
Revisiting Fault Adversary Models

Hardware Faults in Theory and Practice

Jan Richter-Brockmann ID 1, Pascal Sasdrich ID 1, and Tim Güneysu ID 1,2

1 Ruhr-Universität Bochum, Horst-Görtz Institute for IT-Security, Germany
2 DFKI, Germany

firstname.lastname@rub.de

Abstract. Physical attacks are serious threats to hardware implemen-
tations of any strong cryptographic primitive. Particularly, fault injec-
tion attack is considered as a powerful technique to successfully attack
embedded cryptographic implementations since various fault injection
mechanisms from simple clock glitches to more advanced techniques like
laser fault injection can lead to devastating attacks, even with just a
single successfully injected fault. Given these critical attack vectors, re-
searchers in academia and industry came up with a long list of dedicated
countermeasures to thwart such attacks.
However, the validation of proposed countermeasures is mostly performed
on custom adversary models that are often not tightly coupled with the
actual physical behavior of available fault injection mechanisms and tech-
niques and, hence, fail to model the reality accurately. Furthermore, us-
ing custom models complicates comparison between different designs and
evaluation results. As a consequence, we aim to close this gap by propos-
ing a simple, generic, and consolidated fault injection adversary model
in this work that can be perfectly tailored to existing fault injection
mechanisms and their physical behavior in hardware. To demonstrate
the advantages of our adversary model, we apply it to a cryptographic
primitive (i.e., an ASCON S-box) and evaluate it based on different at-
tack vectors. We further show that our proposed adversary model can
be used and integrated into the state-of-the-art fault verification tool
VerFI. Finally, we provide a discussion on the benefits and differences
of our approach compared to already existing evaluation methods and
briefly discuss limitations of current available verification tools.

Keywords: FIA · Fault Modeling · Adversary Model · LFI · EMFI · Clock
Glitch · Voltage Glitch.

1 Introduction

Although designing and constructing secure cryptographic primitives, such as
block ciphers, is a well-understood and matured problem [20], secure implemen-
tation of cryptographic primitives in the presence of physical adversaries is still
an open challenge, even after two decades of academic and industrial research. In

https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-3293-4989

2 J. Richter-Brockmann et al.

particular, rather than exploiting flaws in cryptographic primitives or schemes,
physical adversaries commonly address and exploit vulnerabilities in physical
instances of the cryptographic algorithms and functions.

Among all physical and implementation attacks, Side-Channel Analysis (SCA)
and Fault Injection Analysis (FIA) have shown a large potential to be mounted
successfully on various implementations of cryptographically strong primitives
and functions. In particular FIA, classified as a set of active attacks, has gained
increasing attention during recent years due to powerful advances in more cost-
efficient equipment and more experienced adversaries. In the wake of this progress,
a plethora of different attack vectors has been proposed, e.g., clock or voltage
glitches [2,40], electromagnetic pulses [11,13,24,25], or focused photon injection
using laser beams [10,30,34,38]. Naturally, different approaches to increase pro-
tection against FIA have been proposed at similar pace, mainly following the
concepts of redundancy and (concurrent) error detection [1, 32], error correc-
tion [29,36], or recently introduced, infective computation [17].

However, checking and verifying that an implementation is successfully pro-
tected against FIA is a manual, downstream, test-driven, and error-prone pro-
cess. Further, quality of analysis and verification results comprehensively de-
pends on the quality and accuracy of underlying adversary models. If the adver-
sary models fail to reflect the practical realities and capabilities of an adversary,
countermeasures and protection mechanisms might be inappropriate, can fail to
provide the desired level of security, and ultimately the physical implementation
is still vulnerable to FIA.

Given these observations and challenges, security should be considered dur-
ing the entire development and life cycle of the implementation. More precisely,
continuous analysis, evaluation, and verification of the design, even before de-
ployment, can assist the designer to choose and implement countermeasures
correctly. In addition, accurate description and modeling of the capabilities and
limitations of the physical adversary and the physical environment will ensure
appropriate protection of the physical implementation after deployment.

Currently, a wide range and variety of custom adversary models is used for
evaluation and verification of protection mechanisms and often, with new coun-
termeasures, new adversary models are proposed at the same time. Unfortu-
nately, most of the adversary models are hardly compatible and do not allow fair
and meaningful comparisons between different approaches and implementations.
Ideally, a standardized model that is simple, generic, but allows customization
would help to analyze, verify, and compare different implementations and coun-
termeasures. Ultimately, designers would be able to choose countermeasures and
protection mechanisms appropriately, and easily evaluate and verify the security
level for the targeted practical environment and circumstances with minimal
effort using the standardized adversary model tweaked for the given realities.

Contribution: In this work, we review existing approaches and methods to
inject faults into cryptographic implementations in order to consolidate exist-
ing adversary models and extract an unified adversary model for standardized
fault analysis and verification. In particular, we introduce a generic and abstract

Revisiting Fault Adversary Models 3

adversary model that can be parameterized and instantiated to model different
adversaries with varying capabilities and limitations. More precisely, we show
how the generic adversary model can be customized to reflect and model com-
mon fault injection approaches, including (but not limited to) clock or voltage
glitches, electromagnetic pulses, and focused laser beams, and apply each model
to a practical example emphasizing similarities and differences of the different
adversary model instances.

Eventually, our consolidated and unified adversary model can be used to
establish a standardized evaluation and verification metric for FIA countermea-
sures that allows fair comparison in adversary capabilities and limitations as
well as vulnerabilities and fault coverage of different protection mechanisms. In
particular, our proposed adversary model facilitates application for design and
verification through a simple, adaptable, and intuitive design. We demonstrate
these features by integrating our fault model into the fault verification tool
VerFI [4] and providing a case study on the lightweight block cipher LED [18].

Outline: While Section 2 summarizes and reviews common (practical) fault in-
jection mechanisms in detail, including clock glitches, underpowering and voltage
glitches, electromagnetic pulses, and optical fault injections, Section 3 is dedicated
to conception and discussion of our consolidated and unified adversary model.
Besides, Section 3 introduces our considered circuit model, states initial assump-
tions, and introduces the generic but parametric adversary model. In Section 4,
we provide practical instantiations of our approach with respect to the fault
injection mechanisms presented in Section 2. Further, we demonstrate the prac-
tical integration of our adversary model to the fault verification tool VerFI in
Section 5. Before concluding our work in Section 7, we compare our approach to
existing fault models and briefly discuss limitations in Section 6.

2 Background

Before we start to summarize and review common fault injection mechanisms in
detail, we introduce some notations which we will use throughout this work.

2.1 Notation

We denote functions by using sans-serif fonts. A multi-bit variable x is denoted
in bold while single bit values and values from the vector x are indicated by xi.
Upper-case characters in calligraphic fonts are used to denote sets, e.g., G.

2.2 Fault Injection Mechanisms

Over the last two decades, many different fault injection mechanisms were pro-
posed and successfully established to attack hardware implementations of cryp-
tographic algorithms. In this section, we summarize the most common techniques
and explain the fundamental physical mechanisms of these attacks.

4 J. Richter-Brockmann et al.

i0

i1

i2

i3

o0

o1

o2

o3

Tlogic,max

Tclk ≥ tlogic,max + tclkq + tsetup − δ

(a) Behavior under normal condition.

i0

i1

i2

i3

o0

o1

o2

o3

T ′
clk < tlogic,max + tclkq + tsetup − δ

unstable

(b) Behavior under clock glitch occurrence.

Fig. 1: Physical effects of clock glitches on operation of digital circuits.

Clock Glitches. Faulting digital circuits through generation and injection of
clock glitches is considered as rather inexpensive technique for FIA. However,
before we examine the physical fundamentals and mechanisms of intentional fault
injection through clock glitches, we briefly review state-of-the-art literature with
respect to FIA based on clock glitch generation.

State of the Art. In an early work on the general principles of fault injection via
clock glitches, Agoyan et al. [2] demonstrated its effectiveness using the example
of an Advanced Encryption Standard (AES) hardware implementation. Soon
thereafter, Endo et al. [16] presented an on-chip clock glitch generator composed
of Delay Locked Loops (DLLs) to test and validate the effectiveness of newly
developed countermeasures addressing the threat of clock glitch insertion. In
2014, Korak et al. [21] increased the success rates of clock glitches in combination
with heating of the device under attack. Although it was assumed that internal
application of Phase-Locked Loops (PLLs) can easily defeat the threat of fault
injection through clock glitches, Selmke et al. [35] recently presented successful
fault injections using clock glitches on a microcontroller internally equipped with
a PLL. Note, however, that this attack is still limited and only possible if an
ongoing computation is not interrupted by the LOCKED signal of the PLL, as also
noted by the authors.

Physical Mechanism. At a first glance, clock glitches may have limited relevance
in real world scenarios when compared to other fault injection mechanisms cov-
ered later in this section. However, since clock glitch generators can be instan-
tiated fairly easy in many common Field-Programmable Gate Array (FPGA)
devices, allowing to create cost-efficient test setups and environments for coun-
termeasure validation even for inexperienced designers, we opt to cover this
mechanism and its physical mechanics in more detail in the following paragraph.

For this, Figure 1 schematically depicts the physical effects of clock glitches
on the behavior and operation of digital circuits. Under normal operation con-

Revisiting Fault Adversary Models 5

ditions (Figure 1a), all signals can propagate through the combinational logic
and settle to a stable state before the rising edge of the clock signal triggers the
sampling process of the subsequent register. As a consequence, the (maximum)
clock period Tclk of a digital circuit is usually determined under the following
conditions and assumptions:

Tclk + δ ≥ tlogic,max + tclkq + tsetup (1)

Here, δ denotes the clock skew, tlogic,max the maximum propagation delay of
the combinational logic, tclkq the delay of the register, and tsetup the setup time
for the input of the register.

Given that an adversary now can generate a clock glitch for an effective
fault injection, the clock period T ′clk is instantaneously decreased such that the
inequality in Equation 1 is violated (but will hold again afterwards). Hence,
for some primary input combinations the clock period might be to short to
allow full propagation of the signals through the entire combinational logic and
stabilization of the correct result at the input of the register. Figure 1b visualizes
this behavior, eventually leading to the fact that the output of the considered
gate is still independent of the current primary inputs and might lead to a faulty
value sampled by the register at the arrival of the rising edge of the clock glitch.

Underpowering and Voltage Glitches. Similar to fault injection through
clock glitches, underpowering and voltage glitches are also considered as rather
inexpensive but effective methods for FIA. While underpowering considers the
scenario of lowering the supply voltage of the target device throughout the entire
computation process, voltage glitches only lower the supply voltage for a very
limited period of time during the execution. Again, we briefly summarize state-
of-the-art literature, before we discuss the physical fundamentals and mechanics
of fault injection through underpowering and voltage glitching.

State of the Art. The first successful fault injection using the mechanisms of
underpowering was presented in 2008 by Selmane et al. [33]. Using a 130 nm
Application-Specific Integrated Circuit (ASIC) embedding an AES engine on
a smart card target device, the authors report a successful recovery of the se-
cret key processed inside the AES encryption engine. Their evaluations further
demonstrate the dependency between voltage level and success rate of fault in-
jection through underpowering. However, since underpowering naturally effects
the entire execution of a cryptographic algorithm, precisely injecting faults, e.g.,
in a specific iteration of the algorithm, is very difficult and hardly achievable.
As a consequence, Zussa et al. [40] focused their investigations on the fault
injection mechanism of temporary voltage glitches to disturb the execution of
cryptographic algorithms. More precisely, the authors prove that the physical
mechanisms of voltage glitches and underpowering can be traced back to timing
violations, as explained in the following paragraph.

6 J. Richter-Brockmann et al.

P0

N0

x0 x̄0

CL

Fig. 2: Transistor-level schematic of a CMOS inverter.

Physical Mechanism. Considering the example of simple Complementary Metal-
Oxide-Semiconductor (CMOS) inverter at transistor level, as given in Figure 2,
we briefly summarize the findings of [40] with respect to timing violations caused
through voltage glitches (and underpowering). Assuming that each CMOS gate
introduces some propagation delay upon signal switching, the propagation delay
in case of a simple CMOS inverter can be explained through the switching process
in the transistors. Exemplarily, we assume a switching activity from low to high
at the output of the P-type Metal-Oxide Semiconductor (PMOS) transistor P0
in Figure 2. In this case, the propagation delay tpLH, as derived in [28], is given
by the following equation:

tpLH =
CL

[
2|Vth,p|

VDD−|Vth,p| + ln
(

3− 4
|Vth,p|
VDD

)]
µpCox

Wp

Lp
(VDD − |Vth,p|)

. (2)

Here, CL models the load of connected gates, Vth,p the threshold voltage of
the transistor, µp the mobility of the holes, COX the capacity of the gate oxide,
and Wp/Lp the ratio of the transistor dimensions.

Obviously, under a lower supply voltage VDD, the propagation delay of the
inverter tpLH increases. Further, similar equations can be derived for the N-type
Metal-Oxide Semiconductor (NMOS) transistor and even for more complex gates
than a simple inverter, resulting in the same effect and impact. Eventually, as
the variation of the supply voltage affects all transistors and gates between two
register stages, lowering the supply voltage through voltage glitches or under-
powering will increase the maximum propagation delay of the combinational
logic. As a consequence, the inequality in Equation 1 might be violated. Hence,
as for clock glitches, the final result might not be stable at the input of the
register resulting in the sampling of a faulty value.

Electromagnetic Pulses. Another approach for fault injection into embedded
devices, having higher precision than clock or voltage glitches but still at rea-
sonable equipment and expertise requirement [7], uses electromagnetic pulses.
Again, we briefly review and summarize related state-of-the-art literature and
discuss the physical mechanisms responsible for the manifestation of faults in
digital circuits.

Revisiting Fault Adversary Models 7

CLK

D Q

Q̄

(a) D Flip-Flop.

VDD

0V
S

VDD

0V
D

VDD

0V
CLK

VDD

0V

Q

(b) Simplified diagram of an EMFI.

Fig. 3: Physical effects due to faults caused by EMPs (adapted from [13,14]).

State of the Art. Over the last years, the understanding of the underlying mech-
anism of faults caused by Electromagnetic Pulse (EMP) changed. While in 2012,
Dehbaoui et al. [11] performed some experiments on microcontrollers and FPGAs
leading to the conclusion that Electromagnetic Fault Injections (EMFIs) can be
explained by timing violations, two years later, Ordas et al. [26] demonstrated
that timing faults cannot capture and describe the complete behavior of EMFI.
In the following years, they performed further experiments and eventually de-
duced a sampling fault model [24,25]. Most recently, Dumont et al. [13,14] were
eventually able to explain the physical behavior for the sampling fault model
and confirmed its correctness by conducting several theoretical simulations and
additional practical experiments. For this, we will summarize the latest findings
and explain the underlying physical mechanism responsible for fault injections
caused by EMP in the following paragraph.

Physical Mechanisms. Any general EMFI setup usually consists of a ferrite core,
a coil, and a voltage pulse generator to generate a magnetic field which can be
used to induce a current in any wire loop based on the theory developed by
M. Faraday. Particularly in Integrated Circuits (ICs), those wire loops can be
found in the power and ground networks. Hence, the induced current leads to a
voltage swing S between the power and the ground grid (cf. Figure 3b for the
effects of an undershoot).

However, in the following, we limit our explanations on D Flip-Flops (DFFs)
(see Figure 3a), as they are the main elements in digital ICs susceptible to
EMFI. The aforementioned voltage drop caused by an EMP consequently pulls
the potential of the clock signal and the input signal D down, as visualized in a
simplified diagram in Figure 3b. More precisely, this behavior is caused by the
falling edge of the swing S and can therefore be associated with the first EMP
generated by the probe. With the rising edge of S (and the second EMP) the
circuit starts to recover the original state.

Here, the authors of [13] describe the recovering phase as a race between
the clock signal and the input signal D. A successful fault injection is performed
only if the clock signal wins the race, meaning that the clock recovers faster than
the input signal D, and therefore the DFF stores a faulted value (cf. Figure 3b).

8 J. Richter-Brockmann et al.

Note, however, that not only a negative swing can be induced, but also a positive
swing, then leading to an overshoot instead of undershoot. While the negative
polarity often leads to bit-resets, the positive overshoot induces bit-set faults
with higher probability. For more details, we refer the interested reader to the
original work in [13,14].

In summary, Dumont et al. showed that EMFI causes sampling faults which
can also be modeled as set or reset faults in memory elements such as DFFs.
Additionally, there most recent work in [13] also demonstrates a very fine lo-
cality of EMFI, surprisingly mostly independent of the electromagnetic probe
geometry.

Optical Fault Injections. Optical fault injection based on focused laser beams
was initially presented in 2002, in the seminal work of Skorobogatov and Ander-
son [38]. Since then, many follow-up works have been presented and improved
the potential of laser-assisted fault injection. Before we summarize and explain
the physical effects of laser-induced faults, we dedicate the next paragraph to
the current progress and state-of-the-art research with respect to optical fault
injection methods.

State of the Art. The first case study of laser fault injections, presented in the
seminal work [38] of Skorobogatov and Anderson, was designed for a target plat-
form built in a quite large 1 200 nm technology. However, in the following years,
several other works studied the influence of laser beams to the operation of ICs
and improved the application for lasers as a fault injection mechanism. For in-
stance, in 2013, Roscian et al. [30] already targeted a 250 nm technology and
performed investigations on the underlying fault model. Already in the follow-
ing year, Courbon et al. [10] could demonstrate the tremendous accuracy of laser
fault injection and used it to characterize registers instantiated in a 90 nm tech-
nology. Similarly, Selmke et al. [34] investigated the accuracy of laser-induced
faults for a 45 nm technology, but concluded that precise fault injections into
memory cells, by using laser beams, becomes more difficult for smaller technolo-
gies.

However, not only memory cells, but also any combinational gate of a digital
IC is susceptible to laser-induced faults, as was shown in 2016 by Schellenberg et
al. [31]. In this work, the authors used successful injections of faults to perform
a fault sensitivity analysis, also possible for smaller target technologies. Most
recently, Dutertre et al. [15] successfully performed fault injections on an AES
implemented on a very small 28 nm technology. However, although the hardness
of laser fault injection varies with the targeted technology node and geometry
size, the basic fundamentals and physical effects can be traced back to the same
phenomena.

Physical Mechanisms. Figure 4 exemplarily shows the fundamental physical ef-
fect when a focused laser beam hits and affects an NMOS transistor. More pre-
cisely, the laser beam starts an ionizing process in a PN-junction while along the

Revisiting Fault Adversary Models 9

p-Si

n+

+ +

+

+

+

+ +

+

+

-

-

-

-

-
-

-

-
-

+
+

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

-

--

-

+
+

-

-

-

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

- -

-

-

+

+
-

-

-

-

-

+
-

+
-

+
- +

-

+

-

(a) Ionizing.

p-Si

n+

+ +

+

+

+

+ +

+

+

-

-

-

-

-
-

-

-
-

+
+

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

-

--

-

+
+

-

-

-

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

- -

-

-

+

+
-

-

-

-

-

+
-

+
-

+
- +

-

+

-

(b) Idrift.

p-Si

n+

+ +

+

+

+

+ +

+

+

-

-

-

-

-
-

-

-
-

+
+

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

-

--

-

+
+

-

-

-

-

-

p-Si

n+

+ +

+

+

+

+
+

+

+

-

-
-

-

-

- -

-

-

+

+
-

-

-

-

-

+
-

+
-

+
- +

-

+

-

(c) Idiff. (d) Transient current.

Fig. 4: Physical effect of a laser fault injection as introduced in [6].

laser injection path, a dense distribution of electron-hole pairs is produced (cf.
Figure 4a). Afterwards, the carriers are rapidly collected by the electric field and
the charge is compensated, resulting in a permanently reduced voltage on that
node while eventually, a temporary drift current arises as visualized in Figure 4b.
However, shortly afterwards (usually at a magnitude of a few picoseconds) the
funnel collapses and a small diffusion current dominates the collection process,
which again is shown in Figure 4c. For clarification, the transient current flow
over time is additionally plotted in Figure 4d (taken from [6,39]).

As a consequence, the effect of producing a temporary drift current Idrift in
a PN-junction of a transistor can be used to alter the state of a gate. For the
sake of simplicity, we consider the CMOS inverter given in Figure 5 as a minimal
example, where subsequent connected gates are simplified and modeled by a load
capacity CL. As a first step, we assume the input of the inverter to be zero and
output to be one, as visualized in Figure 5a. Once an adversary hits the drain
region of the NMOS transistor with the help of a focused laser beam, the output
state of the inverter may change. In particular, the high drift current through the
transistor forces a discharge process of the output node, i.e., the electrical charge
from CL is moved such that the output changes from one to zero. However, this
effect can only occur if the temporary drift current is larger than the current
flowing through the PMOS transistor, which still conducts correctly. Hence, if
the drift current Idrift collapses, the output node will eventually switch back to
its former high level. This results in a temporary injected fault which is called
Single Event Transient (SET) (or transient Single Event Upset (SEU) [27]). A
similar effect occurs when the input of the inverter is one and the output is
zero, but in this case the laser beam has to hit the drain region of the PMOS
transistor (instead of the NMOS transistor) in order to switch the output node
from zero to one, i.e., to load CL [30].

In summary, we can state that this fault injection mechanism either causes
bit-set or bit-reset faults considering the given inverter. Further, the bit-set or
bit-reset faults can occur as temporary faults in both, combinational logic (i.e.,
logic gates) or in memory gates (e.g., registers). However, in case the attacker
targets memory gates, the stored value will be altered, which is called a static
SEU [27], as this transient fault cannot be recovered while transient faults in

10 J. Richter-Brockmann et al.

P0

N0

0 1

CL

(a) Sensitive drain region of an NMOS.

P0

N0

1 0

CL

(b) Sensitive drain region of a PMOS.

Fig. 5: Effect of a laser fault injection exemplary shown with an inverter [30].

combinational gates may be recovered by sufficient long clock periods (in com-
parison to the duration of the fault).

Miscellaneous Mechanisms Besides the fault injection mechanisms intro-
duced above, a few more techniques can be found in the literature, such as body
biasing [22, 23], overpowering [8], temperature [19, 37], and X-Ray beams [3].
However, these techniques only have a minor or auxiliary role in practice in
comparison to the mechanisms described above and therefore we decided to ex-
clude them from following considerations in our work.

3 Concept

Given the broad range of physical fault injection mechanisms that we intro-
duced in the previous section, our efforts in this section focus on a consolidated
and unified model for fault injection adversaries, ideally covering all previously
introduced concepts. For this, we start with formal definitions of fundamental
concepts as well as initial assumptions and limitations that we consider for our
adversary model. Then, based on those definitions and assumptions, we propose
and describe our generalized fault injection adversary model in more detail.

3.1 Circuit Model

As this work focuses on fault injection techniques and adversaries for physical
hardware and digital ICs, we first introduce our abstract model to describe the
underlying circuit targeted by the adversary. For this, we assume that a digital
circuit C is implemented to execute an arbitrary Boolean function f : Fi2 → Fo2
with i, o ≥ 1. Further, we can decompose the circuit C into atomic component
blocks, called gates, which further can be distinguished with respect to purely

Revisiting Fault Adversary Models 11

combinational gates, as defined in Definition 1, and sequential memory gates, as
given in Definition 2.

Definition 1 (Combinational Gate). A combinational gate gc is a physical
component in a digital logic circuit that evaluates its output as a pure (Boolean)
function of the present inputs only (without any dependency on the history of
inputs).

In the context of this work, we further assume that the set of Boolean
functions implemented by combinational gates is limited and given as Gc =
{not, and, nand, or, nor, xor, xnor}. For the sake of simplicity, we further define
more granular subsets to distinguish functions with fan-in of size 1 and 2, i.e.,
Gu = {not} and Gb = {and, nand, or, nor, xor, xnor}, such that Gc = Gu ∪ Gb.

Definition 2 (Sequential Gate). A sequential gate gr ∈ Gs is a physical,
clock-synchronized, memory component in a digital logic circuit for which the
output depends not only on the present inputs but also on the history of previous
inputs.

Hence, sequential (memory) gates are used to store intermediate results and
to establish synchronization points in a digital circuit. In the context of this
work, we model sequential gates as clock-dependent synchronization points that
store a single Boolean variable x ∈ F2 with Gs = {reg}. Additionally, given the
set of combinational gates Gc and the set of sequential gates Gs, we define a set
G = Gc ∪ Gs to unite all valid gates of a digital circuit C in one set.

Definition 3 (Circuit Representation). A digital circuit C is modeled by a
Direct Acyclic Graph (DAG) formally described by D = {V, E}, with V the set of
vertices and E the set of edges. A single vertex v ∈ V represents a combinational
or sequential gate and a single edge e ∈ E represents a wire carrying a digital
signal, modeled as an element from the finite field F2.

The formal definition of our considered circuit model is given in Definition 3.
Note, however, that this work focuses on synchronous digital logic circuits only,
hence, we always assume that inputs, outputs, and sequential gates are synchro-
nized to a common clock signal.

3.2 Fault Model

For the description of fault events and fault propagation in digital logic circuits,
we first introduce the two sets of unary and binary Boolean functions. More
precisely, the set of unary functions is given as U = { u | u : F2 → F2 } while the
set of binary function is defined as B =

{
b | b : F2

2 → F2

}
.

In general, for a given Boolean function f : Fi2 → Fo2, we can construct 2o×2i

distinct Boolean functions in i variables and o result values, i.e., we have |U| = 4
distinct unary and |B| = 16 distinct binary functions. Further, the specific as-
signments of all possible functions for U and B are presented in Table 1.

12 J. Richter-Brockmann et al.

Table 1: Functions included in U and in B.

Inputs ui(x0) ∈ U bi(x0, x1) ∈ B

x0 x1 u0 u1 u2 u3 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

0 0 – 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0

0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

1 1 – 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0

As described before, we consider a limited set Gc of combinational gates for
our circuit model. More specifically, we consider a single unary gate {not} ∈ Gu
that executes the unary Boolean function u0 on its input. Further, the binary
gates {and, nand, or, nor, xor, xnor} ∈ Gb execute the Boolean functions bi with
0 ≤ i ≤ 5 on their inputs respectively.

Then, given a DAG D modeling a digital circuit C, we can associate each
gate in the physical circuit, with a vertex v ∈ V of the graph, representing a
combinational or sequential gate by a Boolean function from the sets U or B.
For this, we define the following golden mapping τgolden from gate to vertex and
associated Boolean function fg:

τgolden:
{not} 7→ {u0} {and} 7→ {b0} {or} 7→ {b2} {xor} 7→ {b4}
{reg} 7→ {u1} {nand} 7→ {b1} {nor} 7→ {b3} {xnor} 7→ {b5}

Given the gate-function mapping and the abstract representation of a digital
circuit in terms of a DAG, we can formally describe the event, effects, and
propagation of an injected fault.

Definition 4 (Fault Event). A fault event can occur in a digital circuit C
if and only if a gate g ∈ G within the circuit does not evaluate according to its
associated Boolean function fg.

Definition 5 (Fault). A fault is defined by wrong values that manifest in pri-
mary sequential output gates gr ∈ Gs. Hence, a fault is always caused by a fault
event.

Considering our limited set of combinational and sequential gates, a fault
event in a combinational gate occurs immediately if the considered g ∈ Gc evalu-
ates to an incorrect result z′ with z′ 6= fg(x). For sequential and clock-synchronous
gates gr ∈ Gs, faults will only manifest in synchronization to the provided clock
signal such that z′ 6= fr(x).

Definition 6 (Fault Propagation). Given a digital circuit C modeled as DAG
D and a manifestation of a fault event in a single gate, according to Definition 4.
Then, fault propagation describes the effect of propagating incorrect intermediate
results along the edges and vertices of the graph.

Revisiting Fault Adversary Models 13

However, if a fault event occurs in a gate of a digital circuit, i.e., the faulted
gate evaluates incorrectly, this fault event may also have an impact on subse-
quent gates. More specifically, if a faulty signal z′ is input to further gates, these
gates may evaluate correctly according to their associated function but still pro-
vide wrong results due to incorrect inputs. This effect in general is called fault
propagation which is formally described by Definition 6. Two different scenarios
of fault propagation are given in Example 1.

Example 1. In this example we assume a gate g ∈ Gc producing a faulty output
z′ ∈ F2. The faulty output z′ = 1 is the first input x0 to a gate g2 = {or} while
the second input x1 = 1. In this case, fault propagation will stop immediately, as
the output of g2 will be 1 regardless of the first input. However, given that x1 = 0,
then, upon correct inputs, g2 would evaluate to 0, however, due to x0 = z′ = 1,
the fault will propagate through g2 and may affect further gates in the circuit.

Definition 7 (Fault Scenario). We define a fault scenario as the occurrence
of a fault event in a target gate g ∈ G under a given input x ∈ Fi2 to the circuit
C.

Hence, each specific fault event in a target gate g ∈ G creates for each valid
input x ∈ Fi2 an own fault scenario. Therefore, the input size i, the amount
of considered gates, and the number of valid fault events for each gate (more
details will be given in Section 3.3) determine the total amount of fault scenarios
Nscenario for a given circuit C.

Definition 8 (Fault Coverage). The fault coverage is defined by the term
fcov = 1− Nnot

Nscenario
where Nnot describes the amount of fault scenarios that are

not covered by an applied protection mechanisms associated with a circuit C.

3.3 Consolidated Adversary Model

Introducing two abstraction levels for a digital logic circuit, we can explain and
introduce our generic and consolidated fault injection adversary model. As a
consequence, this allows us to create a dedicated fault injection adversary model
that can be adjusted by a set of parameters introduced afterwards.

Initial Assumptions. For this, let us define and list some initial assumptions
in order to provide a reasonably complex fault injection model for digital logic
circuits. First, we assume that all primary inputs to a target circuit C are fault-
free, since inputs that are already faulted can never be recognized by any fault
model framework or by countermeasures that should be evaluated. Second, we
do not consider any signal delays or timing behaviors of the circuit in our fault
model, as these are generally technology-specific and undermine our attempt to
create a generic and abstract model. Hence, we work on a netlist level which
can be perfectly mapped to DAGs as described in Section 3.1. Third, for all of
our analyses, we assume a worst-case scenario. For this, given that we do not

14 J. Richter-Brockmann et al.

consider any signal and gate delays per se, we have to assume that any path in
our circuit can be the critical path. Even though this may lead to consideration
of fault scenarios that cannot occur in a real world design, it ensures a full
coverage of all (theoretical) faults, ultimately achieving a stronger assertion with
respect to evaluation of resistance and protection mechanisms. Finally, we do not
specifically consider persistent faults in our fault adversary model. If persistent
faults should be modeled, it can still be accomplished within our assumption by
triggering a specific fault event on each evaluation. This, however, is not part
of a fault model but rather part of the utilized framework integrating the fault
adversary model.

Abstraction Levels. The description of a circuit C as a DAG D allows us to
separate the fault modeling into two abstraction levels – a structural level and
a functional level. On the structural level we consider the edges and vertices of
the DAG, i.e., the wires in C connecting the circuit gates. This gives us the
possibility to model, describe and track the propagation of fault events through
the entire circuit. Additionally, the structural level provides information about
the placement of synchronization points, i.e., the sequential memory gates. This
information is important since faults ultimately will manifest in register stages
which we will demonstrate in Section 4. However, the actual fault events are
injected directly in combinational gates gc ∈ Gc or in sequential memory gates
gr ∈ Gs where both types of gates describe the functional level of C through the
associated Boolean functions given in τgolden (cf. Section 3.2).

Modeling Faults. On a very abstract (and simplified) level, we model a single
fault event by altering the associate function of the target gate to an arbitrary
function within the same domain, i.e., defined over the same number of inputs
and outputs. In particular, faults injected into a gate gu ∈ Gu or in a sequential
memory gate gr ∈ Gs are modeled by exchanging the associated function with
a function u ∈ U . Similarly, faults injected into a gate gb ∈ Gb are modeled by
exchanging the associated function of gb with a function b ∈ B.

In this sense, for each fault scenario, the DAG of the circuit is re-evaluated
and updated, such that for each vertex v ∈ V of the graph, the associated func-
tions are selected from τgolden or a fault type is chosen from a fault model τfaulty,
depending on whether the fault event occurred in the corresponding gate or not,
such that:

vg =

{
τgolden(g) g is fault-free

τfaulty(g) g is faulted
,∀g ∈ C

Notably, this model is as generic as possible and provides the opportunity
to map all well-known fault types to a circuit implemented in hardware. To this
end, we further define a notation which allows us to denote mappings where
several gates are mapped to the same Boolean function. For example, given a
subset of gates Gsub ⊂ Gb and each of the gates g ∈ Gsub should be mapped to

Revisiting Fault Adversary Models 15

the functions b6 and b7 in case a corresponding gate in C is faulty, we denote
the underlying mapping τj as τj : Gsub 7→ {b6, b7} for a specific fault model j.
However, to meet realistic scenarios for an actual attacker, we further introduce
a set of parameters which allows us to constrain the generic model and customize
it depending on given circumstances.

Parametric Adversary Model. To this end, we introduce the following three
parameters to describe the limitations of an adversary: n, t, and l. While the first
parameter n defines the power of the attacker in terms of how many faults can be
injected at the same time, i.e., the number of fault events, the second parameter
t defines the type of the fault events. Finally, l limits the circuit locations where
the fault events can occur, i.e., this parameter defines the type of circuit gates
that can be targeted by the adversary. In the following we present more details
about the three parameters and their design rationals.

Number of Faults n: The parameter n sets the total number of fault events that
can occur at the same time and therefore it constraints the power of an attacker
in terms of simultaneously injected faults. Hence, when modeling adversarial
fault injections in a digital circuit C, n can be selected from N = {1, 2, ..., N}
withN = |V|, i.e.,N is equal to the total number of combinational and sequential
gates that are available in C.

However, selecting n ∈ N , we assume that an attacker is able to inject up
to n faults, meaning that we consider all possible fault scenarios with n′ ≤ n
fault events. This assumption is well established in literature when evaluating
the fault coverage of a target countermeasure [29,32]. However, even if we select
n as an upper bound, we still might observe more than n faults manifesting in a
register stage or primary output due to fault propagation (cf. Definition 6). We
further explain this phenomena in Example 2.

Example 2. For this example we assume that we model an attacker with n = 1
and that a fault is injected into the nand gate in Figure 6. Although n is con-
strained by 1, the fault can propagate through the and and xor gate such that
three faults would eventually manifest at the primary output register stage.
Hence, n only indicates the number of fault events an attacker is able to inject
but it does not give any information about the total number of faults that will
occur in the circuit. This behavior was also mentioned by Aghaie et al. in [1].

Fault Type t: The fault type t can be selected from a set T = {τsr, τs, τr, τbf, τfm}
which contains different fault models τj . Each of these fault models describes how
a gate from a target circuit C is mapped to a function u ∈ U or b ∈ B in the
resulting DAG D. In this paragraph, we introduce common fault models used
to describe different fault injection mechanisms.

For this, we define τsr as a fault model where each gate from G is mapped
to the set or reset function. Particularly, a gate gu ∈ Gu or a sequential memory
gate gr ∈ Gs is modeled by the function u2(x) = 0 or by u3(x) = 1 with x ∈ F2.

16 J. Richter-Brockmann et al.

E

i0
i1

i2
i3

Fig. 6: Influence of a single fault on subsequent gates.

Hence, we apply a mapping that is described by {not, reg} → {u2, u3}. Similarly,
a faulty gate gb ∈ Gb is modeled by one of the functions b6(x) = 0 or b7(x) = 1
with x ∈ F2

2, describing a reset or set fault, respectively. In this case, the mapping
is formally described by {Gb} → {b6, b7}. In essence, the mapping τsr serves as
a base line for most of the fault injection mechanisms introduced in Section 2,
however, more details about the connection between the physical behavior and
the proposed parameter selections are given in Section 4.

In order to allow more fine grained evaluations, we additionally define the
mappings τs and τr which describe only set or only reset fault events, respectively.
Hence, the mapping τr defines {not, reg} → {u2} for unary gates and Gb → {b6}
for binary gates. Similarly, τs defines {not, reg} → {u3} for unary gates and Gb →
{b7} for binary gates. This distinction can be useful for specific primitives or
technologies where a fault injection attack can either cause set or reset fault
events only. Examples for such primitives are NOR flash memories where only
bit-set faults occur as shown and explained in [9].

Another common fault model that can be found in the literature is based on
bit-flips which we describe by the mapping τbf. In this case we map each gate
from G to its inverse gate resulting in the following fault model:

τbf:
{not} 7→ {u1} {and} 7→ {b1} {or} 7→ {b3} {xor} 7→ {b5}
{reg} 7→ {u0} {nand} 7→ {b0} {nor} 7→ {b2} {xnor} 7→ {b4}

Thus, each gate is modeled by a function returning the inverse of the values that
would be returned by the original gate.

Eventually, we intentionally leave space for custom definitions of fault models
τfm in T to provide an adversary model that is as generic as possible while at
the same time already covering common fault types and models. For this, we
introduce one custom mapping τnang15 in Section 4 and guide the reader through
the process of precisely defining and modeling an attacker that uses a laser to
inject fault events in a Nangate 15 nm technology.

Fault Location l: The fault location l is the third parameter which is necessary
to properly describe fault injections in our generic adversary model. We define
the set L = {c, s, cs} in order to distinguish between different areas on the struc-
tural level of a circuit C. The first choice covers and models fault injections that

Revisiting Fault Adversary Models 17

Table 2: Summary of available parameters to accurately model fault injections.

Param. Options Description

n N = {1, 2, ..., N} Maximum number of fault events, N = |V|

t T = {τsr, τs, τr, τbf , τfm} τsr: Fault model for set/reset fault

τs: Fault model for set faults

τr: Fault model for reset faults

τbf : Fault model for bit-flips faults

τfm: User-specified fault model

l L = {c, s, cs} c: Fault events occur in combinational gates only

s: Fault events occur in sequential gates only

cs: Fault events occur in all available gates

solely affect combinational logic gates, i.e., gates from Gc. Setting l = s, specifies
fault injections where an attacker targets sequential memory gates gr ∈ Gs only.
Eventually, l = cs models faults that can occur in both types of gates.

For reasons of clarity, Table 2 summarizes the available parameters with the
corresponding options which are shortly described in the last column.

Instantiating Adversary Models. To bring together and connect the three
introduced parameters n, t, and l, we define the function ζ(n, t, l). This allows
us to instantiate different types of attackers and model the behavior of fault
injections based on the committed parameter list. For example we can regulate
the strength by changing the fault type t, or determine the accuracy of the
fault injections setting n as a powerful attacker may be able to precisely inject
single bit faults. However, one of the main advantages of introducing ζ is that
we create a basis to allow comparability between different designs which should
be evaluated regarding their protection against fault injection attacks (under a
given adversary model). In Example 3, we evaluate an exemplary circuit which
is protected by duplication using our generic adversary model to transfer our
definitions and notations to a practical instantiation.

Example 3. Figure 7 depicts an exemplary circuit C which describes a function
h : F2

2 → F2
2. The circuit is protected by duplication [5] against fault injection

attacks. We now apply our generic adversary model to C in order to evaluate
the protection level. In a first step we set ζ(1, τsr, c) meaning that an attacker
injects up to one set or reset fault event in a combinational gate. For this, any
comparator logic placed after the output register stage would detect all possible
fault scenarios that can occur under the given adversary model. All together,
there are four valid inputs i ∈ F2

2 (due to our initial assumptions, the inputs
are correct and the same for the original circuit and the duplication) whereas
there are four different gates that could be faulted. This results in 16 possible
fault scenarios for each fault type, i.e., 16 fault scenarios for set faults and 16
fault scenarios for reset faults which eventually results in a total amount of fault

18 J. Richter-Brockmann et al.

Original Duplication

Fig. 7: Exemplary circuit to demonstrate the application of our generic fault model.

scenarios Nscenario = 32. We can conclude that C has a fault coverage of 100 %
under ζ(1, τsr, c).

Now we consider the adversary model ζ(2, τsr, c) where an attacker is as-
sumed to inject up to two set or reset fault events in combinational gates. Note
that ζ(2, τsr, c) also covers each fault event that can occur under ζ(1, τsr, c) as
explained above. Additionally, for each input i ∈ F2

2 there are
(

4
2

)
= 6 fault lo-

cations for each fault type. In this case we have four different combinations of
allocating the available fault types to the fault locations: two set faults, one
set and one reset fault, one reset and one set fault, or two reset faults. All in
all, this leaves us with Nscenario = 4 · 6 · 4 + 32 = 128 possible fault scenarios.
From these fault scenarios, the circuit will not be able to detect eight faults.
Here, reset faults in the not gates for the inputs i ∈ {01, 11} and set faults for
the inputs i ∈ {00, 10} will not be detected. For faults in the xor gates, the in-
puts i ∈ {01, 10} will not be detected in case both gates will be faulted by reset
faults and the inputs i ∈ {00, 11} will not be detected in case both gates will be
faulted by set faults. To summarize, the adversary model ζ(2, τsr, c) returns a
fault coverage of fcov = 1− 8/128 = 93.75 %.

Note, however, that we did not have to consider fault propagation in this
example since no output of a gate is an input to another gate.

4 Practical Instantiation

After we introduced our generic adversary model expressed through the corre-
sponding function ζ to model adversaries with different capabilities, we show
in this section how to map our theoretical considerations to real world fault
injection mechanisms and how to model associated adversaries. Therefore, we
establish a connection between available fault injection mechanisms introduced
in Section 2.2 and our findings from Section 3.

Further, to demonstrate the practical application of ζ, we consider the AS-
CON S-box [12] as an example for a cryptographic primitive and potential target
of FIA. The corresponding S-box circuit is depicted in Figure 8, exhibiting some
interesting properties that provide a good starting point for the application and
discussion of our concept. First, this circuit already consists of both gate types,

Revisiting Fault Adversary Models 19

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

Fig. 8: ASCON S-box [12].

i.e., combinational gates from Gc and sequential memory gates from Gs. Second,
although the circuit is constructed on an almost regular pattern, fault propaga-
tion can be observed. More specifically, at the deepest logic level, the primary
output y4 is an input to the xor-gate which determines the output y0. Hence, the
structure of the ASCON S-box is perfectly suited to demonstrate and discuss
different practical instantiations of our generic adversary model.

However, to facilitate comparison of different fault injection mechanisms and
associated adversary models, we first define the total number of effective faults
Neffective as (single-bit) faults that eventually manifest in a primary output stage
of a circuit C. In our example, Neffective can be at maximum five for each given
fault scenario since the number of output registers is o = 5. Given that, the
maximum number of possible faults Nmax is limited by

Nmax = o ·Nscenario = o · 2i ·
∑
g∈C

|τj(g)| (3)

under a considered fault model j. Further, this allows us to introduce a circuit
fault rate rfault = Neffective

Nmax
to compare different instantiations of our adversary

model function ζ.
As indicated in Equation 3, we consider each valid input combination to

determine the maximum number of possible faults Nmax because each valid
input creates an independent fault scenario. We explicitly decided to follow this
approach for the considered example to allow a fairer comparison between the
different models and instantiations of ζ at the end of this section. Note that
for real-world applications (e.g., analyzing entire protected block-ciphers) with
inputs i ≥ 64 such an analysis is currently not possibly. However, this is not a
limitation of our adversary model (since our model targets the description of
fault occurrences in hardware gates) but a limitation of exhaustively simulating
fault injections in all available gates for all valid inputs which is not part of the
work and still an open research question.

20 J. Richter-Brockmann et al.

4.1 Clock Glitches

As first step, in order to model clock glitches, we instantiate our adversary
model as ζ(n, τsr, c) with n ∈ N . This setting perfectly models the underlying
fault mechanism of clock glitches explained in Section 2.2. By setting t = τsr and
l = c, we consider set and reset fault events occurring in combinational gates
g ∈ Gc only.

This choice can be justified when looking closer at the origin of faults injected
by clock glitches. Particularly, if the attacker manages to decrease the clock
period of a clock cycle, this makes registers sample their input signals early.
Then, a fault occurs if the internal logic cannot propagate the correct signals
timely and the current input to a register differs from the correct input. As a
consequence, there are several possibilities how false inputs can occur, depending
on the duration of the clock glitch. For shorter clock glitches, it is more likely that
the propagation of the correct signal is interrupted in the first gates of the target
circuit. Assuming that in total n gates are affected by the clock glitch means that
the output values of the considered gates are either one or zero (depending on the
former state and previously processed date). However, this behavior can perfectly
be modeled by set or reset fault events in the corresponding (combinational)
gates. We further assume that the previous state already propagated through
the circuit and is stable at the time of sampling. This assumption is valid since –
as already mentioned above – the set or reset depends on previous data so that
the (wrong) signal had enough time to travel through the logic.

For clarification of these decisions, we transfer this model to the ASCON
S-box depicted in Figure 8. In our fault analysis, we always consider worst-case
scenarios, as already mentioned in Section 3.3, which also includes that we model
fault events independent of placing and routing of a circuit and that we neglect
run times of gates and wires. Hence, when examining a target gate, we assume
that – due to a worst-case place and route – the considered gate is located in the
critical path. For example, in our modeling phase, we examine the second and
gate from top in Figure 8 which means that we evaluate the primary outputs
of the circuit when setting the output of the and gate to either zero or one.
Hence, we assume that the propagation of the input signals is stopped in the
and gate and that the output is constantly either zero or one. As this behavior
also affects the subsequent xor-gates and the inverter, we further have to consider
fault propagation during our analysis.

Hence, applying the specific adversary model ζ(1, τsr, c) to the ASCON S-
box, we consider 25 input combinations, 22 available gates to inject a set or
reset fault event, and five output registers to observe a fault, resulting in a
maximum number of Nmax = 7 040 faults. Then, for each fault, we compare the
resulting output y′i to the correct S-box output yi and for each output bit that is
different to the correct one, we increase a fault counter which eventually results
in Neffective = 1 040 effective faults appearing at the output. To summarize, this
analysis leaves the ASCON S-box circuit with a fault rate of rfault = 14.77 %
under the given ζ(1, τsr, c) adversary model.

Revisiting Fault Adversary Models 21

4.2 Voltage Glitches

As mentioned in Section 2.2, the fundamental physical behavior of voltage glitches
(or underpowering) is very similar to clock glitches and is caused through the vi-
olation of Equation 1. By lowering the voltage, the right side of this inequality is
increased such that the sequential memory gates are triggered before all signals
can propagate through the logic. As a result, this phenomena can be modeled
by the same adversary model as clock glitches. Hence, we model fault injections
caused by voltage glitches also by a ζ(n, τsr, c) adversary with n ∈ N .

Obviously, applying the voltage glitch adversary model to the ASCON S-box
results in the same number of maximal possible faultsNmax and the same number
of effective faults Neffective as described in Section 4.1. Hence, the fault rate for
the ASCON S-box is also given by rfault = 14.77 % under the given ζ(1, τsr, c)
adversary model.

4.3 Electromagnetic Pulses

The modeling of fault injections caused by EMPs can be conducted by instanti-
ating the adversary model function as ζ(n, τsr, s) with n ∈ N . In Section 2.2, we
explained that EMPs induce a positive or negative voltage pulse in the target
circuit. These pulses produce a set or reset fault event respectively. Hence, set-
ting t = τsr perfectly covers the physical mechanism of EMFIs since this fault
model maps the target gate function to the set or reset function. Additionally,
the choice for selecting sequential memory gates as fault location l, matches the
recently published results by Dumont et al. [13, 14] who refined and confirmed
the model of sampling faults caused by EMFI.

Applying the fault model function to the considered example depicted in
Figure 8, leaves us with 25 input combinations, 5 gates for the set and reset
faults (ignoring primary inputs as we assume inputs to be correct), and five
output registers, which eventually results in Nmax = 1 600 possible faults at the
primary output. All together, there are Neffective = 160 effective faults resulting
in a fault rate of rfault = 10 % for the ASCON S-box under the given ζ(1, τsr, s)
adversary model.

4.4 Optical Fault Injections

At last, considering the mechanism of optical fault injections, an appropriate
modeling is possible by defining the adversary model function as ζ(n, τfm, cs).
This selection covers fault injections into combinational and sequential memory
gates likewise. As described in Section 2.2, a focused laser beam on a digital
circuit charges or discharges specific nodes on transistor level. Hence, targeting
sequential gates, the value of a register can either be set or reset which needs to
be covered in the custom fault mapping τfm defining {reg} 7→ {u2, u3}.

Additionally, the instantiation of the adversary function covers fault events
that directly occur in the combinational logic. Here, we define specified mappings
for τfm between the instantiated gates g ∈ Gc and the defined functions in U and

22 J. Richter-Brockmann et al.

N0

N1

P0 P1 P2

N2

x0 x1

x0

x1

bi

Fig. 9: AND gate from the 15 nm Open-Cell Library. Blue areas mark drain regions of
PMOS transistors, red areas mark drain regions of NMOS transistors.

B. The simplest example – faults occurring in a CMOS inverter – was already
discussed in Section 2.2 where the mapping {not} 7→ {u2, u3} is applied. For
the remaining gates from Gb, we now exemplary derive the mapping of an and
gate designed in the 15 nm Open-Cell Library3 which is depicted in Figure 9.
Therefore, we will call the custom defined mapping τfm in the following τnang15

as it is tailored to the given example.

The and gate consists of six transistors where three transistors are NMOS
and three are PMOS transistors. In our model, we assume that an adversary can
affect any number of transistors available in a target gate. Hence, our parameter
n only describes the number of fault events on gate level but does not distinguish
the number of charged or discharged nodes. However, in case of the considered
and gate, the attacker can easily change the function to a set or reset behavior by
affecting the inverter stage. Additionally, it is possible to simultaneously inject a
drift current Idrift into the transistors N0 and N1 to force the gate to behave as
an or gate. This is possible if Idrift is larger than the current delivered by one of
the PMOS transistors P0 and P1 such that the input node to the inverter can be
discharged if either P0 or P1 conducts. In case both PMOS transistors conduct,
the injected drift current would be too small to discharge the input node to the
inverter so that the output of the gate would be zero. These observations lead
us to the mapping {and} 7→ {b2, b6, b7} which is added to τnang15.

Fault mappings for all remaining gates from G can be derived in a very
similar way. As we require a specific mapping for a xor gate in order to evaluate
the example from Figure 8, the corresponding schematic is shown in Figure 10 in
the appendix. Again, the attacker can easily generate set and reset fault events
by charging or discharging the output node. However, there are other possible
modifications which allow the attacker to force the gate to behave as a nand gate
or as an or gate. The former change can be achieved by discharge the input node
to the second stage, i.e., by shooting on N0 or N1. To force the gate to behave

3 https://si2.org/open-cell-library/

https://si2.org/open-cell-library/

Revisiting Fault Adversary Models 23

Table 3: Intersection of fault injection models with available fault injection mechanisms
for the ASCON S-box.

Modeled Mechanism

Covered Mechanism Laser Clock/Voltage EM

Laser 100 % 63.4 % 9.8 %

Clock/Voltage 100 % 100 % 0 %

EM 100 % 0 % 100 %

as an or gate, the attacker has to hit one of the PMOS transistors P3 or P4. All
together, we end up with the mapping {xor} 7→ {b1, b2, b6, b7}.

For the sake of completeness, we listed the corresponding mappings for all
remaining gates from Gc, describing all fault types in presence of Laser Fault
Injections (LFIs) for the Nangate 15 nm technology, in the appendix in Table 5.

Evaluating the ASCON S-box, given the described adversary model instan-
tiation ζ(1, τnang15, cs), can be accomplished by distinguishing between faults
that are injected into sequential gates and combinational gates. The former case
reveals the same fault rate as the evaluation under faults caused by EMPs.
Hence, Nmax = 1 600 while there are 160 effective faults. The evaluation con-
sidering faults in combinational gates results in Nmax = 11 360 possible faults
while there are Neffective = 1 480 effective faults. Thus, adding the numbers of
effective faults to Neffective = 1 640 and possible faults to Nmax = 12 960 results
in a total fault rate of rfault = 12.65 % for the ASCON S-box under the given
ζ(1, τnang15, cs) adversary model.

4.5 Comparison of Fault Injection Mechanisms

Eventually, Table 3 compares the four considered and modeled fault injection
mechanisms by assuming that the mechanisms are applied column-wise and an
evaluation based on the introduced models is performed. Each row indicates –
for the corresponding mechanism – the percentage intersection of the applied
model. Particularly, when selecting the introduced function to model LFI, all
other fault injection mechanisms are covered as well, meaning that a design,
which is secure under the laser fault model, is also secure under all remaining
models. Switching to the clock or voltage model, results in a 63.4 % coverage
of all faults that can occur when applying the laser fault model. Note that
this specific number only holds for the presented case of the ASCON S-box
and depends on the utilized gates and the corresponding mapping functions.
However, considering faults caused by EMPs, achieves the smallest intersection
with the remaining fault injection mechanisms. Only 9.8 % of the faults caused
by lasers are also covered when modeling electromagnetic based faults while
clock or voltage glitches are not covered.

This comparison illustrates that the introduced adversary models can de-
scribe the different fault injection mechanisms in a finer grained fashion. A dis-

24 J. Richter-Brockmann et al.

tinct differentiation between the available fault injection mechanisms based on
the instantiated ζ is easily possible. It further demonstrates that a design, which
is evaluated and secure in the laser fault model ζ(n, τnang15, cs), is also protected
against adversaries using one of the other fault injection mechanisms to attack a
cryptographic hardware implementation. However, this does not hold vise versa
so that a design, which for example is evaluated and secure under the EM fault
model ζ(n, τsr, s), is not necessarily secure against attackers using optical based
fault injection mechanisms.

5 Case Study: Integration to VerFI

In this section we demonstrate the practical application of our new adversary
model while integrating it to the state-of-the-art verification tool for fault injec-
tions VerFI [4].

VerFI. VerFI is an open-source tool to verify hardware countermeasures against
fault injection attacks presented at HOST in 2019 [4]. The tool works on netlist-
level and can be configured via a simulation file. This file contains information
about the plaintext and key, which should be used for the analysis, different
parameters that are cipher related (e.g., duration in clock cycles, port names,
end condition), and parameters to define the fault injection. Given that, one
can precisely specify the submodules which should be faulted, how many faults
should be injected, and which fault injection type should be considered (toggle
faults, stuck-at-0, stuck-at-1). Based on these information, VerFI analyzes the
given circuit and reports the number of non-detected faults, detected faults,
ineffective faults, and the total number of evaluated faults.

Adjustments to VerFI. In order to demonstrate the application of our pro-
posed adversary model, we adapted VerFI such that it was able to work with user
defined fault mappings. Therefore, we modified the library-file and extended
the parameter list for each gate by fault mappings which are specified in form of
Boolean expressions. Consequently, we adapted the parsing function which reads
in the gates from the library-file and stores the corresponding parameters. The
required expressions describing the fault mappings are evaluated and stored in
Look-Up Tables (LUTs) which are used in the fault simulation step to gener-
ate the outputs of the faulty gates. Within this fault simulation step each valid
combination of fault mappings for a set of target gates (gates in which faults are
currently injected) is analyzed before the next set of target gates is determined.

Analyzing a protected LED implementation. To demonstrate the evalua-
tion of a protected block cipher, we selected an implementation of the lightweight
block cipher LED64 [18] taken from Impeccable Circuits [1]. The authors pub-
lished a list of hardware implementations of common block ciphers where each

Revisiting Fault Adversary Models 25

Table 4: Fault analysis of LED64 using VerFI. The top three rows are results produced
by using the proposed fault models in VerFI. The lower three rows report results
obtained from an adapted version of VerFI reflecting our generic adversary model.

Fault Model Detected Non-detected Ineffective Scenarios (sum)

ζ(4, τbf , cs) 97 428 3 598 1 064 102 090

ζ(4, τs, cs) 96 660 497 4 933 102 090

ζ(4, τr, cs) 87 372 49 14 669 102 090

ζ(4, τsr, c) 548 672 3 584 64 832 617 088

ζ(4, τsr, s) 1 520 14 162 1 696

ζ(4, τnang15, cs) 14 383 842 72 462 1 245 232 15 701 536

cipher is implemented with different levels of protection4. We decided to use
the LED implementation where each state nibble is protected by four bits of
redundancy. We constrained the allowed area for fault injections to the xor-gates
adding the multiplication results in MixColumns for one resulting nibble and to
the following 4-bit state register in the data path as well as in the redundancy.
All together, the total number of target gates consists of 32 xor-gates and eight
registers. The target circuit was analyzed for n = 4 while injecting faults in clock
cycle 31 only. The plaintext and key were fixed to the values

plaintext = 0x0123456789ABCDEF key = 0xDEADBEEFDEADBEEF

for all following analyses. Hence, compared to the previous examples, we per-
formed a non-exhaustive evaluation with respect to the inputs.

Table 4 summarizes the evaluation results provided by the adjusted version of
VerFI5. The upper three rows report the results for the fault models which where
originally provided with VerFI (toggle, stuck-at-1, stuck-at-0) instantiated with
our adversary model. The number of fault scenarios is the same for all three cases
and is given by

∑4
k=1

(
32+8
k

)
since setting n = 4 also includes fault injections with

n < 4.
The lower three rows summarize the VerFI report for adversary models in-

stantiated for clock and voltage glitches, for electromagnetic pulses, and for laser
fault injections, respectively. The number of fault scenarios for the clock glitch
model results in

∑4
k=1

(
32
k

)
· 2k. For each combination of k target gates there are

2k possibilities to combine set and reset faults. There are 14 fewer non-detected
faults compared to the bit-flip model since the registers are not allowed to be
faulted in the clock glitch model. Switching to ζ(4, τsr, s) (i.e., modeling faults

caused by electromagnetic pulses), results in
∑4
k=1

(
8
k

)
· 2k fault scenarios while

only 14 scenarios are not-detected. This number depends on the underlying lin-
ear code which in this case has 14 valid codewords with a Hamming weight of

4 All these implementations can be found in the authors’ git repository: https://

github.com/emsec/ImpeccableCircuits
5 Detailed results (also for n < 4) can be found in Table 6 in the Appendix.

https://github.com/emsec/ImpeccableCircuits
https://github.com/emsec/ImpeccableCircuits

26 J. Richter-Brockmann et al.

four. Evaluating the countermeasure based on the adversary model describing
laser fault injections, leads to the largest number of fault scenarios. The number
is given by

4∑
k=1

k∑
j=0

(
32

j

)
·
(

8

k − j

)
· 2(k+j).

The first binomial coefficient describes the number of faults occurring in the com-
binational gates while the second binomial coefficient determines the number of
sequential gates that are faulted. The last term determines the combinations of
fault mappings that exists for one combination of k target gates. However, eval-
uating the target countermeasure, results in the largest number of non-detected
faults which mainly is caused by the increased number of fault scenarios.

Based on these results, it can clearly be seen that our model provides a more
fine-grained classification of fault models. A target design can be analyzed under
different adversary models which are tailored to the most common fault injection
mechanisms. Additionally, using these results to compare the security to other
protection schemes, is much more consistent and straightforward to accomplish.

6 Discussion

After all, we would like to briefly summarize and discuss the benefits of a unified
adversary model to describe fault injection attacks. First, using a unified fault
adversary model allows a distinct evaluation of developed countermeasures and
protection mechanisms under the same assumptions. Second, while our adversary
model perfectly describes actual fault injection mechanisms, it is also designed
to work as generic and simple as possible. This makes an application easy to use
and allows a straightforward instantiation in practice. Third, the application of a
consolidated fault adversary model enables the possibility to compare proposed
countermeasures based on the same assumptions and limitations with respect to
the attacker. In this sense, our model strives to fulfill these criteria since only a
limited number of parameters is necessary to describe and model the adversary
in a very compact way. In essence, the user directly conceives the properties of
the instantiated adversary model and can compare it to evaluations of protection
schemes under a similar adversary model what makes it highly expressiveness.
Fourth, due to the generic form, the adversary model can naturally be adapted
to other technologies and hardware primitives (e.g., different memory technolo-
gies). With this property the model achieves a high transferability being able to
customize it to the given circumstances and environments.

Expansion to more advanced logic gates. Even given that we limited our
fault model in Section 3 to unary and binary logic gates, it could be easily and
without any restrictions expanded to more advanced logic gates. This includes
standard logic gates (e.g., and, or) with more than two inputs and optimized gates
like and-or-invert. To expand our adversary model, the user defines additional
sets containing all functions with i-bit inputs with i > 2. The corresponding set

Revisiting Fault Adversary Models 27

would then contain 2(2i) different functions that would transform the i-bit input
to a 1-bit output. Given the additional sets of functions, the used mappings in
τ need to be adapted in order to accurately describe the occurring faults.

Limitations of VerFI. Despite the fact that we were able to integrate our
adversary model to the fault verification tool VerFI, we see some limitations with
respect to the evaluation results. In VerFI, the user can just evaluate the given
design by fixing the plaintext and key to a constant value. This covers not all fault
scenarios and could lead to false positives when evaluating a countermeasure
against fault injection attacks. Additionally, beyond the practical evaluation
using VerFI of this work we see further potential for performance improvements
in order to evaluate larger parts of the target design within the same run.

Comparison to existing models. The most common and already existing
fault models are restricted to toggle, stuck-at-1, and stuck-at-0 faults (in our
model we call them bit-flip, set, and reset faults, respectively). Compared to
these approaches our model can analyze fault injections in digital circuit more
precisely and in more detail incorporating the physical behavior of the different
fault injection mechanisms. However, an argument against our model could be
that an user of a fault verification tool would still cover all worst-case fault
scenarios by applying a bit-flip model resulting in much less combinations of fault
mappings that need to be tested. The bit-flip model comes with the disadvantage
of insufficient precision regarding the description of fault injections. First, it is
not possible to distinguish between different fault injection mechanisms. Second,
faults in some hardware primitives cannot be accurately modeled like the in
Section 3.3 mentioned NOR flash memory. Third, besides these arguments, our
proposed fault adversary model enables the user to precisely reconstruct the
cause of failures in a developed countermeasure.

Limitations of our proposed model. Despite these clear advantages, our
adversary model is not reflecting parameters of the technology node and the
physical layout of integrated circuits. Since the model considers hardware designs
on netlist level, a detailed integration of technology related parameters is not
(yet) possible. Additionally, place-and-route information cannot be used in the
evaluation phase resulting in worst-case assumptions for e.g., critical paths. Even
if these limitations lead to an increased number of fault scenarios and therefore
to an increased number of fault combinations needed to be tested, the revisited
fault adversary model describes fault injections more precisely while ensuring a
thorough coverage of occurring fault types.

7 Conclusion

By reviewing and summarizing existing fault injection mechanisms developed
over the last two decades, we created a basic understanding of the physical

28 J. Richter-Brockmann et al.

behavior appearing on the actual hardware when attacking cryptographic im-
plementations. Subsequently, we introduced a generic and abstract (but simple)
fault adversary model which can freely be parametrized by selecting three pa-
rameters describing the number of fault events, the fault types, and the fault
locations. Given that, we connected the practical fault injection mechanisms with
the theoretical introduced fault adversary model and accurately described how
it has to be instantiated to provide a perfect mapping between theory and prac-
tice. This connection gave us the opportunity to demonstrate the application of
the adversary models – instantiated to model different attack mechanisms – to
a practical case study of a protected design of the lightweight cipher LED. This
case study was accomplished by extending the fault verification tool VerFI by
our proposed adversary model. Eventually, we discussed the advantages and ben-
efits of using our consolidated fault adversary model and limitations in existing
state-of-the-art verification tools.

Acknowledgment

The work described in this paper has been supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F.,
Schneider, T.: Impeccable Circuits. IEEE Trans. Computers 69(3), 361–376 (2019)

2. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When Clocks
Fail: On Critical Paths and Clock Faults. In: International Conference on Smart
Card Research and Advanced Applications. pp. 182–193. Springer (2010)

3. Anceau, S., Bleuet, P., Clédière, J., Maingault, L., Rainard, J., Tucoulou, R.:
Nanofocused X-Ray Beam to Reprogram Secure Circuits. In: Fischer, W., Homma,
N. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings. Lecture Notes in Computer Science, vol. 10529, pp. 175–188. Springer
(2017). https://doi.org/10.1007/978-3-319-66787-4 9, https://doi.org/10.1007/
978-3-319-66787-4_9

4. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic Fault Diagno-
sis using VerFi. In: 2020 IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2020, San Jose, CA, USA, December 7-11, 2020. pp.
229–240. IEEE (2020). https://doi.org/10.1109/HOST45689.2020.9300264, https:
//doi.org/10.1109/HOST45689.2020.9300264

5. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

6. Baumann, R.C.: Soft Errors in Commercial Integrated Circuits. International Jour-
nal of High Speed Electronics and Systems 14(02), 299–309 (2004)

7. Beckers, A., Kinugawa, M., Hayashi, Y., Fujimoto, D., Balasch, J., Gierlichs, B.,
Verbauwhede, I.: Design Considerations for EM Pulse Fault Injection. In: Interna-
tional Conference on Smart Card Research and Advanced Applications. pp. 176–
192. Springer (2019)

https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1007/978-3-319-66787-4_9
https://doi.org/10.1109/HOST45689.2020.9300264
https://doi.org/10.1109/HOST45689.2020.9300264
https://doi.org/10.1109/HOST45689.2020.9300264

Revisiting Fault Adversary Models 29

8. Canivet, G., Maistri, P., Leveugle, R., Clédière, J., Valette, F., Renaudin, M.:
Glitch and Laser Fault Attacks onto a Secure AES Implementation on a SRAM-
Based FPGA. J. Cryptol. 24(2), 247–268 (2011)

9. Colombier, B., Menu, A., Dutertre, J.M., Moëllic, P.A., Rigaud, J.B., Danger,
J.L.: Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on
a 32-bit Microcontroller. In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). pp. 1–10. IEEE (2019)

10. Courbon, F., Loubet-Moundi, P., Fournier, J.J., Tria, A.: Adjusting Laser Injec-
tions for Fully Controlled Faults. In: International workshop on constructive side-
channel analysis and secure design. pp. 229–242. Springer (2014)

11. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic Transient
Faults Injection on a Hardware and a Software Implementations of AEs. In: Work-
shop on Fault Diagnosis and Tolerance in Cryptography. pp. 7–15. IEEE (2012)

12. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1. 2 (2016),
https://competitions.cr.yp.to/round3/asconv12.pdf

13. Dumont, M., Lisart, M., Maurine, P.: Modeling and Simulating Electromagnetic
Fault Injection. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (2020)

14. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic Fault Injection: How Faults
Occur. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
pp. 9–16. IEEE (2019)

15. Dutertre, J.M., Beroulle, V., Candelier, P., De Castro, S., Faber, L.B., Flottes,
M.L., Gendrier, P., Hely, D., Leveugle, R., Maistri, P., et al.: Laser Fault Injection
at the CMOS 28 nm Technology Node: an Analysis of the Fault Model. In: Work-
shop on Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 1–6. IEEE
(2018)

16. Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An on-chip glitchy-clock
generator for testing fault injection attacks. Journal of Cryptographic Engineering
1(4), 265 (2011)

17. Gierlichs, B., Schmidt, J., Tunstall, M.: Infective Computation and Dummy
Rounds: Fault Protection for Block Ciphers without Check-before-Output. In:
Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile, October
7-10, 2012. Proceedings. pp. 305–321 (2012)

18. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher.
In: Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6917, pp.
326–341. Springer (2011). https://doi.org/10.1007/978-3-642-23951-9 22, https:

//doi.org/10.1007/978-3-642-23951-9_22
19. Hutter, M., Schmidt, J.M.: The Temperature Side Channel and Heating Fault

Attacks. In: International Conference on Smart Card Research and Advanced Ap-
plications. pp. 219–235. Springer (2013)

20. Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Information Security
and Cryptography, Springer (2011)

21. Korak, T., Hutter, M., Ege, B., Batina, L.: Clock Glitch Attacks in the Presence
of Heating. In: Workshop on Fault Diagnosis and Tolerance in Cryptography. pp.
104–114. IEEE (2014)

22. Maurine, P., Tobich, K., Ordas, T., Liardet, P.Y.: Yet another fault injection tech-
nique: by forward body biasing injection. In: YACC’2012: Yet Another Conference
on Cryptography (2012)

https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22

30 J. Richter-Brockmann et al.

23. O’Flynn, C.: Low-Cost Body Biasing Injection (BBI) Attacks on WLCSP Devices.
In: Liardet, P., Mentens, N. (eds.) Smart Card Research and Advanced Appli-
cations - 19th International Conference, CARDIS 2020, Virtual Event, Novem-
ber 18-19, 2020, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 12609, pp. 166–180. Springer (2020). https://doi.org/10.1007/978-3-030-68487-
7 11, https://doi.org/10.1007/978-3-030-68487-7_11

24. Ordas, S., Guillaume-Sage, L., Maurine, P.: EM Injection: Fault Model and Local-
ity. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). pp.
3–13. IEEE (2015)

25. Ordas, S., Guillaume-Sage, L., Maurine, P.: Electromagnetic Fault Injection: the
Curse of Flip-flops. Journal of Cryptographic Engineering 7(3), 183–197 (2017)

26. Ordas, S., Guillaume-Sage, L., Tobich, K., Dutertre, J.M., Maurine, P.: Evidence
of a Larger EM-induced Fault Model. In: International Conference on Smart Card
Research and Advanced Applications. pp. 245–259. Springer (2014)

27. Petersen, E.: Single Event Effects in Aerospace. John Wiley & Sons (2011)
28. Razavi, B.: Fundamentals of Microelectronics. Wiley (2008)
29. Richter-Brockmann, J., Sasdrich, P., Bache, F., Güneysu, T.: Concurrent Error

Detection Revisited: Hardware Protection against Fault and Side-Channel Attacks.
In: Proceedings of the 15th International Conference on Availability, Reliability and
Security. pp. 1–11 (2020)

30. Roscian, C., Sarafianos, A., Dutertre, J.M., Tria, A.: Fault Model Analysis of
Laser-Induced Faults in SRAM Memory Cells. In: Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). pp. 89–98. IEEE (2013)

31. Schellenberg, F., Finkeldey, M., Gerhardt, N., Hofmann, M., Moradi, A., Paar, C.:
Large Laser Spots and Fault Sensitivity Analysis. In: IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST). pp. 203–208. IEEE
(2016)

32. Schneider, T., Moradi, A., Güneysu, T.: ParTI - Towards Combined Hardware
Countermeasures Against Side-Channel and Fault-Injection Attacks. In: Annual
Cryptology Conference. pp. 302–332. Springer (2016)

33. Selmane, N., Guilley, S., Danger, J.L.: Practical Setup Time Violation Attacks
on AEs. In: 7th European Dependable Computing Conference. pp. 91–96. IEEE
(2008)

34. Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise Laser Fault Injections into 90
nm and 45 nm SRAM-Cells. In: International Conference on Smart Card Research
and Advanced Applications. pp. 193–205. Springer (2015)

35. Selmke, B., Hauschild, F., Obermaier, J.: Peak Clock: Fault Injection into PLL-
Based Systems via Clock Manipulation. In: Proceedings of the 3rd ACM Workshop
on Attacks and Solutions in Hardware Security Workshop. pp. 85–94 (2019)

36. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable Circuits II. 57th An-
nual Design Automation Conference 2020, DAC 2020 2020 (2020)

37. Skorobogatov, S.: Local Heating Attacks on Flash Memory Devices. In: Interna-
tional Workshop on Hardware-Oriented Security and Trust. pp. 1–6. IEEE (2009)

38. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Inter-
national workshop on cryptographic hardware and embedded systems. pp. 2–12.
Springer (2002)

39. Wang, F., Agrawal, V.D.: Single Event Upset: An Embedded Tutorial. In: 21st
International Conference on VLSI Design (VLSID 2008). pp. 429–434. IEEE (2008)

40. Zussa, L., Dutertre, J.M., Clediere, J., Tria, A.: Power Supply Glitch Induced
Faults on FPGA: An In-Depth Analysis of the Injection Mechanism. In: On-Line
Testing Symposium (IOLTS), 2013 IEEE 19th International (2013)

https://doi.org/10.1007/978-3-030-68487-7_11
https://doi.org/10.1007/978-3-030-68487-7_11
https://doi.org/10.1007/978-3-030-68487-7_11

Revisiting Fault Adversary Models 31

A Additional Schematic

Figure 10 shows the schematic of a xor gate designed in the Nangate 15 open cell
technology. The gate consists of four NMOS transistors and four PMOS transis-
tors where the drain regions are marked by red and blue ellipses, respectively.

P0

P1

N0 N1

P2

P3 P4

N2 N3

N4

bi

x0

x1

x0 x1

x0 x1

x0

x1

Fig. 10: XOR gate from the Open Nangate 15 technology.

B Mappings for Nangate 15 Technology

Table 5 states the faults types for the Nangate 15 open cell technology for an
attacker that uses LFI. The first column shows the available gates of the technol-
ogy. The second column indicates the mappings to the functions from U and B to
describe the possible fault events while the last column states the corresponding
Boolean functions behind the functions from U and B.

Table 5: Fault types for LFI on a Nangate 15 technology.

Mapped Functions

Gate Functions from U and B Description

not {u2, u3} {set, reset}
and {b2, b6, b7} {or, set, reset}

nand {b3, b6, b7} {nor, set, reset}
or {b0, b6, b7} {and, set, reset}

nor {b1, b6, b7} {nand, set, reset}
xor {b1, b2, b6, b7} {nand, or, set, reset}

xnor {b1, b2, b6, b7} {nand, or, set, reset}

32 J. Richter-Brockmann et al.

C Detailed Reports from VerFI Case Study

Table 6: Detailed results of the VerFI case study discussed in Section 5.

Fault Model Detected Non-detected Ineffective Scenarios (sum)

ζ(1, τbf , cs) 40 0 0 40

ζ(2, τbf , cs) 772 0 48 820

ζ(3, τbf , cs) 10 652 0 48 10 700

ζ(4, τbf , cs) 97 428 3 598 1 064 102 090

ζ(1, τs, cs) 24 0 16 40

ζ(2, τs, cs) 666 0 154 820

ζ(3, τs, cs) 9 710 0 990 10 700

ζ(4, τs, cs) 96 660 497 4 933 102 090

ζ(1, τr, cs) 16 0 24 40

ζ(2, τr, cs) 514 0 306 820

ζ(3, τr, cs) 8 230 0 2 470 10 700

ζ(4, τr, cs) 87 372 49 14 669 102 090

ζ(1, τsr, c) 32 0 32 64

ζ(2, τsr, c) 1 472 0 576 2 048

ζ(3, τsr, c) 34 752 0 6 976 41 728

ζ(4, τsr, c) 548 672 3 584 64 832 617 088

ζ(1, τsr, s) 8 0 8 16

ζ(2, τsr, s) 92 0 36 128

ζ(3, τsr, s) 484 0 92 576

ζ(4, τsr, s) 1 520 14 162 1 696

ζ(1, τnang15, cs) 76 0 68 144

ζ(2, τnang15, cs) 7 720 0 2 520 10 240

ζ(3, τnang15, cs) 405 616 0 63 824 469 440

ζ(4, τnang15, cs) 14 383 842 72 462 1 245 232 15 701 536

	Revisiting Fault Adversary Models

