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Abstract. Indifferentiability is used to analyze the security of construc-
tions of idealized objects, such as random oracles or ideal ciphers. Reset
indifferentiability is a strengthening of plain indifferentiability which is
applicable in far more scenarios, but is often considered too strong due
to significant impossibility results. Our main results are:
– Under weak reset indifferentiability, ideal ciphers imply (fixed size)

random oracles and random oracle domain shrinkage is possible. We
thus show that reset indifferentiability is more useful than previously
thought.

– We lift our analysis to the quantum setting showing that ideal ciphers
imply random oracles under quantum indifferentiability.

– Despite Shor’s algorithm, we observe that generic groups are still
meaningful quantumly, showing that they are quantumly (reset)
indifferentiable from ideal ciphers; combined with the above, crypto-
graphic groups yield post-quantum symmetric key cryptography. In
particular, we obtain a plausible post-quantum random oracle that
is a subset-product followed by two modular reductions.

1 Introduction

The random oracle model [BR93] (ROM) has become a critical tool for justifying
the security cryptosystems, both real-world and theoretical. In the ROM, all
parties, including the cryptosystem and adversary, are given oracle access to a
function H sampled uniformly from the set of all functions. To actually implement
the cryptosystem, H is replaced with a concrete cryptographic hash function,
with the hope that there is no way to exploit the structure of a well-designed H
to attack the cryptosystem. For many of the most efficient cryptosystems, the
random oracle model is the only known justification for security, and constructions
in the random oracle model tend to be simpler and require milder computational
assumptions than those without random oracles.

Random oracles are members of a larger class of “idealized” objects, where
an adversary is modeled as only having black box access. Ideal ciphers are
idealizations of block ciphers, modeled as random keyed permutations on an
exponentially-large domain. Generic groups are idealizations of cryptographic
groups, modeled as random embeddings of Zp into strings. Such idealized objects
have been used to design numerous cryptosystems (e.g. [RST01, Des00, BSW07,
AY20, CLMQ20]) or justify the security of new computational assumptions (e.g.
Diffie-Hellman [Sho97] and its many variants [BBG05, BFF+14, DHZ14, BMZ19]).



Using ideal objects simplifies the task of protocol design and analysis while
providing meaningful heuristics for security.

1.1 Indifferentiability

Hash functions and other objects are usually built from lower-level building
blocks. If one is not careful, such structure can be exploited in attacks [CDMP05],
thus violating the random oracle assumption, even if the lower-level building
block is treated ideally. The answer is the indifferentiability framework of Maurer,
Renner, and Holenstein [MRH04], a composable simulation-based definition
which captures what it means for a construction to be “as good as” an ideal
object, despite its structure, provided the underlying building block is treated
ideally. Here, “as good as” applies to a wide array of settings called “single-stage
games”, capturing most standard cryptographic definitions. Numerous positive
indifferentiability results are known, such as domain extension of random oracles
and the equivalence of random oracles and ideal ciphers [CPS08, HKT11, DS16].

Two Motivations for Reset Indifferentiability. In the more general setting of
“multi-stage” games, which capture cases where there are multiple distinct ad-
versary parties, indifferentiability is insufficient [RSS11]. Such games include
leakage resilience, deterministic encryption, key-dependent message security, and
non-malleability, among others. In order to generically guarantee composition for
multi-stage games, one needs a much stronger notion called reset indifferentiability,
which is equivalent to requiring that the simulator be stateless.

Unfortunately, reset indifferentiability is subject to significant impossibility
results [RSS11, LAMP12, DGHM13, BBM13]; in particular, any sort of domain
extension is impossible. Most prior work on reset indifferentiability focuses on
a “strong” variant, which requires a single universal simulator to work for any
distinguisher. Under this variant, even stronger impossibilities are known: in
particular, domain shrinkage is even impossible, which can in turn be used to prove
other impossibilities such as constructing constant-sized ideal ciphers from infinite-
sized random oracles, or vice versa [BBM13]. These are surprising and counter-
intuitive results, suggesting that strong reset indifferentiability is too strong to
be useful. As such, authors have proposed milder notions of indifferentiability,
showing that they apply to restricted classes of games [RSS11, DGHM13, Mit14].
However, reset indifferentiability is exactly characterized by general multi-stage
games, meaning there will necessarily be applications where such results cannot
be applied. Thus, under these weaker notions, security for a particular game has
to be carefully analyzed.

On the other hand, beyond the impossibility of domain extension, not much
is known about the “weak” variant of reset indifferentiability, where the stateless
simulator can depend on the distinguisher. This variant still captures general
multi-stage games, meaning any weak reset indifferentiability result implies full
applicability of the construction. Even though domain extension is still not
possible, the notion may still be useful in many applications. For example, if
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one is considering public key encryption with fixed-sized messages, then domain
extension may not be necessary.

An independent motivation for reset indifferentiability comes from the threat
of quantum computing. The ability of a quantum algorithm to query the idealized
object in superposition invalidates most classical results, and certain contrived
impossibilities are known [BDF+11, YZ20]. The difficulty is that even a single
superposition query “views” the entire oracle; in order to ensure that the simula-
tion of the ideal object is consistent and “looks like” the true ideal object, the
approach employed by most works (e.g. [BDF+11, Zha12b, Unr15, TU16]) has
been to simulate essentially statelessly, with the simulator usually depending on
the distinguisher. In the context of indifferentiability, such an approach would
correspond exactly to weak reset indifferentiability. We note that some recent
techniques [Zha19, LZ19, CMSZ19, DFMS19, DFM20, KSS+20, YZ20] utilize
stateful quantum simulators, and in particular [Zha19] proves the (non-reset)
indifferentiability of domain extension for random oracles. However, these tech-
niques are far more complex and require comparatively heavy quantum machinery,
making the techniques more difficult to use.

We highlight the specific case of random permutations, which has been
particularly challenging with few quantum results and techniques known for
the setting where inverse queries are allowed. In fact, we are only aware of
two such prior results1: [AR16] considers the Even-Mansour cipher, but only
considers adversaries with perfect success probability. [Zha16] constructs (non-
indifferentiable) quantum-secure PRPs in such a model, but side-steps the issue
of quantum queries entirely by having the entire oracle truth table be statistically
close to a random permutation.

Questions. The prior discussion raises the following natural questions:
– Can weak reset indifferentiability be used to achieve any non-trivial result,

even domain shrinkage?
– If so, how can one make non-black box use of the distinguisher to design an

indifferentiability simulator?
– Can fixed-size random oracles be built from ideal ciphers, or vice versa?
– Can random oracles (fixed-size or infinite size) be built from ideal ciphers
quantumly, even in the single-stage setting? In particular, can anything be
said about the Sponge construction?

Making progress on these questions will be the focus of our work.

1.2 Our Results

On Prior Impossibilities. Essentially the main prior impossibility for weak reset
indifferentiability is that of domain extension [RSS11, LAMP12, DGHM13,
1 We note that two separate recent papers [CMSZ19, Unr21] initially claimed stateful
quantum simulators for permutations with inverse queries, but both results were
later retracted due to subtle flaws. This further highlights the difficulty in working
with invertible permutations in the quantum setting.
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BBM13], with the other impossibilities [BBM13] relying crucially on strong reset
indifferentiability. We first observe that the techniques yielding the impossibility
of domain extension apply even in the setting of query-unbounded simulators.

In contrast, we prove random oracle domain shrinkage, ideal ciphers from
random oracles, and vice versa, in the unbounded simulator setting. More gener-
ally, we demonstrate that indistinguishability against query-unbounded attackers
can usually be lifted to indifferentiability using query-unbounded simulators.
The inefficient simulator makes these results rather un-useful for positive results.
Nevertheless, combined with the lack of prior positive results, this shows that
weak reset indifferentiability is essentially completely open for any application
that does not require domain extension. The main question then is: how can we
achieve an efficient simulator in these settings?

Positive Results for Weak Reset Indifferentiability. We first show that domain
shrinking is possible, under weak reset indifferentiability with an efficient simula-
tor. We thus see that random oracles with larger domain are strictly stronger that
random oracles with smaller domain. This is in sharp contrast to the “duality”
of strong reset indifferentiability, where any two objects are either equivalent or
incomparable, with most examples being incomparable [BBM13].

We also show how to construct a (fixed-size) random oracle from an ideal
cipher under weak reset indifferentiability, again with an efficient simulator.
Specifically, we show that a natural pad-and-truncation of an ideal cipher—that
is, the Sponge construction for a single-block message—gives a random oracle,
for sufficient padding and truncation. An interesting feature of our analysis of
pad-and-truncate is that the sum of the input and output sizes must be less than
the width of the cipher. We show that this is tight: any larger input/output size
will not be weakly reset indifferentiable, thus giving (to the best of our knowledge)
the first negative result for weak reset indifferentiability that does not rely on
domain extension. This is in contrast to the plain (non-reset) indifferentiability
setting, where any non-trivial truncation gives indifferentiability [DRRS09].

These positive results are obtained by first proving reset indifferentiability
in new shared randomness models, which allows the simulator access to some
consistent randomness, while still being stateless. We show that, for weak reset
indifferentiability and for certain classes of “nice” ideal objects (including random
oracles and ideal ciphers), the shared randomness can be removed to get a plain
reset indifferentiability result.

Quantum. All of our results extend to the quantum setting. The simulators
are identical to their classical counterparts, though the analysis requires new
ideas, given the difficulty of analyzing quantum algorithms that can make inverse
queries. We thus obtain the first proof of quantum (reset) indifferentiability for a
random oracle from an ideal cipher—and in particular the sponge construction for
single-block messages. This may give some evidence for the post-quantum (non-
reset) indifferentiability of SHA3, which is based on the full sponge construction.

4



While we cannot prove indifferentiability for the full Sponge construction2, we
can plug pad-and-truncate into the domain extension result of Zhandry [Zha19],
obtaining the first quantum indifferentiability proof of an arbitrary-size random
oracle from an ideal cipher, under (plain) indifferentiability.

The Post-Quantum Generic Group Model. We observe that Shor’s algorithm, by
virtue of being generic, is captured by the generic group model [Sho97] (GGM),
albeit the natural quantum variant allowing quantum access to the group. Thus,
despite Shor’s algorithm, the GGM remains a plausible heuristic in the quantum
setting. Shor’s algorithm, however, shows that the discrete-logarithm problem is
easy in the quantum accessible GGM, so the question is then: what use is it?

We demonstrate that the quantum accessible GGM is equivalent to an ideal
publicly-invertible injective function under (reset) indifferentiability. Our above
positive results for ideal ciphers extend to the injective function case. In particular,
by plugging in the above results, we obtain a quantum indifferentiable random
oracle from the generic group model3. When instantiating with the multiplicative
group over finite fields, the result is a plausible post-quantum hash function that
is simply a subset-product, followed by two modular reductions.

1.3 Discussion

Our work shows how to make use of non-black box simulators to achieve reset
indifferentiability results that are impossible under the strong variant. We thus
show that reset indifferentiability is more useful than suggested by prior works.
Perhaps the main open question in the classical setting is whether ideal ciphers
can be built from random oracles under reset indifferentiability.

We expand the set of techniques available for analyzing quantum queries to
permutation inverses, and in doing so expand the applicability of “old school”
quantum simulation techniques, showing for the first time that stateless simulation
is capable of achieving non-trivial indifferentiability results. Our hope is that
our techniques can be combined with the sophisticated “new school” quantum
techniques to aid in additional positive results. For example, can quantum
indifferentiable ideal ciphers be built from random oracles?

Our results also show that cryptographic groups remain potentially useful
in the quantum setting, just that they are limited to the symmetric key setting.
While existing symmetric cryptography appears somewhat resilient to quantum
attacks, we believe it is nevertheless important to study alternative techniques
for building quantum-resistant symmetric cryptography.

2 Our techniques work within the framework of reset indifferentiability, which cannot
achieve domain extension, and therefore our techniques cannot apply to the full
Sponge construction.

3 [ZZ21] previously suggest building a random oracle from generic groups. Their result
however is in the classical setting using stateful simulators, which does not translate
to quantum. Our results are required to get a quantum indifferentiability proof.
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1.4 Concurrent and Independent Work

Currently and independently of our work, Czajkowski [Cza21] prove the (plain)
indifferentiability of the full Sponge construction in the quantum setting, necessar-
ily using a stateful quantum simulation technique. In particular, this also justifies
the plain quantum indifferentiability of the pad-and-truncate construction. The
results and techniques are largely incomparable to ours, as we focus on reset
indifferentiability.

2 Technical Overview and Discussion

Indifferentiability. Recall the usual notion of indistinguishability between two
distributions over functions F,G, which says that the functions cannot be distin-
guished by oracle access. We will denote such indistinguishability as

F ≈ G .

Indistinguishability is sufficient for settings like constructing a PRP from a PRF,
as the underlying PRF building block is private an not directly accessible to the
adversary. In the settings of length extension for hash functions, building ideal
ciphers from random oracles, etc, indistinguishability is not sufficient since the
adversary additionally can query the underlying building block, and indifferen-
tiability [MRH04] is required instead. A construction C making oracle queries
to an ideal object A (denoted CA), is indifferentiable from an ideal object B if
there exists a simulator S making queries to B (denoted SB) such that

(CA, A) ≈ (B,SB) .

The above says that an adversary with two query interfaces—an “honest” interface
to B and “adversarial” interface to A—cannot distinguish the “Real Word” where
B is set to CA for ideal object A from the “Ideal World” where B is ideal and
A is simulated as SB. For building an ideal cipher from a random oracle, A
represents a random oracle and B an ideal cipher, with CA being a construction
of a cipher from a hash function.

Note that, while the expression above appears symmetric between A and B, for
plain indifferentiability the notation hides the fact that S can keep state between
queries, whereas C is usually considered to be stateless. Reset indifferentiability
is a strengthening of indifferentiability to require S to be stateless as well.
As discussed above, reset indifferentiability is required in settings known as
“multi-stage games.” We disambiguate between strong and weak security, were
strong requires a universal simulator that works for any potential distinguisher
between (CA, A) and (B,SB), whereas weak allows for a distinguisher-dependent
simulator. Weak reset indifferentiability is sufficient for composition and multi-
stage games [RSS11]. Strong reset indifferentiability turns out to fully symmetric,
with the roles of C and S being interchangeable [BBM13]. This means that any
construction (resp. impossibility) of B from A immediately gives a construct
(resp. impossibility) of constructing A from B.
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2.1 On Prior Impossibilities

We show that if one relaxes to query-unbounded simulation, then indistinguisha-
bility can be upgraded to weak reset indifferentiability, provided the indistin-
guishability holds against query-unbounded distinguishers. The idea is that the
simulator can query the entire object B, and then sample A conditioned on CA
being functionally identical to B; such sampling is guaranteed by plain indis-
tinguishability against query-unbounded simulators. The difficulty is that there
may be many A such that CA is equivalent to B, and we must ensure that the
simulator can consistently choose the same A each time. For this, we show the
simulator can basically have a choice of A hard-coded for each separate B. The
details are given in Section 4.

Query-unbounded indistinguishability follows from known results in various
settings. For example, perfect shuffles [GP07] allow for constructing PRPs from
random oracles. Domain shrinking is also trivial. Our general theorem shows how
to lift these result to weak reset indifferentiability, albeit with inefficient simulators.
Due to the above inefficient simulator, the result is not immediately useful.
However, we observe that the impossibility of domain extension holds even under
such inefficient simulators; for completeness, we give the result in Appendix B.
Since domain extension is the main impossibility known to hold for weak reset
indifferentiability, this shows that new techniques would be required to rule out
an efficient simulator. We thus demonstrate that weak reset indifferentiability is
largely open for settings that do not involve domain extension.

2.2 A New Model: Shared Randomness

We introduce a new model of indifferentiability, which we call shared randomness
reset indifferentiability. Here, the simulator S is still stateless, but is allowed to
query a random oracle R—independent from A and B—in addition to querying
B; we require that:

(CA, A) ≈ (B,SB,R) .

Note that the random oracle breaks the symmetry between A and B. In particular,
we note that domain shrinking is trivial in this setting, as the simulator can use
R to simulate the parts of A that are ignored by CA.

In Section 6, we also show that shared randomness is sufficient for constructing
a fixed-size random oracle h from a (keyless) ideal cipher P, P−1. The construction
is the natural one based on truncation:

PadTruncP,P
−1

c,d (x) = P (x||0(1−c)n)|[dn] .

Here, c, d ∈ (0, 1) are constants, P is an ideal cipher on n-bit inputs, x is cn bits
and y|[r] is the first r bits of y. Interestingly, we show that if c+ d > 1, then the
truncation-based construction is actually not reset indifferentiable:

Theorem 1 (Informal). If c + d > 1, PadTruncc,d is not shared-randomness
weakly reset indifferentiable from a random oracle.
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The proof of this theorem is as follows. Consider a distinguisher D with query
access to a function H and permutation P, P−1. It first chooses a random
x ∈ {0, 1}cn and queries w||z ← P (x||0(1−c)n). It also queries w′ ← H(x),
and checks that w′ = w. Then it queries x′||y′ ← P−1(w||z), and checks that
x′ = x, y′ = 0(1−c)n. D outputs 1 if and only if all checks pass. Note that in the
“Real world” where H = PadTruncP,P

−1

c,d , D outputs 1 always. However, in the
“Ideal world” with P, P−1 being supposedly simulated by a stateless simulator
SH , we argue that D outputs 0 almost always. Indeed, a stateless simulator must
have w = w′ to pass the distinguisher’s first check. But then to answer the query
P−1(w||z), it must somehow come up with the original pre-image x of w. Since
the simulator is stateless, it cannot remember x, and so computing x would seem
to require inverting H on w, which is impossible for a random oracle H.

This intuition is not quite correct, as the simulator is also given z as input,
which can be seen as some side-information about x. However, for c + d > 1,
z is shorter than x, and therefore there must be some entropy left in x. Since
random oracles remain hard to invert even for entropic sources, the inability for
the simulator to output x follows.

On the other hand, for c+ d ≤ 1, we show that PadTruncc,d actually is reset
indifferentiable:

Theorem 2 (Informal). If c+ d ≤ 1, PadTruncc,d is (strongly) reset indiffer-
entiable from a random oracle in the shared randomness model.

Inspired by the impossibility above, we devise a simulator that statelessly encodes
x into z so that x can be recovered from z alone. It does this by setting z to be
the result of a random injection I applied to x, in the case that y = 0(1−c)n. For
I to indeed be a random injection, we must have c+ d ≤ 1. The problem is that
I represents state, which is not allowed in reset indifferentiability. Fortunately,
for shared randomness reset indifferentiability, S has access to a random oracle
R; it can use this single random oracle to build I. Essentially, it follows typical
approaches to building block ciphers from pseudorandom random functions, but
instantiating the pseudorandom function using R.

In Section 5, we show that shared randomness reset security actually implies
standard weak security, in many settings:

Theorem 3 (Informal). Suppose a construction CA is shared randomness
weakly reset indifferentiable from B, and that B has certain nice “extraction”
properties. Then CA is also weakly reset indifferentiable from B in the non-
uniform setting, without shared randomness.

Combining with the above results shows that the ideal cipher model implies
random oracles under weak reset indifferentiability.

The theorem is proved in two steps. First, we replace the shared randomness
R with a q-wise independent hash function Rq, where q is set sufficiently large
relative to the number of queries made by the adversary. The result is perfectly
indistinguishable from a truly random R. Next, we use a trick from [BBM13]
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to compute Rq from the oracle B itself, in a way such that Rq is random and
independent from the adversary’s view.

We note that our simulator is almost black box, but requires knowledge of
the number of queries made by the distinguisher, both to select q and to apply
the trick from [BBM13].

2.3 Quantum Distinguishers and Generic Groups

Reset indifferentiability is conveniently amenable to quantum proof techniques,
and we show how to upgrade our positive results to the quantum setting. This is
not trivial, but we show how to structure the classical proofs in such a way that
they can be lifted to the quantum setting by plugging in known quantum query
lower bounds in key steps. This requires care, since existing techniques mostly
prohibit inverse queries to random permutations, whereas our results require
on such inverse queries. We thus must carefully embed prior inverse-query-less
results into our setting to achieve our results. As a result, we obtain fixed-size
random oracles from ideal ciphers quantumly. Generically plugging into the
domain extension result of Zhandry [Zha19], we obtain the first proof of quantum
indifferentiability of an (arbitrary) size random oracle from an ideal cipher:

Corollary 1. There exists a construction C of an (arbitrary-size) random oracle
from an ideal cipher that is quantum (non-reset) indifferentiable.

We note that our lower bound on the necessary truncation of ideal ciphers
also trivially extend to the quantum setting, since a classical distinguisher is in
particular a quantum distinguisher4.

We next investigate the generic group model, quantumly. The generic group
model consists of a random injective “labeling” function L with domain Zp, as
well as an addition function mapping L(x), L(y) 7→ L(x+y). It is well known that
Shor’s quantum discrete log algorithm [Sho94] works on any cryptographic group;
another interpretation is that Shor’s algorithm works in the quantum-accessible
generic group model. This interpretation of the generality of Shor’s algorithm is
usually seen as a negative, since it means that there is no hope of circumventing
the algorithm by using alternate groups. But we interpret this as showing that
Shor’s algorithm does not fundamentally alter the validity of the generic group
model quantumly. It just shows that discrete logarithms are now tractable.

Since Shor’s algorithm lets us invert L, we show it actually establishes the
quantum (reset) indifferentiability of L from a random publicly-invertible injection.
Our positive results from above readily apply to publicly invertible injections,
and therefore give an quantum indifferentiable hash function from generic groups.

If we in particular focus on the case of finite fields, what we get is the
hash function H(x) = (gx mod p) mod 2n, where x ∈ {0, 1}n for 2n ≤ log p. By
4 There is a slight subtlety here, as quantum (reset) indifferentiability allows for a
quantum simulator, whereas classical indifferentiability does not. Thus, quantum and
classical indifferentiability are technically incomparable. Nevertheless, our impossibility
results trivially adapt to the quantum simulator case.
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pre-computing the various powers of 2, gx becomes a modular subset-product
computation. The overall hash function is then a modular subset product followed
by an additional modular reduction that can plausibly be used as a (quantum
immune) random oracle.

3 Preliminaries

Unless otherwise noted, all functions, sets, algorithms, adversaries, distinguishers,
simulators, and distributions are functions of a security parameter λ. We will
often omit the security parameter; for example, when we say that X is a set, we
mean that X is a family of sets {Xλ}λ. When we say that a function is polynomial
or negligible, we mean polynomial or negligible in λ. When there are multiple
functions of λ, we assume all functions use the same λ.

For an algorithm A making queries to another (potentially stateful) algorithm
B, we will denote their interaction by AB .

Ideal Objects. For sets X ,Y, a ideal object is a distribution over functions from
X to Y. Some idealized objects we will consider:
– Random oracles. A random oracle is just the uniform distribution over all

functions RO from X to Y. We denote this distribution by YX . Note that
we will usually think of X ,Y as finite exponential size. It is also possible to
consider an infinite random oracle, in which case X is infinite.

– Ideal ciphers. Let X = {0, 1} × K × Y for exponential-size Y, and K
be another set. An ideal cipher is sampled by choosing a function P :
K × Y → Y, where for each k, the function P (k, ·) is a uniformly ran-
dom permutation. Let P−1(k, ·) be the inverse of P (k, ·). The oracle is then

IC(b, k, x) =
{
P (k, x) if b = 0
P−1(k, x) if b = 1

. We note that ideal ciphers are typically

modeled as being keyed, which corresponds to an exponential-sized family
of independent ideal permutations. It is also possible to consider the keyless
setting, where K = {1}, and can be omitted.

– (Keyed) Random Injections. Let Y = Y ′ ∪ {⊥}, Z an exponential-sized
set such that |Z| ≤ |Y ′|, and K be another set. Then let X = ({0}×K×Z)∪
({1} × K × Y ′). A keyed random injection is sampled by choosing a function
I : K ×Z → Y ′ where for each k, the function I(k, ·) is a uniformly random
injection. Let I−1(k, y) be the function that outputs x such that I(k, x) = y if

it exists, and otherwise outputs ⊥. Then RI(b, k, x) =
{
I(k, x) if b = 0
I−1(k, x) if b = 1

.

– Generic groups. Let p be an exponentially-large prime such that |Y| ≥ p,
and let L be a random injection from Zp to Y. The function GG then maps
x 7→ L(x), and also (`1, `2) 7→ L( L−1(`1) + L−1(`2) ). Here, if L−1 is
undefined on an input `, the entire expression outputs ⊥. Note that the
generic group model usually also allows for subtraction, but this is redundant
since p is known, and −1 ≡ p − 1 mod p can be computed using just the
addition operation.
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Quantum. We will not need much quantum background in this work. In particular,
all of our quantum results basically follow the classical proofs, but with key
parts replaced with quantum equivalents. For completeness, we provide a brief
quantum background. A quantum system Q is defined over a finite set B of
classical states. The pure states of Q form a complex Hilbert space of dimension
|B|, where the vectors/states assign a complex weight to each element in B.
We will denote pure states using the key notation φ〉. Given quantum systems
Q0, Q1 over B0, B1 respectively, the product system is Q = Q0 ×Q1 over states
B = B0 ×B1 = {(b0, b1) : b0 ∈ B0, b1 ∈ B1}.

A pure state |φ〉 is manipulated by performing a unitary transformation U to
the state |φ〉. A pure state |φ〉 can also be measured; the measurement outputs
the value x with probability |〈x|φ〉|2; afterward, the state “collapses” to the
state |x〉. A quantum computer will be able to perform a fixed, finite set G of
unitary transformations, which we will call gates. For concreteness, we will use
so-called Hadamard, phase, CNOT and π/8 gates. Each gate or measurement
costs unit time to apply. An efficient quantum algorithm will be able to make a
polynomial-length sequence of operations, where each operation is either a gate
from G or a measurement.

Any efficiently computable classical function can also be computed efficiently
on a quantum computer, though care is needed to make the transformation
unitary. Concretely, if f is computable by a polynomial-sized circuit, then there is a
efficiently computable unitary Uf on the quantum system Q = Qin⊗Qout⊗Qwork
with the property that: Uf |x, y, 0〉 = |x, y + f(x), 0〉. Here, Qwork is an ancillary
quantum system that is used as workspace, and is erased after the computation.

If a quantum algorithm has quantum oracle access to a function f , the oracle
applies the unitary Uf as defined above.

3.1 Indifferentiability

Let A,B be two distributions over functions, and C a polynomial-time oracle-
aided circuit. We write CA to be the distribution over CA where A← A.

Definition 1. CA is (strong statistical classical plain) indifferentiable from B if
there exists a polynomial-size, potentially stateful, oracle-aided simulator S such
that, for any probabilistic potentially unbounded oracle-added Turing machine D
making at most a polynomial number of queries, there is a negligible ε such that∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B

[
DB,SB

() = 1
]∣∣∣ ≤ ε .

Variants. We now discuss some variants of the indifferentiability definition:

– Weak vs strong. Weak indifferentiability allows for S to depend on D,
flipping the order of quantifiers.

– Computational vs statistical vs perfect. Computational indifferentia-
bility only requires security to hold for polynomial-sized D. Note that in
the statistical case, we still bound the number of queries made by D to be
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polynomial. On the other hand, perfect indifferentiability requires security to
hold for unbounded Turing machines, and for ε to be 0.

– Quantum vs classical. Quantum indifferentiability requires security to
hold for quantum distinguishers D which can make quantum queries to their
oracles, but potentially allows for quantum simulators S which can make
quantum queries as well.

– Reset vs plain. Reset indifferentiability requires S to be stateless. We note
that [RSS11] define reset indifferentiability differently, allowing the simulator
to be stateful but allowing the distinguisher to “reset” the simulator to its
initial state at any point. The two versions are readily seen to be equivalent,
and we prefer the stateless simulator definition for its simplicity.

We note that the four variants above are all orthogonal and any subset can
be considered, given a total of 24 possible notions of indifferentiability. Note
that strong implies weak, reset implies plain, and perfect implies statistical
implies computational, for any settings of the other variants. Quantum does not
necessarily imply classical since it could be the case that a quantum simulator
can fool a classical distinguisher, but no classical simulator can. However, in all
cases we will consider in this work, if the scheme is quantum indifferentiable for
some setting of the other variants, it will also be classical indifferentiable for the
same variants. Thus, for our purposes, we will treat quantum indifferentiability
as being stronger.

4 Lifting Indistinguishability to Indifferentiability in the
Unbounded Setting

Here, we show how to lift query-unbounded indistinguishability into weak reset
indifferentiability, albeit with query-unbounded simulation.

Theorem 4. Let A,B be distributions and C a construction. Suppose the dis-
tributions of truth tables B and CA for A ← A, B ← B are statistically
close. Suppose further that B has super-logarithmic min-entropy H∞(B) :=
minB log 1/Pr[B ← B]. Then for any (potentially query unbounded, classical
or quantum) distinguisher D, there exists a query unbounded classical simulator
S and a negligible ε such that:∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B

[
DB,SB

() = 1
]∣∣∣ ≤ ε .

In other words, if CA is indistinguishable from B against unbounded distinguishers,
then CA is also indifferentiable from B, albeit using a query unbounded simulator.

Proof. Fix any distinguisher D. For any B, let QB be the distribution over
A← A, conditioned on CA being ideal to B. Then, by the statistical closeness
of CA and B, we have that there exists a negligible δ such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,A←QB

[
DB,A() = 1

]∣∣∣∣ ≤ δ
12



Now consider the following distribution J over functions J : for each B, J(B) is
sampled from QB , independently from all other inputs. Then we have that

Pr
B←B,J←J

[
DB,J(B)() = 1

]
= Pr
B←B,A←QB

[
DB,A() = 1

]
We now describe our simulator S. S will have a J hard-coded For every query,
it will compute the truth table for B in its entirety by making exponentially
many queries, and then set A = J(B). It will then answer the query using A. It
remains to show how to select J . What we show is that, for any D, a random J
drawn from J will do, with overwhelming probability.

Concretely, we observe that p := PrB←B,J←J
[
DB,J(B)() = 1

]
can be written

as p =
∑
B Pr[B ← B]pB, where pB ∈ [0, 1] is the random variable obtained by

sampling A ← QB and outputting Pr[DB,A() = 1], where the last probability
is over any random coins of D. Each pB is in [0, 1], and the expectation of p is
exactly q := PrB←B,A←QB

[
DB,A() = 1

]
.

Applying Hoeffding’s inequality to the random variables Pr[B ← B]pB, we
have that

Pr[|p−q| ≥ γ] ≤ 2e−2γ2/
∑

B
Pr[B←B]2

≤ 2e−2H∞(B)γ2/
∑

B
Pr[B←B] = 2e−2H∞(B)γ2

Since H∞(B) is super-polynomial, we can choose γ negligible while still having
2e−2H∞(B)γ2

< 1. Thus, there is some value of pB for each B (and hence choice
of J) such that |PrB←B

[
DB,J(B)() = 1

]
− p| ≤ γ. The simulator therefore uses

this choice of J , and we have∣∣∣ Pr
A←A

[
DCA,A() = 1

]
− Pr
B←B

[
DB,SB

() = 1
]∣∣∣ ≤ δ + γ

which is negligible. ut

5 Shared Randomness Indifferentiability
In this section, we present our new shared randomness model of reset indiffer-
entiability. In this model, the simulator has access to a source of randomness,
and the same randomness is used in every invocation of the simulator. We will
actually consider two variants, one where the shared randomness is simply a
random string, and the other where the shared randomness is a random oracle.

Shared Random String (SRS). Here, the simulator has access to an arbitrary-size
random string.
Definition 2. CA is (strong statistical classical) reset indifferentiable from B in
the SRS model if there exists set R and a polynomial-sized stateless oracle-aided
simulator S such that, for any probabilistic potentially unbounded oracle-added
Turing machine D making at most a polynomial number of queries, there exists a
negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,r←R

[
DB,SB(· ; r)() = 1

]∣∣∣∣ ≤ ε .
Above, SB(· ; r) means that queries x to S are answered as SB(x ; r).
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Shared Random Oracle (SRO). Here, the simulator has access to an arbitrary-
sized random oracle.

Definition 3. CA is (strong statistical classical) reset indifferentiable from B in
the SRO model if there exists sets X ,Y and a polynomial-sized stateless oracle-
aided simulator S such that, for any oracle-aided Turing machine D making at
most a polynomial number of queries, there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,H←YX

[
DB,SB,H

() = 1
]∣∣∣∣ ≤ ε .

Above, YX is the uniform distribution over the set of all functions from X to Y.

When contrasting SRS or SRO indifferentiability from Definition 1, we call
Definition 1 the standard model. Strong vs weak, computational vs statistical vs
perfect, and quantum vs classical are defined analogously to the setting without
shared randomness. Note that the definitions also makes sense in the plain (non-
reset) setting. However, the SRS and SRO models are redundant in the plain
setting, as shown in the following:

Lemma 1. Let Φ ∈ {strong,weak}, Γ ∈ {computational, statistical, perfectly}
and ∆ ∈ {classical, quantum}. If CA is Φ Γ ∆ plain indifferentiable from B in
either the of the SRS or SRO models, then it is also Φ Γ ∆ plain indifferentiable
from B in the standard model.

Proof. All 12 settings of Φ, Γ,∆ are essentially identical. We first show the SRS
case. Given a simulator S for SRS indifferentiability, we can simply create a new
simulator which chooses a random string r at the first query, and answers all
queries using S(· ; r).

For the SRO case, we can simulate the shared random oracle on the fly. In
the classical case, this is done via lazy sampling; in the quantum case, this is
done using Zhandry’s compressed oracles [Zha19]. ut

We note that shared randomness is not necessarily redundant in the reset setting
since there is no explicit ability to store r in order to maintain consistency
between the different executions. Looking forward, our results imply that shared
randomness is an extra resource in the strong reset setting (in the sense that it
makes the notion weaker), but it is usually redundant in the weak reset setting.

5.1 Domain Shrinkage

To illustrate the utility of the shared randomness models, we show that the
SRO model is sufficient for domain shrinkage, even with reset indifferentiability.
This is in contrast to strong reset indifferentiability without shared randomness,
where [BBM13] show that domain extension and shrinkage are impossible.

Our domain shrinker is the obvious one, which just ignores part of the domain.
Let X ,Y be sets with A : X → Y . Let X ′ ⊂ X . Then ShrinkA : X ′ → Y is simply
defined as ShrinkA(x) = A(x).
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Theorem 5. ShrinkRO is strong perfectly quantum and classical reset indifferen-
tiable from a random oracle, in the SRO model.

Proof. Let B : X ′ → Y and H : X → Y. Let

SB,H(x) =
{
B(x) if x ∈ X ′

H(x) if x /∈ X ′
.

First, note that ShrinkS
B,H

(x) = B(x). Also note that if B,H are random func-
tions, then SB,H(·) is a random function. Thus, for any distinguisher D (quantum
or classical, computationally unbounded), we have that Pr

[
DShrinkA,A() = 1

]
=

Pr
[
DB,SB,H () = 1

]
. ut

In the next few subsections, we will show how to remove the SRO model in the
setting of weak reset indifferentiability, ultimately achieving domain shrinkage in
the plain model with weak reset indifferentiability.

5.2 SRO Implies Weak SRS

Here, we show that indifferentiability with shared random oracles implies indiffer-
entiability with shared random strings, in the weak indifferentiability setting. The
idea is to simulate the random oracle using a k-wise independent hash function,
which can be set as the shared random string.

Theorem 6. Let Γ ∈ {computational, statistical, perfect}, ∆ ∈ {classical, quantum}.
If CA is weak Γ ∆ reset indifferentiable from B in the SRO model, then it is
also weak Γ ∆ reset indifferentiable from B in the SRS model.

Proof. The computational, statistical, and perfect settings are identical, and will
be proved together. We first prove the classical case, the quantum case being a
small modification that we describe at the end.

Let D be a supposed distinguisher for reset indifferentiability, which we will
interpret as a potential distinguisher in both the SRS and SRO models. By
SRO indifferentiability, there exists sets X , Y and a simulator SB,H satisfying
Definition 3, meaning there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,H←YX

[
DB,SB,H

() = 1
]∣∣∣∣ ≤ ε .

Now, let q0 be an upper bound on the number of queries D makes, and q1
an upper bound on the number of queries S makes to H on any call to S. Then
DB,SB,H () makes at most k = q0q1 calls to H. Let F be a family of k-wise
independent functions. Then

Pr
B←B,H←YX

[
DB,SB,H

() = 1
]

= Pr
B←B,f←F

[
DB,SB,f

() = 1
]
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Our new simulator therefore sets F as the space of random strings, and f
the shared randomness. SRS security immediately follows.

For the quantum case, we just set F to be a family of 2k-wise independent
functions, and security follows from the following Lemma of Zhandry [Zha12b]:

Lemma 2 ([Zha12b]). Let F to be a family of 2q-wise independent functions
from X to Y. Then for any algorithm D making at most q quantum queries,
Prf←F [Df () = 1] = Prf←YX [Df () = 1].

This completes the proof of Theorem 6. ut

5.3 SRS Often Implies Standard Weak Indifferentiability

Here, we show that SRS (and therefore SRO) indifferentiability often gives weak
indifferentiability in the standard model. The intuition is to use the idealized
object A itself to simulate the random string.

Extractable Distributions. Here, we define a notion of extractability for a distri-
bution, which captures the ability to extract randomness from the function.

Definition 4. A distribution A over functions A : X → Y is statistically clas-
sically extractable if, for any polynomial ` and any computationally unbounded
distinguisher D making a polynomial number of classical queries, there exists a
deterministic polynomial time oracle-aided Turing machine ExtA() which outputs
` bit strings, and a negligible function ε such that:∣∣∣∣ Pr

A←A,r←{0,1}`

[
DA(r) = 1

]
− Pr
A←A

[
DA(ExtA()) = 1

]∣∣∣∣ ≤ ε .
In other words, D cannot distinguish the output of ExtA from random. We define
computational, perfect, and quantum extractability analogously.

We expect most idealized models of interest to be extractable. In particular,
we demonstrate that random oracles are extractable, as is any idealized model
that can build random oracles under plain (non-reset) indifferentiability.

Theorem 7. Random oracles are perfectly classically and quantumly extractable.

Proof. Our proof follows ideas from [BBM13], who show how to remove ephemeral
(per query) randomness from “pseudo-deterministic” simulators. We generate
randomness in the same way, but with a different application and additional
prove the quantum case. First, we will assume for simplicity that A has `-bit
outputs, which is without loss of generality since we can always trade off input
and output length in a random oracle, the result potentially multiplying the
number of queries by up to ` while being perfectly indifferentiable.

Then we have ExtA() work as follows. For a parameter k to be chosen latter,
Ext arbitrarily (but deterministically) chooses k distinct points (xi)i∈[k], and
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outputs r = ⊕i∈[k]A(xi). Since we require random oracles to have exponential-
sized domains, there will always exist k distinct points.

To prove extractability, we first consider the classical case. We set k = q + 1.
Then any q-query algorithm D cannot possibly query all the xi. As such, at
least one of the A(xi) values will be information-theoretically hidden from D,
meaning r = ⊕i∈[k]A(xi) is information-theoretically hidden. As such, D cannot
distinguish r from random.

For the quantum case, more care is required since the distinguisher can query
on superpositions of potentially all xi, meaning we cannot argue any particular
A(xi) is hidden. Instead, we use the following result of Zhandry [Zha15b]:

Lemma 3 ([Zha15b], Theorem 5.1). Let Q be a q-quantum query algorithm
to A. Then Pr[QA() = ⊕i∈[k]A(xi)] ≤ bk/(k − q)c/2`. In particular, if q < k/2,
then the probability is at most 2−`.

We now turn the very strong intractability of computing r into the desired
indistinguishability. Let k = 2q + 1 and let D be a q-query distinguisher. Let
p0 be the probability D outputs 1 when given ⊕i∈[k]A(xi), and let p1 be the
probability D outputs 1 when given a random r 6= ⊕i∈[k]A(xi) as input. Suppose
p0 6= p1. In this case, assume without loss of generality that p0 > p1, by flipping
the output bit of D if necessary.

We construct Q as follows: QA() chooses a random r, and runs b← DA(r).
If b = 1, it outputs r; otherwise it chooses a new random r′ and outputs r′.

We now compute the probability QA() outputs ⊕i∈[k]A(xi). Conditioned on
r = ⊕i∈[k]A(xi), then QA() outputs r (and is hence correct) with probability
p0; otherwise it outputs a random r′, which is correct with probability 2−`.
Conditioned on r 6= ⊕i∈[k]A(xi), QA() is only correct if it outputs r′ (which
happens with probability 1− p1) and r′ is correct (which has probability 2−`).
Over, the probability QA() is correct is then

Pr[QA() = ⊕i∈[k]A(xi)] = 1
2`

(
p0 + (1− p0) 1

2`

)
+ 2` − 1

2` (1− p1) 1
2`

>
1
2`

(
p0 + (1− p0) 1

2`

)
+ 2` − 1

2` (1− p0) 1
2`

= 1
2` p0 + 1

2` (1− p0) = 1
2`

thus contradicting Lemma 3. ut

Though not needed for our main results, we would also like to show that ideal
ciphers are extractable. Classically, the same Ext from the proof of Theorem 7 also
works for ideal ciphers. Quantumly, however, the situation is more difficult, in
particular because do not know a suitable analog of Lemma 3 for the ideal cipher
setting. While it is possible to directly prove that ideal ciphers are quantum
extractable by carefully adapting known techniques, we will prove a more general
theorem which shows that any ideal model which implies random oracles under
indifferentiability is also extractable.
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Theorem 8. Let Γ ∈ {computational, statistical, perfect}, ∆ ∈ {classical, quantum}.
Suppose A is a distribution over functions such that there exists a construction
CA that is strong Γ ∆ plain indifferentiable from a random oracle. Then A is Γ
∆ extractable.

Proof. We prove the classical statistical case, the quantum and perfect/computational
cases being essentially identical. Let ` be a polynomial and D a potential distin-
guisher for the extractability of A. Let S be the universal simulator guaranteed
by the strong (plain) indifferentiability of CA. Then consider the distinguisher
DB0 = DSB for the extractability of the random oracle B. By Theorem 7, there
must exist an extraction procedure ExtB0 and negligible ε such that∣∣∣∣ Pr

B←B,r←{0,1}`

[
DB

0 (r) = 1
]
− Pr
B←B

[
DB

0 (ExtB()) = 1
]∣∣∣∣ = 0 .

Remembering that DB0 = DSB , we interpret DA(ExtB0 ) and DA(r) as distinguish-
ers for the indifferentiability of CA, meaning there exists a negligible δ, δ′ such
that ∣∣∣ Pr

B←B

[
DB

0 (ExtB0 ()) = 1
]
− Pr
A←A

[
DA(ExtC

A

0 ()) = 1
]∣∣∣ ≤ ε∣∣∣∣ Pr

B←B,r←X

[
DB

0 (r) = 1
]
− Pr
A←A,r←X

[
DA(r) = 1

]∣∣∣∣ ≤ ε′
We now let ExtA() = ExtC

A
(), and we conclude that∣∣∣∣ Pr

A←A,r←{0,1}`

[
DA(r) = 1

]
− Pr
B←B

[
DB

0 (ExtB()) = 1
]∣∣∣∣ < ε+ ε′ .

Thus Ext satisfies Definition 4. ut

Looking ahead, in Section 6, we will prove that ideal ciphers can be use to
construct random oracles that are sufficiently indifferentiable to apply Theorem 8.
This means that ideal ciphers are extractable.

Removing shared randomness for extractable sources. We now show that, if the
source is extractable, we can remove shared randomness in the weak indifferen-
tiability setting.

Theorem 9. Let Γ ∈ {computational, statistical, perfectly}, ∆ ∈ {classical, quantum}.
If CA is weak Γ ∆ reset indifferentiable from B in the SRS model, and if B is
Γ ∆ extractable, then CA is also weak Γ ∆ reset indifferentiable from B in the
standard model.

Proof. All six settings are essentially identical, so we prove the statistical classical
case. Let D be a supposed distinguisher for reset indifferentiability, which we will
interpret as both a potential distinguisher in both the SRS and standard models.
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By SRS indifferentiability, there exists a set X and a simulator SB satisfying
Definition 2, meaning there exists a negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,r←X

[
DB,SB(· ; r)() = 1

]∣∣∣∣ ≤ ε .
Consider the extractability distinguisher EB(r) := DB,SB(· ; r)() for B. By

the assumed extractability of B, there exists an extraction procedure Ext and
negligible δ such that∣∣∣∣ Pr

B←B,r←X

[
DB,SB(· ; r)() = 1

]
− Pr
B←B

[
DB,SB(· ; r)() = 1 : r = ExtB()

]∣∣∣∣ ≤ δ .

We therefore define a new standard-model simulator TB(x) = SB(x ; ExtB()).
The result is that∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
A←A

[
DB,TB

() = 1
]∣∣∣ ≤ ε+ δ

Thus establishing reset indifferentiability in the standard model. ut

As an immediate corollary, we have:

Corollary 2. For any X ′ ⊆ X , ShrinkRO is weak statistical (classical and quan-
tum) reset indifferentiable from a random oracle, in the standard model.

Remark 1. It may seem odd that we can use extractability to prove reset in-
differentiability, when Theorem 8 only needs plain indifferentiability to justify
extractability. Note, however, that the actual indifferentiability simulator uses
Ext, which in turn uses the construction of a random oracle from the original
source. Ext is therefore stateless, preserving reset indifferentiability. The simulator
used to justify extractability only comes up as a hybrid in the security analysis,
where it is okay to keep state.

5.4 Extensions

It is possible to consider shared randomness beyond random oracles. Here, we
consider a generalization to oracle distributions are constructible from random
oracles.

Definition 5. We say a distribution F is statistically classically constructible
from G if there is a deterministic polynomial-time oracle-aided Turing machine
F such that, for any computationally unbounded distinguisher D making a poly-
nomial number of classical queries, there exists a negligible ε such that

| Pr
F←F

[DF () = 1]− Pr
G←G

[DFG

() = 1]| ≤ ε

We analogously define computational, perfect, and quantum constructibility.
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Note that constructibility does not give the distinguisher access to G, meaning
plain indistinguishability suffices. Let Γ ∈ {computational, statistical,perfectly}
and ∆ ∈ {classical, quantum}. We note that constructibility has some basic
composition properties:
– If F is Γ ∆ constructible from G, and G is Γ ∆ constructible from H, then
F is Γ ∆ constructible from H.

– Let F1, . . . ,Fn be distributions, and denote (F1, . . . ,Fn) denote the dis-
tribution on functions (i, x) → Fi(x) where Fi ← Fi. If each Fi is Γ ∆
constructible from Gi for i = 1, . . . , n, then (F1, . . . ,Fn) is Γ ∆ constructible
from (G1, . . . ,Gn)

– Let RO1, . . . ,ROn be independent random oracles. Then (RO1, . . . ,ROn)
is perfectly classical and quantum constructible from appropriately-sized
random oracles, by simple domain separation.

Next, we observe that existing results imply the constructibility of ideal ciphers
from random oracles:
Lemma 4. Ideal ciphers are perfectly quantumly and classically constructible
from appropriately-sized random oracles.

Proof. In the classical statistical case, we can simply use Luby-Rackoff [LR86].
The quantum case for Luby-Rackoff unfortunately is unknown since we need to
handle inversion queries. Instead, we follow [Zha16], and use perfect shuffles. In
particular, [GP07] shows the existence of a perfect random permutation from
a random oracle, which therefore achieves perfect constructibility, even under
quantum queries. ut

Corollary 3. Keyed random injections are perfectly quantumly and classically
constructible from appropriately-sized random oracles.

Proof. Keyed random injections are perfectly classically and quantumly con-
structible from keyed ideal ciphers, by simply padding the input. Then composi-
tion gives the desired result. ut

Generalizing Shared Randomness. We now give our general definition.
Definition 6. Let F be a distribution over functions. CA is (strong statistical
classical) reset indifferentiable from B in the Shared-F model if there exists a
polynomial-time stateless oracle-aided simulator S such that, for any oracle-aided
Turing machine D making at most a polynomial number of queries, there exists a
negligible ε such that∣∣∣∣ Pr

A←A

[
DCA,A() = 1

]
− Pr
B←B,f←F

[
DB,SB,f

() = 1
]∣∣∣∣ ≤ ε .

We similarly define weak, computational, perfect, and quantum Shared-F models.

Lemma 5. Let Φ ∈ {strong,weak}, Γ ∈ {computational, statistical, perfectly}
and ∆ ∈ {classical, quantum}. If CA is Φ Γ ∆ reset indifferentiable from B in
the Shared-F model, and F is Γ ∆ constructible from G, then CA is also Φ Γ ∆
reset indifferentiable from B in the Shared-G model.
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6 Random Oracles from Ideal Ciphers

In this section, we show how to build a random oracle from an ideal cipher using
weak reset indifferentiability. Concretely, we prove that an ideal cipher gives a
random oracle with strong reset indifferentiability in the shared random oracle
(SRO) model:

Theorem 10. Let A be an ideal cipher. There exists a construction CA that is
strong statistical (classical and quantum) reset indifferentiable from a random
oracle in the SRO model.

We prove Theorem 10 in Section 6.1, but first show two corollaries:

Corollary 4. Ideal ciphers are statistical (classical and quantum) extractable.

Proof. By Lemma 1, CA is strong statistical quantum plain indifferentiable in
the standard model. The result then follows from Theorem 8. ut

Corollary 5. Let A be an ideal cipher. There exists a construction CA that is
weak statistical (classical and quantum) reset indifferentiable from a random
oracle in the standard model.

Proof. We apply Theorem 6 to Theorem 10 to get that CA is weak statistical
(classical and quantum) reset indifferentiable in the SRS model. Then we use
the extractability of random oracles and Theorem 9 to conclude weak statistical
(classical and quantum) reset indifferentiability in the plain model. ut

6.1 The Pad-and-Truncate Construction

Our construction can be seen as the Sponge construction for 1-block messages. Fix
real numbers c, d ∈ (0, 1). Let A : K ×X → Y be a keyed injection with inverse
A−1. Let X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| ≤ |Y|c and |Y ′| ≤ |Y|d. Assume for
simplicity that |Y ′| divides |Y|, interpret Y = Y ′ ×Z, and define Proj(y, z) = y.
Then define PadTruncA,A

−1

c,d : K × X ′ → Y ′ as PadTruncA,A
−1

c,d (x) = Proj(A(x)).
We now restate Theorem 10, using PadTrunc:

Theorem 10. For any constants c, d ∈ (0, 1) such that c+ d ≤ 1, PadTruncIC
c,d

is strongly shared randomness statistically (classically and quantumly) reset
indifferentiable from a random oracle.

6.2 The Simulator

In order to be consistent with PadTruncc,d, our simulator needs to answer queries
to A(k, x) with (B(k, x), z) for some z. At the same time, it needs to be able to
answer queries to A−1(k, (B(k, x), z) ) with x ∈ X ′. For all other queries, the
simulator needs to answer in a way that “looks like” a random keyed injection.

The central difficulty is that, by virtue of having a stateless simulator, we
cannot answer these queries lazily, and we cannot “remember” how previous
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queries were answered. This particularly represents a problem for answering
A−1(k, (B(k, x), z) ) queries, since we somehow have to recover x, even though
B is a random oracle which would hide x. Our solution is to do the following.
Following Lemma 5, it suffices to have our simulator work in the Shared-(RI,RI)
model, having access to random keyed injections I : K×X ′ → Z, Q : K×X → Y ,
and their inverses I−1, Q−1. The simulator SB,I,Q answers A and A−1 queries
as P and P−1 respectively, where:

P (k, x) =
{

(B(k, x), I(k, x)) if x ∈ X ′

Q(k, x) otherwise
(1)

P−1(k, (w, z)) =
{
x if z = B(k, x) where x = I−1(k, z)
Q−1(k, (w, z)) otherwise

(2)

6.3 Indifferentiability Proof

We now need to prove that this simulator is indistinguishable from the case where
A,A−1 are truly random permutations, and B = PadTruncA,A

−1

c,d .
First, we show that without loss of generality we can focus on the key-less

case (|K| = 1). This follows immediately from a generalization of a result of
Zhandry [Zha12a], which we prove in Appendix A:

Lemma 6. Let D0, D1 be distributions over oracles from X to Y. Let O1, O2 be
distributions on oracles from K ×X to Y, where for each k, Ob(k, ·) is sampled
from Db. Suppose there exists a q quantum query algorithm A with access to an
oracle O0 or O1 such that |Pr[AO0() = 1]− Pr[AO1() = 1]| = ε. Then there is a
quantum algorithm B such that |Pr[BD0 = 1]− Pr[BD1 = 1]| ≥ Ω(ε2/q3).

Now let D be a (potentially quantum) distinguisher making polynomially-
many queries in the keyless case, and define several hybrid experiments:

– Hybrid 0. This is the “Ideal World” where B is a random oracle and A,A−1

are set to P, P−1 as defined in our simulator in Lines 1 and 2, with I,Q being
random (key-less) injections. Let p0 be the probability D outputs 1.

– Hybrid 1. This is the same as Hybrid 0, except that we replace D’s queries
to B(x) with PadTruncP,P

−1

c,d (x). Let p1 be the probability D outputs 1. Note
that PadTrunc only makes A queries on inputs x ∈ X ′, which S would
answer as (B(x), I(x)). Thus PadTruncP,P

−1

c,d (x) = B(x), and therefore the
distribution of oracles seen by D is identical in Hybrids 0 and 1. Thus
p0 = p1.

– Hybrid 2. This is the “Real World”, where A,A−1 are a random (keyed)
injection and its inverse, and B(k, x) = PadTruncA,A

−1

c,d (x). Equivalently,
Hybrid 3 is the same as Hybrid 2, except that P, P−1 in Equations 1 and 2
are replaced by a random keyed injection A and its inverse A−1. Let p2 be
the probability D outputs 1.
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It remains to show that |p2 − p1| is negligible, which constitutes the bulk of the
indifferentiability proof. For this, the following claim suffices:

Lemma 7. For any distinguisher E making at most a polynomial number of
classical or quantum queries, we have that |Pr[EP,P−1() = 1]−Pr[EA,A−1() = 1]|
is negligible, where A,A−1 are a random (keyless) injection and its inverse, and
P, P−1 are as in Equations 1 and 2, with I,Q are random keyed injections.

Lemma 7 proves Theorem 10 by letting EA,A−1() = DPadTruncA,A−1
c,d

,A,A−1
(). We

now prove Lemma 7.

Proof. Classically, proving this is possible using lazy sampling. However, ulti-
mately we will also want to prove the indistinguishability under quantum queries.
This is somewhat more challenging, and requires a more careful proof, given
limitations of known techniques. We will therefore structure the proof in a way
that allows us to prove both classical and quantum indistinguishability.

Let E be a potential distinguisher. We prove the indistinguishability through
another sequence of hybrids:

– Hybrid α. Here we give E the oracles A,A−1 that are a truly random
(keyless) injection and its inverse. Define pα as the probability E outputs 1.

– Hybrid β. Here, we sample a uniformly random keyed injection J : X ′ → Y .
We give E the oracles Aβ , A−1

β , where

Aβ(x) =
{
A( J−1( A(x) ) ) if A(x) ∈ Img(J), x /∈ X ′

A(x) otherwise

A−1
β (y) =

{
A−1(J−1(A−1(y))) if y ∈ Img(J), A−1(y) /∈ X ′

A−1(y) otherwise

Here, Img(J) is the set of images of J . Let pβ be the probability E outputs 1.
Note that Aβ , A−1

β are identical to A,A−1, except on points determined by
the sparse image of J . Since J is random, these points should be hidden from
the view of E. Indeed, it is straightforward that, in the classical case, such
points will only be queried with negligible probability, and in the absence of
querying these points the distributions are identical.
In the quantum case, we have to work slightly harder. We prove the following
in Appendix A, which follows from known quantum techniques:
Lemma 8. Let D be a distribution over subsets V of X such that each
element in X is placed in V with probability ε (not necessarily independently).
Consider any quantum algorithm E making q queries to an oracle O with
domain X , and let p0 be the probability EO() outputs 1. Let O′ that is identical
to O, except that on a set V sampled from D, O′ is changed arbitrarily. Let
p1 be the probability EO′() outputs 1. Then |p0 − p1| < O(q

√
ε).

The random injection J defines such a set V where each input to A or A−1

is placed in the changed set with probability |X ′|/|Y| = |Y|−(1−c). Therefore
|pβ − pα| < O(q|Y|−(1−c)/2), which is negligible.
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– Hybrid γ. Here, we sample J,A,A−1, Aβ , A
−1
β as in Hybrid β. Let K :

X ′ → Y be the restriction of A to X : K(x) = A(x). Also define Q(x) = Aβ(x)
for x /∈ X ′. The values Q(k, x) for x ∈ X ′ are random and distinct values
from the set Y \ {Aβ(x) : x /∈ X}. Plugging in the definition of Aβ ,K, this
gives

Q(x) =
{
K(J−1(A(x))) if A(x) ∈ Img(J), x /∈ X ′

A(x) if A(x) /∈ Img(J), x /∈ X ′
.

We then give the adversary the oracles Aγ , A−1
γ defined as

Aγ(x) =
{
K(x) if x ∈ X ′

Q(x) otherwise

A−1
γ (y) =

{
K−1(y) if y ∈ Img(K(·))
Q−1(y) otherwise

Let pγ be the probability E outputs 1. Plugging in the definitions of Q,K,
we see that Aγ = Aβ , A

−1
γ = A−1

β . Therefore, pγ = pβ .
Note that in Hybrid γ, Q is a uniformly random keyless permutation, and
K is a uniformly random keyless injection.

– Hybrid δ. Now give E the oracles Aγ , A−1
γ , except where K is chosen as

K(x) = (B(x), I(x)), B is a random function, and I(x) is a random keyed
injection. Note that the result is equivalent to the oracles P, P−1 defined as
in Equations 1 and 2. Let pδ be the probability E outputs 1.

It remains to show that pγ is close to pδ. It suffices to show the following:

Lemma 9. Fix c, d ∈ (0, 1), and let X ′,Y ′,Z,Y, Y = Y ′ × Z, be sets such
that |X | ≤ |Y|c and |Y ′| ≤ |Y|d. Write K : X ′ → Y as K(x) = (B(x), I(x))
for B : X ′ → Y ′ and I : X ′ → Z. Then for any adversary making q classical
or quantum queries to K and its inverse, the following two distributions are
indistinguishable:

– K is chosen as a random keyless injection
– I is a random keyless injection, and B is a random function.

Proof. In the classical case, this is straightforward: the only way an adversary
can distinguish is by finding x0, x1 such that I(x0) = I(x1), which cannot happen
in the case where I is injective. To prove that such tuples are infeasible to find,
we rely on the fact that the adversary cannot make successful inverse queries
(whp), except on values that were the result of prior forward queries.

In the quantum setting, what makes proving this non-trivial is that the
attacker has query access to both K and K−1, whereas the vast majority of the
quantum literature does not consider inversion queries. In order to prove security,
then, we carefully embed an instance of a problem that does not use inversion
queries, and then rely on known quantum complexity techniques to prove the
hardness of the inversion-less problem.
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We first consider the case where c < d. The reason this case is easier is that
we can switch from using I(x) to recover x to using B(x) to recover x. Then
since we do not need to query I−1, we can rely on known quantum query lower
bound techniques to switch to I being random.

To prove indistinguishability in the c < d case, we define a few more hybrids.

– Hybrid i. This hybrid sets K : X ′ → Y to be a random (keyless) injection.
Let pi be the probability of outputting 1.

– Hybrid ii. This hybrid sets K to be a random function. The problem with
K being a random function is that there might be collisions, meaning the
inverse is not well defined. We define K−1(y) to be x is there is a unique x
such that K(x) = y. Otherwise, if there are 0 or ≥ 2 solutions, K−1(y) = ⊥.
Let pii be the probability of outputting 1.
Since c < d and c + d ≤ 1, we have that 2c < 1. As such, a random
function is an injection with overwhelming probability by a union bound.
Thus |pi − pii| ≤ O(|Y|−(1−2c)).
Note here that K(x) = (B(x), I(x)) for random functions B, I.

– Hybrid iii. Here, we change how we answer K−1(w, z) queries. Rather than
directly computing the inverse (supposing it exists and is unique), we instead
compute the set Lw := {x : B(x) = w}, and then for each x ∈ Lw, we check
if I(x) = z by making a query to I. In order to bound the number of queries
to I, we abort if |Lw| > r, for some parameter r. Let piii be the probability
of outputting 1.
By standard balls-and-bins arguments, for each w ∈ Y ′, Lw is at most r,
except with probability

(|X ′|
r

)
|Y ′|−r ≤ |Y|−(d−c). Union bounding over all

w gives that maxw |Lw| ≤ r except with probability ≤ |Y|d−(d−c)r. Setting
r = O(1), this bound becomes |Y|−1. In the case all Lw have size at most
r, there are no aborts and inverse procedure outputs the same value as in
Hybrid ii. Thus |pii − piii| ≤ |Y|−1. Moreover, the number of queries made
to I for each K−1 query is at most a polynomial.

– Hybrid iv. Here, we change I to be a keyless injection, and let piv be the
probability of outputting 1. If the adversary makes q queries, we ultimately
make O(q) queries to I (and no queries to I−1). We can use the indistin-
guishability of random functions from random injections [AS04, Zha15a] to
bound |piii − piv| ≤ O(q3/|Z|) = O(q3/|Y|1−d), which is negligible.

This completes the case c < d. We now extend to all c, d > 0 such that
c+ d ≤ 1. The problem with the above proof is that the output of B is no longer
large enough to uniquely decode x. Nevertheless, we show how to embed an
instance of the problem for c′ < d′ into the general case, thereby proving security.

Let c′, d′ ∈ (0, 1) be constants to be chosen later. Write X ′ = W × X ′′
and Z = W ×Z ′ for |X ′′| = |Y|c′d/d′ , |W| = |Y|c−c′d/d′ , |Z ′| = |Y|d/d′−d. Since
Z =W ×Z ′, we must have d′ = d(1− c′)/(1− c). Moreover, for the sizes of the
sets involved to be non-negative, we must have c′ ≤ c, which implies d′ ≥ d.

We will sample K as follows:

– First choose random keyless permutations W,W ′ : (W ×Z ′)→ (W ×Z ′).
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– Next, choose a keyed function K ′ :W ×X ′′ → Y ′ ×Z ′
– Set K(x) to be the following: Let x′ = W ′(x) and write x′ = (η, µ) ∈ W×X ′′.

Then compute (ζ, τ)← K ′(η, µ) ∈ Y ′ ×Z ′. Then output (ζ,W (η, τ).

It is straightforward that, if K ′ is a random keyed injection, then K is a random
keyed injection. On the other hand, suppose for any η, the mapping under K ′
of µ 7→ τ was a random injection whereas the mapping µ 7→ ζ was a random
function. Then it is straightforward that K satisfies the distribution for Hybrid
iv. Thus, proving the indistinguishability for the two cases of K reduces to
proving the indistinguishability for the two cases of K ′. By applying Lemma 6,
we can further reduce to the keyless case and ignore η. Since the range of K ′
has size |Y|d/d′ , we have that K ′ is an instance of Lemma 9 with parameters
c′, d′. Choose an arbitrary c′ ≤ c such that d′ = d(1− c′)/(1− c) > c′, which is
equivalent to c′ < d/(1 + d− c). We can then invoke the c < d case of Lemma 9
as proved above on K ′, obtaining the indistinguishability of the two settings. ut

This completes the proof of Lemma 7. Putting everything together, this completes
the proof of Theorem 10. ut

6.4 On Necessary Shrinkage

Our positive result works for any c+ d ≤ 1. Here, we show that this is tight.

Theorem 11. For any constants c, d > 0 such that c+ d > 1, if A is a random
permutation, then PadTruncA,A

−1

c,d is not even weak computational (classical or
quantum) reset indifferentiable from a random oracle.

Proof. For simplicity, we focus on the keyless case (s = 0), which is without
loss of generality. The intuition behind the proof is that the simulator, when
answering queries of the form A−1(B(x), z), cannot invert B to recover x. It
must therefore recover x from z. But this is only possible if |z| ≥ |x|.

Consider the distinguisher D, which chooses a random x ∈ X ′, and runs
(w, z)← A(x) ∈ Y ′×Z. Then it runs x′ ← A−1(w, z) and w′ ← B(x′) (assuming
x′ ∈ X ′), and outputs 1 if and only if w′ = w, x′ = x. Consider a supposed
simulator SB for D, where we write SB0 , SB1 for the simulator’s responses to A
and A−1 queries, respectively. We have that there exists a negligible ε such that

Pr
[
DB,SB

0 ,S
B
1 () = 1

]
≥ 1− ε .

We turn SB into an algorithm UB(w), which finds an x such that B(x) = w.
UB(w) works as follows: choose a random z∗ ∈ Z, and output x← SB1 (w, z∗).

Claim. For a random x ∈ X ′, Pr[UB(B(x)) = x] ≥ (1− ε)/|Y|1−max(c,d).

Proof. Imagine running D on a random x ∈ X ′. We therefore know that, with
probability at least 1− ε, the following are both true:

– SB0 (x) outputs (B(x), z) for some z.
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– SB1 (z, w) = x ∈ X ′.

We will therefore say that x is “good” if the above both hold; there are at least
(1 − ε)|X ′| good x. In the case c ≤ d, suppose that x is good. Then UB(B(x))
will successfully invert provided z∗ = z, which occurs with probability |Y|−(1−d).

In the case c > d, then there will be multiple good x for each w. Consider
the set of good x′ ∈ X ′ such that B(x′) = w, and let z′ be the associated value
outputted by SB0 (x′). Let pw be the number of such x′. Then as long as z∗ is
equal to any z′ for a good x′, UB(w) will output x′, a pre-image of w. Thus, the
probability of success for a given w is at least pw|Y|−(1−d). Since the total number
of good x′ is (1− ε)|X ′|, the expectation of pw is (1− ε)|X ′|/|Y ′| = (1− ε)|Y|c−d,
meaning B succeeds with probability (1− ε)|Y|−(1−c). ut

We now contrast Claim 6.4 with the (quantum) hardness of pre-image search:

Lemma 10 ([BBBV97]). For any q quantum query algorithm A making queries
to a random function O : |X | → |Y|, Prx←X [O( AO( O(x) ) ) = O(x)] ≤
O(q2/min(|X |, |Y|)). In other words, a random oracle is a quantum immune
one-way function 5.

This shows that no q-query (quantum) algorithm can invert B except with prob-
ability at most O(q2|Y|−min(c,d)). We thus have q2 ≥ Ω(|Y|min(c,d)+max(c,d)−1) =
Ω(|Y|c+d−1) = |Y|Ω(1) (since c+ d > 1), which is exponential. ut

7 Post-Quantum Groups

Here, we discuss the setting of post-quantum groups. Our main result for this
section is that generic groups are strongly reset indifferentiability from random
injections in the quantum setting.

Theorem 12. Let GG be a generic group of order p and label space {0, 1}n.
Then the labeling function for GG, namely L, is strongly statistical quantum reset
indifferentiable from a (keyless) random injection I : {0, 1}log p → {0, 1}n.

Proof. We have to prove two things. First, given GG, we have to show how to
compute x from L(x), in order to implement the inverse of L. But this is just
the discrete logarithm, which is handled by Shor’s algorithm. We briefly give the
algorithm for completeness. Given labels ` = L(x), do the following:

– Generate the uniform superposition of all input pairs 1
p

∑
a,b∈Zp

|a, b〉.
– Apply the map (a, b) 7→ L(a+ bx) by using the generic group addition oracle

and repeated doubling. The result is the state 1
p

∑
a,b∈Zp

|a, b, L(a+ bx)〉.
– Measure the final register, obtaining label `′ = L(y); the state collapses to

1√
p

∑
b∈Zp

|y − bx, b〉.

5 Note that [BBBV97] phrase their result as finding a marked item in a list. Nevertheless,
the statement of their result and its proof can be rephrased as in Lemma 10.
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– Perform the quantum Fourier transform; using Fourier transform rules, the
state now becomes 1√

p

∑
c∈Zp

φ(c)|c, xc〉.
– Measure the state, obtaining c, xc for a random c; divide to recover x.

Next, we need to show how to simulate the group operation, given query
access to L and its inverse: given `1 = L(x1) and `2 = L(x2), we simply compute
L(L−1(`1) + L−1(`2)) = L(x1 + x2). This completes the proof. ut

7.1 Instantiations and Applications

We can instantiate the generic group using either subgroups of the multiplicative
group of finite fields, or over elliptic curves. Then, applying the pad-and-truncate
construction, we obtain a plausible post-quantum random oracle.

We now discuss the case of finite fields. Let q be a prime, and let g be
an element generating a large subgroup of Z∗q . One option is to have g be a
generator of a large prime-order subgroup. However, since we do not need discrete
logarithms to be hard, the order of g does not seem to matter, and we could even
imagine choosing g to be a generator of the entire Z∗q .

Let a ∈ [2n], and write out its bits as an−1an−2 · · · a1a0. Let gi = g2i mod
q. Then ga mod q =

∏n−1
i=0 g

ai
i . The final evaluation of our pad-and-truncate

construction is then a 7→ (
∏n−1
i=0 g

ai
i mod q) mod r, for some sufficiently small r.

This simple hash function plausibly gives a post-quantum random oracle.

Key-less classical permutations. One limitation of the above is that the generic
group is only quantumly equivalent to a key-less injection, requiring Shor’s
algorithm to perform inverses. However, an easy fix is to make the discrete log
classically easy, by having the group order be smooth.

Concretely, let q be such that q−1 has all small prime factors. Then computing
discrete logs in Z∗q is even classically easy by solving discrete log mod each of
the factors of q − 1, and then Chinese Remaindering to get the full discrete log.
Our labeling function maps Zq−1 → Z∗q ; this can be turned into a permutation
by simply subtracting 1 from the final result.
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A Missing Quantum Proofs

A.1 Proof of Lemma 8

Lemma 8. Let D be a distribution over subsets V of X such that each element
in X is placed in V with probability ε (not necessarily independently). Consider
any quantum algorithm E making q queries to an oracle O with domain X , and
let p0 be the probability EO() outputs 1. Let O′ that is identical to O, except that
on a set V sampled from D, O′ is changed arbitrarily. Let p1 be the probability
EO

′() outputs 1. Then |p0 − p1| < O(q
√
ε).

Proof. We use techniques from Bennett et al. [BBBV97]. We first recall some
results from their work. For an oracle algorithm A making queries to an oracle O
and an oracle input r, letMr(i) to be the magnitude squared of r in the ith query.
We will call Mr(i) the query mass of r in the i-th query. Let Mr =

∑
iMr(i),

the total query mass of r over all q queries, and for a subset V letMV =
∑
r∈V Mr

be the total query mass of points in V .

Lemma 11 ([BBBV97] Theorem 3.1+3.3). Let A be a quantum algorithm
running making q queries to an oracle O. Let ε > 0 and let V be a set of inputs.
If we modify O into an oracle O′ which is identical to O except possibly on inputs
in V , then |Pr[AO() = 1]− Pr[AO′() = 1]| ≤ 4

√
qMV .

We now prove Lemma 8 as follows. The overall distinguishing advantage is then
at most EV [4

√
qMV ] ≤ 4

√
q EV [MV ]. By linearity of expectation, EV [MV ] =∑

r Pr[r ∈ V ]Mr = ε
∑
rMr = εq, since there are at most q queries and the total

probability mass of all points in a query is 1.. ut

A.2 Proof of Lemma 6

Lemma 6. Let D0, D1 be distributions over oracles from X to Y. Let O1, O2 be
distributions on oracles from K ×X to Y, where for each k, Ob(k, ·) is sampled
from Db. Suppose there exists a q quantum query algorithm A with access to an
oracle O0 or O1 such that |Pr[AO0() = 1]− Pr[AO1() = 1]| = ε. Then there is a
quantum algorithm B such that |Pr[BD0 = 1]− Pr[BD1 = 1]| ≥ Ω(ε2/q3).

Proof. The proof follows almost exactly an analogous proof of Zhandry [Zha12a]
about the case where D0, D1 are distributions over strings, rather than oracles.
We first need the following:

Lemma 12 ([Zha12a]). Let K,Z be sets. Let D be a distribution over Z. Let
H1 : K → D be the distribution where each H(k) is sampled iid from D. Let
H2(k) = F (G(k)), where G : K → [r] is a random function, and each F (i) for
i ∈ [r] is sampled iid from D. Then for any q query quantum algorithm A,

|Pr[AH1() = 1]− Pr[AH2() = 1]| ≤ O(q3/r)

We now prove indistinguishability by a sequence of hybrids:
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– Hybrid 0. Here, A gets queries to O0. Let p0 be the probability of outputting
1.

– Hybrid 1. Here, A gets queries to an oracle sampled as follows: A gets the
oracle O(k, x) = F (G(k), x), where G : K → [r] is a random function, and
each F (i, ·) is sampled iid from D0. Let p1 be the probability of outputting 1.
We show that |p0 − p1| ≤ O(q3/r) by setting Z be the set of all functions
from X to Y, D the distribution D0, and viewing A’s oracle as mapping K
to the truth tables of functions from X to Y. Invoking Lemma 12 gives the
desired result.

– Hybrid 2. This is the same as Hybrid 1, except that each F (i, ·) is sampled
iid from D0. Let p2 be the probability of outputting 1.

– Hybrid 3. Here, A gets queries to O1. Let p3 be the probability of outputting
1. Similar to the case of p0, p1, we have that |p2 − p3| ≤ O(q3/r)

Thus |p1 − p2| ≥ ε−O(q3/r). By a simple hybrid argument over the r functions
F (i, ·), we can obtain an algorithm B which distinguishes D0 from D1 with
advantage ε/r −O(q3/r2). Optimizing r = Θ(q3/ε) gives the desired result. ut

B Impossibility of Domain Extension

Here, we prove the impossibility of reset indifferentiable domain extension, even
under simulators that are computationally and query unbounded. The proof is
not new, but we give it here for completeness as prior works focused on the
query-bounded case. The concrete structure of our proof will be borrowed from a
compression-based sketch of Zhandry [Zha19].

Theorem 13. Let A be a distribution over functions A : X → Y, and B a
distribution over functions B :W → Z. Suppose the distribution B has non-zero
support on at least |X | log |Y|+ δ|W| distinct functions, for some non-negligible
ε. Then there is no construction CA that is weak reset indifferentiable from
B, even using a computational and query unbounded simulator, and even with
unbounded shared randomness. This holds for any of the variants of weak reset
indifferentiability.

Proof. Consider a supposed construction CA, and consider the distinguisher
DB,A, which chooses a random w ∈ W and tests if B(w) = CA(w). This
clearly holds in the “real world”. Therefore, if weak reset indifferentiability holds
(under an unbounded simulator), there must exist an unbounded stateless S and
negligible ε such that Pr[B(w) 6= CS

B (w)] ≤ ε, where the randomness is over the
choice of w,B. We can also consider a shared randomness simulator, where the
randomness is additionally over some global random coins, shared between the
different runs of S.

Now consider the truth table of the SB : X → Y. This is a string of length
|X | log |Y|. Yet B can be approximately recovered from SB, yielding a noisy
compression of the truth table of B.
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In particular, we can let c be the tuple L = (SB , {(wi, zi)}i), where wi ranges
over the inputs w such that CSB (wi) 6= B(wi), and zi = B(wi). From c, the
entire truth-table of B can be reconstructed: on input w, if w = wi for some i,
output zi; otherwise output CSB (w).

The entire length of L is at most |X | log |Y|+ε|W| log(|W|×|Z|). If we set δ =
ε log log(|W|×|Z|), we get a negligible δ, and there are at most |X | log |Y|+δ|W|
different B in the non-zero support of B. ut

Applying to, say, random oracles, extending a random oracle by even a single
bit would make |W| = 2|X |, while there would be 2|X | × |Y| random oracles of
domain W, meaning δ ≥ 1/2. We can similarly obtain simple impossibilities for
ideal ciphers, and various other idealized models.
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