
More Communication Lower Bounds for
Information-Theoretic MPC

Ivan Damg̊ard?, Boyang Li, and Nikolaj I. Schwartzbach?

Dept. of Computer Science, Aarhus University

Abstract. We prove two classes of lower bounds on the communication
complexity of information-theoretically secure multiparty computation.
The first lower bound applies to perfect passive secure multiparty com-
putation, in the standard model with n = 2t + 1 parties of which t
are corrupted. We show a lower bound that applies to secure evaluation
of any function, assuming that each party can choose to learn to learn
or not learn the output. Specifically, we show that there is a function
H∗ such that for any protocol that evaluates yi = bi · f(x1, ..., xn) with
perfect passive security (where bi is a private boolean input), the total
communication must be at least 1

2

∑n
i=1H

∗
f (xi) bits of information.

The second lower bound applies to the perfect maliciously secure setting
with n = 3t + 1 parties. We show that for any n and all large enough
S, there exists a reactive functionality FS taking an S-bit string as in-
put (and with short output) such that any protocol implementing FS

with perfect malicious security must communicate Ω(nS) bits. Since the
functionalities we study can be implemented with linear size circuits,
the result can equivalently be stated as follows: for any n and all large
enough g ∈ N there exists a reactive functionality FC doing computa-
tion specified by a Boolean circuit C with g gates, where any perfectly
secure protocol implementing FC must communicate Ω(ng) bits. The
results easily extends to constructing similar functionalities defined over
any fixed finite field. Using known techniques, we also show an upper
bound that matches the lower bound up to a constant factor (existing
upper bounds are a factor lgn off for Boolean circuits).
Both results also extend to the case where the threshold t is suboptimal.
Namely if n = kt + s the bound is weakened by a factor O(s), which
corresponds to known optimizations via packed secret-sharing.

1 Introduction

In secure multiparty computation (MPC) a set of n parties compute an agreed
function on inputs held privately by the parties. The goal is that the intended
result is the only new information released and is correct, even if t of the parties
are corrupted by an adversary.

In this paper we focus on unconditional security where even an unbounded
adversary learns nothing he should not, and we ask what is the minimal amount

? Supported by the ERC Advanced Grant MPCPRO.

of communication one needs to compute a function securely. To be clear, we
will only consider functions where the size of the output is much shorter than
the input, so we avoid trivial cases where the communication is large, simply
because the parties need to receive a large output. Note that one can always
compute the function without security by just sending the inputs to one party
and let them compute the function, so the question to consider is: compared
to the size of the inputs, what overhead in communication (if any) is required
for a secure protocol? Note that a different and probably much harder question
is if, in general, the communication must be larger than the circuit size of the
function.

These questions only seem interesting for unconditional security: for compu-
tational security we can use homomorphic encryption to compute any function
securely with only a small overhead over the input size.

There is a lot of prior work on lower bounding the communication required
in interactive protocols, and we survey some of this below. However, the most
relevant existing work for us is [DLN19] which considers exactly the questions
we ask here for the case of honest majority, n = 2t+1, and passive (semi-honest)
security. They show that a factor n overhead over the input size is required for
a variant of the inner product function, where parties may choose to learn or
not to learn the output. The result extends to the case of suboptimal threshold
where n = 2t+ s, and then the overhead becomes n/s.

Note that this result leaves open two important questions:
Firstly, a natural next step after the results from [DLN19] is to ask which

functions in general require large communication. However, applying the result
from [DLN19] to functions other than the inner product is nontrivial because
they leverage a particular property of the inner product, namely that it can be
used to implement a PIR, which is of course not the case in general. In this work,
we therefore ask:

Can we show lower bounds for perfect passive secure evaluation of func-
tions other than the inner product?

Secondly, It is well known that perfect malicious security can be achieved if and
only if t < n/3 and the result from [DLN19] has nothing to say about this case:
to apply it, one would need to set s to be Θ(n) and then their lower bound
becomes trivial. Hence, the final open question we consider is:

Can we show lower bounds for perfect malicious security in the case
where n = 3t+ 1?

We answer both questions in the affirmative.

1.1 Our results

Bounds for passive security. In this paper, we prove lower bounds for the
model with n parties of which t are statically corrupted. The network is syn-
chronous, and we assume that the adversary can learn the length of any mes-
sage sent (in accordance with the standard ideal functionality modeling secure

2

channels which always leaks the message length). We consider information-
theoretically secure protocols with static corruption in the maximal threshold
model.

On the technical side, what we show are actually lower bounds on the entropy
of the messages sent on the network when the inputs have certain distributions.
This then implies similar bounds in general on the average number of bits to
send: an adversary who corrupts no one still learns the lengths of messages,
and must not be able to distinguish between different distributions of inputs.
Hence message lengths cannot change significantly when we change the inputs,
otherwise the protocol is insecure.

For our passive lower bounds, we require that protocols securely implement
the standard functionality for secure function evaluation, where we add the op-
tion that each player Pi can choose to learn or not to learn the output, by
selecting an additional input bit bi. What we show is that for any function f ,
there is another function H∗f such that in any n-party protocol securely evalu-
ating the output yi = bi · f(x1, · · · , xn) for player Pi, the total communication
must be at least 1

2

∑n
i=1H

∗
f (xi) where xi is the input of player Pi.

Very roughly speaking, the function H∗f (xi) measures how much uncertainty
remains in the function output given that we know xi. Specifically, it is defined as
the maximum uncertainty that remains on any subset of inputs of size t among
the remaining 2t inputs. The lower bounds that we establish are tight in some
cases: for the inner product we get a bound of Ω(n) times the input length, so we
recover the lower bound of [DLN19]. Since the inner product can be computed
by a circuit of linear size, this bound is tight up to constant factors. For the
XOR function we get a trivial lower bound which only states that each party
must communicate their input. As the XOR function is linear, it is of course not
surprising that the bound is trivial in this case. Indeed, for two parties the bound
is tight since a passively secure protocol is for one of the two parties to simply
reveal their input to the other party. A final interesting example is a function
is called ‘ranking’, that provides each party with the index of their input in the
sorted list of all inputs. For this example, we get again a non-trivial bound of
Ω(n) times the input size. This bound may not be tight, assuming there is no
linear-sized circuit for sorting integers.

On the technical side, our bound is established by considering a fixed party
Pi and choosing a bipartitioning of the remaining 2t parties into two groups of
size t. We show that the entropy such a group provides to the function output
is a lower bound on the communication of party Pi so we choose the maximum
value among all such partitions. This corresponds to the definition of the function
H∗f mentioned above. Since the adversary is not allowed to distinguish between
different distributions of messages we can essentially add all the lower bounds
for the communication of all parties to obtain our lower bound.

The lower bound extends to the case where the threshold is submaximal, i.e.
n = 2t + s. The bound can be established by considering a partitioning of the
parties into sets of size s (it is allowed that a party belongs to no set). For each
such set, we take the supremum over all ways of bipartitioning the remaining 2t

3

parties into two sets of size t to get a communication bound. Since the adversary
is not allowed to distinguish between different distributions of messages, again
we can add the communication for each such set of size s. This means we get a
communication lower bound for each such partition of the parties into sets of size
s so we take the maximum among all such partitions. For functions which are
“symmetric”, any partition of the parties into sets of size s gives the same lower
bound which means the final supremum can be omitted. In this case, the lower
bound is weakened by a factor O(s) such that the total communication can be
shown to be Ω(

∑n
i=1H

∗
f (Xi))/s. For functions which are not symmetric it is not

possible to make a general statement about what happens in the submaximal
threshold case, though highly asymmetric functions likely have weaker lower
bounds since only a few parties contribute a large amount of entropy to the
function output.

Bounds for active security. For our active lower bounds, we require that
protocols are UC secure implementations of a certain type of reactive function-
ality Ff computing a function f . Namely, the functionality first receives input
from all parties and sends an acknowledgement to everyone. Then it receives a
second batch of inputs, computes the desired function and sends the result to
all parties.

This structure implies that the first set of inputs must be committed before
the second set of inputs are chosen, and this is important for the proof of our
lower bound. However, even if this particular structure is a limitation, the model
still covers some natural applications. For instance, the concrete function we
study models a case where long string (a database) is determined in the first
phase, and the function to be evaluated then returns a bit in a certain position
chosen later (an entry in the database).

We assume UC security mainly for simplicity of exposition, we can actually
make do with significantly weaker assumptions, this is detailed in Section 3.5.
What we show is that for all n and any sufficiently large S, there exists a function
fS with input size S such that any protocol that evaluates FfS securely must
communicate Ω(nS) bits.

Even more is true: we are able to construct functions fS as we just claimed
such that they can be evaluated by circuits of size O(S). This means we also get
the following result: for any n and all large enough g ∈ N there exists a Boolean
circuit C with g gates specifying the computation to be done by functionality
FC , such that any protocol that evaluates FC securely must communicate Ω(ng)
bits.

We emphasize that our result leaves open the question of overhead over the
circuit size when the circuit is much bigger than the inputs. However, there is
still something we can say about this general question. Note that the general
MPC protocols we know are not, strictly speaking, protocols. Rather, they are
protocol compilers that take a circuit C as input, and produce a protocol for
computing C securely. Our results do imply that any such compiler must produce
a protocol with large communication overhead over the circuit size when applied

4

to circuits in the family we build. Now, if this overhead would no longer be
present when applying the compiler to other circuits, it would mean that it was
able to exploit in some non-trivial way the structure of the circuit it is given.
Doing this would require protocol compilers of a completely different nature than
the ones we know, which do “the same thing” to any circuit they are given.

This bound also extends to the case where the threshold t is suboptimal.
Namely, if n = 3t+ s, then the lower bound is O(ng/s) and this shows that the
improvement in communication that we know we can get using so-called packed
secret sharing, is the best we can achieve. The bound does not, however, extend
to statistical security. We show in Section 3.6 that there exists a statistically
secure protocol breaking the bound already in the 4-party case.

We also show an upper bound that matches the lower bound up to a constant
factor for all values of t < n/3. This is motivated by the fact that the existing
upper bound from [GLS19] is a factor lg n off for Boolean circuits. We do this by
exploiting recent results by Cascudo et al. [CCXY18] on so-called reverse multi-
plication friendly embeddings. Other than establishing the exact communication
complexity for this particular class of functions, it also shows that our result is
the best possible general lower bound we can have.

To show our results, we start from a lower bound for the communication com-
plexity of a specific function for the case of four parties including one maliciously
corrupt player. We then “lift” this result to the multiparty case. This high-level
strategy is similar the one used in [DLN19], however our proof for the four party
case as well as the concrete lifting technique are very different from what was
done in [DLN19]. In fact it is easy to see that new techniques are necessary to
achieve our result. Namely, in our case where t < n/3, [DLN19] only gives a
trivial result, as mentioned above. Nevertheless [DLN19] is known to be optimal
for passive security, even in the case of suboptimal threshold. This means that
there is no way to use their proof for our question, one must somehow exploit
the fact that the considered protocols are assumed to be maliciously secure.

1.2 Related work

Prior work on lower bounding communication in interactive protocols includes
[Kus92, FY92, CK93, FKN94, KM97, KR94, BSPV99, GR03] (and see [DPP14]
for an overview of these results). The previous work most relevant to us is
[DPP14]. They consider a special model with three parties where only two have
input and only the third party gets output, and consider perfect secure proto-
cols. This paper was the first to show an explicit example of a function where
the communication for a (passive and perfectly) secure protocol must be larger
than the input.

Later, in [DNOR16], a lower bound was shown on the number of messages
that must be sent to compute a certain class of functions with statistical security.
When the corruption threshold t is Θ(n), their bound is Ω(n2). This of course
implies that Ω(n2) bits must be sent. However, we are interested in how the
communication complexity relates to the input and circuit size of the function,

5

so once the input size becomes larger than n2 the bound from [DNOR16] is not
interesting in our context.

In [DNPR16], lower bounds on communication were shown that grow with the
circuit size. However, these bounds only hold for a particular class of protocols
known as gate-by-gate protocols, and we are interested in lower bounds with no
restrictions on the protocol.

2 Lower bounds for arbitrary functions

In this section we prove a lower bound on the communication complexity for
perfect passive secure multiparty computation. The lower bound applies to any
function in which the parties can choose to learn or not to learn the output. For
some functions, the lower bound can be shown to be tight.

Let X be a random variable with pdf p : X → [0, 1]. We define the (Shannon)
entropy of X as:

H(X) = −
∑
x∈X

p(x) lg p(x)

where lg is base 2. The entropy measures the uncertainty of X: to communicate
the outcome of X, an average of H(X) bits have to be communicated. We define
the conditional entropy H(Y | X) as the amount of information in Y left, given
that we know X. If H(Y ;X) is the joint entropy we define:

H(Y | X) = H(Y ;X)−H(X)

A related measure is the mutual information I(Y ;X) that measures how much
information the two random variables X,Y have in common. It is defined as:

I(X;Y) = H(X)−H(X | Y)

We will use this measure for our lower bound, we need the following identities:

Lemma 1. I(X;Y) = I(X;Z) + [H(X | Z)−H(X | Y)].

Proof. Follows from the definition of mutual information:

I(X;Y) = H(X)−H(X | Y) = I(X;Z) +H(X | Z)−H(X | Y). ut

Lemma 2. Let X,Y, Z be random variables such that I(Y ;Z) ≥ H(Y). Then
H(X | Z) ≤ H(X | Y).

Proof. By using the chain rule for entropy twice we get:

H(X,Y, Z) = H(Y) +H(X | Y) +H(Z | Y,X)

= H(Z) +H(X | Z) +H(Y | Z,X)

Since I(Y ;Z) ≥ H(Y) we have H(Y | Z,X) = 0 and so we find that:

H(X | Y) = H(X | Z) + [H(Z)−H(Z | Y,X)]−H(Y)

6

Noting that H(Z | Y,X) ≤ H(Z | Y) we get:

H(Z)−H(Z | X,Y) ≥ H(Z)−H(Z | Y) = I(Y ;Z) ≥ H(Y)

In particular, we have [H(Z) −H(Z | Y,X)] −H(Y) ≥ 0 which concludes the
proof. ut
Lemma 3. Let X,Y, Z be random variables such that I(X; (Y,Z)) ≥ `, and
I(X;Y) = 0. Then H(Z) ≥ `.
Proof. We use the chain rule for mutual information to obtain:

` ≤ I(Y,Z;X) = I(X;Y) + I(Z;X | Y)

By assumption we have I(X;Y) = 0. The bound I(Z;X | Y) ≤ H(Z) is not
hard to see and concludes the proof. ut

We now define the functional entropy of a random variable which is used
to establish our communication lower bound. Informally, the functional entropy
measures how much uncertainty an input to a function provides to its output.

2.1 Functional entropy

We start by considering the binary case: let f : X × X → Y × Y be a binary
function, and let X1, X2 be random variables over X . We define the f -expansion
of X1 to be the following exponential-sized string (the case for X2 is similar):

Ef (X1) =
∑
x2∈X

f(X1, x2)

where
∑

denotes string concatenation. We define the functional entropy of Xi

as:
Hf (Xi) = H(Ef (Xi))

Loosely speaking, this quantity measures how much uncertainty remains in the
function output, given that we remove all randomness from variables other than
Xi. Since the value of Ef (Xi) can be computed from Xi, the functional entropy
must be upper bounded by the regular Shannon entropy, i.e. Hf (Xi) ≤ H(Xi).

We now extend the notion to an n-ary function f : Xn → Yn for n = 2t+ 1
and some t. Let T ⊂ {1, 2, . . . n} be a set of indices, and define −T as its
complement. Note that we can write any f as f ′ where

f(X1, X2, . . . Xn) = f ′(XT , X−T)

We define the functional entropy of a set of random variables T as:

HT = Hf ′(XT)

Finally, we define the maximum functional entropy of a variable Xi as:

H∗f (Xi) = max
T, |T |=t, i 6∈T

HT

Loosely speaking, H∗f (Xi) measures how much uncertainty we can have in the
function output, if we fix all but t inputs, where these t inputs do not include
Xi. We will use this quantity to establish our lower bound.

7

2.2 Lower bound, arbitrary functions, maximal threshold

In this section we establish the communication lower bound for perfect security
and maximal threshold. Let n = 2t+1 be an integer, and consider a set of parties
P1, P2, . . . Pn computing a function where the ith party learns yi = bi · fi(X),
where bi ∈ {0, 1} is a private boolean input, and f : Xn → Yn is a vector
function. Consider a partition of the n parties into groups of size t, t, 1 where
X1 is the concatenated inputs of parties in the first group, X2 the second group,
and X3 is the input of the single party (not including the bi inputs). Let Ci,j be
the (ordered) concatenation of all messages sent between groups i and j.

In the following two lemmas we consider a situation where only the single
players in group 3 learns the output, while all other players have their output
selection bit set to 0. Now, since no group has more than t players, the adversary
can corrupt all players in each single group, and hence neither the first, nor the
second group must learn anything new from the protocol.

Lemma 4. I(X1; (C1,2;C1,3)) ≥ Hf (X1).

Proof. By privacy against group 1, the variables C1,2, C1,3 are independent of
X2 and X3. This means group 2 and P3 can resample randomness and use
(C1,2, C1,3) as an oracle to compute f(x1, x2, x3)2,3 for any values of x2, x3.
This implies that the mutual information between the communication and the
expansion is at least the entropy of the expansion:

I(Ef (X1); (C1,2;C1,3)) ≥ H(Ef (X1)) = Hf (X1) (1)

On the other hand, as Ef (X1) is determined by X1 we have that,

I(X1; Ef (X1)) = Hf (X1) (2)

We now compute:

I(X1; (C1,2, C1,3))

= I(X1; Ef (X1)) + (H(X1 | Ef (X1))−H(X1 | (C1,2;C1,3)) by Lemma 1

= Hf (X1) + [H(X1 | Ef (X1))−H(X1 | (C1,2;C1,3))] by Eq. (2)

By Eq. (1) we can apply Lemma 2 to conclude the value in the brackets is
nonnegative which concludes the proof. ut

Lemma 5. H(C1,3) ≥ Hf (X1).

Proof. Immediate consequence of Lemmas 3 and 4 because of privacy against
group 2 which implies I(X1;C1,2) = 0. ut

Theorem 1. In any MPC protocol of maximal threshold n = 2t+ 1 that evalu-
ates yi = bi · fi(x1, x2, . . . , xn) with perfect passive security, the total communi-
cation is at least

1

2

n∑
i=1

H∗f (Xi)

bits of information.

8

Proof. Consider any party Pi. Then for any partition of the remaining 2t parties
into two groups of size t, Lemma 5 gives a lower bound on H(C1,3) for a certain
setting of the inputs. We then choose the maximum such lower bound which is
precisely H∗f (Xi). By perfect passive security, the adversary is not allowed to
distinguish between different distributions of messages so we can add the lower
bound obtained for each choice of Pi. Finally, we divide by two because each bit
is counted exactly twice: once at the sender and once at the receiver. ut

2.3 Lower bound, arbitrary functions, submaximal threshold

In this section we consider the case when the number of corruptions is submax-
imal, i.e. n = 2t+ s for some s > 1. We extend our definition of H∗f to apply to
groups of variables. Let S be some group of parties of size s we then define:

H∗f (XS) = max
T, |T |=t, S∩T=∅

HT

We consider a fixed partition of the parties into groups of size t, t, s: we call the
concatenated inputs of the parties in each group for X1, X2, X3, and let Ci,j

denote the correspondence between groups i, j.
Let S be a partition of the parties into sets of size s, and let S be the set of

all such partitions. Note that a party is allowed to belong to no set in S, say if
2t is not divisible by s.

Theorem 2. In any MPC protocol of submaximal threshold 2t+s that evaluates
yi = bi · fi(x1, x2, . . . , xn) with perfect passive security, the total communication
is at least

max
S∈S

[
1

2

∑
S∈S

H∗f (XS)

]
bits of information.

Proof. Consider some fixed partition S of the parties into sets of size s. We can
let any element S ∈ S define a partition of the parties into sets of size t, t, s. The
third group can be regarded as a single party with the concatenated inputs as
their input. In doing so, we obtain the result of Lemma 5 for any such partition.
This means the communication for the third group must be at least H∗f (XS).
Since the adversary is not allowed to distinguish between different distributions
of messages, we can add the communication for all S ∈ S to get a lower bound
on the communication. Finally, any such S yields a lower bound, so we choose
the partition S ∈ S that maximizes the lower bound. ut

The statement of the theorem allows for the function to be ‘asymmetric’ in the
sense that some ways of partitioning the parties gives stronger bounds. If any
choice of S gives the same lower bound, we say the function f is symmetric. For
symmetric functions, the above lower bound can be simplified. We assume that
s divides n for simplicity.

9

Corollary 1. Let f be a symmetric function. Then in any MPC protocol of
submaximal threshold 2t+s that evaluates yi = bi ·fi(x1, x2, . . . , xn) with perfect
passive security, the total communication is at least

n

2s
H∗f (X1)

bits of information.

2.4 Examples

We briefly provide some examples of different choices of f .

Inner product For the inner product, consider any single party. We can then
divide the remaining 2t parties along the “aisle” of the inner product function.
Closer study reveals that almost all information in X1 matters, meaning we get:

H∗f (Xi) = tI

Summing this up reestablishes the lower bound of [DLN19]. We note that this
lower bound is tight up to constant factors.

XOR Consider the bitwise XOR function, that takes n inputs x1, . . . xn ∈ {0, 1}I
and outputs y =

⊕n
i=1 xi. We note that two inputs XT , X

′
T provide the same

expansion iff they have the same Hamming weight. This means we get:

H∗f (Xi) = I

Summing this up gives a lower bound of Ω(nI) which only states that each
party must communicate their input. However, for two parties this is tight since
a passively secure two-party protocol for XOR is for one of the parties to simply
reveal their input.

Ranking Consider a function where each party Pi inputs an integer xi and learns
the index of their input in the sorted list of all inputs. Note that two inputs
XT , X

′
T have the same expansion if and only if they are permutations of each

other. For a list of n items, the information content of a permutation on n ele-
ments is bounded by lg n! ≤ lg nn ≤ n lg n. This means we get a communication
lower bound of Ω(ntI − t lg t) bits, which for large inputs is Ω(ntI).

Regarding the corresponding upper bound, we can use a construction by
Parberry ([Par92]) of a sorting network with O(n (lg n)2) gates. We can now use
any passively secure MPC protocol with linear complexity per gate to compute
ranking in time O(ntI (lg n)2). This has a discrepancy of a factor O(lg n)2 and
gives a communication lower bound of Ω(n/(lg n)2) per gate. This bound is not
tight unless there is a passively secure MPC protocol for sorting with sublinear
communication complexity per gate; or if there is a circuit for sorting with linear
size. The latter is not true unless sorting can be done in linear time. As a result,
it is unlikely that our bound is tight for the ranking function.

10

3 Lower bounds for malicious security

In this section we prove that there is an n-party functionality that can be de-
scribed by a circuit with g gates such that each party needs to communicate at
least Ω(g) bits. We show this using a series of lemmas that bound the entropy
on the communication. We first show the special case for four parties, and then
”lift” this to the general case with n parties.

Let P1, . . .Pn be parties connected by pairwise secure channels. We denote by
I the input size (in bits) of each party, and O the output size. For simplicity we
assume all parties receive the same output, and denote by f : {0, 1}nI → {0, 1}O
the function to compute.

We assume an active adversary that is allowed to statically corrupt up to t
parties where 3t < n. To define security we use the universal composability (UC)
model by Canetti ([Can00]). We assume the reader is familiar with the model
and its definition of security (we will use the version where the environment also
plays the role of the adversary):

Definition 1 (UC Security). A protocol π is said to securely realize a func-
tionality F with perfect malicious security if there exists a simulator S such that
for any environment Z, we have that Z � π is perfectly indistinguishable from
Z � S � F.

We will consider protocols that implement a reactive ideal functionality Ff

for computing f securely. The functionality first receives input from each party,
and sends an acknowledgement to all parties once the inputs have been received.
Finally, it accepts an additional input from all parties, it then computes the
function and sends the output to all parties. As we shall see, it is important
towards proving our lower bound that we consider this reactive case, rather
than the simpler version where the functionality gets all the inputs in one go.
Note that any protocol implementing Ff will naturally consist of two phases: one
that implements the part where the first inputs are sent, which we call the input
phase, and the rest, which we call the computation phase. This implies that the
first batch of inputs are committed in the first phase, before any information on
the second batch of inputs or the output is revealed.

Note that the structure imposed by our choice of Ff still allows us to model
quite natural tasks. The concrete function we consider below is one where a long
bit string (a “database”) is committed in the first phase, and then the function
computed will securely extract a particular entry in the database.

3.1 Lower bound, malicious security, four parties

We start by considering a special case of active MPC with four parties P1, . . .P4.
In the input phase, the functionality receives an input bit string Xi from each
Pi. We assume that X1 ∈ {0, 1}I (we do not need to assume anything about
the lengths of the other inputs). Let L be the length of the concatenation X =
X1||X2||X3||X4. In the second phase, the functionality receives an integer ui
from Pi, where ui ∈ ZL. It outputs (u,X[u]), where u =

∑
i ui mod L.

11

We call this function fI,4. It has the important property that if the input
X1 of P1 is changed, there is always a setting of the other inputs for which the
change of X1 will cause the output to change, namely if p points to a position
in X1 that was changed. One consequence of this is the following lemma:

Lemma 6. Assume protocol π computes n-party function f with perfect secu-
rity, and it is the case that for any x′1 6= x1, the are values x2, ..., xn of the other
inputs such that f(x1, ..., xn) 6= f(x′1, x2, ..., xn). Assume further that P1 has in-
put x1, is corrupt but plays honestly. Then the simulator for π must always send
x1 as input to the functionality for f on behalf of P1.

Proof. If all players are honest and have inputs x1, ..., xn, then by perfect security
the output must be f(x1, ..., xn). If instead P1 is corrupt but plays honestly, the
protocol does exactly the same as if all players are honest so the output is still
f(x1, ..., xn). Hence, when simulating this case, the simulator must send x1 to
the functionality, for any other value x′1 it may send, the output in the simulation
will be incorrect for some choice of x2, ..., xn, by assumption in the lemma. ut

Before continuing, we define some terminology: suppose we are given a player
P that takes part in a protocol π, and let t be a transcript, that is, the ordered
set of all messages sent and received during an execution of the protocol. Now,
sampling random coins consistent with t means to sample uniformly a random
tape r that could have been used to create t if P had done the protocol honestly.
In other words, r has the property that if P starts π with random tape r and
receives in each round the messages specified in t, he would send the messages
specified in t in each round. Of course, such a sampling is not always efficient,
but remember that we consider perfectly secure protocols that must be robust
against unbounded adversaries.

Theorem 3. In any reactive protocol that implements FfI,4 with perfect mali-
cious security, P4 must use average communication Ω(I).

Proof. Consider a protocol π that computes the function with perfect security.
We will consider the messages sent in π as random variables as follows: fix
the inputs of P2,P3 and P4 to arbitrary values x2, x3, x4, and let the input of
P1 be chosen uniformly. Assume π is executed such that all parties follow the
protocol. Now, we let Ti for i = 1, 2, 3, 4 be the random variable that represents
concatenation of all messages sent to and from Pi in the execution of the input
phase.

Since the communication pattern must not depend on the inputs, it suffices
to show that H(T4) ≥ H(X1). We first show this follows from the following two
equations:

H(X1 | T2) = H(X1) (3)

H(X1 | T2, T4) = 0 (4)

To see this, we apply the chain rule for Shannon entropy:

H(T4) ≥ H(T4 | T2) + H(X1 | T2, T4) = H(X1, T4 | T2) ≥ H(X1 | T2) = H(X1)

12

We now show each claim separately:

1. Perfect malicious security implies there is a simulator for a corrupt P2 that
plays honestly. The messages created by the simulation are distributed ex-
actly as in a real execution. However, while simulating the input phase, the
simulator does not have access to the output, and hence has no information
on X1. It follows that H(X1 | T2) = H(X1).

2. Suppose for the sake of contradiction that X1 is not determined by T2, T4.
This means there must exist (at least) two different executions of the input
phase where P1 has different inputs, but the messages seen by P2,P4 are
the same. More formally, there exist sets of values of (T1, T2, T3, T4), say
(t1, t2, t3, t4) and (t′1, t2, t

′
3, t4) both with non-zero probability where the first

case can occur with X1 = x1 and the second with X1 = x′1, where x1 6= x′1.
We define a value e such that x1[e] 6= x′1[e]. Now consider the following two
attacks on the input phase, represented by environments Z,Z ′:
(a) Z chooses inputs x1, x2, x3, x4 for the respective parties, corrupts P3,

but lets her plays honestly in the input phase. If at the end of the input
phase P3 obtains transcript T3 = t3, she will pretend that she saw T3 = t′3
instead. She samples random coins r′3 consistent with t′3 and completes
the protocol honestly, assuming that her view of the input phase was
(x3, r

′
3, t
′
3). In the last phase, Z sets the inputs ui in some fixed way such

that e =
∑

i ui mod L.
(b) Z ′ chooses inputs x′1, x2, x3, x4 for the respective parties, corrupts P1,

but lets her plays honestly in the input phase. If at the end of the input
phase P1 obtains transcript T1 = t′1, she will pretend that she had x1 as
input and saw T1 = t1 instead. She samples random coins r1 consistent
with t1 and completes the protocol honestly assuming her view of the
input phase was (x1, r1, t1). In the last phase, Z sets the inputs ui in
some fixed way such that e =

∑
i ui mod L.

We can now observe that when the real protocol executes in the first attack,
with non-zero probability, it is the case that P1 has input x1 and transcripts
t1, t2, t3 and t4 were produced in the input phase. Likewise in the second
attack it may happen that P1 received input x′1 and transcripts t′1, t2, t

′
3 and

t4 were produced in the input phase.
Assuming these events, we see that the protocol execution after the input
phase will be the same in the two scenarios: in both cases the players will
do the last part of the protocol honestly starting from views (x1, r1, t1),
(x2, r2, t2), (x3, r

′
3, t
′
3), (x4, r4, t4), where all random coins are uniform, given

the corresponding transcripts. Since these views are identically distributed
in the two cases and the inputs chosen in the last phase are the same, the
same output distribution D is generated in both cases.
Now consider the simulation of the two attacks. Note that the ideal func-
tionality always computes the output from x1, x2, x3, x4 in the first case, and
from x′1, x2, x3, x4 in the second, by Lemma 6. This means that the output
is x1[e] in the first case and x′1[e] in the second. Assume without loss of
generality that x1[e] = 0 and x′1[e] = 1.

13

On the other hand, we have just seen that the real protocol may sometimes
generate output distribution D under both the first and the second attack.
Clearly, the probability that D outputs 0 is non-zero, or the probability of
output 1 is non-zero. Assume the second case, without loss of generality.
Now, Z can break perfect security: if it sees output 0, it guesses that it has
been talking to the simulation, and otherwise it guesses that it is in the real
case. Clearly Z will always guess simulation in the ideal (simulated) case
but will guess real with non-zero probability in the real case, contradicting
perfect indistinguishability.

ut

Remark 1. We can now explain why it is not clear that our proof technique would
work if we had used the standard functionality for secure function evaluation
where all inputs are given in one go: In order to show that the input phase
can produce the same state for the protocol from both input x1 and x′1 for P1,
we need to restrict to a particular subset of the transcripts that might occur.
But if that same phase also includes provision of the inputs ui and perhaps the
computation of u, the possible values of u might be similarly restricted, so it is
not clear that the environment can still choose the index e so that it will “catch”
the difference between x1 and x′1.

3.2 Lower bound, malicious security, n parties, maximal threshold

We now show that the bound generalizes to multiple parties. Let n = 3t+ 1 and
denote the parties by P1,1, . . .P1,t,P2,1, . . .P2,t,P3,1, . . .P3,t,P4. Define by IPI,n

the following functionality: each party first provides an I-bit input. When all
inputs have been received they are comcatenated to form X, then each party
provides number ui ∈ ZL where L is the length of X. We set u =

∑
i ui mod L

and and (u,Xu) retunred.

Lemma 7. IPI,n can be computed by a circuit C with O(nI) gates.

Proof. Let S = nI be input size and assume for simplicity that S = 2k is an
exact power of two. We assume the circuit takes O(lgS) additional bits which
we will denote by r, it corresponds to the index u above. Strictly speaking, we
should take the ui as input and compute their sum modulo L, but the size of
the circuit for doing this is insignificant, it is clearly o(nI) for all large enough
I. We now proceed using induction in k:

– Base-case k = 0: the circuit simply outputs its input bit. This is clearly
uniform in the input.

– Induction k > 0: we may split the input into two 2k−1 sized halves X0,
and X1. By induction there are circuits C0, C1 each with O(2k−1) gates
computing X0,X1, let y0, y1 be the output gates. It suffices to combine
C0, C1 using a constant number of gates. We now construct the circuit y =
(y0 ∧ rk) ∨ (y1 ∧ rk): this takes at most four gates which is clearly constant.
In addition both C0, C1 choose their elements uniformly at random: if rk is
indeed a random bit then y is also uniform.

14

The result now follows since t = Θ(n). ut

Lemma 8. Any reactive protocol that realizes IPI,n with perfect malicious se-
curity must have total average communication Ω(ntI).

Proof. Consider any party P. We may group the remaining 3t parties arbitrarily
into 3 groups, each consisting of t parties to produce a functionality equivalent
to FftI,4 where P plays the role of P4. Corrupting any party in the 4-party
case corrupts at most t parties in IPI,n, and the inputs of a t party group are
formed by combining the inputs of the individual players in the group (using
concatenation or addition modulo L). By this translation, the player P1 is the
4-player setting has an input of length tI in the first phase, and hence, by
Theorem 3, P must communicate at least Ω(tI) bits. We can apply this argument
to each of the 3t + 1 parties and add their resulting communications. It should
be noted that this counts every bit twice: once at the sender, and once at the
receiver, however this has no effect on the asymptotic complexity. We conclude
the total average communication is Ω(ntI) bits. ut

Theorem 4. There is a (familiy of) Boolean circuit(s) C with g gates such that
any reactive n-party protocol computes C with perfect malicious security must
use total communication Ω(ng).

Proof. Follows immediately from Lemmas 7 and 8 since t = Θ(n). ut

3.3 Lower bound, malicious security, n parties, submaximal
threshold

In this section we consider the case where t is submaximal, i.e. n = 3t + s for
some integer s > 0.

Theorem 5. There is a Boolean circuit C with g gates such that any reactive
n-party protocol that computes C with perfect malicious security where n = 3t+s
for some s > 0, and t is the number of corruptions, must use total communication
Ω(ng/s).

Proof. By Lemma 7 it suffices to show a total communication lower bound of
Ω(ntI/s). Consider any partition of the 2t+ s honest parties into sets of size s.
For simplicity assume s divides 2t+s so that any such partition consists of exactly
2t/s+1 sets. We may group each set of s honest parties into a single party which
we will call P4. The remaining 3t parties may be arbitrarily grouped together
into 3 groups of t parties each. This immediately gives a protocol for IPtI,4 where
Theorem 3 applies, meaning P4 must communicate Ω(tI). Since each set of k
honest parties are disjoint we may add their communications together to get the
total communication up to a constant factor. There are 2t/s+ 1 such sets giving
a total communication of (2t/s+ 1)Ω(tI) = Ω(ntI/s) = Ω(ng/s). ut

15

3.4 Lower bound, malicious security, arithmetic circuits

The argument presented in previous sections only considered Boolean circuits,
however the same argument applies to arithmetic circuits. Let F be a finite field
whose elements require κ bits to describe. The exact same line of reasoning ap-
plies with the difference that H(X1) = κI instead of H(X1) = I. This increases
the bounds by a factor of κ showing the following:

Theorem 6. There is an arithmetic circuit C with elements of size κ with g
gates such that any reactive n-party protocol that securely computes C where
n = 3t + s for some s > 0, and t is the number of corruptions, must use total
communication Ω(ngκ/s).

3.5 Weakening the assumptions

Instead of assuming UC security we can instead make do with much weaker as-
sumptions in order to show our lower bounds: What we can assume is a two-phase
protocol as defined before, but with much weaker demands on the simulator than
what we need for UC security, as we now sketch:

– The protocol in question can be split in two phases: we call the first one the
input phase and the second the computation phase.

– The simulator first simulates the input phase and then the computation
phase. It may rewind the adversary during both phases, but once it has
started simulating the computation phase, it is not allowed to rewind back
to the input phase.

– Once the simulator starts simulating the computation phase, and the func-
tionality has received all the inputs, the simulator may now ask for the
outputs (so this means it cannot ask for the output during the input phase).

It is not hard to see that our lower bound proofs go through, also in this model.

3.6 Lower bound, malicious security, statistical security

The lower bound presented above crucially relied on perfect security of the un-
derlying protocol. In this section we briefly sketch where the lower bound for
four parties breaks down in the case of statistical security. We show how the
four parties may compute the function IPI,4 in a way where P4 has a communi-
cation complexity of O(poly(n)). In particular, the communication complexity
of P4 is independent of I, the input size.

It is well-known that we can compute any circuit with statistical security in
an honest majority setting given access to a broadcast channel. We will then
let P1,P2,P3 run such a protocol, letting P4 assist only in the broadcasts (since
t < n/3 is required for broadcast). Specifically, P4 produces a VSS of her input
and broadcasts to the other parties, who then compute a VSS of P4s output
and sends back. We use the protocol by [BSFO12]. We denote by X + Y · BC a
communication complexity of X bits, and Y bits for broadcast.

16

Theorem 7 (Fehr et al.). Let C be a Boolean circuit with g gates. Then there
is a statistically secure MPC protocol (with security parameter κ) for computing
C with communication complexity O((n lg n) g) +O(n3 κ) · BC.

The communication required for P4 is dominated by the cost of doing broadcasts,
which in particular is independent of I, the input size. This means the lower
bound of Theorem 1 does not apply in the statistical setting, even without a
broadcast channel. Interestingly, this suggests a “gap” between the two worlds.

We now show various upper bounds and compare them to the corresponding
lower bounds. In most cases we are able to match the lower bounds up to a
constant factor, however there is a gap of O(lg n) in the case of ”unshaped”
Boolean circuits, resulting from the fact that we need > n evaluation points to
do secret sharing.

3.7 Upper bound, malicious security, arithmetic circuits

For arithmetic circuits over large fields the parties can secret share their inputs
and compute the circuit using Beaver triples. A recent protocol by [GLS19] gives
a protocol that is not dependent on the depth of the circuit being computed:

Theorem 8. If C is an arithmetic circuit with g gates over a field F with |F| >
n, and κ is the size of field element, then there is a perfect maliciously secure
protocol for computing C using O(ngκ+ n3κ) bits of communication.

This shows that our lower bound of Ω(ngκ) is tight wrt. the circuit size for
arithmetic circuits over fields of sufficient size. It also shows that our lower
bound is the best generic lower bound one can hope to prove.

3.8 Upper bound, malicious security, IPI,n

The protocol from [GLS19] is based on secret sharings and as a result requires
fields with a size greater than the number of players, i.e. it must be the case that
|F| > n. This is because n distinct evaluation points are needed for the secret
sharing. For smaller fields this is usually remedied by mapping elements into an
extension field K and performing the secret sharings there. This unfortunately
incurs an overhead of O(lg n) compared to our lower bound.

To remedy this for our specific function IPI,n we can use reverse multiplica-
tion friendly embeddings (RMFE) following the work of [CCXY18]. An RMFE
allows us to evaluate multiple small circuits in an extension field in parallel with
good amortization in the communication.

Definition 2. Let F be a finite field. A k-RMFE scheme (φ, ψ) consists of two
F-linear mappings, φ : Fk → K, and ψ : K→ Fk where for any vectors a,b ∈ Fk

it holds that:

ψ(φ(a) · φ(b)) = a ∗ b

17

where ∗ is the coordinate-wise (Schur) product. This allows us to perform k
parallel multiplications in F using a single multiplication in K. Using an RMFE
scheme, [CCXY18] construct a protocol for Boolean circuits with an amortized
communication complexity of O(n) per multiplication gate:

Theorem 9. There is a secure n-party protocol for computing Ω(lg n) parallel
evaluations of a Boolean circuit with an amortized communication complexity of
O(n) per multiplication gate.

Proof. See [CCXY18]. ut

Theorem 10. There is a perfect maliciously secure protocol based on secret
sharing for computing IPI,n using O(n2I) bits of communication.

Proof. Let C be the circuit described in Lemma 7. Assume for simplicity that
nI = 2k and let u = Θ(k) be the the number of bits required to describe an
element in K. At a high level our strategy is to compose C into smaller circuits
for which we get good amortization. The resulting computation is then computed
without embeddings, in the hope that so much work was saved by parallelization
that the remaining computation is asymptotically small.

The protocol is parameterized by an integer i that denotes the depth at which
C is composed into smaller circuits: the parties first invoke the protocol from
[CCXY18] until all but the last i layers remain, and then ignore the output
reconstruction phase. At this point the parties have secret sharings of an ele-
ment w ∈ K that encodes all 2i wire values. The next step is extracting secret
shares of each wire value. To do so, the parties generate sharings of random bits
[r1], . . . [ru], encoding an element [r] for some random r ∈ K. To do this, each
party contributes a random bit [b] which are XORed together. To verify that the
parties actually input bits, a public opening of b2− b is produced and verified to
equal 0 (as the only roots are 0 and 1). Next the parties compute w−r and open
the result in public. The result is added to [r] to get a sharing [w]. Linearity of
the secret sharing implies the parties may apply ψ locally to get a secret sharing
of each wire value. Finally the parties invoke the protocol [DN07] on the shares
obtained on the rest of the circuit.

Let i = Θ(lg n) and let us analyze the communication complexity. It is clear
that the cost is dominated by the first phase since the remaining two steps do not
depend on I. It is also clear that the size of the circuit is Θ(nI) since there are
nI inputs. By Theorem 9 the complexity of the first phase is O(n) ·nI = O(n2I)
as we wanted to show. ut

3.9 Upper bound, malicious security, submaximal threshold

Both of the previous upper bounds assumed a maximal threshold of n = 3t+ 1.
In this section we briefly consider the case of submaximal threshold, i.e. where
n = 3t + s for some s > 1. In this setting we can use packed secret sharing to
”pack together” s shares into a single element, allowing us to evaluate multiple
gates in parallel and saving a factor O(s) in communication. This matches the

18

submaximal lower bound shown in this paper up to a constant factor. This
shows that packed secret sharing is the best kind of optimization in terms of
communication one could hope to achieve.

4 Conclusion and future work

In this paper we showed two classes of lower bounds for information-theoretic
multiparty computation. For the case of active security, we have show the bound
for a reactive functionality. It remains open whether a similar bound can be
shown for (non-reactive) secure function evaluation.

References

[BSFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minority.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, pages 663–680, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[BSPV99] Carlo Blundo, Alfredo De Santis, Giuseppe Persiano, and Ugo Vaccaro.
Randomness complexity of private computation. Computational Complex-
ity, 8(2):145–168, 1999.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
https://eprint.iacr.org/2000/067.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited. In
CRYPTO (3), volume 10993 of Lecture Notes in Computer Science, pages
395–426. Springer, 2018.

[CK93] Benny Chor and Eyal Kushilevitz. A communication-privacy tradeoff for
modular addition. Inf. Process. Lett., 45(4):205–210, 1993.

[DLN19] Ivan Damg̊ard, Kasper Green Larsen, and Jesper Buus Nielsen. Communi-
cation lower bounds for statistically secure mpc, with or without preprocess-
ing. In CRYPTO (2), volume 11693 of Lecture Notes in Computer Science,
pages 61–84. Springer, 2019.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In CRYPTO, volume 4622 of Lecture Notes in
Computer Science, pages 572–590. Springer, 2007.

[DNOR16] Ivan Damg̊ard, Jesper Buus Nielsen, Rafail Ostrovsky, and Adi Rosén.
Unconditionally secure computation with reduced interaction. In EURO-
CRYPT (2), volume 9666 of Lecture Notes in Computer Science, pages
420–447. Springer, 2016.

[DNPR16] Ivan Damg̊ard, Jesper Buus Nielsen, Antigoni Polychroniadou, and
Michael A. Raskin. On the communication required for unconditionally
secure multiplication. In CRYPTO (2), volume 9815 of Lecture Notes in
Computer Science, pages 459–488. Springer, 2016.

[DPP14] Deepesh Data, Manoj Prabhakaran, and Vinod M. Prabhakaran. On the
communication complexity of secure computation. pages 199–216, 2014.

19

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure com-
putation (extended abstract). pages 554–563, 1994.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure
computation (extended abstract). pages 699–710, 1992.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient uncon-
ditional mpc with guaranteed output delivery. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages
85–114, Cham, 2019. Springer International Publishing.

[GR03] Anna Gál and Adi Rosén. Lower bounds on the amount of randomness in
private computation. pages 659–666, 2003.

[KM97] Eyal Kushilevitz and Yishay Mansour. Randomness in private computa-
tions. SIAM J. Discrete Math., 10(4):647–661, 1997.

[KR94] Eyal Kushilevitz and Adi Rosén. A randomnesss-rounds tradeoff in private
computation. pages 397–410, 1994.

[Kus92] Eyal Kushilevitz. Privacy and communication complexity. SIAM J. Discrete
Math., 5(2):273–284, 1992.

[Par92] I. Parberry. The pairwise sorting network. Parallel Process. Lett., 2:205–211,
1992.

20

