
ObfusGEM: Enhancing Processor Design Obfuscation Through
Security-Aware On-Chip Memory and Data Path Design

Michael Zuzak
University of Maryland, College Park, MD

mzuzak@umd.edu

Ankur Srivastava
University of Maryland, College Park, MD

ankurs@umd.edu

ABSTRACT
A sizable body of work has identified the importance of architecture
and application level security when using logic locking, a family of
module level supply chain security techniques, to secure processor
ICs. However, prior logic locking research proposes configuring
logic locking using only module level considerations. To begin our
work, we perform a systematic design space exploration of logic
locking in modules throughout a processor IC. This exploration
shows that locking with only module level considerations cannot
guarantee architecture/application level security, regardless of the
locking technique used. To remedy this, we propose a tool-driven
security-aware approach to enhance the 2 most effective candidate
locking locations, on-chip memory and data path. We show that
through minor design modifications of the on-chip memory and
data path architecture, one can exponentially improve the archi-
tecture/application level security of prior locking art with only a
modest design overhead. Underlying our design space exploration
and security-aware design approach is ObfusGEM, an open-source
logic locking simulation framework released with this work to quan-
titatively evaluate the architectural effectiveness of logic locking in
custom processor architecture configurations.

CCS CONCEPTS
• Computer systems organization → Processors and memory
architectures; • Security and privacy → Hardware security imple-
mentation; Embedded systems security.

KEYWORDS
ObfusGEM, Processor Design Obfuscation, On-Chip Memory De-
sign, Logic Locking, Untrusted Foundry, IP Piracy

1 INTRODUCTION
The increasing cost of integrated circuit (IC) fabrication has driven
chip design companies to adopt a fabless model. Fabless companies
export their IC fabrication supply chain to an unaffiliated third
party, known as an untrusted foundry. By doing so, they assume
significant risk as untrusted foundries can pirate, counterfeit, or
overproduce ICs [5, 28].

To mitigate these risks, researchers developed logic locking, a
family of module level hardware security techniques that render IC
functionality dependent on a secret key [9, 12, 17, 18, 20, 21, 24–26,
34, 36, 38, 39, 44, 45]. Without the correct secret key, logic locking
deterministically injects multi-bit errors at the output of any locked
module. Given a sufficient error injection rate (i.e. the number of

©ACM 2020. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was pub-
lished in The International Symposium on Memory Systems (MEMSYS 2020),
http://dx.doi.org/10.1145/3422575.3422798.

inputs that produce corrupt output compared to the size of the input
space), a locked IC becomes unusable. Therefore, by withholding
the key from unauthorized users (e.g. an untrusted foundry), logic
locking can prevent unauthorized IC use. Fundamentally, the goal
of logic locking is two-fold: 1) Error Severity: injecting sufficient
error to render an IC unusable for any wrong key and 2) Attack
Resilience: resisting attacks against it.

Despite logic locking being proposed and implemented as a
module level locking technique, it cannot be evaluated at this level.
This is the case because to ensure error severity, the first goal of logic
locking, module level error injection alone is insufficient. For error
severity, module level error must critically impact the application
being run on an IC. Therefore, any effective locking technique must
induce sufficient module level error to thwart application level IC
functionality. This has been noted by a substantial body of logic
locking research which argues that locking cannot achieve security
without considering an IC’s unique architecture [6, 12, 15, 16, 23,
45]. However, despite the wide array of research which recognizes
the importance of architectural considerations, there has been no
systematic evaluation of locking or proposed design approach to
achieve security at this level.

This motivates our work. The community has clearly shown that
achieving security with logic locking is necessarily an architectural
problem. Therefore, it is clear that architectural design decisions
will impact the security of logic locking. In this work, we aim to
both explore and quantify the ramifications of logic locking at this
level. To do so, we narrow our focus to processor design obfuscation,
one of the most commonly proposed obfuscation targets [6, 8, 12,
23, 40, 41, 45]. Based on a design space exploration of 2 processor
ICs, we show that logic locking is severely limited when viewed at
this level. As a result, we explore the possibility of a security-aware
architecture design approach to enhance logic locking techniques.
To this end, we direct our attention to the most commonly proposed
candidate modules for logic locking: 1) the on-chip memory, such
as cache controllers [6] or SRAMmemory [45], and 2) the data path,
such as ALUs [12] or alternative compute units [15, 23]. Within
these candidate locations, we propose and evaluate a quantitative,
tool-driven design approach for both on-chip memory and data
path architectures to achieve strong, application level supply chain
security guarantees with logic locking.

1.1 Contributions
In this work, we present a first-of-its-kind quantitative design space
exploration of logic locking at the application level using an x86 and
ARM A53 processor. We show that cutting edge locking techniques
are incapable of simultaneously achieving both error severity and
attack resilience in either of these ICs when applied blindly at the
module level (as is done in prior work [9, 17, 18, 20, 21, 25, 26, 34, 36,

Michael Zuzak and Ankur Srivastava

38, 39]). To overcome these limitations, we explore a security-aware
approach to design the on-chip memory or data path architecture of
processor ICs. To evaluate this approach, we redesign components
of both the on-chip memory and data path of our evaluated x86 and
ARM A53 core. Each security-aware redesign is shown to enable
existing locking techniques to achieve exponentially stronger error
severity/attack resilience guarantees. Hence, with our security-
aware design approach, a designer can construct memory and data
path architectures capable of amplifying the application level supply
chain security of existing logic locking art.

Underlying this work is a unique quantitative view of applica-
tion level supply chain security that is absent from prior work. To
provide this, we have developed ObfusGEM, a comprehensive logic
locking simulation framework based on the GEM5 simulator [3].
Alongside this work, we have released ObfusGEM (available at:
“https://github.com/mzuzak/ObfusGEM”) as an open-source tool to
not only enable our tool-driven security-aware on-chip memory
and data path design approach, but also to aide in both the design
and evaluation of logic locking techniques within these components
at the application level. Our contributions are as follows:

(1) We show that logic locking cannot secure processors when
applied blindly at the module level, regardless of configura-
tion, through a design space exploration of an x86 and ARM
A53 core.

(2) We propose a quantitative, security-aware design approach
for processor on-chip memory and data path components
capable of exponentially enhancing the application level
supply chain security of a logic locked processor.

(3) Using our security-aware design approach, we demonstrate a
variety of security-aware on-chip memory architectures that
allow our x86 and ARM A53 core to achieve strong supply
chain security with only a modest increase in overhead.

(4) We release ObfusGEM, an open-source logic locking simula-
tion framework which quantitatively evaluates the applica-
tion level security of logic locked processors. ObfusGEM is
used to both design and evaluate the secure on-chip memory
and data path architectures in our testbed ICs.

2 PRELIMINARIES AND PRIORWORK
2.1 Logic Locking
Logic locking is a diverse family of combinational hardware se-
curity techniques aimed at preventing unauthorized IC use, such
as piracy, counterfeiting, overproduction, and reverse engineer-
ing, by untrusted elements in an IC’s fabrication supply chain
[9, 12, 17, 18, 20, 21, 24–26, 34, 36, 38, 39, 44, 45]. It is characterized
by the introduction of accessory logic into modules within an IC.
This accessory logic is driven by both internal logic signals and an
added set of primary inputs, known as key inputs, which are driven
by a tamper-proof memory included in the design. Following fab-
rication, this tamper-proof memory is loaded with a user-defined
value known as the secret key of the logic locking construction.

Through this construction, the functionality of a locked module
becomes dependent on this secret key. This means that an IC will
exhibit incorrect functionality (i.e. deterministic multi-bit error
injections) whenever some key other than the correct secret key
is applied. By sufficiently corrupting IC functionality, a locked IC

becomes unusable. Hence, by withholding the secret key from any
unauthorized user, logic locking will render the IC unusable for
these entities, thereby restricting unauthorized use. In order to be
successful, logic locking must achieve 2 primary goals: 1) Error
Severity: injecting sufficient error to render an IC unusable for any
wrong key and 2) Attack Resilience: resisting attacks against it.
Error severity is generally related to the wrong key error rate of the
logic locking construction, defined as the average number of inputs
that produce errant outputs for a wrong key compared to the total
possible input combinations. Attack resilience is usually defined
as the time or number of attack iterations required to recover the
secret key for a given locking construction. A generic example of a
logic locked module is shown in Figure 1.

i0

i2
i1

i0

i2
i1

k0

k1

o1
o1

Originally Designed Circuit Logic Locked Circuit

Tamper Proof
Memory

Logic Locked
Circuit

Loaded with secret key by
designer after fabrication

k0,k1

Primary Input i0,i1,i2

Block Diagram of Locked Circuit

o2 o2

 Added Locking Logic
 Original Logic

Figure 1: Configuration of a logic locked module.

2.2 State-of-the-Art Logic Locking Techniques
Initially, proposed logic locking techniques aimed to maximize er-
ror rate at the output of wrongly keyed modules [17, 21, 38]. Doing
so ensured strong error severity guarantees. However, a Boolean
satisfiability attack against logic locking, known as a SAT attack,
was proposed to quickly unlock this early art [33]. The introduction
of the SAT attack prompted the development of SAT resilient lock-
ing techniques [34, 36]. Both of these techniques achieved provable
SAT attack resilience by carefully limiting the error injection rate of
their locking constructions. Essentially, [34, 36] were the first tech-
niques to sacrifice error severity to improve attack resilience. This
trade-off is an underlying theme of recent logic locking research.

Currently, there exists a diverse array of state-of-the-art logic
locking techniques [9, 12, 18, 20, 24–26, 39, 44, 45]. While these
techniques differ in their specific constructions, they each place
error severity and attack resilience into direct contention. Among
these proposed techniques, SFLL [24, 25, 39] and SAS [12] define
uniquely tunable constructions which enable locking configura-
tions with any desired wrong key error rate. This tunability led the
authors to provably quantify a direct, inverse relationship between
the wrong key error rate (error severity) of their locking construc-
tions and the SAT attack iterations necessary to unlock them (attack
resilience). Later work generalized these derived trade-offs to apply
to any combinational locking construction [12, 42–44]. We empha-
size the importance of this trade-off for secure locking design. To
achieve security, a designer must balance error severity and

ObfusGEM: Enhancing Processor Design Obfuscation

attack resilience, ensuring that both are achieved regardless
of locking construction.

2.3 Architectural Security of Logic Locking
Logic locking is implemented with gate level locking structures that
inject error at the module level. To ensure error severity, module
level error injection alone is insufficient. For error severity, module
level error must critically impact the application being run on an IC.
Therefore, any effective locking technique must induce sufficient
module level error to thwart architecture level IC functionality.

A substantial body of prior work on logic locking has highlighted
the importance of these architectural considerations to secure ICs
[6, 12, 15, 16, 23, 45]. However, despite the wide array of research
that recognizes the importance of IC architecture for supply chain
security, there has been no systematic evaluation of logic locking
or design approach to achieve security at this level. For example,
the work in [23] secures a large, multi-million gate chip with a
focus on system-level impact, however, it performs only qualitative
analysis to do so. Alternatively, [15, 16] merely recognize the need
for architectural considerations, but do not delve into the specifics of
locking at this level. On the other hand, [6, 12, 45] provide a limited
evaluation of their proposed techniques in a specific architecture,
but do not provide any methods to design or verify architecturally
secure locking configurations. Therefore, while these works provide
substantial evidence that architectural potency is necessary, they
fall short of providing a quantitative understanding of architectural
security or a method to reliably achieve it.

Throughout these works exploring the architectural efficacy of
logic locking [6, 12, 15, 23, 40, 41, 45], 2 primary areas of processor
architecture have been suggested as strong candidates for effective
locking. These components are 1) on-chip memory, such as cache
controllers [6] or SRAMmemory [45], and 2) data path components,
such as ALUs [12] or alternative compute units [15, 23]. We begin
our work with a quantitative exploration of these candidate com-
ponents. Following this, we propose and evaluate an architectural
design approach for on-chip memory and data path components to
amplify the supply chain security achievable by logic locking.

2.4 Attacker Model
In this work, we consider a SAT-capable adversary, common in
recent research [9, 12, 18, 20, 24–26, 34, 36, 39, 44, 45], who takes
some strategy using:

(1) A locked combinational netlist of an IC, which can be ob-
tained by reverse engineering provided GDSII files.

(2) A correctly-keyed, black-box oracle IC. This can be obtained
through either IC testing facilities or the open market. The
attacker can query this oracle IC with an input to determine
the correct corresponding output.

The goal of the attacker (e.g. an untrusted foundry) is to create
an IC sufficient for sale or IP piracy. Because ICs are designed to
run a set of specific applications, any successful defense strategy
must ensure critical failures in these workloads for wrong keys.
Therefore, the attacker’s goal is to obtain an IC capable of running
these specific applications. In this work, we quantify this with
application failure rate and mean time to failure. A higher failure
rate or shorter time to failure indicates more secure locking.

3 OBFUSGEM SIMULATION FRAMEWORK
We begin by introducing the ObfusGEM Simulation Framework1
that we have developed for this work. ObfusGEM is an open-source
tool-set which allows users to apply logic locking techniques to
custom processor netlists, attack them with cutting edge attack
methodologies, and then simulate custom workloads on the re-
sulting ICs in a precise, cycle-accurate fashion. By observing any
locking induced workload failures in these ICs, the application level
security of logic locking can be quantified. Therefore, ObfusGEM
enables the quantitative exploration of logic locking at the applica-
tion level. As noted in Section 2.3, a significant body of research has
identified the importance of architecture/application level consid-
erations for logic locking. ObfusGEM serves as the first systematic
way to explore these considerations, regardless of locking technique.
Throughout this work, we will utilize the ObfusGEM framework to
enable us to both design and evaluate secure on-chip memory and
data path architectures.

3.1 ObfusGEM Supported Attacker Models
ObfusGEM is attacker model agnostic. This allows the user to eval-
uate any attacker model they consider realistic. Also, because Ob-
fusGEM operates on real netlists of locked ICs, it can utilize any
attack methodology or locking approach without modification.

1An open-source copy of the ObfusGEM Simulation Framework can be found at:
“https://github.com/mzuzak/ObfusGEM”.

ObfusGEM Config

Attack Locked
IC Netlist

Invalid I/O

Locking
Configuration

Simulation
Parameters

ObfusGEM Simulator

Locked
Processor

Processor
Model

Unlocked
Processor

 Comparison
Window

Execution
Trace

Filesystem

Trace Resynchronize

Logic Lock
IC Netlist

1 2

Fault Analysis
of Keyed IC

3
4

5

ObfusGEM Output

Processor
Final State

Processor
Trace Diff

Presence of
Fatal Error

Cycles
Before Fail

6

Figure 2: Block diagram of the ObfusGEM simulation framework.

Michael Zuzak and Ankur Srivastava

3.2 Overview of the ObfusGEM Framework
To introduce ObfusGEM, we start with a brief overview. A block
diagram of the process to quantify locking at the application level
is in Figure 2. We discuss each step below.

(1) A netlist is selected and logic locked. Any number or combi-
nation of modules can be locked within an IC.

(2) Any attack (SAT/SMT [1, 33], structural [32, 35], removal
[37], etc.) can be applied to the IC to locate a key. We note
that a real netlist is used so any proposed attack can be
applied without modification. This allows the effectiveness
of specific attacks against logic locking to be quantified at
the application level.

(3) The attacker’s key is applied to each locked module and a
fault analysis locates any corrupted input minterms within
any locked module. This essentially creates a truth table
defining the functionality of each locked module.

(4) The on-chip memory/processor architecture, intended IC
workloads, locking configuration, and any corruptedminterms
for each module are specified in configuration files.

(5) The ObfusGEM simulator, described in Section 3.3, uses these
configuration files to perform cycle-accurate simulations of
a locked and an unlocked oracle processor running specified
workloads. By tracking the divergence of these cores, the
effects of locking are measured.

(6) Steps 2-5 are repeated in a Monte Carlo fashion, randomiz-
ing parameters including the simulated application, applied
locking key, or adversarial attack methodology.

By aggregating the results of many Monte Carlo simulations,
the application failure rate and the mean time to failure can be
calculated for a locked processor. Additionally, because ObfusGEM
is based on the GEM5 simulator [3], performance and power analy-
sis details can also be obtained for the locked IC. Given sufficient
Monte Carlo trials, these data points quantify the usability and over-
head of a locked processor after attacked by an untrusted foundry.
Because the attacker’s goal is to produce an IC sufficient for open
market sale or piracy, the more usable an IC, the more successful
the attacker. Therefore, the data produced by ObfusGEM directly
quantifies the architectural effectiveness of logic locking. We use
ObfusGEM for the remainder of this work, first to systematically
explore the logic locking design space for both on-chip memory and
data path locking and then to enable the tool-driven security-aware
design approach that we introduce for on-chip memory and data
path design in Section 6.

3.3 Simulator Overview
Now, we discuss the simulator block of the ObfusGEM framework,
displayed as step 5 of Figure 2. To construct this simulator, we
relied upon stochastic fault injection research by the error resilience
community [11, 13]. Building upon the outline laid out in [13], we
implemented our own custom fault injection simulator with one
critical difference: faults injected by logic locking are deterministic,
not stochastic in nature. This means that locked primary inputs
must always inject error when applied as input to a locked module.
This mitigates the impact of error detection and many other error
recovery procedures relied upon in the error resilience community.

Specifically, we perform application level simulations of a locked
and an unlocked instance of an identical processor in GEM5 [3]. In
the locked simulation instance, corrupted module output (located
via a fault analysis of the locked netlist) are mapped to a determin-
istic error state. As errors are injected, their severity is classified by
comparing the processor state of the locked and unlocked GEM5
simulation over a variable number of clock cycles. A divergence
of the locked from the unlocked core which is not corrected or
rendered latent in the variable clock cycle window is classified as
an unrecoverable/critical application error. If the locked proces-
sor returns to a state exhibited by the unlocked processor at any
point after the fault injection, we re-synchronize each processor
trace (to reset the variable timing window and enable new faults
to be analyzed) and consider the fault to be masked and therefore
architecturally irrelevant.

3.4 Relationship to Prior Art
The concept of error resilience simulation is not new. It has been
heavily studied by the research community, primarily focusing on
either radiation-induced soft errors or manufacturing defect related
errors. To facilitate soft error research, a series of error resilience
simulators have been developed [7, 14]. While the ObfusGEM sim-
ulator relies heavily on the lessons learned by these tools, they are
not interchangeable. This is due to the difference between the prob-
abilistic, on-chip memory errors caused by cosmic rays which are
modeled by soft error simulators and the deterministic, gate level
errors caused by logic locking which are modeled by ObfusGEM.
To effectively model soft errors, these simulators “fast-forward”
through a random number of processor clock cycles, maintaining
only the overall processor state. In the extremely unlikely probabil-
ity of an error, the processor execution is halted, a small number of
bit-flips are injected into on-chip memory, and a detailed simulation
mode proceeds until the impact of the injected error is determined.

As described in Section 3.3, the functionality of ObfusGEM dif-
fers significantly. Because the errors injected by ObfusGEM are
deterministic, rather than probabilistic, we are unable to use a
“fast-forward” mode. Deterministic error injection requires that the
current state of each module is maintained at all times and com-
pared to any corrupted I/O during each clock cycle. Prior simulators
lack the detailed tracking and comparison mechanisms necessary
for deterministic error injection. Additionally, even if comparison
logic was added, the detailed simulation mode would be necessary
at all times. This would yield prohibitively slow performance.

Alternatively, there exists fault simulators focused on modeling
errors related tomanufacturing defects or degradation [4, 19].While
these simulators do explore deterministic error injections, they
rely on quite detailed netlist modeling to do so. In general, fault
simulators utilize full-scale Verilog simulations of the IC under test.
These detailed models make the simulation of operating systems or
workloads, as is necessary for logic locking research, prohibitively
slow. ObfusGEM, while based on a netlist representation, simulates
only a functional model of the IC using GEM5. This not only reduces
execution time, but also enables the user to easily model and modify
IC architectures. By leveraging the customizability of the GEM5
simulator in ObfusGEM, one can easily explore the effect of on-chip
memory design on supply chain security as is done in Section 6.

ObfusGEM: Enhancing Processor Design Obfuscation

4 EXPLORING THE DESIGN SPACE OF
PROCESSOR DESIGN OBFUSCATION

We continue by using ObfusGEM to perform a quantitative design
space exploration of logic locking at the application level. To do so,
we will model SFLL-Fault [24, 25, 39], as it is the most prevalent
locking technique which remains unbroken2. As later discussed
in Section 4.3, despite using SFLL-Fault for this exploration, our
results are applicable not just to SFLL-Fault, but general to all logic
locking, regardless of technique. Therefore, this experiment serves
as an exploration of all combinational logic locking.

Specifically, we will incorporate a variety of locking configu-
rations which sweep over the error injection rate of locking and
quantify the corresponding architectural effectiveness (error sever-
ity) of each locking construction. As noted in Section 1, SAT attack
resilience (attack resilience) is inversely related to the error injection
rate of locking. Therefore, we can calculate the corresponding SAT
resilience of each locking configuration based on error injection
rate using results from [12, 42–44]. We note that this relationship
between error injection rate and SAT attack resilience exists under-
lying all logic locking techniques, not just SFLL-Fault. Therefore,
this experiment aims to identify locking configurations capable of
inducing critical application failures (error severity) while maintain-
ing SAT attack resilience within our processor testbeds. In other
words, this experiment identifies secure locking constructions at
the application level.

4.1 Experimental Methodology
4.1.1 Testbed Processors: An x86 (out-of-order, embedded core)
and an ARM A53 processor were used. Note that due to the propri-
etary nature of both of these cores, we were forced to use software,
rather than hardware, models. These models were functional rep-
resentations developed within the GEM5 simulator. However, all
methods and data presented could be performed equivalently on a
hardware model of the core.

4.1.2 Locking Configuration: SFLL-Fault[25] based locking config-
urations sweeping over error injection rate were applied to each
processor. To do so, SFLL-Fault was configured to lock a single, ran-
domly selected input cube of varying length. By scaling the length
of the locked input cube, a varying number of minterms could be
corrupted, thereby scaling the error injection rate. Each of the 14
modules (see Figure 3) were locked and evaluated independently
(i.e. one at a time). Note that the candidate locked modules were
selected from 3 categories: 1) on-chip memory, 2) data path, and
3) control path. As we have noted before, on-chip memory [6, 45]
and data path locking [12, 15, 23] have been the most commonly
suggested locking candidates in prior literature. Therefore, we fo-
cused our attention on modules within the on-chip memory and
data path.

4.1.3 Feasibility of Locking Configuration: We note that this lock-
ing configuration is consistent with state-of-the-art logic locking
research. We make several observations regarding this:

2Several works have shown that structural traces unique to SFLL can be exploited to
recover the secret key [32, 35]. While these approaches have not successfully unlocked
SFLL-Fault, they have unlocked earlier SFLL-based techniques, such as SFLL-HD,
indicating some limitations of the SFLL family.

(1) Recent work on architectural locking considers locking only
a single module which contains the critical IP to be protected
[6, 23, 25, 26, 39]. This is consistent with our decision to
independently lock each module.

(2) Cutting edge locking, such as [6, 23, 25, 26, 34, 36, 39, 44],
propose constructions which distribute error throughout
a locked module’s input space. This is consistent with our
random cube selection approach. By doing so, we both max-
imize the SAT attack resilience of the locking construction
and prevent cryptographic information leakage in the case
that an adversary has knowledge of a module’s input space
(e.g. knowledge of “protected input cubes” for SFLL allows an
adversary to recover the secret key in linear time [39]).

(3) Cutting edge techniques, such as [23, 24, 34, 36, 39], propose
integrating their low error locking constructions alongside
a high error locking technique, such as [38]. Taking this so-
called “compound” approach allows a designer to achieve
both high error severity and SAT attack resilience simultane-
ously. However, recent research has shown that high error
locking techniques in compound locking constructions can
be easily removed, leaving only low error locking within the
module [27, 29–31]. This is consistent with our choice not
to pair SFLL-Fault with a high error locking technique, as it
could be easily removed.

4.1.4 ObfusGEM Configuration: Using the ObfusGEM simulator,
120 Monte Carlo simulations were performed for each locking
configuration in each processor. A locking configuration consists
of a locking location and an associated error injection rate (e.g.
the x86 core adder locked by an SFLL-Fault configuration with an
error rate of 0.01%). For each Monte Carlo iteration, a wrong key
was randomly selected and 1 of 3 benchmarks from the PARSEC
benchmark suite3 [2] were simulated on the core. Because the error
rate of SFLL-Fault is uniformly distributed across all wrong keys
(i.e. each wrong key has the same error rate), each random key
selection produces a locking configuration with an identical error
rate and different locking-corrupted minterms. Note that this is the
weakest possible attacker. The attacker randomly selects a key with
no attempt to minimize the error injection rate or intuit the correct
key. In total, this makes 50,400 Monte Carlo trials4.

4.1.5 Monte Carlo Simulation Count: We selected the number of
Monte Carlo trials performed for each locking configuration em-
pirically. To do so, we performed 1,500 Monte Carlo trials for 4
error rates (2−10, 2−9, 2−8, 2−7) applied to 4 locking locations (FPU
Adder, Multiplier, L1 D-Cache Controller, Decoder) respectively. We
considered the application failure rate after 1,500 iterations to be
the true application failure rate of each locking construction. Based
on this, we located the number of Monte Carlo trials in which each
locking configuration converged to an error rate within ±5% of the
true application failure rate. This was 120 Monte Carlo trials per
configuration.

3PARSEC benchmarks [2] are designed to be a cross-section of common processor
workloads, therefore, they serve as a good measurement of a locked processor’s ability
to do useful work at the application level.
450,400 total trials = 2 ICs * 14 locking locations * 15 SFLL-Fault error rates * 120 Monte
Carlo trials

Michael Zuzak and Ankur Srivastava

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations
(a) Mean Failure Rate of Locked x86 Core

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4
0.00

0.20

0.40

0.60

0.80

1.00 SAT Susceptible Locking Configurations
(b) Mean Failure Rate of Locked ARM Core

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4

104

106

108

1010

M
ea

n
Co

rr
ec

tl
y

Ex
ec

.
W

or
kl

oa
d

Cy
cl

es

SAT Susceptible Locking Configurations

(c) Mean Correctly Executed Cycles, Locked x86 Core

2 18 2 16 2 14 2 12 2 10 2 8 2 6 2 4
105

107

109

1011

SAT Susceptible Locking Configurations

(d) Mean Correctly Executed Cycles, Locked ARM Core
Error Injection Rate for Incorporated Locking Configuration

Locked Module:
Adder
Multiplier
Divider
FPU Adder
FPU
Multiplier
FPU
Divider
Decoder
Branch
Predictor
Branch
Target
Buffer
Return
Address
Stack
L2 Cache
Controller
L1 I-Cache
Controller
L1 D-Cache
Controller
DRAM
Controller

Figure 3: ObfusGEM results quantifying the application level security of locking in an x86 and ARM A53 core.

4.2 Quantifying SAT Attack Resilience
The work in [12, 42–44] defines an inverse mathematical relation-
ship between the error injection rate of logic locking and the aver-
age number of SAT iterations necessary to unlock it. However, to be
successful, a SAT attack must locate the correct key in a reasonable
time. Because SAT attack runtime is both netlist and attack formu-
lation dependent, the expected number of SAT attack iterations
alone does not provide sufficient context to accurately characterize
SAT susceptibility. Fortunately, the results presented in the work
on SFLL-Fault [25, 39] provide a strong intuition for SAT runtime.

Yasin et al. provided an empirical analysis of SAT attack effec-
tiveness against varying error rate SFLL constructions in a series
of benchmark circuits. For their experiment, they incrementally
lowered the error injection rate of SFLL and evaluated the corre-
sponding SAT attack runtime. The lowest error injection rate SFLL
configuration which could be successfully SAT attacked within 48
hours required 214 SAT iterations. Therefore, we define any locking
configuration unlocked in ≤ 214 iterations as SAT susceptible.

4.3 Analysis of Design Space Exploration
We have aggregated the results of the experiment described in
Section 4.1 in Figure 3. Within the figure, the region constituting
SAT susceptible locking configurations have been shaded in red for
clarity. Fundamentally, the goal of our design space exploration was
to locate an architecturally secure locking configuration, defined
as a locking configuration which simultaneously 1) induces criti-
cal application failures for any wrong key (error severity) and 2)
maintains SAT attack resilience. In the figure, the first goal of logic
locking (error severity) is quantified by the PARSEC benchmark
failure rate. If a locking configuration with a given error rate in-
duces a high failure rate for PARSEC benchmarks, the configuration
has successfully derailed application functionality. The second goal
of logic locking (maintaining SAT resilience) is quantified by the
red-shaded SAT susceptible region. If a given error rate locking con-
figuration resides outside of this region, it is deemed SAT resilient.

Therefore, based on our results, there does not exist an SFLL-Fault
configuration capable of simultaneously achieving both goals.

While each netlist was only locked with SFLL-Fault, this same
trade-off between error severity and SAT resilience exists under-
lying every locking technique [12, 42–44]. Therefore, because all
logic locking techniques restrict unauthorized use with the same
fundamental functionality, namely deterministically corrupting the
output corresponding to some portion of the input space, these
results can be generalized to logic locking as a whole. Any alter-
native logic locking technique configured with a given, randomly
distributed error injection rate can be expected to achieve a sim-
ilar error severity to that of SFLL-Fault. Additionally, given the
generalized nature of the results derived in [12, 42–44], this er-
ror severity can be expected to correspond to a similar number of
SAT attack iterations necessary to unlock the locking construction,
hence a similar SAT attack resilience. Therefore, the results of this
design space exploration are not a limited example in which only
SFLL-Fault was insecure when viewed at the application level, but a
demonstration of the underlying limitations of logic locking when
viewed at the application level.

This result is quite alarming. Fundamentally, it indicates that
state-of-the-art locking appliedwithout application level con-
siderations (as proposed by most cutting edge art [9, 17, 18,
20, 21, 25, 26, 34, 36, 38, 39]) is inadequate to thwart an un-
trusted foundry attacker, regardless of locking location or
configuration. To further exacerbate this result, we note that
the weakest possible attacker model was utilized. The untrusted
foundry simply selected a random wrong key with no attempt to
apply cutting edge attacks or to minimize error within the locked
IC. Even given this extremely weak attacker model, state-of-the-
art logic locking was unable to achieve application level security
within either IC, constituting a massive security risk.

Finally, we note that while no locking configuration was capable
of achieving both error severity and attack resilience, the most
successful locking locations resided in the on-chip memory (L1/L2

ObfusGEM: Enhancing Processor Design Obfuscation

cache controller, memory controller) and the data path (adder, FPU
adder) of each processor. This is rather unsurprising given the
emphasis placed on on-chip memory [6, 45] and data path [12, 15,
23] locking in prior work. Therefore, based on these results, we
narrow our focus to the on-chip memory and data path of the
processor. With this focus, we aim to identify the reasons limiting
the effectiveness of logic locking in these modules. Based on these
limiting factors, we attempt to identify design decisions that can be
made to amplify the supply chain security of on-chip memory and
processor data path components. Ultimately, we hope to provide a
quantitative, tool-driven approach for secure on-chip memory and
data path design by leveraging ObfusGEM tooling.

5 FACTORS LIMITING SECURITY
Aswemove towards mitigating the identified security risks through
secure on-chip memory and data path design, we first must un-
derstand the underlying causes. Based on our experiments, 2 pri-
mary factors limit the architectural effectiveness of locking, namely
1) module input space non-uniformity and 2) processor error re-
silience. We discuss each in turn.

5.1 Factors Limiting the Efficacy of Locking
5.1.1 Input Space Non-Uniformity: Within a processor, inputs to
each module are generally heavily skewed towards a small subset
of the input-space. This is due to the tendency of processors to
repeatedly access the same set of data and resources, a heavily stud-
ied phenomenon referred to as the principle of locality. Additionally,
because data and resource utilization is dictated by the applica-
tion being run on a processor, the input-space of each module is
not only skewed, but also application-specific. This means that
locking applied independently of IC architecture/application (as is
generally proposed) cannot account for the architecture/application-
dependent input space of a module. Finally, as we have noted, the
portion of the input space that is corrupted by logic locking must be
limited to ensure SAT resilience [12, 42–44]. Therefore, it is unlikely
that any of the tiny set of application-agnostic inputs corrupted by
logic lockingwill ever actually occur within the skewed, application-
dependent set of inputs applied to the locked module. This makes
the likelihood of locking induced errors negligible, greatly limiting
the efficacy of locking configured independently of IC architecture.

To empirically support the above claim, we have used ObfusGEM
to characterize the input-space of an adder within our x86 core
running 9 benchmarks from the PARSEC benchmark suite. Several
observations from this experiment are below.

(1) Workloads used 10−34% to 10−31% of the input space.
(2) A histogram of input utilization for the Blackscholes bench-

mark is in Figure 4. This input-space is skewed between
±4096, with > 95% of inputs in this range.

(3) Only ∼13,000 inputs are shared between each workload.
These results support the claim that a small/skewed subset of

a module’s input space is used by the application. Additionally,
the relatively small input overlap between benchmarks indicates
that a module’s input-space is quite application-dependent as well.
Finally, we reiterate that to achieve SAT resilience, the number
input minterms corrupted by locking must be severely limited. By
combining these results with the 10−34% to 10−31% input space

263 0 263

Input Value (Interpreted as 2's Complement)

10 7

10 5

10 3

10 1

In
pu

t L
ik

el
ih

oo
d

(%
)

Inputs Between
±4096

Figure 4: X86 core adder input utilization for Blackscholes.

utilization identified empirically, we confirm that the probability of
a corrupted minterm actually being applied to a locked module is
indeed nearly negligible. Therefore, effective locking must account
for both IC architecture and the applications being run on an IC to
achieve security.

5.1.2 Processor Error Resilience: Substantial computer architecture
research has shown that many ICs, especially processors, mask
an overwhelming majority of module level errors when viewed
architecturally [13, 22]. For example, the work in [22] showed that
over 97% of random, radiation-induced soft errors vanished within
a tested IBM POWER6 core. On top of the architectural error re-
silience of ICs, most common applications have been shown to be
error resilient as well [7, 11]. For example, common media and AI
benchmarks mask as much as 46% of module level errors injected
when considering application output [11]. This means that even
when logic locking induced errors occur, there still exists a sizable
probability that this error will be simply masked and rendered
architecturally irrelevant. Therefore, in addition to ensuring mod-
ule level error is injected, effective locking must also ensure that
injected error will derail IC functionality.

6 SECURITY-AWARE ARCHITECTURE
DESIGN APPROACH

As noted in Section 1, all logic locking art is forced into a trade-off
between error injection rate and SAT attack susceptibility [12, 42–
44]. The experimental results aggregated in Figure 3 show that logic
locking configurations with a wrong key error rate adequate for
architectural security (error severity) are inherently SAT susceptible.
On the other hand, each SAT resilient locking configuration was
unable to derail processor functionality. Because these bounds are
theoretically derived [12, 42–44], minor tweaks and redesigns of
similar art are unlikely to produce a viable solution. Therefore,
instead of altering the locking techniques, we must explore other
methods to improve the application level security of locking.

To this end, we look for ways to mitigate the factors limiting
application level security. Given that these identified factors exist
outside of the locked module itself, at the architecture level, we
look to an IC’s architecture to overcome the identified limitations.
We explore the possibility of so-called security-aware architecture
design to improve the security of logic locking, regardless of tech-
nique. Fundamentally, we are suggesting that architecture design

Michael Zuzak and Ankur Srivastava

decisions should consider not only traditional parameters (i.e. area,
delay, power, performance, etc.), but also supply chain security. To
this end, we propose and evaluate security-aware architecture de-
sign, a tool-driven approach, based upon the ObfusGEM simulator,
to identify and evaluate minor architecture design modifications
capable of improving the application level impact of locking. In par-
ticular, we look to the most effective locking candidates identified
in Figure 3, namely the on-chip memory and data path, to improve
supply chain security. For these components, we will attempt to
quantify the goals of a design approach that favors supply chain
security in these components. Then, we will apply this design ap-
proach to redesign candidate locking locations in each IC capable
of exponentially enhancing supply chain security.

6.1 Security-Aware Architecture Approach
To both demonstrate and evaluate a security-aware architecture de-
sign approach, we implement it in our x86 and ARM A53 processor
ICs. To this end, we proceed as follows.

(1) Identify Factors Limiting Logic Locking:Using the cycle-
accurate, architectural data provided by ObfusGEM, we iden-
tify the factors limiting architectural security. This is high-
lighted in Section 5 for our tested ICs.

(2) Identify Candidate Design Modifications: Minor archi-
tectural design modifications for the on-chip memory and
data path that are capable of mitigating any limiting factors
must be identified. We perform this in Section 6.2 for our
x86 and ARM A53 core.

(3) Implement and Evaluate Security-Aware Changes: Us-
ing the quantitative, architectural lens provided by Obfus-
GEM, the efficacy of each identified change must be quan-
tified and tuned, ensuring that sufficient application level
security guarantees are achieved within the IC. We perform
this in Section 6.3 for our tested ICs.

Fundamentally, this approach relies on the quantitative lens
provided by the ObfusGEM simulator to both identify and apply
these security-driven modifications. Throughout the remainder of
this work, we demonstrate how a security-focused approach to
on-chip memory and data path design can exponentially improve
security. This enables our previously insecure ICs to achieve strong
application level security guarantees with locking.

6.2 Identifying Candidate Design Modifications
As shown in Section 5.1, the limitations of locking can be partially
attributed to 1) input space non-uniformity and 2) processor error
resilience. This means that any design decision which 1) increases
the number of uses of (i.e. utilization) or unique input minterms
applied to (i.e. diversity) a locked module or 2) amplifies the impact
of locking induced errors at the application level will enhance se-
curity. We continue by identifying a series of architectural changes
which achieve either of these security-focused design goals.

6.2.1 Increasing Locked Module Input Utilization/Diversity: When
input utilization/diversity is increased, a larger percentage of a
locked module’s input space is used. Increased input space utiliza-
tion increases the likelihood that a locked minterm will be applied

to the module, increasing the likelihood of a locking induced fault
injection. Many architectural decisions can achieve this:

• For cache controller locking, increasing cache associativity
increases both the length and diversity of cache tags (in-
creases input diversity of locked module).

• For memory controller locking, utilizing a write through
(rather than write back) cache will increase write frequency,
increasingmemory controller use (increase utilization). How-
ever, we note that this change has a large number of side
effects for an IC, likely making it unreasonable in practice.

• For functional unit (FU) locking, smart scheduler design can
either favor locked FUs or ensure that corrupted I/O pairs
are likely to be scheduled to locked FUs (increase utilization).

• The number of FUs (i.e. adder, FPU, etc.) can be increased
and locked with different locking configurations corrupting
different inputs (increases diversity of locked inputs).

6.2.2 Amplifying the Impact of Locking: By amplifying the impact
of locking induced errors, locking is more likely to overcome ar-
chitecture/application error resilience. Many design choices can
achieve this, for example:

• Locking to ensure that unrecoverable faults are induced for
incorrect keys. Examples include locking the FPU to throw
a divide by 0 exception (fatal error), or locking the branch
predictor to force a branch to NULL (fatal security exception).
Therefore, when a wrong key is applied, any logic locking
induced fault injection will cause an error with a critical
application impact.

• Locking to ensure fault propagation. For example, locking
multiple cache controllers so that locking induced errors
in low level caches trigger block write-back to high level
caches/main memory. Increasing error propagation through-
out memory reduces the odds of error masking.

6.3 Evaluating Security-Aware Design
Now that we have identified a series of security-aware design mod-
ifications for both on-chip memory and data path components,
we continue by implementing and evaluating these design deci-
sions. To this end, we leveraged ObfusGEM to design and evaluate
security-aware modifications to our x86 and ARM A53 cores. As
shown in Section 4, cutting edge locking was unable to protect
either architecture. Therefore, for success, we must implement mi-
nor architectural design decisions within the on-chip memory and
data path that sufficiently improve the application level security
of incorporated logic locking art so that both error severity and
attack resilience can be achieved simultaneously. For this section,
we targeted several on-chip memory and data path modules and
developed security-aware architectures capable of amplifying sup-
ply chain security for each. The evaluation of each proposed design
proceeded as follows.

(1) The location under test was locked with configurations iden-
tical to those in Section 4.1 (i.e. the same randomly selected
input cube of varying length was locked). Therefore, for this
experiment, only the architecture of the IC was modified
compared to Section 4.1.

(2) Security-aware architecture modifications were applied.

ObfusGEM: Enhancing Processor Design Obfuscation

2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations

Locking Error Injection Rate
Architectural Configuration:

x86 Orig. Arch.
x86 Mod. Arch

ARM Orig. Arch.
ARM Mod. Arch

Figure 5: The effect of on-chip memory hierarchy redesign
on the security of L1 D-cache controller locking.

(3) ObfusGEM compared the application level effects of locking
within the modified and un-modified processor.

6.4 Experiment 1: Security-Aware On-Chip
Memory Design

To evaluate the effectiveness of a security-aware design approach
for the on-chip memory of a processor, we chose to redesign the L1
D-cache. To this end, we selected the locking configuration imple-
mented within the L1 cache controller of each processor in Section
4 as our candidate locking configuration. We then redesigned the
L1 D-cache of the IC to amplify supply chain security.

Specifically, we made 2 design decisions simultaneously. 1) The
associativity of the cache was increased. This increases the cache
tag length and the number of unique inputs applied to the cache
controller’s tag logic (input diversity). 2) The locking was designed
to map locked minterms to fatal errors at the output of the cache
controller. Both the x86 and ARM core were initially designed
with 2-way set associative L1 D-caches. For this experiment, we
increased the associativity of this cache to 8-way set associative.
Additionally, the locking configuration was modified to produce
an invalid tag whenever a locked input was applied to the cache
controller. Other than these changes, all other aspects of the on-chip
memory and locking configuration were fixed. ObfusGEM results
for this experiment are in Figure 5.

A similar approach can be taken to enhance locking within
higher level caches as well. To demonstrate this, we narrowed our
focus to solely the ARM A53 processor testbed. The cache and
DRAM control logic within this processor is more complex than
the selected x86 core, thereby allowing more design modifications
without significant redesign. For this experiment, we attempted to
redesign the on-chip memory hierarchy to amplify both L2 cache
controller locking and DRAM controller locking. To do so, we en-
abled hardware pre-fetching within both the L1 D-cache and L2
cache. By enabling pre-fetching, both the diversity and number of
minterms applied to both the cache controller and DRAM controller
can be increased. We also enabled speculative execution within the
core, enabling the processor to execute instructions based on con-
ditional branch predictions. Once again, this modification both
increases the diversity and amount of traffic occurring within the

2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations

Locking Error Injection Rate
Architectural Configuration:

ARM Orig. Arch. L2
ARM Mod. Arch L2

ARM Orig. Arch. Mem. Ctl.
ARM Mod. Arch Mem. Ctl.

Figure 6: The effect of on-chip memory hierarchy redesign
on the supply chain security of L2 cache controller and
DRAM controller logic locking.

on-chip memory system. We have aggregated ObfusGEM simu-
lation results quantifying the supply chain security achieved by
locking both the L2 cache controller and the DRAM controller in our
ARM A53 core with both pre-fetching and speculative execution
enabled in Figure 6.

6.5 Experiment 2: Security-Aware Data Path
Design

To evaluate the effectiveness of a security-aware design approach
for the data path of a processor, we chose to redesign the floating
point unit. To this end, we selected the floating point adder locking
configuration from Section 4 as our candidate locking configuration.
We then redesigned the floating point unit of the IC to amplify the
achievable supply chain security.

To improve floating point adder locking, we explored 2 archi-
tectural approaches. 1) We increased the number of floating point
adder functional units (FUs) within the core. Each FU was then
independently locked for a separate, randomly chosen input cube.
2) We implemented a smart scheduler, a redesigned version of each
processor’s out-of-order scheduler which favors locked FUs (only if
that FU was available) for any operation on locked input minterms.
For both the x86 and ARM processor, only a single FPU adder was
included within the design. Therefore, for our evaluation, we in-
creased the number of floating point adders to both 2 and 4 for both
cores. ObfusGEM results for both designs (alongside the baseline
from Section 4) are in Figure 7.

A similar approach can be applied to other data path modules as
well. To demonstrate this, we performed the same experiment on
the second best data path locking configuration, the integer adder.
To amplify supply chain security in this module, we increased
the number of integer adders in each core from 2 to 4. We then
locked each of these additional adder circuits independently for a
randomly chosen input cube. The ObfusGEM simulation results
quantifying the impact of this design change on the supply chain
security achieved by integer adder locking is included in Figure 8.

6.6 Experimental Design Overhead
By their very nature, the architectural changes we have imple-
mented will impact the design parameters (i.e. area, delay, power,

Michael Zuzak and Ankur Srivastava

2 24 2 22 2 20 2 18 2 16 2 14 2 12 2 10
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible
Locking Configurations

(a) Mean Failure Rate of Locked x86 Core

2 24 2 22 2 20 2 18 2 16 2 14 2 12 2 10
0.00

0.20

0.40

0.60

0.80

1.00
SAT Susceptible

Locking Configurations

(b) Mean Failure Rate of Locked ARM Core

Error Injection Rate for Incorporated Locking Configuration
Architectural Configuration:

Baseline Config. 2 FU (Std. Sched.) 4 FU (Std. Sched.) 2 FU (Smart Sched.) 4 FU (Smart Sched.)

Figure 7: The effect of modified FU count and scheduler redesign on the application level security of FPU adder locking.

X86 Core ARM Core
L1 L1 L2 DRAM

D-Cache D-Cache Cache Cont. Cont.

Area 9.1% 5.5% 4.1% 4.3%
Peak Power 2.2% 1.2% 3.3% 3.4%
Runtime -1.2% -0.1% 0.7% 0.7%
Clock Rate 0.0% 0.0% 0.0% 0.0%

Table 1: Design overhead for x86 and ARM core redesigned
with a security-aware on-chip memory architecture. Note
that these numbers include locking overhead in addition to
the overhead of any architectural redesign.

performance) of each device. While this is not ideal, we note that
strong supply chain security guarantees are crucial to ensuring
both the IP and integrity of a device. Therefore, we argue that
strong supply chain security guarantees are a necessary compo-
nent of IC design. We have aggregated the design overhead of
the proposed architectural design modifications in Tables 1 and
2. Runtime was modeled with ObfusGEM through the runtime of
PARSEC benchmarks. Processor power and area were estimated
based on GEM5 data using the McPAT modeling framework [10]
with a 32nm technology library. Note that the estimated overhead
of logic locking each module with SFLL-Fault is included within the
design overhead as well. To do so, we added the average area and

2 19 2 17 2 15 2 13 2 11
0.00

0.20

0.40

0.60

0.80

1.00

M
ea

n
Fa

il
Ra

te
 o

f
PA

RS
EC

 W
or

kl
oa

ds

SAT Susceptible Locking Configurations

Locking Error Injection Rate
Architectural Configuration:

X86 Orig. Arch.
X86 4 Add FU

ARM Orig. Arch.
ARM 4 Add FU

Figure 8: The effect of modified FU count on the application
level security of integer adder locking.

power overhead of SFLL-Fault from [25] within the McPAT model
of any locked design component. For each experiment, we fixed
the clock rate for each architecture because scaling clock frequency
would generally be considered a severe design modification. For
this reason, no degradation was seen in the clock rate of any design.

6.7 Analysis of Security-Aware Designs
As seen in Figures 5-8, each proposed security-aware redesign
yielded locking configurations that reliably derailed processor func-
tionality (achieved error severity) with exponentially smaller error
injection rates. The trade-off identified in [39] proves that a lin-
ear decrease in error injection rate yields a linear increase in the
SAT attack resilience of SFLL-Fault. This means that locking can
obtain exponentially stronger SAT attack resilience while still main-
taining equivalent error severity in these modified architectures.
Because a secure locking configuration must achieve both error
severity and attack resilience simultaneously, this constitutes an
exponential improvement in the security of logic locking. In fact,
through the security-aware design of both the on-chip memory

Security-Aware X86 Data Path Redesign Overhead
Int. Adder FPU Adder Locking
Locking No Smart Sched. Smart Sched.
4 FU 2 FU 4 FU 2 FU 4 FU

Area 11.7% 12.1% 24.8% 12.1% 24.8%
Peak Power 9.3% 10.3% 20.7% 10.3% 20.7%
Runtime -0.9% -8.7% -10.8% -8.7% -10.8%
Clock Rate 0.0% 0.0% 0.0% 0.0% 0.0%

Security-Aware ARM Data Path Redesign Overhead
Int. Adder FPU Adder Locking
Locking No Smart Sched. Smart Sched.
4 FU 2 FU 4 FU 2 FU 4 FU

Area 11.5% 12.3% 25.3% 12.3% 25.3%
Peak Power 9.2% 9.6% 20.2% 9.6% 20.2%
Runtime -0.7% -2.4% -2.5% -2.4% -2.5%
Clock Rate 0.0% 0.0% 0.0% 0.0% 0.0%

Table 2: Design overhead for x86 and ARM core redesigned
with a security-aware data path architecture. Note that these
numbers include locking overhead in addition to the over-
head of any architectural redesign.

ObfusGEM: Enhancing Processor Design Obfuscation

and data path of the IC, logic locking critically impacted PARSEC
benchmarks (achieved error severity) with error injection rates
residing outside the red-shaded SAT susceptible region. Therefore,
our security-aware design modifications enabled locking to simul-
taneously achieve both error severity and SAT attack resilience
in both cores. In Section 4, the same locking configurations were
unable to achieve security in each un-modified IC. Hence, each
design approach was successful in allowing a designer to achieve
supply chain security.

Despite this positive result in both cases, there are clear differ-
ences between on-chip memory hierarchy and data path redesign
for this purpose. First, we note that the strongest supply chain se-
curity was achieved through our redesign of the FPU adder. In this
case, non-zero application failure rates could be observed with error
injection rates of 2−20 in all cases. However, this increase required
a significant increase in the both the area and power consumption
of the design, with over a 20% increase in the worst case. While it
is possible that some processor designs could absorb this level of
design overhead to achieve supply chain security, this additional
overhead would likely be unfeasible in most cases. A similarly large
overhead can be seen in the integer adder redesign as well. Hence,
both evaluated data path designs induced substantial overhead.

Comparatively, the on-chip memory redesign yielded slightly
smaller security improvements, but with substantially less design
overhead. For example, our L1 D-cache redesign allowed L1 cache
controller locking to achieve error severity with an error injection
rate of 2−17. This error injection rate resides well outside of the SAT
susceptible region. However, this design required less than a 10%
area overhead in the worst case and only a 1-2% increase in peak
power. This level of design overhead is much more manageable.

We found that the design overhead of proposed on-chip memory
modifications was much lower than data path modifications due
to the more subtle changes available to the IC designer in memory
hierarchy design. In our redesign of the data path, we relied on sim-
ply increasing the number of functional units within the device, an
extremely coarse design modification. However, the on-chip mem-
ory hierarchy had a wide array of candidate design modifications,
such as associativity, cache size, pre-fetching, or hierarchy orga-
nization. Each of these design modifications can be finely tuned
to greatly impact the environment a cache or DRAM controller
operates in. This makes each of these design changes ideal for a
supply chain security-aware design approach. For example, by en-
abling hardware pre-fetching and speculative execution, 2 features
already available within the hardware, we were able to increase
DRAM controller traffic by 17.1%. This increase in traffic substan-
tially increased the utilization and diversity of minterms applied to
the locked module, exponentially improving supply chain security,
while imposing minimal area/power/performance overhead.

Therefore, it appears that the on-chip memory hierarchy serves
as amore viable candidate for logic locking. Unlike the data path, the
complexity of the on-chip memory system enabled a diverse array
of modifications capable of substantially enhancing supply chain
security. While we obviously did not explore every aspect of locking
within the on-chip memory hierarchy, our results demonstrate the
promise of a memory-focused logic locking approach.

6.8 Summary of Security-Aware Design
To conclude, our on-chip memory and data path redesign in the x86
and ARM A53 core exponentially improved application level supply
chain security. While the design overhead of the data path redesign
approach was substantial in many cases, the on-chip memory re-
design exhibited a much more modest increase in design overhead.
The success of this approach supports the results of prior research
noting the on-chip memory hierarchy as an ideal locking candi-
date [6, 45]. However, we note that achieving security in either
of these components of an IC required some architectural tuning
in both testbed processors. This result not only demonstrates the
importance of IC architecture for supply chain security with logic
locking, but also emphasizes the importance of a security-aware
approach to architecture design.

Our security-aware approach was made possible by ObfusGEM,
which both enabled us to identify the factors limiting logic locking
and to design/evaluate changes to mitigate these factors. Therefore,
while we have shown that an ObfusGEM-driven, security-aware de-
sign approach can achieve strong application level security within
custom ICs, we also note that the presented results are just a small
slice of the security-aware designs made possible by ObfusGEM.
To this end, we have released the ObfusGEM simulator alongside
this work to enable others in the research community to identify al-
ternative security-aware design modifications and implementation
methodologies capable of achieving the application level security
currently missing from cutting edge logic locking approaches.

7 CONCLUSION
To begin our work, we performed a design space exploration of
logic locking in 2 processors. Based on our exploration, we found
that logic locking was unable to achieve application level security
and attack resilience simultaneously. We identified input-space
non-uniformity and processor error resilience as 2 of the factors
which limited locking in these ICs. We then proposed security-
aware architecture design to overcome these limitations. To facili-
tate security-aware design, we developed and released ObfusGEM5,
an open-source logic locking simulation framework to aide de-
signers in both the design and evaluation of secure ICs. We used
ObfusGEM to perform security-aware architecture design of the
on-chip memory and data path of our 2 processor testbeds that were
insecure with prior art. Our proposed security-aware on-chip mem-
ory and data path designs were shown to exponentially improve
security. In the case of on-chip memory redesign, these exponential
improvements incurred only a modest design overhead, serving
as a viable approach to allow locking to achieve strong security
guarantees in these previously insecure devices.

ACKNOWLEDGMENTS
This work was supported by the ARCS Foundation, the National
Science Foundation (NSF) Grant 1642424, and the Air Force Office
of Scientific Research Grant FA9550-14-1-0351.

5ObfusGEM can be found at: “https://github.com/mzuzak/ObfusGEM”.

Michael Zuzak and Ankur Srivastava

REFERENCES
[1] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, and Avesta Sasan.

2019. SMT Attack: Next Generation Attack on Obfuscated Circuits with Capabil-
ities and Performance Beyond the SAT Attacks. Transactions on Cryptographic
Hardware and Embedded Systems (2019).

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[4] Alberto Bosio and Giorgio Di Natale. 2008. LIFTING: A flexible open-source fault
simulator. In 2008 17th Asian Test Symposium. IEEE, 35–40.

[5] Abhishek Chakraborty, Nithyashankari Gummidipoondi Jayasankaran, Yun-
tao Liu, Jeyavijayan Rajendran, Ozgur Sinanoglu, Ankur Srivastava, Yang Xie,
Muhammad Yasin, and Michael Zuzak. 2019. Keynote: A Disquisition on Logic
Locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (09 2019). https://doi.org/10.1109/TCAD.2019.2944586

[6] Abhishek Chakraborty, Yang Xie, and Ankur Srivastava. 2018. GPU obfuscation:
attack and defense strategies. In Design Automation Conference.

[7] Bo Fang, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gurumurthi. 2014.
GPU-Qin: A methodology for evaluating the error resilience of GPGPU applica-
tions. In IEEE International Symposium on Performance Analysis of Systems and
Software. IEEE.

[8] Nithyashankari Gummidipoondi Jayasankaran, Adriana Sanabria Borbon, Edgar
Sanchez-Sinencio, Jiang Hu, and Jeyavijayan Rajendran. 2018. Towards provably-
secure analog and mixed-signal locking against overproduction. In Proceedings
of the International Conference on Computer-Aided Design. 7.

[9] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, and Avesta Sasan.
2019. Full-lock: Hard distributions of sat instances for obfuscating circuits using
fully configurable logic and routing blocks. In Proceedings of the 56th Annual
Design Automation Conference.

[10] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In IEEE/ACM International
Symposium on Microarchitecture.

[11] Xuanhua Li and Donald Yeung. 2007. Application-level correctness and its impact
on fault tolerance. In 2007 IEEE 13th International symposium on high performance
computer architecture. IEEE, 181–192.

[12] Yuntao Liu, Michael Zuzak, Yang Xie, Abhishek Chakraborty, and Ankur Srivas-
tava. 2020. Strong Anti-SAT: Secure and Effective Logic Locking. In International
Symposium on Quality Electronic Design (ISQED).

[13] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. 2005. The soft
error problem: An architectural perspective. In 11th International Symposium on
High-Performance Computer Architecture. IEEE, 243–247.

[14] Prashant J Nair, David A Roberts, and Moinuddin K Qureshi. 2016. Fault Sim:
A Fast, Configurable Memory-Reliability Simulator for Conventional and 3D-
Stacked Systems. ACMTransactions on Architecture and Code Optimization (TACO)
(2016).

[15] Christian Pilato, Francesco Regazzoni, Ramesh Karri, and Siddharth Garg. 2018.
TAO: techniques for algorithm-level obfuscation during high-level synthesis. In
Design Automation Conference.

[16] M Sazadur Rahman, Adib Nahiyan, Sarah Amir, Fahim Rahman, Farimah Farah-
mandi, Domenic Forte, and Mark Tehranipoor. 2019. Dynamically Obfuscated
Scan Chain To Resist Oracle-Guided Attacks On Logic Locked Design. Cryptology
ePrint Archive, Report 2019/946. https://eprint.iacr.org/2019/946.

[17] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. 2012.
Security analysis of logic obfuscation. In Proceedings of Design Automation Con-
ference.

[18] Amin Rezaei, You Li, Yuanqi Shen, Shuyu Kong, and Hai Zhou. 2019. CycSAT-
unresolvable cyclic logic encryption using unreachable states. In Proceedings of
the 24th Asia and South Pacific Design Automation Conference. ACM, 358–363.

[19] R Robache, J-F Boland, Claude Thibeault, and Yvon Savaria. 2013. A methodology
for system-level fault injection based on gate-level faulty behavior. In 2013 IEEE
11th International New Circuits and Systems Conference (NEWCAS). IEEE, 1–4.

[20] Shervin Roshanisefat, Hadi Mardani Kamali, and Avesta Sasan. 2018. SRCLock:
SAT-resistant cyclic logic locking for protecting the hardware. In Great Lakes
Symposium on VLSI.

[21] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. 2008. EPIC: Ending piracy
of integrated circuits. In Conference on Design, automation and test in Europe.

[22] Pia N Sanda, Jeffrey W Kellington, Prabhakar Kudva, Ronald Kalla, Ryan B
McBeth, Jerry Ackaret, Ryan Lockwood, John Schumann, and Christopher R
Jones. 2008. Soft-error resilience of the IBM POWER6 processor. IBM Journal of
Research and Development (2008).

[23] Abhrajit Sengupta, Mohammed Ashraf, Mohammed Nabeel, and Ozgur Sinanoglu.
2018. Customized locking of IP blocks on a multi-million-gate SoC. In Interna-
tional Conference on Computer-Aided Design.

[24] Abhrajit Sengupta, Mohammed Nabeel, Nimisha Limaye, Mohammed Ashraf, and
Ozgur Sinanoglu. 2020. Truly Stripping Functionality for Logic Locking: A Fault-
based Perspective. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2020).

[25] Abhrajit Sengupta, Mohammed Nabeel, Muhammad Yasin, and Ozgur Sinanoglu.
2018. ATPG-based cost-effective, secure logic locking. In IEEE 36th VLSI Test
Symposium (VTS). IEEE.

[26] Bicky Shakya, Xiaolin Xu, Mark Tehranipoor, and Domenic Forte. 2020. CAS-
Lock: A Security-Corruptibility Trade-off Resilient Logic Locking Scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2020), 175–202.

[27] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and Yier Jin.
2017. AppSAT: Approximately deobfuscating integrated circuits. In 2017 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
95–100.

[28] Kaveh Shamsi, Meng Li, Kenneth Plaks, Saverio Fazzari, David Z Pan, and Yier
Jin. 2019. IP Protection and Supply Chain Security through Logic Obfuscation:
A Systematic Overview. ACM Transactions on Design Automation of Electronic
Systems (TODAES) (2019).

[29] Kaveh Shamsi, Travis Meade, Meng Li, David Z Pan, and Yier Jin. 2018. On the
approximation resiliency of logic locking and IC camouflaging schemes. IEEE
Transactions on Information Forensics and Security (2018).

[30] Kaveh Shamsi, David Z Pan, and Yier Jin. 2019. On the impossibility of
approximation-resilient circuit locking. In 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 161–170.

[31] Yuanqi Shen and Hai Zhou. 2017. Double dip: Re-evaluating security of logic
encryption algorithms. In Great Lakes Symposium on VLSI 2017.

[32] Deepak Sirone and Pramod Subramanyan. 2019. Functional analysis attacks on
logic locking. In Design, Automation & Test in Europe Conference & Exhibition.

[33] Pramod Subramanyan, Sayak Ray, and SharadMalik. 2015. Evaluating the security
of logic encryption algorithms. In 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 137–143.

[34] Yang Xie and Ankur Srivastava. 2016. Mitigating sat attack on logic locking. In
Conference on Cryptographic Hardware and Embedded Systems.

[35] Fangfei Yang, Ming Tang, and Ozgur Sinanoglu. 2019. Stripped Functionality
Logic Locking with Hamming Distance Based Restore Unit (SFLL-hd)–Unlocked.
IEEE Transactions on Information Forensics and Security (2019).

[36] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and Ozgur
Sinanoglu. 2016. SARLock: SAT attack resistant logic locking. In Intl. Symposium
on Hardware Oriented Security and Trust.

[37] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. 2017. Removal attacks on logic locking and camouflaging techniques.
Transactions on Emerging Topics in Computing (2017).

[38] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh
Karri. 2016. On improving the security of logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2016).

[39] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan JV Rajendran, and Ozgur Sinanoglu. 2017. Provably-secure
logic locking: From theory to practice. In Conference on Computer and Communi-
cations Security.

[40] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris,
Ozgur Sinanoglu, and Jeyavijayan JV Rajendran. 2017. What to lock?: Functional
and parametric locking. In Proceedings of the on Great Lakes Symposium on VLSI
2017.

[41] Monir Zaman, Abhrajit Sengupta, Danqing Liu, Ozgur Sinanoglu, Yiorgos Makris,
and Jeyavijayan JV Rajendran. 2018. Towards provably-secure performance
locking. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 1592–1597.

[42] Hai Zhou. 2017. A Humble Theory and Application for Logic Encryption. IACR
Cryptology ePrint Archive 2017 (2017), 696.

[43] Hai Zhou, Amin Rezaei, and Yuanqi Shen. 2019. Resolving the Trilemma in Logic
Encryption. In International Conference on Computer-Aided Design (ICCAD).

[44] Michael Zuzak, Yuntao Liu, and Ankur Srivastava. 2020. Trace Logic Locking:
Improving the Parametric Space of Logic Locking. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2020).

[45] Michael Zuzak and Ankur Srivastava. 2019. Memory Locking: An Automated
Approach to Processor Design Obfuscation. In 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 541–546.

https://doi.org/10.1109/TCAD.2019.2944586
https://eprint.iacr.org/2019/946

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries and Prior Work
	2.1 Logic Locking
	2.2 State-of-the-Art Logic Locking Techniques
	2.3 Architectural Security of Logic Locking
	2.4 Attacker Model

	3 ObfusGEM Simulation Framework
	3.1 ObfusGEM Supported Attacker Models
	3.2 Overview of the ObfusGEM Framework
	3.3 Simulator Overview
	3.4 Relationship to Prior Art

	4 Exploring the Design Space of Processor Design Obfuscation
	4.1 Experimental Methodology
	4.2 Quantifying SAT Attack Resilience
	4.3 Analysis of Design Space Exploration

	5 Factors Limiting Security
	5.1 Factors Limiting the Efficacy of Locking

	6 Security-Aware Architecture Design Approach
	6.1 Security-Aware Architecture Approach
	6.2 Identifying Candidate Design Modifications
	6.3 Evaluating Security-Aware Design
	6.4 Experiment 1: Security-Aware On-Chip Memory Design
	6.5 Experiment 2: Security-Aware Data Path Design
	6.6 Experimental Design Overhead
	6.7 Analysis of Security-Aware Designs
	6.8 Summary of Security-Aware Design

	7 Conclusion
	Acknowledgments
	References

