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Abstract

An (n,m)-function is a mapping from Fn
2 to Fm

2 . Such functions have
numerous applications across mathematics and computer science, and in
particular are used as building blocks of block ciphers in symmetric cryp-
tography. The classes of APN and AB functions have been identified as
cryptographically optimal with respect to providing resistance against two
of the most powerful known cryptanalytic attacks, namely differential and
linear cryptanalysis. The classes of APN and AB functions are directly
related to optimal objects in many other branches of mathematics, and
have been a subject of intense study since at least the early 90’s. Finding
new constructions of these functions is hard; one of the most significant
practical issues is that any tentatively new function must be proven in-
equivalent to all the known ones. Testing equivalence can be significantly
simplified by computing invariants, i.e. properties that are preserved by
the appropriate equivalence relation. In this paper, we survey the known
invariants for CCZ- and EA-equivalence, with a particular focus on their
utility in distinguishing between inequivalent instances of APN and AB
functions. We evaluate each invariant with respect to how easy it is to
implement in practice, how efficiently it can be calculated on a computer,
and how well it can distinguish between distinct EA- and CCZ-equivalence
classes.

1 Introduction

A vectorial Boolean function, or (n,m)-function, is any mapping from the vec-
tor space Fn

2 over the finite field F2 = {0, 1}, to the vector space Fm
2 , where n

and m are arbitrary natural numbers. In the particular case when m = 1, we
refer to (n, 1)-functions simply as Boolean functions. In this sense, an (n,m)-
function can be seen as an m-dimensional vector of (n, 1)-functions, hence the
name. Vectorial Boolean functions are natural objects that have many applica-
tions within computer science and mathematics. Perhaps the simplest way to
appreciate their utility is to observe that an (n,m)-function can be interpreted
as an operation that accepts n bits as input, and returns m bits as output.
Since virtually all data can be encoded as sequences of bits, this means that any
transformation that operates on data of any kind can be naturally represented
in terms of Boolean functions and vectorial Boolean functions. In particular,
this is how all data is represented on an electronic computer; and one need
look no further than the indicator function of a subset, or the incidence matrix
of a graph to find examples of mathematical structures that can be encoded
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using binary functions. The spectrum of applications of vectorial Boolean func-
tions includes areas as diverse as set theory, artificial intelligence, and algorithm
design.

Vectorial Boolean functions also play a crucial role in cryptography, where
they are used as building blocks of both stream and block ciphers. In both cases,
the properties of the functions used directly influence the ultimate strength of
the encryption; and thus, investigating the cryptographic properties of (n,m)-
functions, and finding concrete instances of such functions that provide good
resistance against various cryptanalytic attacks is an important topic of research.
A prominent example is the Rijndael block cipher, selected as the Advanced
Encryption Standard (AES) by the US National Institute of Standards and
Technology (NIST), which is one of the most secure and easily the most popular
block cipher to date [27, 28]. One of the major factors contributing to the
security of Rijndael is a strong vectorial Boolean function that lies at the core
of the encryption. In general, if a particular form of cryptanalysis succeeds
because of a cryptographically weak function, this is due to the function having
some undesirable property that can be exploited by the attacker. Researchers
have identified several properties and statistics that measure the resistance of
a function to different kinds of attack. This quantification of the cryptographic
strength of vectorial Boolean functions has the great advantage that it allows
the security of a given function to be measured in an objective and systematic
way; and, what is of equal importance, provides researchers in the field with
a concrete goal, namely to find functions attaining the optimum value of these
properties.

Two of the most powerful attacks against modern block ciphers are the so-
called differential cryptanalysis [5] and linear cryptanalysis [40]. The statistics
that measure the resistance of a function F to these two attacks are called differ-
ential uniformity (denoted ∆F ) and nonlinearity (denotedNL(F )), respectively.
The differential uniformity of a function should be as low as possible, and the
nonlinearity should be as high as possible in order to resist these two attacks. In
the case of (n,m)-functions with n = m (which is arguably the most practically
significant and, therefore, well-studied case), the classes of (n, n)-functions that
achieve optimum differential uniformity and nonlinearity are called almost per-
fect nonlinear (APN) and almost bent (AB) functions, respectively. These two
classes were introduced in the early 90’s [3, 41, 42], and have been the subject
of intense study ever since. The fact that these functions are cryptographically
optimal implies that they have very little structure or patterns that can be ex-
ploited by a malicious attacker; unfortunately, this also makes the study and
construction of such functions difficult, both in theory and in practice. This is
witnessed by the fact that a number of long-standing questions and problems
on APN and AB functions remain open to this day. The reader is referred to
[23] for a comprehensive overview of the background and results in the area,
including a list of open problems.

One promising vector of attack for resolving some of these problems is to
find new instances of APN and AB functions. In this respect, it must be noted
that any AB function is necessarily APN; the converse does not hold in general,
although any quadratic APN function over F2n with odd n is AB [24]. This
means that AB functions provide the optimum resistance to both differential
and linear cryptanalysis; and that searching for APN function is a natural way
to search for AB functions as well. The number of (n, n)-functions is astronom-
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ical even for small values of n: there are (2n)2
n

such functions for any natural
number n, and so for values as small as n = 6, an exhaustive search is out of
the question at the current level of computational technology. On the one hand,
this makes it necessary to use more sophisticated combinations of mathemat-
ical characterizations and computational methods in order to find new APN
functions; on the other hand, the large number of (n, n)-functions suggests that
the total number of APN functions (despite them being a rather special class of
functions) also grows exponentially with the dimension n, and their enumeration
and classification quickly become infeasible.

To make the classification of some given class of objects manageable, a typ-
ical approach is to only classify them up to some suitable notion of equivalence
that preserves the properties of interest to our study. In the case of APN and AB
functions, these are the differential uniformity and the nonlinearity. At present,
there are several known notions of equivalence on vectorial Boolean functions
that preserve both of these properties. The most general known relation of this
type is called Carlet-Charpin-Zinoviev equivalence (after the names of its in-
ventors) [24], or CCZ-equivalence for short; results on APN and AB functions
in the literature are typically given up to CCZ-equivalence. A less general, but
also very frequently used equivalence relation is the extended affine equivalence,
or EA-equivalence for short. Although it is known to be strictly less general
that CCZ-equivalence (even if we allow taking inverses of permutations in addi-
tion to EA-equivalence) [19], it has been shown that CCZ- and EA-equivalence
coincide in the case of quadratic functions [48]; since the vast majority of known
APN functions are quadratic, this makes the study of EA-equivalence and its
properties almost as useful as those of CCZ-equivalence in practice.

Classifying functions up to CCZ-equivalence (or EA-equivalence) dispenses,
at least partly, with the problem of their overwhelming number, but it raises
another issue, namely: how to prove the equivalence or inequivalence of two
given functions. This is a matter of great practical importance in the study
of APN functions, since any “new” function obtained from a computational
search or theoretical construction needs to be compared for equivalence against
representatives from the equivalence classes of all known APN functions; this
“new” function is then genuinely new only in the case that it is not equivalent
to any of these representatives. Despite the definitions of both EA-equivalence
and CCZ-equivalence being natural and simple, testing whether two given func-
tions are equivalent is a very hard problem. Showing the inequivalence of two
functions theoretically is only possible in some special cases, and is still very
laborious; see e.g. [16], which contains a theoretical proof of inequivalence to
the Gold, Kasami, and inverse power APN functions of an infinite family of
APN binomials. Computationally testing equivalence is quite difficult too: to
the best of our knowledge, there is currently no algorithm that can decide the
CCZ-equivalence of any two functions directly from the definition; instead, one
typically uses tests relying on isomorphism of linear codes [34, 10]. These tests
have a number of shortcomings: they are difficult to implement (provided one
does not have a working implementation of a test for linear code isomorphism);
the computational time and memory consumption is significant; and, at least in
the case of some implementations, these tests can give false negatives. Despite
this, the linear code test remains the only option for testing CCZ-equivalence in
the general case. Other algorithms, operating from first principles, have been
published for dealing with specialized cases of CCZ- and EA-equivalence, such
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as in the case of affine and linear equivalence [6], and the so-called restricted
EA-equivalence [21, 43]; and, more recently, an algorithm relying on invariants
for testing EA-equivalence for even dimensions [37].

The classification of functions into equivalence classes can be significantly
simplified and sped-up by means of invariants. An invariant is a property or
statistic that is preserved under a given equivalence relation. For instance, if p
is an integer-valued statistic computable for any (n, n)-function F , and is also a
CCZ-invariant, then for any F,G : Fn

2 → Fn
2 that are CCZ-equivalent, we must

have p(F ) = p(G). Invariants can facilitate the classification in several ways.
Suppose that a tentative new instance of an APN function is obtained via some
construction or computer search. First, the values of different invariants for a
potential new function can be computed, and compared with those values for
representatives from the known classes of APN functions. If the set of values for
the new function does not match that of any known representative, then we can
immediately conclude that the discovered function is indeed new, and no further
tests need to be performed. If, however, the set of values does coincide with that
of one or more of the known representatives, then only the representatives with
that exact same set of values need to be tested for equivalence against the newly
discovered function; this will typically be a significantly smaller set of functions.
Most invariants are numerical values, which makes it easier to verify that the
computation has produced a meaningful result, and precludes the possibility of
false positive or false negatives. Finally, some invariants have a natural inter-
pretation, and describe some property or structure of the function, which can be
significant and useful in contexts other than deciding equivalence. Constantly
updated tables of the known invariants for all known CCZ-inequivalent APN
representatives can be found online at [1].

In this paper, we survey the known invariants for (n, n)-functions, with an
emphasis on their utility for the classification of APN and AB functions. We
evaluate each invariant with respect to several desirable properties. Ideally, we
would like an invariant to be:

• simple: in other words, that it shouldn’t require any complicated algo-
rithms or special software for its computation; ideally, an invariant would
be easily implementable on any general purpose programming language
without specialized tools or knowledge;

• efficient: that the invariant can be computed quickly, and without using
too much memory for a reasonable range of dimensions n;

• useful: that it should take many different values for APN functions from
distinct equivalence classes.

2 Preliminaries

Let n,m be natural numbers. An (n,m)-function, or vectorial Boolean
function is a mapping between the vector spaces Fn

2 and Fm
2 over the finite field

with two elements, F2. In the following, we concentrate on the case n = m, but
we remark in passing that (n, 1)-functions are called simply Boolean functions
(as opposed to vectorial Boolean functions). An (n,m)-function F can be seen
as a vector F = (f1, f2, . . . , fm) of Boolean (n, 1)-functions, each function fi(x)
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x F (x)

000 000
001 101
010 110
011 111
100 100
101 011
110 001
111 010

Table 1: Truth table of a (3, 3)-function

giving the value of the i-th coordinate of F (x) for x ∈ Fn
2 . The functions fi

are called the coordinate functions of F . The component functions of F
are all non-zero linear combinations of its coordinate functions. For b ∈ Fm

2 ,
the component function corresponding to the linear combination defined by
b is denoted by Fb; that is, Fb =

∑m
i=1 bifi, where b = (b1, b2, . . . , bm) and

fi are the coordinate functions of F . As we shall see in Section 2.2, some
cryptographic properties of an (n,m)-function F are expressed in terms of the
Hamming distance between its components and certain other functions. We
recall that the Hamming distance dH(F,G) between two (n,m)-functions F
and G is the number of inputs x ∈ Fn

2 on which the values of F and G are
distinct, i.e. dH(F,G) = #{x ∈ Fn

2 : F (x) 6= G(x)}.
In the discussion of some of the invariants, we will use the notion of a mul-

tiset. Intuitively, a multiset is an unordered collection of elements in which
the same element can occur multiple times. We will refer to the number of
times that an element e occurs in a multiset M as the multiplicity of e in M ,
and will refer to the collection of the multiplicities of all elements in M as the
multiplicities of M .

2.1 Representation of vectorial Boolean functions

A vectorial Boolean function F from Fn
2 to Fm

2 can be represented in several
different ways. Perhaps the simplest is the so-called truth-table representation,
which is simply an exhaustive list of the values F (x) for all possible inputs
x ∈ Fn

2 . The truth table for a (3, 3)-function is given as an example in Table
1. The truth-table representation is rather efficient for implementing vectorial
Boolean functions on a computer; in fact, the straightforward implementations
of most invariants work best if the input (n, n)-function is given as a truth-
table. Nonetheless, it has a number of serious shortcoming that make other
representations preferable: the size of the table grows exponentially with n
and m; it is difficult to observe any properties of the function from its truth
table without performing non-trivial computations; and it is difficult to express
infinite families and constructions via truth tables.

Any (n,m)-function can be uniquely represented as a multivariate polyno-
mial of the form

F (x1, x2, . . . , xn) =
∑

I⊆{1,2,...,n}

aI
∏
i∈I

xj ,
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where aI ∈ Fm
2 for all I ⊆ {1, 2, . . . , n} and the variables x1, x2, . . . , xn take

values in F2. This representation is known as the algebraic normal form
(ANF) of F . In some cases, the ANF allows for a significantly more compact
representation of an (n, n)-function (when the dimensions n and m are large, so
that the size of the truth table become prohibitive; while the number of terms
with a non-zero coefficient in the ANF is small). The degree of the ANF (as
a multivariate polynomial) is called the algebraic degree of F ; due to the
uniqueness of the ANF, this notion is well defined. The algebraic degree has
cryptographic significance (it must be large in order to resist higher-order differ-
ential attacks) and, as well shall see later, it is invariant under EA-equivalence
(but not under CCZ-equivalence).

A function of algebraic degree 1, 2, or 3 is called affine, quadratic, or
cubic, respectively. Any affine (n, n)-function A satisfies

A(x) +A(y) +A(z) = A(x+ y + z)

for any x, y, z ∈ Fn
2 , and thus this notion coincides with the usual definition of

affinity. If an affine function L satisfies L(0) = 0 so that

L(x) + L(y) + L(x+ y)

for any x, y ∈ Fn
2 , it is called linear. Affine and linear functions as defined here

behave in the same way as they do over any vector space, and so all familiar
notions and principles from linear algebra can be carried over to this case.

For example, the function given by its truth-table in Table 1 has the ANF

F (x1, x2, x3) = (0, 1, 1)x1x2+(0, 1, 0)x1x3+(1, 0, 0)x2x3+(1, 0, 0)x1+(1, 1, 0)x2+(1, 0, 1)x3.
(1)

We can immediately see that its algebraic degree is 2; in other words, this is a
quadratic function. In this particular case, the size of the ANF is not signifi-
cantly less than that of the truth-table; but as the dimension n increases, the
disparity between the size of the two representations becomes more pronounced.

Let F2n denote the finite field with 2n elements for some natural number n.
Recall that F2n can be represented as an n-dimensional vector space over the
prime field F2. Thus, Fn

2 can be identified with F2n , and (n, n)-functions can
be seen as mapping from F2n to itself. This allows any (n, n)-function to be
represented as a univariate polynomial of the form

F (x) =

2n−1∑
i=0

aix
i,

where ai ∈ F2n for 0 ≤ 1 ≤ 2n−1. This is known as the univariate represen-
tation of F ; just like the ANF, it always exists and is uniquely defined. The
algebraic degree can be obtained directly from the univariate representation as
the maximum binary weight of an exponent i with a non-zero coefficient ai. The
binary weight (also called 2-weight) of a natural number i, denoted by w2(i),
is the number of distinct powers of 2 in its binary decomposition; that is, if we
write i as i =

∑
j aj2

j for aj ∈ {0, 1}, then w2(i) =
∑

j aj . Equivalently, w2(i)
is the number of non-zero bits in the binary representation of i (for instance,
w2(11) = 3 since 11 can be written as 23 + 21 + 20, or as 1011 in binary). The
algebraic degree of F can is then

deg(F ) = max{w2(i) : 0 ≤ i ≤ 2n − 1, ai 6= 0}.
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Family Exponent Conditions Algebraic degree Source

Gold 2i + 1 gcd(i, n) = 1 2 [35, 41]
Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [36, 39]
Welch 2t + 3 n = 2t+ 1 3 [30]

Niho
2t + 2t/2 − 1, t even

n = 2t+ 1
(t+ 2)/2

[29]
2t + 2(3t+1)/2 − 1, t odd t+ 1

Inverse 22t − 1 n = 2t+ 1 n− 1 [41, 3]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [31]

Table 2: Known infinite families of APN power functions over F2n

We also remark that the component functions of F can be expressed using the
absolute trace function Tr : F2n → F2 as the Boolean functions Fb : x 7→
Tr(bF (x)) for all non-zero b ∈ F2n . We recall that the absolute trace is defined
by

Tr(x) = x+ x2 + x2
2

+ · · ·+ x2
n−1

.

The univariate representation is by far the most widely used at the moment.
A decisive reason for this is that many of the known APN functions (including
infinite constructions and families) have a very simple form under this repre-
sentation; a classic example is the Gold function x3, which is known to be APN
over F2n for any natural number n [35, 41]. Indeed, the (3, 3)-function repre-
sented by Table 1 and the ANF in (1) is precisely x3 over F23 . At the time of
writing, most known infinite constructions of APN functions are expressed in
the univariate representation; there are also a few constructions based on the
so-called bivariate representation (that we do not treat here, but briefly discuss
below). A list of the known infinite families of APN monomials is given in Table
2, and a list of the known infinite polynomial families is given in Table 3.

The above is by no means an exhaustive list of known representations of
vectorial Boolean functions. Nonetheless, they provide sufficient context for the
sequence, and we shall not go into any further details on representation of (n, n)-
functions. We will, however, mention the bivariate representation, in which a
(2n, 2n)-function can be represented as pair of polynomials (F1(x, y), F2(x, y)) in
two variables (see e.g. [23], p.47); the representation of a quadratic function by
means of a so-called quadratic APN matrix (QAM) [50]; and the representation
of a function by means of the values of its first-order derivatives [45].

2.2 APN and AB functions

Let F be an (n,m)-function for some natural number n, and denote by δF (a, b)
the number of solutions x ∈ F2n to the equation

F (x+ a) + F (x) = b (2)

for some a, b ∈ F2n . Note that the equation expresses the difference between
two outputs of F whose corresponding inputs are at distance a. If for some
given a, some value of b is significantly more likely to occur than all others, an
attacker can exploit this to derive a correlation between the input and output
of the function. This is the basic idea of differential cryptanalysis, which is one
of the most powerful known attacks against block ciphers [5]. In order to be
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ID Functions Conditions Source

F1-
F2

x2
s+1 + u2

k−1x2
ik+2mk+s

n = pk, gcd(k, 3) = gcd(s, 3k) = 1, p ∈
{3, 4}, i = sk mod p,m = p − i, n ≥
12, u primitive in F∗2n

[16]

F3 sxq+1 +x2
i+1 +xq(2

i+1) +
cx2

iq+1 + cqx2
i+q

q = 2m, n = 2m, gcd(i,m) = 1, c ∈
F2n , s ∈ F2n \Fq, X

2i+1 + cX2i + cqX+
1 has no solution x s.t. xq+1 = 1

[14]

F4 x3 + a−1Trn(a3x9) a 6= 0 [17]

F5 x3 +a−1Tr3n(a3x9 +a6x18) 3|n, a 6= 0 [18]

F6 x3 + a−1Tr3n(a6x18 +
a12x36)

3|n, a 6= 0 [18]

F7-
F9

ux2
s+1 + u2

k

x2
−k+2k+s

+
vx2

−k+1+wu2
k+1x2

s+2k+s
n = 3k, gcd(k, 3) = gcd(s, 3k) =
1, v, w ∈ F2k , vw 6= 1, 3|(k +
s), u primitive in F∗2n

[8]

F10 (x + x2
m

)2
k+1 + u′(ux +

u2
m

x2
m

)(2
k+1)2i + u(x +

x2
m

)(ux+ u2
m

x2
m

)

n = 2m,m > 2 even, gcd(k,m) = 1
and i > 2 even, u primitive in F∗2n , u′ ∈
F2m not a cube

[51]

F11 a2x2
2m+1+1 + b2x2

m+1+1 +
ax2

2m+2 + bx2
m+2 + (c2 +

c)x3

n = 3m,m odd, L(x) = ax2
2m

+ bx2
m

+
cx satisfies the conditions of Lemma 8
of [13]

[13]

F12 u(uqx + xqu)(xq + x) +

(uqx + xqu)2
2i+23i +

a(uqx + xqu)2
2i

(xq +

x)2
i

+ b(xq + x)2
i+1

q = 2m, n = 2m, gcd(i,m) = 1, x2
i+1 +

ax+ b has no roots in F2m

[47]

F13 x3 +a(x2
i+1)2

k

+ bx3·2
m

+

c(x2
i+m+2m)2

k

n = 2m = 10, (a, b, c) = (β, 1, 0, 0), i =
3, k = 2, β primitive in F22

[20]

n = 2m, m odd, 3 - m, (a, b, c) =
(β, β2, 1), β primitive in F22 , i ∈ {m −
2,m, 2m− 1, (m− 2)−1 mod n}

Table 3: Known infinite families of quadratic APN polynomials over F2n

resistant to such attacks, the number of solutions to (2) should be as uniform as
possible over all possible choices of b ∈ F2n for any fixed non-zero a ∈ F2n . The
differential uniformity of F , denoted by ∆F , is the largest value of δF (a, b)
over all choice of 0 6= a ∈ F2n and b ∈ F2n . Symbolically:

∆F = max{δF (a, b) : a, b ∈ F2n , a 6= 0}.

The differential uniformity should be as low as possible in order to resist dif-
ferential cryptanalysis, and since x + a is a solution to (2) whenever x is, the
differential uniformity of any (n, n)-function can be no lower than two. A func-
tion is called almost perfect nonlinear (APN) if it achieves this trivial lower
bound with equality.

The differential spectrum DF of F is the multiset of the values of δF (a, b)
over all a, b ∈ F2n with a 6= 0; that is,

DF = {δF (a, b) : a, b ∈ F2n , a 6= 0}.

8



Clearly, a function is APN if and only if its differential spectrum consists of
the two values 0 and 2. The differential spectrum is, in fact, invariant under
CCZ-equivalence, but it is practically useless for the purpose of distinguishing
inequivalent APN functions. It does, however, take a much more prominent role
as an invariant of the ortho-derivatives of quadratic APN functions, as described
in Section 4.5.

We remark that the function DaF (x) = F (x+a)+F (x) is called the (discrete
first-order) derivative of F in direction a ∈ F2n . An APN function can be
equivalently defined as a function all of whose derivatives DaF for a 6= 0 are
2-to-1 functions.

Another powerful attack against block ciphers is linear cryptanalysis [40],
which attempts to approximate the behavior of a function by means of linear
functions. Intuitively, a function F should be as far away from all linear func-
tions as possible in order to be resistant to this attack. The nonlinearity of a
Boolean function f : F2n → F2 is defined as the minimum Hamming distance
between f and any affine (n, 1)-function. This notion can then be naturally gen-
eralized to the case of vectorial Boolean functions through the nonlinearity of
their component functions. The nonlinearity of an (n, n)-function F , denoted
by NL(F ), is defined as the minimum Hamming distance between any compo-
nent function of F , and any affine (n, 1)-function. The nonlinearity should be
as high as possible in order to resist linear cryptanalysis, and it has been shown
[25, 46] that it satisfies

NL(F ) ≤ 2n−1 − 2(n−1)/2

for any (n, n)-function F . The functions that attain this upper bound with
equality are called almost bent (AB) functions. Note that AB functions exist
only for odd values of n. In the case of even n, functions with nonlinearity
2n−1 − 2n/2 are known, and they are conjectured to be optimal with respect
to nonlinearity; nonetheless, the exact upper bound on the nonlinearity for
(2n, 2n)-functions remains an open question.

It is also known that any AB function is necessarily APN. The converse does
not hold in general, although it is known that any quadratic (n, n)-function is AB
when n is odd [24]. Thus, AB functions provide optimal resistance against both
linear and differential cryptanalysis. In particular, constructing new instances
and families of APN functions is a natural approach to finding new constructions
of AB functions.

Besides providing the best possible resistance to differential and linear crypt-
analysis, respectively, APN and AB functions correspond to optimal objects
in other areas of mathematics and computer science, including coding theory,
combinatorics, projective geometry, and sequence design. Developments in the
study of cryptographic vectorial Boolean functions therefore naturally lead to
progress in other areas; and results and methods used in these related fields of
study can be applied to the investigation of APN and AB functions. In essence,
the natural definitions of APN and AB functions make them significant, univer-
sal objects that transcend the immediate practical needs of cryptography and
have a much broader relevance.

The algebraic degree, as mentioned previously, should be high in order to
resist higher-order differential attacks. In addition, there are quite a few other
statistics and properties for measuring the cryptographic strength of a function
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against various kinds of attacks. Since in this paper we mostly focus on invari-
ants with respect to the classification of APN and AB functions, we do not go
into further details here. We refer the reader to [23] for a more comprehensive
treatment of the subject.

2.3 Equivalence relations

Equivalence relations on (n, n)-functions that preserve the differential unifor-
mity and nonlinearity are used to reduce the number of functions that need
to be studied and classified. Currently, CCZ-equivalence is the most general
known equivalence relation preserving these properties, and so classification
and computational results on APN and AB function are typically given up to
CCZ-equivalence.

The notion of the CCZ-equivalence of two functions is expressed in terms
of their graphs. Let F and G be (n, n)-functions for some natural number n.
The graph of F is the set ΓF = {(x, F (x)) : x ∈ F2n}. Note that for any (n, n)-
function F , its graph ΓF is contained in the set F2

2n of pairs of elements from
F2n . The latter can be identified with F22n , and thus we can assume that ΓF

is contained in F22n . Then F and G are said to be Carlet-Charpin-Zinoviev
equivalent, or CCZ-equivalent for short, if there is an affine permutation A
of F22n mapping ΓF to ΓG, i.e.

{A(x) : x ∈ ΓF } = ΓG.

In Section 3, we will concentrate on properties that are left invariant by
CCZ-equivalence. For the time being, we remark that CCZ-equivalence pre-
serves neither the algebraic degree, nor the bijectivity of the function. This is
noteworthy, as both of these can (and have) been used constructively. In 2010,
John Dillon constructed the only currently known instance of an APN (n, n)-
permutation for even n by traversing the CCZ-equivalence class of a known
(non-bijective) APN function over the same field [11]. In a similar vein, most
of the known instances of APN functions listed in the literature are quadratic.
As pointed out in Section 2.2, it is desirable for the algebraic degree to be high
in order to resist higher-order differential attacks. Traversing the CCZ-class of
a quadratic APN function may yield functions of higher algebraic degree that
are CCZ-equivalent to it (and hence also APN).

A special case of CCZ-equivalence is the so-called extended affine equiva-
lence, or EA-equivalence for short. Two (n, n)-functions F and G are said to be
EA-equivalent if there exist affine (n, n)-functions A1, A2, A with A1 and A2

bijective such that
A1 ◦ F ◦A2 +A = G. (3)

CCZ-equivalence is strictly more general than EA-equivalence combined with
taking inverses of permutations [19]. Nonetheless, the two equivalence relations
coincide in the case when both F and G are quadratic; that is, if F and G
are quadratic (n, n)-functions, then F and G are CCZ-equivalent if and only
if they are EA-equivalent [48]. In practice, this makes EA-equivalence (and
hence, properties that are invariant under EA-equivalence) almost as useful as
CCZ-equivalence in the case of APN functions, since all known APN instances
are equivalent to quadratic functions or monomials, with only a single known
exception for n = 6 [33].
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Further specializations of EA-equivalence can be obtained by imposing ad-
ditional restrictions on A1, A2 and A. If A = 0 in (3), we say that F and G are
affine equivalent. If A = 0 and A1(0) = A2(0) = 0 (so that A1 and A2 are
linear instead of merely affine), we say that F and G are linear equivalent.
Further restrictions have been investigated, such as the so-called restricted EA-
equivalence [21, 43]. These relations are of limited interest in the APN case,
and so we mostly concentrate on the notions of EA- and CCZ-equivalence.

For the sake of completeness, we also mention a special kind of equivalence
that can be defined for two power functions. If F (x) = xe1 and G(x) = xe2

are (n, n)-functions for some natural numbers e1 and e2, then we say that F
and G are cyclotomic equivalent if there exists a natural number k such
that 2ke1 = e2( mod 2n − 1) or 2k(e1)−1 = e2( mod 2n − 1), where e−11 is the
multiplicative inverse of e1 modulo 2n − 1 (if it exists). It is known that if two
power functions are CCZ-equivalent, they are necessarily cyclotomic equivalent.
This greatly reduces the complexity of deciding equivalence in the case of power
functions since, unlike EA- and CCZ-equivalence, testing cyclotomic equivalence
is simple and amounts to solving modular equations.

2.4 A note on the computational results

In the following Sections 3 and 4, we survey the most frequently used invariants
for classifying APN and AB functions up to CCZ- and EA-equivalence, and
report on some computational results for measuring how quickly these invariants
can be computed, and how well they can distinguish between distinct CCZ-
and EA-equivalence classes. In this section, we describe the computational
equipment that we used and the sets of functions that we tested the invariants
on.

Computations in C and Python were performed on a HP EliteDesk 800 G2
SFF computer, with a quad core 3.2 GHz processor with 15 GB of memory.
Computations in Magma were performed on a server with 56 3.2 GHz cores and
500 GB of memory.

All the experiments that we conduct are for dimensions n ≥ 6 since the
classification of APN functions for n < 6 is already complete [9]. In the case
of n = 6, we use the 14 CCZ-inequivalent representatives from the switching
classes [33]; 13 of them are quadratic and represent all CCZ-classes of quadratic
functions over F26 [32], while the remaining function is the only known example
of an APN instance CCZ-inequivalent to monomial and quadratic functions. For
n = 7, we use the list of 390 functions from [49, 50] along with the newly found
quadratic APN function from [38]; as shown in [38], the quadratic representa-
tives therein encompass all possible CCZ-classes of quadratic APN functions
over F27 . For n = 8, we use the 8181 functions from [49]; we note that re-
cently more than 12 000 new inequivalent APN instances have been discovered
in F28 [2], but we do not involve these in the computations since the goal is to
give an empiric idea of how efficient the various invariants are in distinguishing
distinct CCZ-classes (rather than to do a complete classification); a constantly
updated list of invariants for the known functions is available at [1]. For n = 9
and n = 10, we take CCZ-inequivalent representatives from the known infinite
APN families along with the new functions found in [2]; this is necessary, since
some invariants tend to take a lot of different values among the known APN
instances, but only one or two values for instances belonging to the currently

11



known APN families. Since no classification of APN functions is available for
dimensions n ≥ 11, we restrict ourselves to only computing invariants for a few
select functions in order to estimate the computation time, without making any
claims about the distinguishing power of the invariants in those dimensions.

3 Invariants under CCZ-equivalence

3.1 Trivial invariants

The differential uniformity (and, more generally, the differential spectrum) and
nonlinearity are invariant under CCZ-equivalence, but this does not help with
the classification of APN and AB functions, since by definition they have a fixed
value of the differential uniformity and nonlinearity, respectively.

3.2 The extended Walsh spectrum

3.2.1 Definition

The Walsh transform WF : F2
2n → Z is an integer-valued function that can be

associated with any (n, n)-function F . More precisely, the Walsh transform
of F is defined as

WF (a, b) =
∑

x∈F2n

(−1)b·F (x)+a·x, (4)

where “·” denotes a scalar product, or dot product on F2n (or, equivalently,
on Fn

2 ). The properties of the Walsh transform do not depend on the concrete
choice of the scalar product. There are at least two frequently used choices:

• if the multiplicands a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are viewed
as n-dimensional binary vectors in Fn

2 , the product can be defined as
a · b = a1b1 + a2b2 + · · · + anbn, with addition and multiplication being
over F2;

• the product can also be defined as a · b = Tr(ab), where Tr : F2n → F2 is
the absolute trace function from F2n to the prime field F2; in this case, the
operands a and b are multiplied in the finite field, and then this product
is mapped onto F2 via the trace.

The former realization tends to be more suitable for implementing the Walsh
transform in a general-purpose programming language, while the latter is typi-
cally used in theoretical proofs and constructions.

The values WF (a, b) of the Walsh transform are referred to as Walsh co-
efficients. The Walsh spectrum of an (n, n)-function F is the multiset of
the values of its Walsh coefficients for all possible a, b ∈ F2n . The extended
Walsh spectrum WF of F is the multiset of the absolute values of all of the
Walsh coefficients of F , that is

WF = {|WF (a, b)| : a, b ∈ F2n}.

The extended Walsh spectrum is invariant under CCZ-equivalence.
As we will see in the evaluation below, the extended Walsh spectrum is

not a very useful invariant in terms of its distinguishing power. Nonetheless,
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it is a good idea to compute it as a first step in analyzing a function, since
the computation of several of the following invariants either require, or are
facilitated by, knowledge of all values of the Walsh transform. Furthermore,
it does become useful in distinguishing inequivalent quadratic APN functions
when applied to their ortho-derivatives rather than to the functions themselves;
ortho-derivatives are described in Section 4.5.

3.2.2 Evaluation

The Walsh transform can be implemented easily on any programming language;
its computation from (4) requires nothing more complicated than basic arith-
metic operations (addition, modulation, and XOR, and possibly finite field mul-
tiplication depending on how the scalar product is implemented). On algebra
systems such as Magma [7] that include built-in functionality for computations
over finite fields, both implementations can be easily realized.

Depending on the implementation, the Walsh transform can be computed
very efficiently. A straightforward implementation in C taking an (n, n)-function’s
truth table as input needs around 20 seconds to compute the entire Walsh spec-
trum for n = 10; further measurements are provided in Table 4 below. The
memory consumption is negligible.

n 6 7 8 9 10 11 12
time (s) 0.023 0.076 0.391 2.863 22.566 171.602 1410.009

total 14 491 21 115 46 21 - -
values 2 2 6 2 2 - -

Table 4: Time for computing the extended Walsh spectrum in C

Unfortunately, the extended Walsh spectrum does not do a good job of
distinguishing between inequivalent functions. Among all known APN instances
F over F2n for odd values of n, there are only two possible values of WF : all
known APN functions except for the inverse power function x2

n−2 have the so-
called Gold-like spectrum (that is, the same as the Gold function x3); and the
inverse power function has an extended Walsh spectrum that is distinct from
that of any other known APN function.

For n = 6 and n = 10, we observe a similar partition. More precisely,
all known APN functions over F26 have a Gold-like spectrum, except for one
(function 2.5 from [33]); and all functions over F210 have a Gold-like spectrum,
except for the Dobbertin power function x339. For n = 8, the situation is a bit
more varied. We know more than 24 000 CCZ-inequivalent APN functions over
F28 [2], and these have six distinct values of the extended Walsh spectrum. Still,
the vast majority of the known APN functions have a Gold-like spectrum; and
it is remarkable that the same is true for all known APN functions (regardless
of the dimension n) that have been classified into infinite families.

3.3 Invariants from associated designs

3.3.1 Definition

An incidence structure is a triple (P,B, I), where P = {p1, p2, . . . , pm} is a
set of points, B = {b1, b2, . . . , bn} is a set of blocks, and I ⊆ P×B is an incidence
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relation. Typically, we assume that the blocks in B are subsets of P, and the
incidence relation I is set membership. The notion of an incidence structure
is quite natural and general; the field of combinatorial design theory studies
incidence structures called block designs. We can associate to any incidence
structure a so-called incidence matrix, which is a binary m × n matrix M
representing the incidence relation I. More precisely, for any i, j in the range
1 ≤ i ≤ m and 1 ≤ j ≤ n, the element Mi,j on the i-th row and j-th column of
M is equal to 1 if (pi, bj) ∈ I; and is equal to 0 otherwise. We refer the reader
to [4] or [26] for more background on incidence structures and combinatorial
designs.

Given any (n, n)-function F , two designs can be associated with it [33]. In
both cases, the set of points is simply F2

2n , that is, the set of all pairs of elements
from the finite field. The first design is denoted by dev(GF ), and its blocks are
of the form

{(x+ a, F (x) + b) : x ∈ F2n}

for a, b ∈ F2n . The second design is denoted by dev(DF ), and its blocks are the
sets

{(x+ y + a, F (x) + F (y) + b) : x, y ∈ F2n}

for a, b ∈ F2n . The rank of the incidence matrix of dev(GF ) is called the Γ-rank
of F , and the rank of the incidence matrix of dev(DF ) is called the ∆-rank of
F . The Γ- and ∆-rank are shown to be invariant under CCZ-equivalence, and
are two of the currently most widely used invariants in practice.

The orders of the automorphism groups of dev(GF ) and dev(DF ) are also
CCZ-invariant, but their computation is only feasible for small dimensions, and
so they are not quite as useful as the Γ- and ∆-rank. Nonetheless, these au-
tomorphism groups give rise to a CCZ-invariant that can be quite useful in
practice: the order of the so-called multiplier group. The multiplier group
is the subgroup of the automorphism group of dev(GF ) consisting of automor-
phisms of a special form; its order, denoted by M(GF ), is invariant under
CCZ-equivalence, and can be computed much more efficiently that the order of
the full automorphism group.

3.3.2 Evaluation

The definition of these invariants is conceptually simple, although it does require
familiarity with the notion of a combinatorial design and its incidence matrix
(and automorphism group, in the case of theM(GF )). In the case of the Γ- and
∆-rank, the incidence matrix corresponding to dev(GF ) and dev(DF ) can be
constructed quite easily. The main issue is the computation of its rank, which
requires a sophisticated implementation in order to be efficiently computable in
practice. In both cases, we need to compute the rank of a binary 22n×22n matrix
(whose construction takes significant time and which occupies a lot of memory,
especially for higher dimensions), and a straightforward implementation of say
Gaussian elimination is not nearly fast enough. One is thus forced to rely on
software libraries or algebra systems (such as Magma) that implement efficient
algorithms for computing the rank of a matrix; or, otherwise, to implement such
highly non-trivial algorithms oneself.

Computing the Γ- and ∆-rank is fairly efficient for small dimensions, but
the time complexity grows exponentially; for n = 10, computing a single Γ-
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rank can take more than a week. A summary of computation times is given
in Table 5. The real bottleneck, however, is the memory consumption; the 500
GB of memory available on our server suffice only for computing Γ-ranks up to
dimension 10, and ∆-ranks up to dimension 9.

n 6 7 8 9 10

Γ-rank 2 15 138 4229 899024
∆-rank - - - - -

Table 5: Computation times (in seconds) for the Γ- and ∆-rank

Despite these shortcomings, the Γ-rank, ∆-rank, and the orderM(GF ) of the
multiplier group are rather useful invariants, as they can take on a lot of distinct
values for the known functions. Table 6 gives a summary of the number of
distinct values that the Γ-rank, ∆-rank, andM(GF ) can take individually, and
the number of distinct combinations of values that they can take on together.
Note that computing ∆-ranks for n ≥ 10 and computing any of the invariants
from this section for n ≥ 11 is currently impossible due to insufficient memory
on our server.

n no. of functions Γ-ranks ∆-ranks M(GF ) combinations

6 14 9 3 7 11
7 490 14 6 5 20
8 8192 24 11 10 49
9 11 10 8 5 10
10 16 15 - 7 15

Table 6: Number of distinct design invariants for some known APN functions

3.4 The distance invariant

3.4.1 Definition

A lower bound on the Hamming distance between an APN function F and the
closest APN function to it in terms of Hamming distance is shown in [15]. The
value of this lower bound is calculated from the minimum value contained in a
multiset ΠF of natural numbers that can associated with any (n, n)-function F .
The multiset ΠF is shown to be invariant under CCZ-equivalence in the case
of APN functions; that is, if F and G are CCZ-equivalent APN functions, then
ΠF = ΠG. One can, however, easily find counterexamples to ΠF being invariant
in the case when F and G are not APN.

The multiset ΠF is defined as follows. Let F be an (n, n)-function for some
natural number n. For any b, c ∈ F2n , we define a set

πF (b, c) = {a ∈ F2n : (∃x ∈ F2n)F (x) + F (a+ x) + F (a+ c) = b}.

That is, πF (b, c) contains all directions a ∈ F2n for which the derivativeDaF (x) =
F (x + a) + F (x) maps to F (a + c) + b. The multiset ΠF then consists of the
cardinalities of πF (b, c) for all possible choices of b, c ∈ F2n ; symbolically:

ΠF = {#πF (b, c) : b, c ∈ F2n}.
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As indicated above, if F and G are APN and CCZ-equivalent, then we must nec-
essarily have ΠF = ΠG. The lower bound on the Hamming distance mentioned
previously can be computed as d(min ΠF )/3e+ 1, where min ΠF is the smallest
value in ΠF . It is also shown in [15] that the lower bound is not, in general,
tight for n ≥ 5. It is remarkable that while this lower bound is CCZ-invariant,
the exact value of the Hamming distance to the closest APN function is not.

If F is quadratic, it is shown that

{#πF (b, c) : b ∈ F2n} = {#πF (b, c′) : b ∈ F2n}

for any c, c′ ∈ F2n . It is thus sufficient to compute only the reduced multiset

Π0
F = {#πF (b, 0) : b ∈ F2n},

which then completely determines the full multiset ΠF . Recall that the quadratic
case is by far the most practically significant, as almost all known APN instances
are quadratic, or at least CCZ-equivalent to quadratic ones. This reduction is
then quite valuable, as it allows us to reduce the time for computing this invari-
ant by a factor of 2n.

3.4.2 Evaluation

Computing ΠF (or Π0
F ) is simple as it only requires summing finite field elements

(which can be implemented via binary XOR on most programming languages)
and counting how many times a certain value occurs.

The computation time is quite fast, especially in the case of quadratic func-
tions when only the reduced multiset Π0

F has to be computed. Table 7 shows
some example computation times (in seconds) of a straightforward C implemen-
tation for functions over F2n for 5 ≤ n ≤ 11. The bottom two rows give the
total number of functions on which the invariant was tested and the number of
distinct values that ΠF takes over those functions, respectively.

n Π0
F ΠF all values

5 0.002 0.064 3 2
6 0.003 0.192 14 5
7 0.004 0.512 491 2
8 0.004 1.024 8181 6669
9 0.005 2.56 11 2
10 0.031 31.744 21 4
11 0.066 135.168 13 2

Table 7: Computation times and number of distinct values of ΠF for some
known APN instances

As indicated by Table 7, this invariant does not do a very good job of dis-
tinguishing inequivalent functions for odd dimensions. Indeed, for all odd n in
the range 5 ≤ n ≤ 11, we observe only two values of ΠF ; one is attained by the
inverse power function, while all the remaining known APN functions take the
second value. This is particularly remarkable for n = 7, where we know a large
number of CCZ-inequivalent APN instances. Furthermore, as shown in [9, 38],
the considered representatives for n = 5 and n = 7 cover all CCZ-classes of
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quadratic APN functions over F25 and F27 , respectively; we can thus conclude,
that all quadratic APN functions over F25 and F27 have a Gold-like value of ΠF .

In the case of even dimensions, on the other hand, ΠF proves to be quite
useful for distinguishing between CCZ-equivalence classes. For n = 8, we get
6669 distinct values for the tested 8181 functions from [49]. What is particu-
larly noteworthy, is that instances over even dimensions from the known infinite
APN families always take the same value of ΠF as the Gold function x3. All
the other values of ΠF that we observe correspond to instances discovered by
computational searches that have not been classified into infinite families yet.
Thus, the inverse power function x2

n−2, which is APN over F2n with n odd,
is currently the only known infinite family to have a value of ΠF distinct from
that of the Gold function.

4 Invariants under EA-equivalence

Despite EA-equivalence being strictly less general than CCZ-equivalence, the
two notions coincide in the case of quadratic functions. Since almost all known
APN functions are CCZ-equivalent to monomials or to quadratic functions, this
makes tests and invariants for EA-equivalence as useful as ones for the more
general CCZ-equivalence in practice.

4.1 Trivial invariants

Since EA-equivalence is a particular case of CCZ-equivalence, any two functions
that are EA-equivalent are also CCZ-equivalent. Consequently, all invariants
described in Section 3 remain invariants under EA-equivalence as well.

The algebraic degree of any (n, n)-function is invariant under EA-equivalence
since the composition of an arbitrary function F with an affine function does not
change the algebraic degree of F . Since the majority of known APN functions
are quadratic, the algebraic degree is a nearly useless invariant for classifying
APN functions.

4.2 Number of subspaces in the set of bent components

4.2.1 Definition

Recall that a Boolean (n, 1)-function f is called bent if its non-linearity equals
2n−1−2n/2−1. Equivalently, f is bent if and only if its Walsh transform satisfies
Wf (a) = ±2n/2 for all a ∈ F2n . Given an (n, n)-function F , we can define the set
SF of those elements b ∈ F2n for which the component function Fb = Tr(bF (x))
is not bent; symbolically, we can write

SF = {b ∈ F2n : (∃a ∈ F2n)WF (a, b) 6= ±2n/2},

or, equivalently,

SF = {b ∈ F2n : (∃a ∈ F2n)WF (a, b) = 0}.

If we now denote by nF (i) the number of i-dimensional linear subspaces
contained in SF , the value nF (i) is an EA-invariant for any natural number i;
that is, if F and G are EA-equivalent, then nF (i) = nG(i) for all i [12]. This
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is easy to see from the fact that if G = A1 ◦ F ◦ A2 + A, with all involved
functions defined as in (3), then b ∈ SF if and only if A′1(b) ∈ SG, where A′1(x)
is the adjoint operator of A1(x) + A1(0). Clearly, if nF (i) = 0 for some i, then
nF (j) = 0 for all j ≥ i as well. This allows us to compute SF and the values
of nF (i) for i = 1, 2, 3, . . . until an i′ is found for which nF (i′) = 0, and to
use the vector NF = (nF (1), nF (2), . . . , nF (i′ − 1)) for distinguishing between
EA-classes.

Note that this invariant is only useful in the case of even dimensions. In
the case of odd n, any quadratic APN (n, n)-function is AB, so that we have
{WF (a, b) : a ∈ F2n} = {0,±2(n+1)/2} for any 0 6= b ∈ F2n . Consequently,
SF = F2n , and NF has no distinguishing power.

4.2.2 Evaluation

Implementing NF as an invariant is simple and easily doable in any general-
purpose programming language. As observed in Section 3.2, the Walsh trans-
form can be readily implemented via standard arithmetic and logic operations,
and the entire Walsh spectrum of a given function can be computed quite
quickly. In this case, the entire Walsh spectrum does not need to be com-
puted (for every b ∈ F2n , we can stop computing WF (a, b) as soon as we find an
a ∈ F2n which witnesses that Fb is not bent), so the computation of SF is even
faster. In particular, if the Walsh spectrum or extended Walsh spectrum has
already been computed for the given function (say, in the process of computing
some other invariant), SF can be recovered almost immediately.

Computing the number nF (i) of subspaces of a given dimension i is the
most computationally heavy part of the calculation, and there does not appear
to be any obvious method for doing so save for an exhaustive search. Such an
exhaustive search does not require anything more complicated than performing
finite field (or, equivalently, vector space) addition via XOR, and verifying that
a set of elements is closed under addition.

The memory consumption is also very modest, although the computation
time does increase exponentially with the dimension. Table 8 shows the time
(in seconds) for computing NF for x3 over F2n for all even dimensions n in the
range 6 ≤ n ≤ 12 on a simple implementation in C.

n 6 8 10 12

time 0.004 0.168 11.508 1151.773
number of functions 14 8181 - -

values 6 641 - -

Table 8: Computation times and number of distinct values for NF for some
known APN instances

4.3 The thickness spectrum

4.3.1 Definition

The notion of the thickness of a vector space is introduced in [22]. Given an
(n, n)-function F , we begin by finding the set ZF of its Walsh zeros, that is, the
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pairs (a, b) ∈ F2
2n on which the Walsh transform of F evaluate to zero:

ZF = {(a, b) : a, b ∈ F2n ,WF (a, b) = 0}.

The thickness of any subspace V ⊆ ZF is defined as the dimension of its
projection onto {(0, x) : x ∈ F2n}. Equivalently, if V is an n-dimensional space
and L is a linear permutation of F22n mapping {(x, 0) : x ∈ F2n} to V , we can
write L in matrix form as

L =

[
a b
c d

]
.

The thickness of V is then the rank of c.
Let i be any natural number, and let us denote by tF (i) the number of n-

dimensional subspaces of ZF that have thickness i. The thickness spectrum
of F is then the vector TF = (tF (1), tF (2), . . . , tF (i)), where i is the smallest
natural number for which tF (i) = 0. As with the number nF (i) of subspaces in
the set of non-bent components, if tF (i) = 0 for some i, then tF (j) = 0 for all
j ≥ i as well, so the previous definition is justified. The thickness spectrum can
then be shown to be invariant under EA-equivalence.

4.3.2 Evaluation

The computation of the thickness spectrum involves computing ZF (which es-
sentially involves computing the Walsh spectrum of F ), then going through all
n-dimensional subspaces of ZF and computing the thickness of each subspace.
As with the computation of NF in Section 4.2, there is no obviously better way
to find these subspaces than by an exhaustive search. On the one hand, this
makes the implementation conceptually simple: after finding the n-dimensional
subspaces, it is trivial to project them onto {(0, x) : x ∈ F2n} by restricting the
coordinates on the left-hand side to zero; and computing the dimension of the
projections amounts to counting the number of elements that they contain.

On the other hand, the time for computing TF is longer than that for comput-
ing NF , since we have to work over a 2n-dimensional (instead of n-dimensional)
vector space. It is intuitively clear that if k < l < n are natural numbers, then
finding all k-dimensional subspaces in a set of elements from F2n

2 is easier than
finding all l-dimensional subspaces. In the case of NF , one might restrict to the
computation of nF (i) for only small values of i, and still hope to obtain a useful
invariant. In the case of TF , all n-dimensional subspaces have to be found before
any further computations can take place. Table 9 gives a summary of the time
needed for computing the thickness spectrum of x3 over F2n with 6 ≤ n ≤ 10
using the SboxU library [44].

n 6 7 8 9 10

time 0.86 1.12 0.92 188.174 8.91
total 14 - 8181 46 21

values 8 - 185 40 7

Table 9: Computation time and number of values of the thickness spectrum for
some known APN instances
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4.4 A family of invariants based on zero sums

4.4.1 Definition

An algorithm for computationally testing two given (n, n)-functions F and G
for EA-equivalence is developed in [37]. The algorithm is based on computing
two multisets, one for F and one for G, which contain some information about
the mapping A1 from (3). More precisely, each element of F2n occurs in each of
the two multisets with a certain multiplicity, and it is shown that x and A1(x)
must have the same multiplicity for any x ∈ F2n if (3) holds. In particular, the
multiplicities of the two associated multisets must be the same, i.e. they are
invariant under EA-equivalence.

To make this more precise, we let k be a natural number, and define

Σk
F = {F (x1) +F (x2) + · · ·+F (xk) : x1, x2, . . . , xk ∈ F2n , x1 +x2 + . . . xk = 0};

in other words, Σk
F is the multiset of the sums of F on all k-tuples of elements

adding up to 0. If F and G are EA-equivalent, and k is even, then the multiplic-
ities of Σk

F and Σk
G are the same. Note that it does not matter whether these

k-tuples are taken to be ordered, unordered, or whether we allow repetitions
among their elements; all of these variations lead to what is essentially the same
invariant.

The smallest possible value for which the invariants make sense is k = 4
(for k = 2, the multiset Σ2

F would consist only of zeros). The multiplicities
of Σk

F can always be computed via the Walsh transform; if mk
F (s) denotes the

multiplicity of s ∈ F2n in Σk
F , then

mk
F (s) =

1

22n

∑
a,b∈F2n

(−1)b·sW k
F (a, b). (5)

This method for computing the multiplicities has the advantage that its time
complexity does not depend on the choice of k, which only affects the power to
which the Walsh coefficients in (5) have to be raised.

It must be noted that in the case of APN functions, the Σk
F invariant is

essentially the same as the ΠF invariant described in Section 3.4; that is, if F
and G are both APN, then ΠF = ΠG if and only if Σk

F and Σk
G have the same

multiplicities. An advantage of Σk
F is that it remains invariant for functions

of any differential uniformity, while ΠF is invariant only in the case of APN
functions; Σk

F also provides information about what the EA-equivalence between
the two tested functions might look like, while ΠF does not. On the other hand,
ΠF is invariant under CCZ-equivalence (and it is easy to find counterexamples
showing that Σk

F is not), and provides a lower bound on the distance between
F and the closest APN function.

4.4.2 Evaluation

One of the advantages of the algorithm in [37] is that it does not require any
complicated mathematical or algorithmic machinery, and can be implemented
from first principles (as opposed to the linear code test for CCZ-equivalence).
Regardless of whether the computation is done from the definition, or via the
Walsh transform, it only requires finite field (or vector space) addition, which
can be represented as XOR and counting multiplicities of elements from the
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finite field. If the Walsh spectrum of F is available, computing the multiplicities
of Σk

F via (5) is quite straightforward.
As noted above, ΠF and Σ4

F have the same distinguishing power in the case
of APN functions. In particular, these invariants are only useful in the case
of even dimensions, in which case they can take a lot of distinct values. Once
again, representatives from the known infinite families of APN functions (with
the notable exception of the inverse power function over odd dimensions) have
the same value of Σ4

F as the Gold function x3.

4.5 Ortho-derivatives

4.5.1 Definition

The concept of an ortho-derivative is introduced in [44], and appears to be
quite useful for partitioning APN functions into EA-equivalence classes. Given
a quadratic (n, n)-function F , an ortho-derivative of F is any (n, n)-function
πF such that

πF (a) · (F (x) + F (a+ x) + F (a) + F (0)) = 0 (6)

for all x ∈ F2n . In this sense, πF is orthogonal to all values of the expression
F (x+a)+F (x)+F (a)+F (0) = DaF (x)+DaF (0). Note that ortho-derivatives
can be defined for any (n, n)-function F ; however, F is APN if and only if
πF (a) is uniquely defined for all non-zero a ∈ F2n . Thus, in the APN case, a
unique (n, n)-function πF can be associated with any APN (n, n)-function F .
Furthermore, it is known that if F and G are two EA-equivalent (n, n)-functions
via A1 ◦ F ◦A2 +A = G, then

πG = A−11 ◦ πF ◦A2;

thus, the ortho-derivatives of two EA-equivalent APN functions are EA-equivalent
themselves. The advantage is that the ortho-derivatives are much more “varied”
than the APN functions themselves; as pointed out in [44], it seems that the
algebraic degree of πF is n−2 whenever F is an APN (n, n)-function. This is in-
tuitively one of the reasons that the ortho-derivatives can take on many different
values for the various invariants under EA-equivalence and CCZ-equivalence,
and the latter become immensely more useful for partitioning functions into
EA-classes.

4.5.2 Evaluation

Computing the truth table of the ortho-derivative itself is a very easy task; the
simplest way involves guessing the value of πF (a) for each 0 6= a ∈ F2n . For
every possible candidate for the value of πF (a), it suffices to verify that (6)
is satisfied. Computing (6), on other hand, requires nothing more than vector
space addition and the implementation of the scalar product. The truth table of
πF can thus be reconstructed very quickly, even for relatively large dimensions.
Table 10 gives some sample running times for computing the ortho-derivative
of x3 using SboxU.

Once the ortho-derivative is computed, it remains to apply some of the pre-
viously examined invariants, such as the Walsh spectrum and differential spec-
trum to distinguish between the EA-classes of ortho-derivatives. The number
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n 6 7 8 9 10 11 12

time 0 0.00021 0.0006 0.002 0.34 0.22 0.84
functions 14 488 - - - - -

values 14 488 - - - - -

Table 10: Computation time for finding the TT of πF , and number of values of
the Walsh and differential spectra of πF for some known APN instances

of values in Table 10 refers to the number of distinct combinations of the Walsh
spectrum and differential spectrum observed among the ortho-derivatives. Note
that the ortho-derivatives themselves are not APN, and so the differential spec-
trum becomes a useful invariant. In fact, as indicated by the data in Table 10,
this is sufficient to distinguish between all currently known classes of quadratic
APN functions. Thus, a partitioning by means of the ortho-derivatives appears
to have the same strength in practice as an EA-equivalence test. Nonetheless,
invariants can only be used to disprove the equivalence between two functions;
and so, if two (n, n)-functions F and G have the same invariants for πF and
πG, this does not constitute a proof of their EA-equivalence. It would thus
be very interesting to find examples of EA-inequivalent functions whose ortho-
derivatives have the same spectrum of invariant values.

5 Conclusion

We have surveyed some known invariants on (n, n)-functions under CCZ- and
EA-equivalence. The list of invariants is not meant to be complete, but aims to
include all invariants that are commonly used in the classification of APN and
AB functions in practice. Each of the invariants is evaluated in terms of how
easy it is to implement in a general-purpose programming language, how efficient
it is to compute, and how well it can distinguish between distinct equivalence
classes of (n, n)-functions.

The considered CCZ-invariants include:

• the differential uniformity and non-linearity (trivial);

• the extended Walsh spectrum WF ;

• the invariants from the associated combinatorial designs dev(GF ) and
dev(DF ), viz. the Γ-rank, ∆-rank, and order of the multiplier group, as
well as the orders of the automorphism groups of dev(GF ) and dev(DF );

• the multiset ΠF used in the computation of the lower bound on the Ham-
ming distance between two APN functions (invariant only for APN func-
tions).

The considered EA-invariants include:

• all CCZ-invariants;

• the algebraic degree deg(F );

• the number nF (i) of i-dimensional subspaces in the set SF of non-bent
components of F ;

22



• the number tF (i) of n-dimensional subspaces of thickness i in the set ZF

of Walsh zeros of F ;

• the multiplicities of the elements in the multiset Σk
F for all even k, i.e.

the number of times that each element of F2n can be expressed as a sum
F (x1) + F (x2) + · · ·+ F (xk) with x1 + x2 + · · ·+ xk = 0.

For each invariant, we have used a straightforward implementation in a suit-
able programming language (typically C in the case of the invariants that can
be defined and computed from first principles, and Magma when more sophis-
ticated mathematical structures or algorithms are involved) and have given ex-
ample running times over the range of dimensions n in which the invariant can
be reasonably used in practice. We have also counted how many different values
each invariant can take over some of the known APN instances in each dimen-
sion, and have remarked on the further properties and significance of some of
the invariants.
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