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Abstract. At CHES 2016, Bos et al. showed that most of existing white-box
implementations are easily broken by standard side-channel attacks. A natural idea
to apply the well-developed side-channel countermeasure - linear masking schemes -
leaves implementations vulnerable to linear algebraic attacks which exploit absence of
noise in the white-box setting and are applicable for any order of linear masking. At
ASTACRYPT 2018, Biryukov and Udovenko proposed a security model (BU-model
for short) for protection against linear algebraic attacks and a new quadratic masking
scheme which is provably secure in this model. However, countermeasures against
higher-degree attacks were left as an open problem.

In this work, we study the effectiveness of another well-known side-channel coun-
termeasure - shuffling - against linear and higher-degree algebraic attacks in the
white-box setting. First, we extend the classic shuffling to include dummy compu-
tation slots and show that this is a crucial component for protecting against the
algebraic attacks. We quantify and prove the security of dummy shuffling against
the linear algebraic attack in the BU-model. We introduce a refreshing technique
for dummy shuffling and show that it allows to achieve close to optimal protection
in the model for arbitrary degrees of the attack, thus solving the open problem of
protection against the algebraic attack in the BU-model.

Furthermore, we describe an interesting proof-of-concept construction that makes
the slot function public (while keeping the shuffling indexes private). A variant of
this construction was used, among other countermeasures, in challenge #100, one of
the three challenges from the CHES 2019 CTF / WhibOx 2019 contest that proved
to be challenging for the attackers.
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1 Introduction

White-box model studies security of cryptographic implementations under full control of
an adversary. In seminal works, Chow et al. [CEJv03, CEJvO02] proposed first white-
box implementations of the AES and DES block ciphers, which were later broken with
practical attacks [BGEC04, WMGPO07]. Further attempts at fixing the implementations
did not succeeded. The main idea behind these implementations is to implement the
cipher as a network of lookup tables (LUTs) and obfuscate tables by composing them with
random encodings. In 2016, Bos et al. [BHMT16] showed that most existing white-box
implementations can be defeated with classic correlation attacks known from side-channel
analysis. The adaptation of the attack to the white-box model was called Differential
Computation Analysis (DCA). More recently, Rivain and Wang [RW19] showed that any
table-based encoding of LUTs is always susceptible to the DCA attack, possibly applied to
a later round.

The DCA attack can be fully automated and is easy to mount. Therefore, a natural
question is how to protect white-box implementations against the DCA attack. A well-
studied countermeasure against correlation attacks is masking. The idea is to split sensitive
variables in the implementation into pseudorandom shares and perform computations
without recombining the shares explicitly. The classic masking schemes are linear. While
this is not a problem in the side-channel setting (e.g. analyzing power measurements)
because of large amounts of noise in measurements, it becomes an issue in the white-box
setting. Recently, Biryukov et al. [BU18] and Goubin et al. [GPRW20] showed that the
linear masking countermeasure in the white-box setting can be easily and generically
broken using elementary linear algebra. The attack was called algebraic DCA in the
former and linear decoding analysis (LDA) in the latter and was used in a sophisticated
multi-stage cryptanalysis of the winning challenge from the CHES 2017 CTF / WhibOx
Contest 2017 [PCY 117, GPRW20]. Biryukov et al. further developed a security model
and a quadratic masking scheme achieving provable security against the linear algebraic
attack. Seker et al. [SEL21] combined the nonlinear masking scheme with a linear scheme
and extended it to a cubic masking scheme, offering protection against degree-2 algebraic
attacks.

Another known side-channel countermeasure is shuffling, inspired by hardware ran-
domization techniques and described by Herbst et al. [HOMOG] and later analyzed
in [THMO07, RPD09, VMKS12]. The idea is to shuffle the evaluation of identical com-
ponents (mainly S-boxes) to introduce more noise into measurements. It provides limited
security against the correlation attacks by itself and is usually combined with the masking
countermeasure. Security of shuffling against the correlation DCA attack in the white-
box setting was recently studied by Bogdanov et al. [BRVW19]. In addition, Goubin et
al. [GRW20] developed data-dependency higher-order DCA and used it to cryptanalyze the
winning challenges of the CHES 2019 CTF / WhibOx Contest 2019 [BGK™19]. One of
the challenges included a shuffling countermeasure, which was defeated by a fault attack.

It can be expected that shuffling provides security against the algebraic attack due to
its nonlinearity. However, the algebraic security of shuffling has not yet been evaluated.
This work aims to fill this gap and analyzes shuffling rigorously and extensively.

Our contribution

e We show that classic shuffling provides weak security against the linear algebraic at-
tack, especially against chosen-plaintext attacks. We describe a simple generalization
of the attack called differential algebraic attack, which defeats the classic shuffling
countermeasure by analyzing pairs of executions with well-chosen differences in the
inputs. However, we show that the model of [BU18| guarantees protection against
the new differential algebraic attack as well, highlighting rigidity of the model.
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o We define dummy shuffling, which extends the classic shuffling by adding dummy
“random” inputs. While the idea of adding dummy operations was already present
in previous works, our new definition is the first to emphasize the importance of
dummy slots. In addition, we distinguish hidden and public shuffling, the property
which is relevant in the white-box model.

e We prove and quantify security of dummy shuffling against the degree-1 algebraic
attack, in the model of [BU18]. We show that it depends on a particular property of
the implementation being protected, however this property is hard to evaluate. To
overcome this problem, we introduce a novel refreshing technique, that transforms
any implementation into an equivalent one, but with the relevant property being
known and optimal, leading to provable security against linear algebraic attacks.

e We prove that such “refreshed” implementations in fact provide protection against
algebraic attacks of any degree up to the amount of dummy slots used. The degree
bound is tight as shown by our generic higher-degree attack. As a result, we
obtain the first provable method of protection against algebraic attacks of arbitrary
(predetermined) degree. Our main result is stated in Theorem 3. Surprisingly, our
new protection has quite low complexity, as illustrated in Table 1.

e We describe an interesting proof-of-concept construction of uniform public dummy
shuffling. In this construction, shuffling is done implicitly by calling a single slot
function with an extra “index” argument. This construction shows that a white-box
designer needs only to obfuscate a single slot function, rather than the whole shuffling
process and evaluation of all the slots. A variant of this construction was used, among
other countermeasures, in challenge #100, one of the only three challenges from the
CHES 2019 CTF / WhibOx 2019 contest [BGK19] that stayed unbroken during the
competition, although cryptanalyzed later by Goubin, Rivain and Wang [GRW20]
using non-algebraic attacks.

To summarize, our work provides extensive analysis of the dummy shuffling as a
countermeasure against algebraic attacks. This proves useful as it turns out to be a solid
provably secure protection. We believe that it is a useful tool for protecting white-box
implementations against generic attacks.

We remark that this work studies dummy shuffling strictly in the gray-box model of
algebraic security of [BU18|] and white-box related problems such as white-box-secure
pseudorandomness generation, structure hiding, fault protection, etc. are out of scope for
this paper.

Table 1: Estimation of gate complexity for protections against algebraic attacks per original
AND/XOR gate. $ stands for one random bit generation. The error bound 7 is a security
parameter (larger is more secure). Instances from [SEL21] are created with minimal order
of linear masking (n = 1). The parameter ¢ is an arbitrary integer greater or equal than
the protection degree.

Protection XOR AND Error 7 Ref.
degree

1 33+ 6$ 43 + 63 1/16 [BU1S, Alg. 3]

1 7 16 + 2% 1/16 [SEL21]

1 (t=1) 2 8+ 1% 1/8 Section 5

2 16 46 + 3$ 1/4096 [SEL21]

2 (t=2) 3 14 + 3% 1/48 Section 5

d (t>d) | t+1 | (6t+2)+t8 | Z5¢ 5 | Section 5
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2 The framework

In this section, we fix the notation, recall necessary preliminaries and the framework of
white-box algebraic attacks.

We write := to note that the equation holds by definition. For a < b integers, the
sequence (a,a+1,...,b—1,b) is denoted by [a...b]. The finite field of size 2 is denoted by
F,, and the n-dimensional vector space over F, is denoted by F3. Vectors/sequences are
written as v = (v1,v9,...,v,). The symbol || denotes concatenation of vectors/sequences.
|X| denotes the size of the vector/set X, or weight of the Boolean function X, or the
number of computed functions in the implementation X. 0,1 denote constant Boolean
functions. The bias of a Boolean function f : F} — F, is given by E(f) := |f] /2" — 1/2,
and the error of f is given by err (f) := min(|f|,|f & 1|)/2" = 1/2—|E(f)|- The Kronecker
delta function [x = y] : F§ x FY — T, is a Boolean function that is equal to 1 if and only
if x = y; its complement is denoted by [z # y|. For a Boolean function f(z1,...,z;) we
denote its restriction to x; = ¢ by f|s,=.. Every Boolean function f : F} — F, can be
uniquely written in the algebraic normal form (ANF): f(z) = @ueF; ayx", where a, € Fy
and z is a shorthand for 2] ... z%". The algebraic degree (or simply degree) of f, denoted
deg f, is the maximum Hamming weight of all © with a,, = 1.

2.1 Implementations and computational traces

In this work, we do not restrict our analysis to any particular type of implementations
(e.g. Boolean circuits or programs), even though our constructions are most naturally
and generally expressed as Boolean circuits. The only requirement for analysis is that an
implementation represents a finite sequence of Boolean functions, which can be efficiently
evaluated on arbitrary inputs (resulting in a computational trace). Note that not all
programs are easily expressed in this form due to possibly varying control flow paths on
different inputs. However, various techniques for recording and processing (e.g. aligning)
computational traces of (compiled) programs are described in the literature [BHMT16,
BKMS18]. Our setting is formalized as follows.

Definition 1 (Implementation). An implementation is a vectorial Boolean function
C : F§ — F5' together with an associated sequence of efficiently computable Boolean
functions

F(C)=(F(C):Fy =F, | ie[l...]C]]).

The functions = — x; representing the input variables = € Fy and the output coordinates
of C are included in F(C).

Remark 1. For ease of understanding one can think of C as a Boolean circuit and F;(C)
as nodes of this circuit. Note that our definition omits data-dependency relations. While
out of scope for this work, they can be used to aid higher-order correlation or algebraic
attacks by selecting nearby nodes and thus reducing the combinatorial complexity, as was
recently shown in [GRW20].

In the context of white-box attacks, an adversary typically analyzes a part of the
implementation, for example the first 10% of operations to target the first round of a block
cipher. We call such part a window.

Definition 2 (Window). Let C' be an implementation. A window W is a subsequence of

F(C).

For the correlation/algebraic attacks, an adversary runs the analyzed implementation
on a chosen input and records all intermediate computed values inside the chosen window,
producing a so-called computational trace.
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Definition 3 (Computational trace). A computational trace of an implementation C' :
Fy — F3* on a window W C F(C) and on input & € F} is the vector W(x) :=

(f(x) | few)er.

After recording a certain amount of computational traces, the adversary is trying
to check whether a chosen sensitive function is computed in the implementation. This
analysis can be done statistically (correlation attacks) or algebraically (algebraic attacks).
A standard example of a sensitive function that we will use throughout the paper is an
output bit of the S-box in the first round of AES. This function depends on one key byte
and the adversary recovers the key byte by matching the correct sensitive function with the
traces. More generally, one may also consider an obfuscation-related scenario, where an
adversary’s goal is to decide whether a given protected implementation computes internally
a certain function or not. In order to develop generic protection against such adversaries,
we will consider every function in the original unprotected implementation to be sensitive.
The protection is then required to “hide” all original computations and anything related
to them. This is also a standard requirement in the side-channel context of correlation
attacks.

2.2 Algebraic attack

We now recall and restate formally the notion of an algebraic attack. In the degree-1
(linear) algebraic attack, the idea is to find a linear combination of functions computed
in the analyzed implementation that results in a sensitive function. For example, in an
implementation protected by a linear masking scheme, the shares of a sensitive value
describe such a linear combination. By utilizing elementary linear algebra, the shares
can be located efficiently, given a sufficient amount of computational traces. This allows
to avoid the step of guessing the locations of shares and thus avoid the combinatorial
explosion in the complexity.

Note that it may be possible to find the shares by other methods, for example, by
analyzing the implementation structure. Indeed, the attacks against winning challenges
of the WhibOx 2017/2019 competitions included analysis of the data-dependency graphs
of the implementations [GPRW20, GRW20]. Nonetheless, the current state-of-the-art of
white-box implementations struggles to provide security even against generic, automated
attacks. Thus achieving security against the powerful algebraic attack is already an
ambitious goal.

The linear algebraic attack can be naturally extended to higher degrees. The idea is to
include products of 2, 3 or more computed functions in the allowed linear combinations.
This extension can break nonlinear masking schemes, such as quadratic masking proposed
in [BU18]. In addition, it can also defeat table-based encodings, since in that case a
sensitive value can be computed as a higher-degree function of the exposed encoded value.

We first define the degree-d expansion of a vector, which captures the idea of including
products of degree up to d.

Definition 4 (Degree-d expansion and closure). Let 2 be an n-dimensional vector over
a ring K. For an integer d > 1 define the degree-d expansion of x, denoted m4(x), as a
concatenation of all products of 0,1,2,...,d coordinates of x in a fixed order:

ma(x) =) || z || (xs25, | 1<ip <ia<n) || ...
|| ($i1$i2...$id | 1§i1<i2<...<id§n).

Let V be a sequence of Boolean functions with the same domain Fy. The degree-d
closure of V [BU18] is defined as:

V@ = span c(mq(V)) = span ({1} U{fifo - fa | fr. for-- s fa € V),
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where ¢ maps a vector to the set of its coordinates!.

Example 1. Let V = (f1, fo, f3) for some Boolean functions f1, fa, f3 : FY — F,. Then
V() is a vector space of Boolean functions spanned by 1, f1, fa, f3, fif2, fif3, f2f3.

Example 2. We will usually consider F(@(C) for an implementation C' : F§ — F3.
This set consists of all degree-d combinations of intermediate functions computed in C.
Elements of this set are Boolean functions f mapping Fg to F,.

Let (1)) == Z?:o (). It is easy to see that the length of 74(x) is equal to (|<$¢‘1) When

n>d, () =n?/dl+ O(n?"'). We are now ready to formalize the algebraic attack.

Definition 5 (Algebraic attack). A degree-d algebraic attack against an implementation
C : Fy — 7' targeting a sensitive function f : F§ — I, consists of the following steps :

1. choose a window W C F(C);

2. choose an input vector x := (x1,...,%¢) € (F3)*, where ¢ := (‘Z\:il) + € for some small
integer ¢; -

3. compute on these inputs the ¢ traces W(x;) and their degree-d expansion;
4. compute on these inputs the sensitive function f(x;);

5. solve the following linear system in z:

ma(W(x1)) f(x1)
: Xz = : . (1)
Ta(W(x)) f(x)

The attack succeeds if at least one non-trivial solution is found. It is further required that
x is such that the right-hand side of the equation is non-zero.

Remark 2. It is of course trivial to mount a successful algebraic attack on any implementa-
tion by choosing f to be one of the computed functions. What we are actually interested
in are attacks on particular sensitive functions f, which in protected implementations
should not appear in clear. As we will describe further, the BU-model allows to protect
all (non-trivial) intermediate functions at the cost of introducing a black-box encoding
step and access to randomness.

Example 3. Consider an AES implementation protected with a Boolean masking of an
arbitrarily large order (for example, the ISW scheme [ISW03]). An adversary may choose
f as a coordinate of an S-box output in the first round. Then, the degree-1 algebraic attack
succeeds, as f can be expressed as a linear combination of shares which are computed in
the implementation. Note that in order to compute f (for the right part of the Equation 1),
the adversary has to guess a subkey byte.

The time complexity of the attack on a single window W with |W| > d is

2.8 2.8d
o (W2 _ o (W o)
<d N d!2-8 ’
where 2.8 is the matrix multiplication exponent using the Strassen algorithm. We leave

out the discussion about the choice of the window(s). For a relevant analysis we refer
to [BU18, GPRW20].

1Products of degrees less than d are included by setting, for example, fi = fo.
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2.3 Security model

We now recall the security model introduced in [BU18] and reformulate it concisely.
Biryukov et al. proposed a game-based notion of prediction security, which aimed to
motivate the security goals. Furthermore, the authors defined algebraically secure circuits
and encoding functions, which together implied a stronger notion [BU18, Def. 3] sufficient
for achieving prediction security. In this work, we concentrate on this strongest combined
notion, which we equivalently reformulate as an algebraically secure scheme.

The model is a variant of the gray box model allowing a particular type of leakage.
Roughly speaking, the implementation may leak a degree-d function of intermediate
inputs, whereas in ¢-probing security, the implementation may leak ¢ intermediate wires.
The model relies on the use of randomness, which in the white-box setting has to be
derived pseudorandomly from the inputs. The model formally defines security of a scheme,
containing an encoding function, an implementation and a decoding function.

Definition 6 (Scheme). Let f : Fy — FZ* be a function. A scheme S computing f consists
of

1. an encoding function S.enc(x,re) : Fy x IF"QT&‘ — F7;

’
n

2. an implementation S.comp(z’,r.) : Fy X F‘Qrcl — Fy;

3. a decoding function S.dec(y') : Fy" — Fy".

el

It is required that for all r. € Fy ', r. € IFIQTC‘ S.dec(S.comp(S.enc(z,r.), 1)) = f(x).

The encoding step is considered as a black-box and its implementation is not analyzed.
However, it is important that it has access to the random bits r.. The output of the
encoding step S.enc is passed to the implementation S.comp, which may access additional
random bits r.. The output of S.comp is then decoded by the black-box function S.dec to
obtain the final output. Full computation process can be described as

x’ + S.enc(z,re), y « S.comp(z’,r.), y < S.dec(y’).

Remark 3. The randomness r. used in S.comp can always be generated in S.enc and
included in the “encoded” input z’. The schemes that we propose in this work in fact
do not use any randomness in S.comp by construction. A downside of this is that the
intermediate state ' may become very large because of the included randomness, which
otherwise could be computed “on the fly”.

The algebraic security model requires that the implementation S.comp provides security
against the algebraic attacks. In the attacks, the adversary controls the input z € F5 to
S.enc and is mounting the algebraic attack on S.comp as described in Definition 5. The
security goal is to prevent the algebraic attack from succeeding on any function computed
in S.comp and any set of inputs chosen by the adversary. This becomes possible due to
the use of (pseudo)randomness.

Note that functions F(S.comp) computed in the implementation are functions of the
“encoded” input (that is, of the output of S.enc), which is not directly controlled by the
adversary. This requirement can be captured by composing each function from F(S.comp)
with S.enc.

We are now ready to reformulate the main security definition given in [BU18]. Recall
that F(?(S.comp) contains all degree-d combinations of intermediate functions from
S.comp. The idea is to require every non-trivial function from F@(S.comp(S.enc)) and
restricted to any fized input x to have a non-negligible error (as a function of random bits

TesTe)?.

2In a real white-box implementation 7, 7. would be constant for fixed = (i.e., derived from z pseudo-
randomly), but in our definitions we allow a more powerful adversary with ability to re-randomize for the
same .
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Then, any such function would be hard to predict and target in the attack even when
the input is fully controlled. Such security requirement guarantees hardness of launching an
algebraic attack even when the adversary knows all the intermediate values computed in
the original implementation (for example, knows the secret key if the scheme implements
a white-box AES). While such an adversary would not need anymore to launch such an
attack, this property highlights the universality of the protection.

We define the algebraic security in terms of the error (r-error-d-AS scheme) instead
of the bias as in [BU18] ((1/2 — 7)-d-AS circuits and encoding functions), as it simplifies
the notation. Indeed, the error in our cases is small, especially for the higher-degree
case but sufficient to thwart an attacker. Furthermore, it highlights the link with the
Learning Parity with Noise (LPN) problem, where a linear system with errors has to be
solved. Indeed, if some equations in Equation 1 from Definition 5 are erroneous, the attack
might still succeed if the fraction of erroneous equations is small enough for LPN-solving
algorithms to be applicable. For example, in the case of an extremely small error, the
constructed linear system may be error-free and then even the basic algebraic attack
succeeds.

Definition 7 (7-error-d-AS scheme). Let S be a scheme and let d > 1 be an integer. Let
7 be the minimum error among all non-trivial functions from F(%(S.comp) composed with
S.enc = S.enc(zx, r.) for any fized x = & € F}:

T := min {err( f(S.enc(Z,-),") ) ‘ f(z,r.) € F9(S.comp)\ {0,1}, Z e JFS} ,

where the error is computed over re,r.. If 7 > 0, the scheme S is said to be degree-d
algebraically secure with error T (T-error-d-AS).

Remark 4. The larger is the error bound 7, the more secure the scheme is against LPN
attacks. As noted above, an extremely low error may even allow the basic algebraic attack
to succeed with non-negligible probability.

Remark 5. We emphasize that each f(S.enc(Z,-),-) is a function only of re,r. used in the
scheme.

Remark 6. The algebraic security definition does not cover the decoding function S.dec,
which is defined for completeness and to restrict the analysis to useful schemes - schemes
that indeed compute the desired function C': 5 — F3*.

Remark 7. The requirement f ¢ {0,1} can in principle be weakened to f(S.enc(:,-),-) ¢
{0,1}. The former considers the function on all possible inputs to S.comp, while the latter
considers the function restricted only to the image of S.enc. As less functions would be
considered, the security notion would be weaker (though not immediately implying an
attack).

Remark 8. This definition imposes a very strong requirement, which is sufficient but
not necessary for security against algebraic attacks. For example, consider a function
zrirg ... 1 for a large integer ¢, where z is a sensitive function and r; are random bits. This
function is equal to zero when z = 0 (the error is zero) and to 7173 ...7; when z =1 (the
error is 27%). This function would prevent the definition to hold, but would be impossible
to attack algebraically since for large enough t the function riry ... r; is equal to zero with
overwhelming probability.

A major goal is to develop a method of embedding any given implementation into a
T-error-d-AS scheme with a constant 7 > 0 (i.e. independent of the circuit size) and with
the encoding function independent of the circuit structure. Biryukov et al. proposed a
quadratic masking scheme that achieves 1/16-error-1-AS (i.e. based on 7/16-1-AS circuit
gadgets), but didn’t provide schemes for degree d > 1. The aim of this work is to evaluate
shuffling techniques as such a protection method.
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What is the mazimum value of T that could possibly be achieved by a scheme? Consider
a Boolean circuit-based scheme and consider d independent functions computed in the
scheme for some fixed input z. Their product has error 2~¢ if the functions are balanced
and less otherwise (for large-weight functions f we multiply f@1). As a linear computation
would not be universal, we assume that d AND gates with independent balanced inputs
are present. Since each computed function in such gate has error 1/4, a well-chosen
degree-d product of these functions has error 2724, We conclude that in Boolean circuit
implementations the error lower bound close to 272¢ would be optimal to achieve. In other
implementation models, such as lookup table (LUT) networks, a larger error bound may
be achievable. Indeed, absence of intermediate nodes in pure LUT-based implementation
gives less variables to use for an attack. As an extreme case, consider a scheme where the
implementation consists of a single big LUT, with the input and the output being encoded
with some simple and balanced algebraically secure encoding. Since inputs and outputs
are balanced and are the only available values in the computational trace, the best error
bound to get is 2%, which is better than 272¢ for circuits.

Remark 9. The discussed upper bounds on the minimum error are tied to the BU-model
of algebraic security and can not necessarily be translated into bounds for LPN-based
attacks on concrete implementations (not schemes). Hypothetically, better error bounds
may be achievable in models with weaker guarantees.

LPN complexity. Complexity of the LPN problem grows with increasing the error 7
and the number of unknowns k. In a recent exposition of algorithms for solving LPN by
Esser et al. [EKM17], all time complexities are exponential in the number of unknowns &,
with the base of the exponent close to 27 for small errors (excluding BKW [BKWO00] with

complexity 2@)
Since the number of unknowns k = (IZ\Z)) in the algebraic attack grows much faster

than 7=1 > 229, the error bound close to 9-2d provide a sound protection with roughly
L4
estimated attack complexity 27F & 2(WI/D* o oT@ e T using the BKW algorithm.

More precise analysis of the complexity of solving LPN instances with such errors is beyond
the scope of this work.

3 Shuffling definitions

We first briefly survey the literature on the shuffling countermeasure with a stress on the
white-box model in Subsection 3.1 and then proceed with our new definitions. High-level
definition of dummy shuffling is given in Subsection 3.2 and its variants in the white-box
setting are discussed in Subsection 3.3. Finally, we describe our formal model of dummy
shuffling in the algebraic security framework in Subsection 3.4.

3.1 Related work

Shuffling is a side-channel countermeasure that often complements masking. The idea
is to randomize the order of the operations to desynchronize sensitive leakage points. A
comprehensive study from the side-channel point of view is given by Veyrat-Charvillon et
al. [VMKS12]. More recently, two works analyzed shuffling in the white-box setting and
described two classifications.

Bogdanov et al. [BRVW19] distinguished two dimensions of shuffling in white-box
implementations: time and memory. Time shuffie randomizes the order of the compu-
tations. This is precisely what matters from the classic side-channel point of view, as
it desynchronizes the leakage channel. In the white-box setting however, such shuffling
can be defeated by synchronizing computational traces by memory addresses, rather than
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by time. Therefore, it is necessary to augment time shuffle with memory shuffle, which
randomizes the addresses of stored intermediate values.

Goubin et al. [GRW20] distinguished horizontal and vertical shuffling. In horizontal
shuffling, the computations are performed at the same time, while the data being processed
is shuffled. In vertical shuffling, slots are processed sequentially, and the data is shuffled.
Thus, both time and memory shuffle are performed. The authors further allowed dummy
slots, which could be based on pseudorandom input or on an irrelevant dummy key.

3.2 Dummy shuffling

In order to distinguish the time/memory and vertical/horizontal separation from the
presence of dummy computations, we propose a definition that specifically focuses on the
“dummy” part, while being independent of being serial /parallel. The main idea is to hide
the real computation among several redundant but similarly looking computations. We
start by defining a computational slot, which is the target of shuffling: an operation that
is computed multiple times independently.

We remark that the definitions in this and the next subsection are informal and
introduce only the terminology and broad implementation and hiding strategies.

Definition 8 (Slot (informal)). A slot is a part of the implementation computing a partic-
ular sensitive function. In the context of shuffling, it is expected that the implementation
contains multiple slots for each (sub)function being protected.

Example 4. In a Boolean or arithmetic circuit, an example of a slot is a sub-circuit
reproduced multiple times, possibly with modifications or alternative circuit representations.
In a program, an example of a slot is a function or a piece of code that is called multiple
times, or simply multiple pieces of code each computing the same sensitive function.

We are now ready to provide informal definition of our main protection tool - dummy
shuffling.

Definition 9 (Dummy shuffling (informal)). Dummy shuffling is an implementation
strategy, in which a sensitive function is computed in multiple slots, such that during an
execution:

1. at least one of the slots (main slot(s)) computes the function on the correct (main)
input(s);

2. at least one of the slots (dummy slot(s)) computes the function on a (pseudo)randomly
generated input(s);

3. the locations of the main slots are (pseudo)randomly generated on each execution or
on each distinct input.

Dummy shuffling is performed in three phases (see Figure 1):

1. in the input-shuffling phase, the dummy inputs are generated and shuffled together
with the main inputs;

2. in the evaluation phase, the sensitive function is evaluated on each of the inputs,
using slots;

3. in the output-selection phase, the main outputs are extracted and passed into further
computations (by unshuffling or by any other means).
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main inputs dummy inputs
/—/H
:1:1 .f1:2 {1:,5 $ $

input- shufﬂmg

evaluation slotb# * # # # 3
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Figure 1: Dummy shuffling. The symbol $ denotes a uniform and independent source of
randomness. Implementation of each application of C' can be different or, for example, can
be one shared procedure in software implementations.

Multiple main slots can be used for two reasons. First, multiple main slots may be
running on the same main input, with the goal of error detection and/or correction.
Second, multiple main slots may be running on different main inputs, when in the reference
implementation the sensitive function is computed multiple times. The second case
corresponds to the standard shuffling, for example, the 16 identical S-boxes (or 4 identical
MixColumns operations) in the AES may constitute main slots.

3.3 Hidden and public dummy shuffling

We now introduce a further classification of dummy shuffling techniques with respect to
whether the slots are clearly isolated in the implementation or are intertwined with each
other to hide the shuffling structure. Furthermore, another important factor is whether all
slots have an identical implementation.

Definition 10 (informal). Hidden dummy shuffling is an implementation of dummy
shuffling for which it must be difficult for an adversary to isolate any single slot or a group
of slots, no matter main or dummy.

Public dummy shuffling is an implementation of dummy shuffling in which all slots are
clearly separated in the implementation and are easy to isolate. However, the locations of
the main/dummy slots must still be difficult to predict for an adversary in any evaluation.
Furthermore, if all slots’ implementations are fully identical and an adversary is able to
interchange them freely, then we say that the dummies are uniform.

This definition captures the level at which an obfuscation is performed. In hidden
dummy shuffling, the whole implementation is obfuscated and the slots are hard to locate
and isolate. In public dummy shuffling, each slot may be obfuscated but is still easy to
locate and isolate in the implementation.

In this work we analyze dummy shuffling as a countermeasure against the algebraic
attack. In this context, the difference between hidden and public dummy shuffling mainly
affects the size of the window that contains all nodes of the circuit used in the attack.
Typically, two configurations of attacked nodes arise in the attacks: (1) all attacked nodes
are contained in a single slot; (2) attacked nodes contain the same group of nodes in
multiple/all slots. Case 2 is illustrated in Figure 2, where the adversary tries to blindly
select a window in the full implementation such that it contains the same target sensitive
function computed in each of the slots; the red areas highlight the uncertainty for selecting
such a window.
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Figure 2: Variants of dummy shuffling and window selection uncertainty. Red areas
illustrate possible positions of a window relatively to the slots.

1. In hidden dummy shuffling, the slots are not clearly separated and thus a window
has to be selected from the entire implementation including all slots. Furthermore,
in the case (2) the size of the window has to be much larger to be able to cover
multiple slots.

2. In non-uniform public shuffling (for example, if each slot is obfuscated independently),
the slots are easy to isolate. Therefore, a window in a single slot is selected from
that slot only, reducing the combinatorial complexity and the required window size.
A window covering the same group of nodes in multiple slots is still similar to the
hidden dummy shuffling case, since it should be hard to find the parts of obfuscated
circuits related to the target attacked group.

3. In wuniform public shuffling, the slots are clearly isolated and are identical. Therefore,
in both cases (1) and (2), the window can be selected inside a single slot, and
extended to the same area in the other slots in the case (2). This case allows minimal
combinatorial complexity of the attacks. However, from the designer’s viewpoint, it
removes the high-level obfuscation requirement and leads to a cleaner solution.

Since our work is not focusing on the attack details, we do not analyze the window
aspect deeper, as it would require more concrete implementation details.

In Section 6, we describe a proof-of-concept construction for uniform public dummy
shuffling. It shows that it is possible to implement dummy shuffling in a way that, even
given a black-box access to the slot function, it is hard to distinguish main slots from
dummy slots for any particular input. Therefore, a white-box designer aiming to use
dummy shuffling does not have to obfuscate the whole implementation including the
shuffling procedure and all slot evaluations; obfuscating a single slot function is sufficient.

3.4 Modeling algebraic security of dummy shuffling

In this work, we analyze security of the slot evaluation phase, which is the core of
dummy shuffling. It is the most critical part where all the computations of the original
implementation take place. This subsection defines a formal model for analyzing security
of dummy shuffling in the framework of [BU18].

In the following, let smain denote the number of main inputs/slots, Sqummy the number
of dummy inputs/slots, and s := Smain + Sdummy. For simplicity, we assume that there are
no always-duplicate main inputs and all main inputs are independent, i.e. an adversary
can set each main input to any value independently.

We analyze the security of the evaluation phase by considering the input-shuffling
phase as the “encoding” part of a scheme (S.enc), the slot evaluation phase as the main
“implementation” (S.comp), and the output-selection phase as the “decoding” part (S.dec).
Finally, the goal is to determine the algebraic security of the resulting scheme S. This
gray-box setting is formally described in the following definition.

Definition 11 (Evaluation-Phase Model). Let C(z) : Fy — F5* be an implementation.
Let Smain, Sdummy be positive integers, s := Spain + Sdummy- In the evaluation-phase
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model, we analyze the algebraic security (in the sense of Definition 7) of the scheme
EPM(C, Smain; Sdummy) := S, constructed as follows:

Func. Impl. S.comp(z’) : (F3)® — (F5")°
S.enc(z,re) : (F)main x Flrel —5 (F3)* let o/ € (F)*
let v € (F3)° forie[l...s] do
for i € [1...Smain] do yi <+ C(zh)
Vi & T return 3y’ < (y1,...,95)
(re,rl) < e
for i € [/(smain +1)...s] do Func. S.dec(y’,r”) : (F)° — (Fy*)*main
Vs &Fg” Y <i Unshuffle(ys, ..., y%)
return 2’ << Shuffle(vy, ..., vs) return (Y1, ., Ysymain)

1"

Here, by = (<<) we mean that r/ (r’) is used as randomness to generate the value

(sample uniformly from F% shuffle almost-uniformly).

Remark 10. In principle, dummy inputs can be sampled from any chosen distribution,
which could be dependent on the sensitive function and even on the main inputs. Why
could it be useful? Assume that we want to protect a point function using dummy shuffling.
Uniformly sampled inputs will make the function equal to 0 with overwhelming probability.
Thus, the linear sum of the function’s output over the main input and the dummy inputs
will be equal to the function itself and this proves the algebraic insecurity® of the shuffling
protection in this case. On the other hand, we could sample the dummy inputs by choosing
the preimage of 1 with probability 1/2. Then, such attack would not be possible.

While non-uniform sampling of dummy inputs may provide more flexibility in the
protection, it increases the difficulty of the analysis and is not a generic solution. In this
work, we consider the simplest and the most generic case when the dummy inputs are
sampled from the uniform distribution, as is described in Definition 11.

Remark 11. The EPM scheme does not use randomness in the implementation part, so
the argument r. in S.comp is omitted.

Remark 12. We define the decoding function by unshuffling the computed state y using
saved randomness 7 which was used to shuffle in S.enc. Formally, we could include 77
in S.comp by encrypting it in S.enc so that it does not introduce algebraic leakage, and
decrypting in S.dec. This just an example method of implementing the output-selection.
As we focus on the evaluation phase, this process is out of scope of this model.

Remark 13. The shuffling permutation does not have to be perfectly uniform. In fact, it is
not possible for s > 3 (because 3! = 6 does not divide any power of 2), but with a sufficient
amount of random bits it can be made computationally indistinguishable from uniform
shuffling. In addition, it is easy to show that it is enough to choose uniformly locations
of Smain main slots and shuffle them; shuffling dummy slots does not change the output
distribution of S.enc.

4 Algebraic attacks on dummy(less) shuffling

In this section, we describe weaknesses in the algebraic security of dummy(less) shuffling.
We start by exhibiting leakage of classic dummyless shuffling in the model in Subsection 4.1,
where we also sketch a standard linear algebraic attack to highlight the practical relevance.
In Subsection 4.2, we develop a differential algebraic attack which exploits the leakage
more effectively. We show however in Subsection 4.3 that the security model of [BU18] is
strong enough to provide security against the differential attack technique out-of-the-box.

30n practice, the adversary would need to know the preimage of 1 in order to mount an attack.
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We continue by generalizing the attack to a higher-degree algebraic attack against shuffling
with dummy slots in Subsection 4.4. This attack gives an upper-bound on the degree of
algebraic security of dummy shuffling depending on the number of dummy slots.

4.1 Standard algebraic attack against dummyless shuffling

Shuffling without dummy slots requires the implementation to have multiple main slots
and thus is quite limited in its applications. Nonetheless, a typical application is a block
cipher utilizing the Substitution-Permutation Network (SPN) structure and almost all
such ciphers use the same S-box in each round, clearly exposing multiple main slots for
the substitution layer. The linear layers however have a large variety of structures and
the applicability of classic dummyless shuffling depends on each case. Since white-box
implementations of SPN ciphers is a typical goal, we analyze this case.

We start by exhibiting a critical weakness of dummyless shuffling. Briefly speaking,
shuffling leaks any symmetric function of the permuted values. For a degree one attack,
the only such function is the sum of the value over all slots. For higher degrees, there are
more possibilities.

Proposition 1. Let C : F} — FJ* be an implementation and let S := EPM(C, s,0) for
an integer s > 1. Then, for any f € F(C) and any symmetric function g : F§ — F,
the following function h is leaked, i.c. there exists h' € F(4°89)(S.comp), such that
K (S.enc(z, 7)) = h(x), where

h - (]FQ)S%]FZ : (wl,...,xs)Hg(f(x1)7...,f(xs)).

Proof. Since f(x;) is computed in clear in each slot, a degree-d symmetric combination
R’ of these functions belongs to F(4°89)(S.comp). The effect of S.enc only permutes the
inputs x1,...,%,, which does not have an effect on h’ since it is symmetric: h(z) =
K (S.enc(z,r.)) = I (x). O

Example 5. The most trivial example is the sum of a sensitive function f over all slots
being vulnerable to the algebraic attack. Note that a related technique called integration
attack was applied to differential power analysis (DPA) of randomized implementations
in [CCDO0] in order to reduce the introduced noise and lower the required number of
traces.

The proposition shows that classic dummyless shuffling does not achieve security in
the evaluation-phase model. We now show a concrete practical attack on the example of
the AES.

Consider an AES implementation where the 16 S-boxes are shuffled and possibly
protected by a linear masking scheme. We target any single bit output of the S-box after
the first round. However, as observed above, only the sum of these bits of all 16 S-boxes
is leaked. Let S; : F§ — F, denote the first output bit of the AES S-box and define a
function f as follows:

f : (Fg)16%F2 : (xl,...,l‘16)|—>51(331@kl)@...@sl(l‘lﬁ@k16),

where ki, ..., kg is the first round subkey. Clearly, f can be computed via a linear
combination of some intermediate variables in the analyzed implementation. The standard
approach of guessing a portion of the key to compute f does not work, since it depends
on the full key. We show that in the chosen-plaintext (CPA) setting an efficient attack
is possible. Note that the algebraic security model assumes CPA and so such attack is
covered by the model. The idea is to fix xs,..., 216 to arbitrary constants and guess one
bit
c:=81(x2 D ko) D ... D S1(x16 D kig).
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Then, after guessing k; the value of f can be computed for all 256 values of z1, i.e. on
inputs of the form (F§,zs,...,716). The limited number of inputs upper bounds the
window size that can be used for the attack which can become a limitation for an attacker.
While this is already a proof-of-concept attack, we can further overcome the limitation.
Let us guess another bit, which is now a bit of difference

S1(zh @ ko) ® S1(wa ® ko)

for some z, # x9. This allows to compute the value of f on 256 more inputs of the form
(F§, 25, 23, ..., 716). More generally, we can guess t < 15 bits of difference (in addition to
the 8 bits of k1) to be able to compute f on 256 - 2 different inputs, which already allows
to attack a huge window (although, at the cost of increased base complexity). Further,
more difference bits per each byte can be guessed to cover more inputs at a little cost. Of
course, this direction leads to more theoretical scenarios with enormous implementations
and less practical attacks.

We conclude that dummyless shuffling provides little security even against standard
algebraic attack (with modified key guessing method) in the chosen plaintext setting.

4.2 Differential algebraic attack against dummyless shuffling

In this section, we describe a generalization of the algebraic attack called differential
algebraic attack. The idea follows rather naturally from the previously described attack,
where bits of differences were guessed. Let us attack the difference of f on pairs of inputs
(i.e. f(z)@® f(2)), instead of the function f itself (i.e. f(x)). Indeed, the difference is at
least not harder to compute and, in particular cases, may be much easier.

This modification works very well for the dummyless shuffling setting described above.
In fact, it works out-of-the-box with a standard key guessing procedure. First, an attacker
chooses pairs (z,2’) such that (xa,...,z16) = (24, ...,2]) and 1 # x. Then, she records
computational traces W(z), W(z’) and computes a new differential trace

v(x) = Wi(z) @ Wia') | 1<i<[W)),

which is used further as in the standard algebraic attack. Similarly, instead of computing
f(z) for a given key guess, the attacker computes f(z) @ f(z). In the AES example, it
requires only one key byte guess as

f(@)® f(2') = S1(z1 ® k1) ® S1 () @ ka),
while computing f(z) requires 16 key bytes:
f(.’E) = Sl(xl > kl) ... S1(.’E16 (&) klg).

The attack can be viewed as a standard algebraic attack with an extra preprocessing
step of the collected traces and of the predicted sensitive function.

We now give a formal definition of a general degree-d differential attack, similar to
Definition 5 (Algebraic attack).

Definition 12 (Differential Algebraic attack). A degree-d differential algebraic attack
against an implementation C' : Fy — F5* targeting a sensitive function f : F§ — F, consists
of the following steps:

1. choose a window W C F(C);

2. choose a vector of pairs of inputs x := ((x1,)),..., (z¢,2})) € (Fy x F§)!, where
t:= (D<A<}1|) + € for some small integer ¢;
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/

3. compute the ¢ pairs of traces (W(x;), W(z})) on these inputs and their degree-d
expansion;
4. compute the t pairs of values (f(z;), f(2})) on these inputs;

5. solve the following linear system in z:

ma(W(21)) © ma(W (1)) flx1) @ ()

ra(W (1)) © Ta(W(2) f(z) ® f(a)

The attack succeeds if a solution is found. It is further required that the right part of the
equation is nonzero.

Remark 14. For d > 2, this definition applies degree-d expansion before combining the
traces in pairs. This is useful for example if each shuffled slot is in addition protected
by a nonlinear masking scheme. Then the differential is applied to expanded traces, i.e.
to vector spaces containing decoded sensitive values. Whether applying the degree-d
expansion after combining the traces in pairs has a useful application is unclear.

4.3 Security against differential algebraic attack

We will show that the differential algebraic attack does not provide any advantage against
algebraically secure schemes (7-error-d-AS), in particular, against secure variants of dummy
shuffling which we will identify later. To state it formally, we define an analogue of the
security notion 7-error-d-AS and show that the new notion is implied by 7-error-d-AS.

Definition 13. Let S be a scheme and let d > 1 be an integer. Let 7 be defined as
follows?*:

T::min{err(f(Senc( ),) @ f(S.enc(z’,-),") )
' f e FD(S.comp)\ {0,1},z,2" € Fg}.
If 7 > 0, the scheme S is said to be degree-d differentially algebraically secure with error T
(t-error-d-DAS).
We now show that standard algebraic security implies differential algebraic security.

Proposition 2. Let S be a scheme. If it is T-error-d-AS for some 7,d, then it is T'-error-
d-DAS with 7/ =217(1 —7) > 7.

Proof. Let f € F(9(S.comp)\ {0,1} and z,2’ € F}. Define

e:=err (f(S.enc(x,-),")) >7, € :=err(f(S.enc(a’,),")) >,
e :=err (f(S.enc(x,),-) ® f(S.enc(z’,-),)).

Since f(S.enc(zx,-), ) and f(S.enc(z’,),-) each use independent inputs r.,r., it follows
that
=e(l—e)+(1—e)e =e+e —2e,

which is minimized when both e and e’ are minimized, that is ¢’ > 27 — 272 = 27(1 — 7).
This is always not less than 7, since 7 < 1/2 and so 2(1 —7) > 1. O

4The randomness variables ¢, 7. are independent in each application of f and S.enc.
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The proof shows that, in fact, the error only increases when multiple traces are combined.
It is trivial to prove a similar statement for the case of higher-order differentials or general
integrals (i.e. adding values of f in more than 2 inputs). Therefore, the differential
algebraic attack is not useful against algebraically secure schemes. Note that this was
not a problem in the dummyless shuffling setting, because the attack targeted a function
with error 0. We conclude that 7-error-d-AS is a strong security notion and automatically
covers some extensions of the algebraic attack.

4.4 Generic higher-degree attack

After (crypt)analyzing dummyless shuffling, we switch to dummy shuffling with at least
one dummy slot. We consider higher-degree attacks in order to establish an upper bound
on the degree of the algebraic security of dummy shuffling. We describe a generic degree-
(Sdummy +1) attack in the evaluation-phase model (meaning that the attack is very generic),
and further sketch how an actual attack would look like in practice. In a way, this attack
generalizes the attack from Subsection 4.1. Indeed, the former attack described a degree-1
attack on shuffling with sqummy = 0.

Proposition 3. Let C be an implementation, and let smain > 1, Sqummy > 0. The
evaluation-phase model scheme EPM(C, Smain, Sdummy) 5 10t T-er7or-(8 qummy + 1)-AS for
any T > 0.

Proof. Let d = sqummy + 1. The idea is to select the same sensitive variable z € FO(0)
in arbitrary d slots (for the sake of the proof, any input bit function of S.comp suffices),
and to multiply these linear functions. The resulting function, denoted z € F (d)(S.comp),
is always a product of some bits computed on dummy inputs and of the sensitive variable
at one (or more) of the main slots.

Let p denote the probability of z = 1 when the input is sampled uniformly at random,
ie. p= Pryepy [2(x) =1] > 0. Let us consider all main inputs set to the same value,
namely zg or z1, such that z(zg) =0, z(z1) = 1.

In the first case, the sensitive variable z is equal to 0 in at least one of the considered
slots and the product is always equal to zero:

Pr |z(S.enc(zg, 7)) = 0| = 1.

In the second case, the probability of the product being equal to 1 is p* where ¢ denotes
the number of dummy slots among the chosen d slots. It is minimal when all d — 1 dummy
slots are selected. We conclude that the whole product is equal to 1 with probability at
least p?—1:

Pr |z(S.enc(zy,7.)) = 1| > p?~ L.

Te

This concludes the proof, since for the described non-constant function z € F(4 (S.comp)\

{0, 1}, the function z(S.enc(zo, -),-) is constant and thus has the error equal to 0. O

The proposition shows that dummy shuffling does not achieve T-error-d-AS, but it does
not prove that it is in fact insecure against the algebraic attack. We go further and sketch
a concrete attack that is applicable to an implementation protected with dummy shuffling.
Let W C F(S.comp) denote the attacked window and let w := |[W]| denote its size, e.g.
w = |S.comp| = s|C| for the whole circuit. We assume that there is a sensitive variable
z € W that defines a balanced or a close to balanced Boolean function.

Let Xy (resp. X1) denote the set of inputs for which the sensitive variable is equal to 0
(resp. 1). The adversary chooses ¢ := w?/d! + ¢ inputs from X, for which the sensitive
variable is equal to 0 and computes traces on these inputs. Then, she chooses an input
from X, for which the sensitive variable is equal to 1 and computes a single trace on it.
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She applies the degree-d algebraic attack to the ¢ + 1 traces together, searching for the
vector (0,...,0,1) in the space W@ restricted to the traced inputs, which has size at
most (;) < w?/d! . The sensitive function z constructed as in the proof above would
match the first ¢ zeroes with probability 1 and match the last one with probability at least
1/291. We assume that the probability of other vectors matching (i.e. a false positive) is
negligible since ¢ is larger then the dimension of the vector space. With probability 1/29-!
an attack trial succeeds. Therefore, O(2¢9) traces with inputs from X are enough to find
the desired degree-d combination with high probability. The complexity of the attack is
thus O(2% - (w?/d!)?®) (using the Strassen algorithm).

Example 6. Consider an AES implementation protected with dummy shuffling, sy = 1
and Sqummy > 1, i.e. a slot computes the full cipher. The sensitive variable z is as
usual the output of a first-round S-box, and we target z: the product of z taken over all
§ = Sqummy + 1 slots. A guess of the respective subkey byte allows to split the input space
into Xy and X;. A standard assumption is that the wrong subkey guess results in an
incorrect split and leads to an unsuccessful attack. It follows that the correct subkey can
be identified by running the attack 256 times.

5 Provable algebraic security of dummy shuffling

After establishing the limits of the algebraic security of dummy shuffling in the previous
section, we switch to quantifying and proving security of dummy shuffling. In Subsection 5.1,
we analyze the security of basic dummy shuffling against the linear attack. Next, we
develop a refreshing technique which allows to achieve provable security in Subsection 5.2.
Finally, we use the same technique to prove security against higher-degree algebraic attack
in the case of a single main slot in Subsection 5.3.

5.1 Security analysis (linear case)

After showing an upper-bound on the algebraic security degree provided by dummy
shuffling, we now study the case of degree-1 attack, and analyze when dummy shuffling
indeed provides a protection and evaluate the security parameter 7. We show that algebraic
security of the EPM scheme depends on a particular property of the original circuit, which
is defined formally in the following definition.

Definition 14. Let C be an implementation. For an integer d > 1, denote by erry (C)
the minimum error of a nontrivial function from F(®(C):

erry (C) := i .
(0= B o™

Remark 15. Note that errg has a different role than 7 in the 7-error-d-AS definition. The
new definition quantifies bias on a uniform distribution of the inputs of an implementation
C' (which at this stage does not use randomness, since it is an unprotected implementation,
not a scheme). In the former definition, 7 quantifies bias on a fized main input and uniform
distribution of random bits r., r. in the scheme.

We now give a bound on the 1-AS security of the EPM scheme, parameterized by the
value err; and the number of main and dummy slots.

Theorem 1. Let C be an implementation and let Smaim > 1, Sqummy > 0 be integers,
5 = Smain+ Sdummy- LThen the evaluation-phase model scheme S := EPM(C, Smain, S dummy)
is T-error-1-AS, where

7> Jumny e (0.
S
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Proof. Consider a function f € F(1)(S.comp) \ {0,1} and an arbitrary input z. Since f is
nontrivial, it can be expressed without loss of generality as f(z') = g(z}) + h(ab, -+, 2)),
where g € F1(C)\ {0,1} is a function computed in one of the slots, and & is a function
computed in the other slots. The slot of g is a dummy slot with probability Sd“% In
this case, g takes as input an independent uniformly random input (derived from r. in
S.enc), and its error is lower-bounded by erry (C). In the case it is a main slot, the value

of g is constant and the error is equal to 0. It follows that
err (g(S-enc(z,)) = Sdummy | grp) (C) + Smain
5 s

For any fixed shuffling order outcome (decided by r” in S.enc), g and h are independent,
and so the error err (f(S.enc(x,-))) satisfies the same bound. O

Simply stating, the error bound is proportional to err; (C') with coefficient equal to the
fraction of dummy slots: when all slots are dummy slots, the bound is equal to err; (C);
when all slots are main slots, the bound is equal to 0.

According to this theorem, dummy shuffling provides security against the linear algebraic
attack as soon as at least one dummy slot is used. However, the security parameter 7
depends on the original circuit C' and thus is not generally a constant. Furthermore, even
determining or approximating the bound err; (C) for an arbitrary implementation C' is
not an easy problem. We consider one special case when the bias can be upper bounded.

Corollary 1. Let C : Fy — F3* be an implementation and let r == max jec 7(c) deg f. Then
the scheme EPM(C, Spain, Sdummy) @ T-error-1-AS with

> i ) sdummy.
-2 S
Proof. We use the well-known facts that the minimum weight of a nonzero Boolean function
of degree r is 2”7, i.e. the minimum error satisfies err; (C') > 1/27, and that a linear
combination of such functions can not increase the degree. O

In the following subsection, we propose a solution to obtain concrete security guarantees
for arbitrary circuits.

5.2 Provable security via refreshing (linear case)

In this solution, we first transform the original implementation C' before applying the
shuffling countermeasure. For simplicity, we assume that the implementation is based on a
Boolean circuit.

First, we add extra inputs to the circuit. After embedding the extended circuit in the
EPM scheme, the extra bits would be set to zero on main inputs, while on dummy inputs
they would be uniformly random (by the definition of EPM). Then, we use these extra
inputs to “refresh” each non-linear gate by an extra XOR. In a main slot, this will have no
effect on the computation, since the extra bits are equal to zero. In a dummy slot, this will
randomize all computations and maximize the value err;(C) of the new implementation C.

Definition 15 (Refreshed Circuit). Let C(z) : F — F5* be a Boolean circuit implemen-
tation with [ AND gates and an arbitrary amount of XOR and NOT gates. Define the
refreshed circuit C(x,r) : Ty x Ty — F5* as follows. Replace each AND gate ay = z; A 2;
in C, 1 <k <1 by the circuit aj, =7 ® ar, = 7 ® (2; A 2;), where 7y, is the k-th extra bit;
each wire using ay, is rewired to use aj,(see Figure 3).

Refreshing has a useful effect on the computed functions: up to a bijective modification
of the input, a refreshed circuit computes only quadratic functions of the input. This

immediately implies err;(C) > 1/4 for any circuit C and will also be useful for proving
higher-degree security in Subsection 5.3.
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Lemma 1. Let C' : Fy — F3" be an implementation in a form of a Boolean circuil in the
{AND,XOR,NOT} basis using | AND gates and let C be its refreshed version. Then, there
exists a bijection h mapping Fy x FL to itself, such that deg f o h™' <2 for all f(x,r) €
F(CO).

Proof. We use the notation from Definition 15. For all 1 < k <, let

gr @ Fy xFy - F3 xFh @ (z,7) — (x,7”), where
,Jri®ag(r, (r,. ), ifi=k
That is, g, replaces ri by 7y + ar = a; in the full state (x,r). Note that ay is a function
of x and rq,...,rx_1 and so gi is a bijection.
Define h := gjo0...0g; and let (x,7) := h(x,r). Then, we have rj = a; (z,r) for all
k. Let f € F(C) be the function computed in an arbitrary AND gate of C. Note that

outputs of AND gates are used only to compute ), in C and the inputs of AND gates can
only be affine functions of x and all refreshed AND gates aj,. That is,

flz,r) =p(z,d (x,7))q(x,d (z,7))

for some affine functions p, ¢. Since (x,a’) = (x,r’) is the output of h(z,r), it follows that

f(a,r) = p(h(z,r)q(h(z,r)).

The right-hand side defines (at most) quadratic function o(z) := p(z)¢(z) such that f = ooh.
We conclude that foh~! = o0 has degree at most 2. O

Remark 16. From the proof it can be observed that the last topologically independent
AND gates (i.e. those, output of which does not affect any other AND) do not have to be
refreshed for the lemma to hold.

The linear algebraic security of dummy shuffling with refreshing follows naturally from
the lemma and Corollary 1.

Theorem 2. Let C(z) : F§ — F35" be an implementation in a form of a Boolean circuit in
the {AND,XOR,NOT} basis. Then, EPM(C, Spmain, Sdummy) S T-error-1-AS, where

1 S dumm,
T - - Y,

— 4 S
In particular, EPM(C,1,1) is a 1/8-error-1-AS scheme.

Proof. The weight/error of any function f € FM(C)\ {0,1} is unchanged when the
function is composed with a bijection (in this case, the bijection h~! from Lemma 1):
err (f) =err (foh™!) > 1/4. Therefore, any considered function f is weight-equivalent to
a (non-zero) quadratic function, which has error at least 1/4, and so erry(C') > 1/4. The
result follows from Theorem 1.



22 Dummy Shuffling against Algebraic Attacks in White-box Implementations

5.3 Provable security via refreshing (higher-degree)

We now switch to higher-degree algebraic security. In this subsection we show that the
refreshing technique allows to achieve algebraic security of degree matching the upper-
bound given by the generic attack given in Subsection 4.4, namely the degree equal to the
number of dummy slots.

We will use the following lemma. Intuitively, consider s parallel applications of an
implementation C : F§ — F37* and assume f : (F5)® — F, be a non-constant function of
the s inputs obtained by applying a degree-d function to intermediate functions across all
copies of C'. Assume that we can set one of the inputs to any constant ¢ € F5, making
all intermediate computations in that C' constant as well. However, which one out of s
copies is set to the constant is chosen uniformly at random. The lemma says that f can
be constant in at most d such choices out of s.

The motivation for the lemma comes from a simple choice of such f and ¢ (inspired by
the generic attack from Subsection 4.4) set ¢ = 0 and f be (for example) a product of the
first input bit of the first d copies of C: f(z1,...,25) = x1,1%21...24,1. Clearly, f =0
when 1 =c=0,0r zo =c=0, or ..., or x4 = ¢ = 0. However, it is non-constant in all
other s — d choices, namely z441 =c=20,0r ..., or xg = ¢ = 0. The lemma thus states
that such a choice of f,c is the best an adversary (aiming to find f that is constant as
often as possible) can achieve.

Lemma 2. Let C' : Fy — F3* be an implementation. For an integer s > 1 denote s parallel
applications of C by C®% (as an implementation):

C®% : (F)® — (F3)° : (z1,...,25) = (C(x1),...,C(x4)).

Let f € F{D(C®%)\ {0,1} for an integer d, 1 < d < s. Then, for any c € F§ the number
of positions i, 1 < i < s such that f|;,—. is constant is at most d:

[{floize € {0,1} | i€ [1...8}| < d.

Proof. The proof is by contradiction. Let g denote the degree-d function associated to f,
that is the function applied to (F(C))® to obtain f:

g: (IF‘Q}-(C)‘)S — F,, such that
g(F(C)(z1),..., F(C)(ws)) = f(z1,...,1s) forall z1,...,z, € F3.

Here F(C)(z;) is the computational trace of C on input z; (the bit-vector of all intermediate
values computed in C on input ;).

Assume that there exist (at least) d + 1 positions ji,...,ja+1 such that for all j €
{j1,-+ - Jas1}, fle;=c is constant. Note that the value of the function is the same constant
for all such positions, since these restrictions intersect at z;, = ¢,...,z;,,, = c. We
can assume without loss of generality that the constant is 0. Since f is not constant in
general, there exist a = (a1,...,as) € (F3)® such that f(a) = 1. Note that a;, # c for any
ke [l...d+1]. Consider the affine subspace

V=WVix...xV,, Ve (IF‘;:(C)I)( , where

. {{f(cxai)?f(cxc)h if i € {100 jan}s
' {F(C)(ai)}, otherwise.

Observe that @, .y, g(v) = 1. Indeed, g(v) = O forallv € V except v = (F(C)(a1),...,F(C)(as)).
Since V is a (d + 1)-dimensional affine subspace, it follows that degg > d + 1, which is a
contradiction. O
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We can now prove our main result. At its core, it relies on the above lemma to bound
the number of (bad) shuffling outcomes when f is constant, and on Lemma 1 (stating that
a refreshed circuit is equivalent to a quadratic circuit) to lower-bound the error in good
shuffling outcomes.

Theorem 3 (Main). Let C' be an implementation and s > 2 an integer. The evaluation-
phase model scheme S := EPM(C, 1,s — 1) is T-error-d-AS for any 1 < d < s — 1, with

S 1 s—d
=2 5

Proof. Consider an arbitrary f € F(@(S.comp) \ {0,1}. We need to prove that when the
input x of S.enc(x,r.) is fixed, the error of f(S.enc(z,-)) is at least 7. Recall that S.enc
uses 1, (part of r.) to shuffle the sequence (z,7( ;,...,7, ;) (r, being another part of
re), which is then passed to the input to f. By Lemma 2, in at most d/s fraction of the
shuffling outcomes (i.e. positions ¢ with x; = ) the function f(S.enc(z,-)) = f|s,=» can
be constant. Consider the remaining (s — d)/s fraction of the outcomes. By Lemma 1,
we can see F(1)(S.comp) as spanned by at most quadratic functions of the input (it has
the structure of a refreshed circuit), and so F(@(S.comp) = (F1)(S.comp))(¥) spanned by
functions of degree at most 2d (when composed with =1 from Lemma 1). Since in the
considered case f is non-constant, we can use the bound err (f) > 1/22¢. By combining
the two different shuffling outcomes we obtain

d s—d 1 1 s—d

s

0 s 22 g g =

err (f(S.enc(zx,))) >

This result shows that dummy shuffling together with the refreshing technique provides
algebraic security for degrees up to the number of dummy slots. Furthermore, the error
bound 7 can be seen as close to the maximum possible 1/22¢ in e.g. Boolean circuit
implementations, as was discussed in Subsection 2.3. We conclude that dummy shuffling
with refreshing solves the problem of algebraic security, at least in the gray-box model
of [BU18].

5.4 Implementation cost estimation

Dummy shuffling with refreshing allows cheap provably secure protection against algebraic
attacks of any predetermined degree d > 1 using a single main slot and d dummy slots
(Sdummy = d). We estimate roughly the number of gates required for implementing dummy
shuffling.

Let Ia (resp. Ix) denote the number of AND gates (resp. the number of XOR gates)
in the original implementation. In the input-shuffling phase, the cost is to generate
Sdummy (|| 4 [a) bits of randomness and shuffle s vectors of size |z| + [a bits. For typical
complex circuits C, the number of AND gates is much larger than the input size: Ia > |z|,
so we ignore the latter for our estimation. We utilize the controlled swap construction,
which can be implemented in Boolean circuits using 4 gates as

(i, i) = ((cA (2 @ yi)) @ xi, (A (B yi)) D Ys)

for each index i, where ¢ is the control (random) bit. For d = 1, one controlled swap of
Ia-bit state is sufficient for perfectly uniform shuffling. For d > 1, we only have to place
the single main slot in a random position. This can be implemented in circuits using
Sdummy conditional swaps of [a-bit states, assuming a random bitstring of length s with a
single one is generated, which would be negligible for the final cost. The total cost of such
implementation of input-shuffling is

TIS ~ 43dummy . ZA =4d - lA
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gates for swaps and generation of sqummy - lA = d - la random bits for dummy slots. The
output-selection phase can for example be implemented as the inverse of the input-shuffling,
excluding randomness generation. Its cost is negligible since it only has to unshuffle the
outputs, which we assume are much shorter than the nonlinear part of the circuit shuffled
in the input-shuffling phase:

TbS ~ 0.

The cost of the evaluation phase is
Tep ~ s(|C|4+1a) =25 ln+s-Ix = (2d + 2)Ia + (d + 1)Ix
gates. We conclude with the total cost estimation of
Tis+Tep +Tos ~ (6d + 2)la + (d+ 1)lx

gates and d - o random bits.

6 Public dummy shuffling construction

In this section, we describe a construction of public dummy shuffling. This proof-of-concept
shows that a white-box designer willing to implement dummy shuffling does not have to
obfuscate the whole implementation but rather a single slot function.

The goal of the construction is to have a clear slot separation without any interaction
between slots except the final merging step, which in our case is simply XOR of outputs of
all the slots. The input-shuffling phase is also implicit and is performed inside the slot,
using an extra index input, specifying the slot index. The high-level description of the
scheme is as follows:

output = @ slot (input, index).
0<index<s

The construction implements dummy shuffling with a single main slot and multiple dummy
slots. The location of main slot depends pseudorandomly on the input. More precisely, for
any fixed input there exists a unique value of the index ¢ that corresponds to the main
slot computation, and this value should be hard to predict for an adversary, even after
observing the outputs of slots. For this purpose, the output of each slot is “masked” by a
pseudorandom mask, with the property that all masks XOR to zero. Note that the output
of the main slot is masked too, since otherwise it would match the final output and thus
would be trivial to locate.

When the slot function is implemented as a Boolean circuit, the construction can be
implemented in a bit-slice style by performing bitwise operations on 32- or 64-bit registers.
This allows to compute up to 32 or 64 slots in parallel without any significant overhead,
leading to very efficient implementations.

The construction requires two standard pseudorandom functions (PRFs) and a special
primitive called tweakable zero-sum PRF, which we formally define in the following.

Definition 16 (TZS-PRF). A function with the signature Fy[t](z) : ]Flzk‘ X F|2t‘ x Fy — Fg
is called a tweakable zero-sum PRF if

1. for all k € IF'le,t € F‘Qtl the function Fj[t] sums to zero over F3:

P Feltl(x) = 0;

z€Fy

2. for a uniformly sampled k € IF‘;', the family Fj, is computationally indistinguishable

from a uniformly sampled function family (f; : F§ — F3*) ., with the constraint
2

D,y filw) =0 forall t € Fy.

teF
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We describe a simple short-input TZS-PRF construction from a PRF in Appendix A,
with the TZS-PRF security reduced to the PRF security. It is based on the following simple
observation: the zero-sum property is equivalent to requiring each Fy[t] have algebraic
degree at most n — 1. For short inputs, we can sample such functions uniformly by selecting
each monomial of degree at most n — 1 randomly with probability 1/2. The general
idea follows: multiply each monomial of degree at most n — 1 by a pseudorandom bit
derived from the tweak using another PRF, and sum all monomials to get one output
coordinate. This construction is tailored to our application, where the TZS-PRF input
has size logarithmic in the number of slots and so the number of considered monomials is
linear in the number of slots.

Algorithm 1 Public dummy shuffling construction
Input: an implementation C' : F§ — F3* with [ AND gates;
an integer h > 1;
Gy, (z) : F — Fh . a PRF instance (impl.);
Hy, (x) : F3™" - 2. a PRF instance (impl.);
Fy,[t)(z) : F3 x Fb — F : a tweakable zero-sum PRF instance (impl.);
Output: slot implementation S(x,4) : F§ x F¥ — F such that EBing S(z,i) = C(x).
Input-Shuffling:
1. if G, (z) =i then > Gy, (z) determines the main slot index
2 z' < (z || 0%
3: else
4 a' + Hy,(x || )

Slot Evaluation:
5.y + C(2) > x,1 are passed through

Output-Selection:

6: mask + Fy,[x](7)

7. if Gy, (xz) =i then > determine the main output
8: return y & mask

9: else
10: return mask

We are now ready to describe our proof-of-concept public dummy shuffling construction.
The high-level pseudocode is given in Algorithm 1. We now describe each step of the
algorithm in details.

Line 1-4 First, the input x is used to determine the index i € F} of the main slot. For
this purpose, the PRF Gy, (with a hardcoded key) is used. If Gy, (z) is not equal to
the value of i passed into the current slot, then the dummy input is generated by
applying the PRF Hy, to the full input (z,7). Otherwise, the original input is used
and padded with zeroes.

Line 5 Main computation is done by using the refreshed circuit (as in Definition 15). By
Line 1-4 of the algorithm, the input in the main slot is the original input = padded
with zeroes, and the input in a dummy slot is fully pseudorandom. Note that x, ¢ are
passed through the slot evaluation phase. This does not introduce algebraic leakage,
since otherwise an algebraic attack would serve as a distinguisher for the PRF Gy,
or Hy,.

Line 6 The output mask is generated using the tweakable zero-sum PRF F}, tweaked by
x. The necessary property is that the generated masks XOR to zero for any fixed
input z.
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Lines 7-10 The PRF Gy, is again used to identify the main slot. In the main slot, the
generated mask is XOR-ed with the output 3’ (which is equal to the main output)
and returned. In dummy slots, the generated mask is returned unmodified. As a
result, the output of the main slot is the correct output XOR-ed with an output
mask, and the output of a dummy slot is simply an output mask. Since all output
masks sum to zero, the sum of all slots outputs results in the desired output C(z).

The slot evaluation phase can be proven to provide algebraic security, under the
assumption of the pseudorandomness of H. More precisely, by Theorem 3, the scheme S
with S.enc defined by Lines 1-4, S.comp defined by Line 5, and S.dec defined by lines 6-10,
is T-error-d-AS for any 1 < d < s — 1, with

s—d
Ty
This proves that algebraically secure computations are possible for any fixed degree and
any target circuit. However, the whole construction can be still susceptible to algebraic
attacks of degree 2, if the sensitive terms are computed in clear, namely [Gy, (z) = i],
which identifies the main slot. Provably secure implementation of these functions is left as
future work: it would first require a meaningful extension of the algebraic security model
to include encoding and decoding phases® .

Note that the output masks used in the construction are used not for achieving the
algebraic security, but to prevent black-box slot identification attacks. Indeed, without
the masks, all the dummy slots will have the all-zero output and thus, the main slot at
each execution would be trivially identifiable. Any obfuscation of the slot procedure would
not prevent the attack, since only outputs of the slots are used. Therefore, the outputs
should not reveal the location of the main slot. In particular, the output of the main slot
should be indistinguishable from an output of any dummy slot, even with the knowledge
of the main output. This is naturally guaranteed by the tweakable zero-sum PRF security.
Indeed, in our scheme the adversary is given access to the TZS-PRF modified by XORing
a constant (the main output of the scheme) to a single output of the TZS-PRF per each
tweak. Note that for an ideal TZS-PRF this modification produces the same distribution of
random function families independently of which output is modified (and of the constant,
which can be chosen adversarially). Therefore, the adversary can not gain any advantage
in guessing which output is modified, or, equivalently, what is the index of the main slot.

7 Conclusions

In this work, we analyzed algebraic security of dummyless and dummy shuffling in the
gray-box model of [BU18]. Dummy shuffling allows to achieve close to optimal security
for arbitrary degrees of the attack with reasonable overhead. This is a rather surprising
development, since the minimalist quadratic masking scheme of [BU18] was already rather
heavy. We conclude that this work solves the open problem of higher-order algebraic
security and provides useful tools for white-box implementations. Nonetheless, there are
still many open questions around the topic.

Towards white-box model. The current BU-model covers only the main computation
part. A natural question is how to extend this model to cover both encoding and decoding
steps, including pseudorandomness generation. Steps were made towards such a solution
in the context of probing security [IKL*13,CGZ20]. Finally, dummy shuffling requires
to generate a lot of random bits in the encoding step. This leads to large intermediate
state and may incur a large overhead for further obfuscation. Therefore, a masking-style
solution to higher-degree algebraic security is still a desirable tool.

5Direct extension is not possible, since input and output are sensitive functions by definition and will
be leaked in the encoding/decoding phases.
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Public dummy shuffling. We proposed a proof-of-concept construction of public dummy
shuffling. An interesting task is to develop an efficient instantiation using existing PRFs or
develop new white-box-friendly PRFs. In this work, we defined public dummy shuffling
and proposed a proof-of-concept construction. It reduces potential obfuscation overhead
in white-box implementations. It relies on a new primitive called tweakable zero-sum
pseudorandom-function, for which we proposed a simple construction with a security
proof. An open question is to optimize its parameters, or develop a new more efficient
construction.

Fault attacks. Fault attacks pose a dangerous threat to dummy shuffling. Most
importantly, faults can be used to distinguish main slots from dummy slots in public
dummy shuffling (as was done in [GRW20]), and aid algebraic attacks in hidden dummy
shuffling. For example, the attacker can filter the inputs for which chosen intermediate
values lead to a difference in the output when faulted. In a basic dummy shuffling, this
would identify the inputs for which those intermediate values belong to a main slot.

We conclude that the topic of algebraic security and, in general, provable countermea-
sures for white-box implementations still has many interesting open problems and research
directions.
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A Tweakable zero-sum PRFs

We describe a simple short-input TZS-PRF construction. The general idea is based on
the simple observation: the zero-sum requirement over Fj is equivalent to all output
coordinates of F[t] having degree at most n — 1. We construct a tweakable degree-(n — 1)
function by conditionally selecting each possible monomial of the input, with the condition
bits derived from the tweak via another PRF. Intuitively, an instance of Fy[t] only allows
to derive the condition bits, and so the security reduces to distinguishing the condition
bits from fully random, which is guaranteed by the PRF security.

Algorithm 2 Tweakable zero-sum PRF construction

Require: H(z): FJfl x FIil - 7" =Y . 4 PRF
Input: k € F|2k|, te IF‘;', z e Fy;
Output: Fi[t](z) € F5".
Yy 0eFp
ct Hk(t)
: for all u e F,u # (1,...,1) do
1 < integer representation of u

for all j€[1...m] do

Yj < Y Oty

1

2

3

4

5: ¥ gl
: ozl

6

7

8

u

: return y
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We now prove that the TZS-PRF security of this construction directly reduces to the
PRF security of H.

Proposition 4. For any adversary A, let /-\dv;ZS'PRF(A) denote the advantage of winning

the TZS-PRF security game, i.e., distinguishing Fy, for a uniformly sampled k € IF‘QM from a
uniformly sampled function family (f; : ¥y — F5'), 10 with the constraint @mF; fi(x) =0
2

forallt e IFIQtl.

Assume A that does at most Q queries and runs in time T. Then, there exist an
adversary B against the PRF Hj doing at most Q queries and running in time T +
O(m(2™ — 1)) - Q, such that

AdvIZ5-PRE(4) < AdvERF(B).

Proof. Construct an adversary B in the PRF game as follows. Simulate A, and on a query
to Fy[t](z) (vesp. fi(z)), query Hy(t) (resp. the random oracle) and compute F[t](x) as
in Algorithm 2, replacing ¢’ = H(t) with the query output.

Observe that the transformation from the ANF of y; to the truth table of y; is a linear
bijection. This is also true when the monomial x5 ... x, is excluded. More precisely, the
2" — 1 ANF coefficients (excluding the coefficient of x; ...z, ) are in bijection with the set
of all Boolean functions 3 — F, summing to zero. Since each output coordinate y; is
computed using independent parts of ¢, all the m(2™ — 1) bits of ¢ are in bijection with all
vectorial Boolean functions Fy — F5* summing to zero. In the case B accesses the random
oracle, it follows from the ANF property that A will access a uniformly sampled function
family with the zero-sum constraint. In the case B accesses the real PRF Hj(:), the
adversary A will have access to the real TZS-PRF Fj[-](-). If A succeeds in the TZS-PRF
game, then B succeeds in the PRF game. Note that each query of A incurs the overhead
of computing Algorithm 2 for B, which is O(m(2™ — 1)) bit operations. O
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