, when all of them are implemented under
the optimal strategies toward area and throughput respectively.

For serial solution, we explored the smallest area architecture by adjusting the occupation
ratio of FF to LUT and apply this strategy for all variants’ implementations. To improve through-
put, we designed the hybrid architecture without increasing the critical path delay significantly.
After that, another strategy to improve throughput further was proposed, i.e., the higher feed-
back functions take the lower functions results as variables. This strategy caused much latency
but improved throughput evidently.

According to our implementations, Fibonacci-configured Espresso FPGA architecture is smaller
than that in Galois configuration, despite they both have the same quantity of logic gates, be-
cause several logic gates are packaged and synthesized as one 4-input or 6-input look-up-table.
Under the premise of the equal parallel width, the Espresso hybrid architecture in Galois config-
uration has lower critical path propagation delay, which represents higher frequency than that in
Fibonacci configuration. With regard to Espresso LFSR filter generator (Espresso-L), the variant
not only has potential security weakness, but also inefficient in hardware implementation. The
Espresso-L has a huge filter function with 104 variables, which lead to much combinational logic
level and path delay.

The implementations of Espresso on Spartan-3 only take 52 slices under area optimized strat-
egy in Fibonacci configuration and perform about 1.90 Gbps in hybrid architecture. Our optimal
serial Espresso hardware scheme is smaller than most 128-bit secret key stream ciphers including
ZUC and SNOW3G, even smaller than 80-bit secret key stream cipher MICKEY 2.0. Besides,
our Espresso hardware design just occupies 22 slices on Virtex-7 FPGA at least, and paral-
lelized design even performs more than 4 Gbps, satisfying compact design and high throughput
demands.

To summarize, for the same series of ciphers, the transformation from nonlinear feedback shift
register to linear feedback shift register do not improve security level, but is not suitable for hard-
ware implementation. The Fibonacci configuration is smaller than the Galois configuration on
FPGA applications, and the former can support the higher parallel width to improve throughput.
When the device is not only resource-limited, but also slightly require high-throughput, i.e., the
trade-off between area and speed, the Galois configuration is more worthy of recommendation.

As for the future work, we hope our analysis of Galois and Fibonacci configuration could
provide reference for cipher hardware implementations, and our optimizations and throughput
improvements’ strategies could be used for more stream ciphers.
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