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Abstract. Let F, be a finite field and E,:y* =23+ be an ordinary (i.e., non-
supersingular) elliptic curve (of j-invariant 0) such that Vb € F, and ¢ # 1 (mod 27). For
example, these conditions are fulfilled for the group G; of the curves BLS12-381 (b = 4) and
BLS12-377 (b = 1) and for the group G, of the curve BW6-761 (b = 4). The curves mentioned
are a de facto standard in the real world pairing-based cryptography at the moment. This
article provides a new constant-time hash function H: {0,1}* — E,(F,) indifferentiable from
a random oracle. Its main advantage is the fact that H computes only one exponentiation
in [F,. In comparison, the previous fastest constant-time indifferentiable hash functions to
E(F,) compute two exponentiations in F,. In particular, applying H to the widely used BLS
multi-signature with m different messages, the verifier should perform only m exponentiations
rather than 2m ones during the hashing phase.

Key words: cubic residue symbol and cubic roots, hashing to ordinary elliptic curves of
j-invariant 0, indifferentiability from a random oracle, pairing-based cryptography.

Introduction

Since its invention in the early 2000s, pairing-based cryptography [1] has become more
and more popular every year, for example in secure multi-party computations. One of the
latest reviews of standards, commercial products and libraries for this type of cryptography
is given in [2, §4.1].

Let T, be a finite field of char(F,) > 3 and Ej: y* = 2® + b be an elliptic F,-curve whose
the j-invariant is 0. The priority is given to the curves £}, because the pairing computation
on them is the most efficient (see [1, §4]). As is well known [1, Remark 2.22], only ordinary
curves are safe to deal with the discrete logarithm problem. And according to [3, Example
V.4.4] the ordinariness of Ej, results in the restriction ¢ = 1 (mod 3), i.e., w 1= V/1 € F,, where
w # 1. Today, the most popular pairing-friendly curves in the industry are the Barreto—Lynn-
Scott curves BLS12-381 [4, §2.1], BLS12-377 [5] and the Brezing-Weng curve BW6-761 [6,
§3], where the numbers after - equal [log,(g)].

Many pairing-based protocols (for example, the BLS multi-signature [7, §3], [8]) use a
hash function of the form H: {0,1}* — Eu(F,). There is the regularly updated draft [9] (see
also [1, §8]) on the topic of hashing to elliptic curves. In order to be used in practice H
must be indifferentiable from a random oracle [10, Definition 2] and constant-time, that is
the computation time of its value is independent of an input argument.
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Almost all such previously proposed hash functions are obtained as the composition H :=
e®? o b of a hash function b: {0,1}* — IF(? and the tensor square

e F2 = Ey(F,)  e®(t1,12) = e(ty) + e(ta)

of some map e: F, = E,(FF,). Such a map is often called encoding. In this case the indiffer-
entiability of H follows from [10, Theorem 1] if b is indifferentiable and ¢®? is admissible in
the sense of [10, Definition 4]. The fastest known encodings are Elligator 2 [11, §5] and the
Wahby—Boneh “indirect” map [4]. Both (resp. H) can be implemented with the cost of one
(resp. two) exponentiation(s) in F,.

This article essentially improves our ideas from [12]. More precisely, there provided that
Vb e [F, we construct one more encoding e whose the tensor square e®? is admissible. More-
over, e equally requires only one exponentiation in IF,. However in this work (also for Vb € F,)
we directly provide an admissible map h: IFqZ — Ey(F,) approximately with the same cost as
e and such that h(¢,t) = £e(t). In other words, the tensor square is superfluous in the given
situation and hence we get rid of one exponentiation in F,. Let us also remark that h is given
by quite simple formulas with small coefficients unlike the Wahby-Boneh encoding.

1 Geometric results

As mentioned above, we are only interested in ¢ = 1 (mod 3), i.e., w:= /1€ F,, where

w # 1. Further, for the sake of being definite, suppose that v/b ¢ IF,. The opposite case is much
simpler, hence results of the article can be extended to it without problems. For i € {0, 1,2}

consider the elliptic curves E,Si) L y? = b'a? 4+ b ~g, By Note that E,El), E,SZ) are two different
cubic F-twists of Fy, = E,SO).
There is on EZEZ) the F,-automorphism [w](x;, ;) := (wx;, ;) of order 3. Take the quotient

T := (EyXx E,El) ><Els2))/[w]X3 with respect to the diagonal action of [w]. This is a Calabi—Yau
threefold according to [13, §1.3]. It is readily seen that it has the affine F,-model

2 _ph=>0b(y2-0b)t3
T: y; 5902 ) 1; AB(yoyyhymtm)’
Yy —b=1" (yo_b)tQ

where t; := x;/x¢. By the way, the famous SWU (Shallue-van de Woestijne-Ulas) encoding
[1, §8.3.4] deals with another Calabi-Yau F,-threefold.

We can look at T" as an F,(t;, t2)-curve given as the intersection of two quadratic F, (1, t5)-
surfaces, where F,(#1,?3) denotes the rational function field in two variables t1, ¢y over the
constant field ;. Below it will be convenient to use the auxiliary variables s; := t?.

Theorem 1 ([14]). T over F,(t1,t2) is an elliptic curve having a Weierstrass form W: y* =
22 + asx + ag with the coefficients

ay = —3(b%s180 + w?sy + whsy)(b?s152 + wsy + w?bsy),

ag = —(b28182 — 281 + b82>(2b28182 — S1 — bsz)(b2$152 + 81 — 2b82).



In particular, the discriminant and j-invariant of W equal

A= (2233b8182(b81 — 1)(b252 - 1)(81 - bSQ))Q,
j = (2132(b%s152 + ws1 + w?bsa)(b*s152 + wisy + CL)bSQ))g/A.
Theorem 2 ([14]). There is on W the F,(t1,t2)-point
x = b(2bs; — 1)sy — (3bsy — 2)s1, y = 3Vb(2w + 1)s;(bs; — 1)(bsy — s1).
It corresponds to an F,(t1,t2)-point ¢ on T whose the coordinates are the irreducible fractions
yi(t1,t2) := num;/den, where
numg := Vb - (b2s3 — 2b%s159 + 2bs1 + b'sE + 2b%sy — 3),
numy := Vb - (—3b%s? + 2035155 + 2bs1 + b*s3 — 2b%s5 + 1),
nums = Vb - (623% + 2035159 — 2bsy — 3b4s§ + 2b%s9 + 1),
den = b*s? — 203518y — 2bsy + bls2 — 2b%sy + 1.

Moreover, 32 yi(t1, t2) + Vb = 0.
It is remarkable that the functions y;(t,t) are nothing but (up to the minus sign) those from
[12, Theorem 1]. The frequent case b = 4 gives

numg = 2-(2's3 — 27s155 + 2351 4 2853 + 2°s, — 3),

numy = 2-(—2*3s3 + 275150 + 2851 + 2853 — 255, + 1),

numsy = 2- (243% + 275159 — 235, — 28383 + 2%59 + 1),

den = 2%s? — 275189 — 2351 + 2852 — 2555 + 1.

In other words, T' is an elliptic threefold (see, e.g., [15]) whose the elliptic fibration is the

projection to tq,ts. In these terms, ¢: A2 --» T is an [F_-section of the given fibration. In
J P Ay ) q g

particular, Im(yp) is a rational F,-surface.
For the sake of compactness we put

Bi==3Vb, oco:=(1:00€P, P :=(0,Vb)eE, ©O:=(0:1:0) ¢k,

Denote by Num; (resp. Den) the homogenization of num; (resp. den) with respect to a new
variable to. For y € [, consider on P%toitlitQ) the pencil of the [F -sextics

Ciy: Num; = Den-y, Cioo = Cx: Den =0
and the F,;-conics D, ,, := 7(C;,), where

7 P? — P? m(to ity to) i= (t) 15 o t3).



Also, let L;: t; =0,

Ry:=(1:0:0), Ry :=(0:1:0), Ry:=(0:0:1)
and Qy, := 7(Qy), where

Qo:=(0:0:1), Q1= (b*:0:1), Qy:=(b:1:0).

Below we formulate a few simple lemmas, which are readily checked. By the way, the
indices ¢ £ 1 will always mean the operations £ modulo 3.

Lemma 1. The order 3 projective F,-transformations
7: P? = P2 T(to : ty : to) := (btg : to : t1) and T :=moTom t:P? = P?
give the isomorphisms
7:Ciy = Cit1y, 7' Diy = Diy1y, 7,7 Ly & Liq
as well as
T(R) = 7'(Ri) = Riya, 7(Qi) = Qit1.
It is worth noting that the curves D, 4 s (and hence C; . 5) are reducible over F,. Indeed,
Dy 3 tolto — bty — b*ty) = 0, Dy (to — bty + b*ta) (to + bty — bPt5) = 0. (1)
Lemma 2. There are the following equalities. First,
D;y N Do = Dig N Dog = {Qr Y-

Second,

Doy N D1y = {Qi}i_o U {(b*(y — V) : by — VD) : dy) }
fory # £v/b. Third,
D;,NL; ={Q:}, Doy MLy = {Ql,(bQ(y—\/E) :O:y—ﬂ)},
Do N Ly, = {Qu}, Doy N Ly = {Qa, (by — V) :y — B:0)}
also for y # +/b.

Lemma 3. The set of singular points

Sing(Ciy) = S QU{R} if y=p5,
UiZOQk if y=o0.

Moreover, R; € C; g is an ordinary point of multiplicity 3 and all other singularities are cusps
regardless of .



Lemma 4. Fory # £Vb the curves C,y are absolutely irreducible.

Proof. The cases y € {3, 00} are immediately processed by Magma [14]. In compliance with
Lemma 3 for another y the curve C; , has only 3 cusps, hence it has no more than 3 different
absolutely irreducible components Fy, Fi, F5. Consider the transformations

Y Ciy = Ciy, o = (wtp @ty : ta), Yy = (to : wiy : ty), Py 1= (to : t1 1 wty).

Since they are of order 3, for any k,¢,m € {0,1,2}, { # m the case ¢y: F; = F,,, F,, = F},
is not possible, otherwise F;, = F,,,. Also, given ¢ note that ¥y : F, = F, for all k if and only
if F, is a Fermat cubic or the line L,, for some m. Consequently either Fy, F} are Fermat
cubics or Fy, Fy, Fy» are conics conjugate by 1y for some (or, equivalently, any) k.

It is checked in [14] that the second case does not occur. In the first one, we obtain the de-
composition D;, = w(Fy) U w(F}) into lines. However it is easily shown that the discriminant
of the conic D;, equals +4b%(y — \/l_?) (y+ \/1_7)2, hence it is non-degenerate for y # +vb. [

Hereafter we assume that y # +v/b. Let 0iy: Ci, — Ciy be the corresponding normaliza-
tion morphisms. As is well known,

#U;;(QZ) = #Ui_,}a(Ri) = #U;(Qk) =3, Oiy- Oz(,y \ O-i_,; (Sing(C’i,y)) = Ciy \ Sing(C},y).

Further, we have the coverings m; , 1= w0 0;,: C;  — D;,, whose the Galois group is clearly
isomorphic to (Z/3)?.

Theorem 3. Fory ¢ {5, 00} the geometric genus g(C;,) = 7. Also, g(C;3) =4, 9(Cx) = 1.

Proof. Denote by r, the number of ramified points ) € D;,,. Since 7, ,, is a Galois covering, the
well defined ramification index eg € {3,9} (see, e.g., [16, Corollary 3.7.2]). It is obvious that
Q € Ly for some k € {0,1,2}. Moreover, the case eq = 9 may occur only for Q € {Ry}7_,.
From Lemmas 1, 2 it follows that

1 if y= o0,
#(D;yNL;) =1, #(DiyNLi1) =#DiyNLip) =
2 otherwise.

Moreover, R, 1, Rit1 ¢ D;,, but R; € D;,, if and only if y = 5. Therefore r, =5 for y ¢
{B,00}, 75 = 4, and ro, = 3. Besides, according to Lemma 3 for all points Q € D, , N (U7_,Ly)
we have eg = 3. Applying the Riemann-Hurwitz formula [3, Theorem II1.5.9] to m;,, we
eventually obtain ¢(C;,) = 3r, — 8. O

2 New hash function

This paragraph clarifies how the [F -section ¢: AQ(tl 1) "7 T from Theorem 2 results in
a constant-time map h: F; — FEy(IF,). First of all, for a € F; denote by (%)3 = a3 the
cubic residue symbol, which is trivially a group homomorphism F; — {w'}2,.



Lemma 5 ([17, Remark 2.3]). An element a € F; is a cubic residue if and only if (3)3 =1.
Moreover, in this case
[18, Proposition 1]  if ¢=1 (mod 9) and ¢ # 1 (mod 27),
Va=a @99 = B9/ if =4 (mod9),
alat2)/9 if ¢=7 (mod?9).
To be definite, we put w := (2)3 (# 1 by our assumption). Also, let us consider only ¢ #
1 (mod 27).
Letting 52]1 =y? —bfor i € {0,1,2}, we get T: {g; = Vgot? for j € {1,2}. It is obvious
that {(%)3 }i:0 = {w'}7y whenever g;,t; € Fr. Besides, denote by n € {0,1,2} the position

number of an element ¢; € IF; in the set {witl}?zo ordered with respect to some order in IFq*.
For example, if ¢ is a prime, then this can be the usual numerical one.
One of crucial components of h is the auxiliary map

(V/d0: 90) if go=0 or (%), =1,
h': T(F,) — Ey(E,) W (Yo, y1, Y2, b1, o) := S (g1, 1) if (%0)3 = w?,
(Vo2 ) i (),

Unfortunately, in this form the value of A’ is computed with the cost of two exponentiations
in [F,: the first for (%0)3 and the second for {/g;. Instead, we give an equivalent definition of

Ww.

R’ (up to the automorphisms [w]’).
The case ¢ =4 (mod 9) (relevant for BW6-761). Under this assumption

(8) — DB — a3, B/
q/3

Let 6 := gésq*g’)/g and ¢; := v/(b/w)? € Fy. We obtain
90

g; = bjggt? = (c;0t;)° if 6> = wq, ie., (—) = w3,
q/3

It is easily shown that
(w8, yo) if 6% = go,
h': T(F,) — Ey(F,) R (yo, y1, Y2, t1, t2) = (019751, yl) if 6% =wq,
(c20ta, y2) if 6% = w?go.

Since
_ . 2(g-1)/3

—(q—4)/3 —1—(g—4)/3 2q+1)/3
93:90(q )/ =gt (¢—4)/ :g(()q+)/ =g - Go,

this map is well defined everywhere on T'(IF,). It is worth noting that 6 can be computed
with the cost of one exponentiation in F, even if gy is given as a fraction u/v for u € [,
v € F;. Indeed,

0 — (ufv)BI5)/9 = Ba=)/9, a0/ _ 38y (@9 (2)
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The case ¢ = 10 (mod 27) (relevant for BLS12-381). Take any ¢ := v/1 € [F; such that
(3 = w. In this case

(E)::Cm1VB:wm1V9:wm1mmwﬁzwaqmkuﬁzw'
q’/3

Let 6 := g82q+7)/27 and ¢; 1= v/(b/¢)? € F;. Given i € {0,1,2} we obtain

g; = bjgot? = (c;0t;)* Jw' if 0° = W' g, ie., (Q) = W,
q/3

It is easily shown that

W0/, yo) i Fi: 0° = wig,
B T(F,) = Ey(F,) W (Yo, y1, Y2, t1, ) = (bt /¢, ya)  if Fi: 0% = wiCgo,
(c20t2/C, o) if Fi: 63 = wiCPgo.

Since

2q+7)/9 2(q—1)/9
g — g9 _ 2an/e o

this map is well defined everywhere on T'(IF,). It is worth noting that 6 can be computed

with the cost of one exponentiation in F, even if gy is given as a fraction u/v for u € [,
v € F;. Indeed,

0 — (u/v>(2q+7)/27 _ o (20+7)/27 ya—1—(20+7) /27 _ ,(24+7)/27 ,(25q—34)/27 _

(3)

— -2(a—10)/27 3, 5(54-23)/27 _ m}8(u2U25)(q—10)/27_

The cases ¢ =7 (mod 9) (relevant for BLS12-377) and ¢ = 19 (mod 27) are processed in a
similar way. To be definite, throughout the rest of the article we will deal with the modified
version of A'. Finally, we come to the map desired

Py if tity =0,
h: Fq2 — Eb(Fq> h<t17 t2) = O lf den(tl,tg) = 0,
(W' o p)(t1,t2) otherwise.

We emphasize that in the definition of A’ (a fortiori, in ¢) the cubic residue symbol
does not appear. Further, by returning the value of h in (weighted) projective coordinates,
we entirely avoid inversions in the field. Besides, the constants w, ¢; (and ¢, (78 = (® if
g = 10 (mod 27)) are found once at the precomputation stage. By the way, in the formulas
(2), (3) we take u :=num?2 — b-den? and v := den®. Calculating the value # every time no
matter whether ¢yt;uv = 0 or not, we eventually obtain

Remark 1. The map h is computed in constant time, namely in that of one exponentiation
in I,



3 Indifferentiability from a random oracle

Theorem 4. For any point P € E,(F,) \ {£Fy, O} we have

[#h7(P) — (¢ +1)] < 7|2\/q] +6, [#h7 (Py) — 3q] < [2v/4],
[#h ™ (—Fy) — 2(q + 1)| < 2|2y/4], [#hHO) — (¢ +1)| < [2v/4].

Proof. All the inequalities follow from the Hasse-Weil-Serre bound [16, Theorem 5.3.1] for
the number of [F,-points on a projective non-singular absolutely irreducible [F,-curve.

First, suppose that h(t;,t3) = £F,. Then t1t3 =0 or 8 = go = 0. In the first case,
h(0,t2) = h(t1,0) = Fy. In the second one, (1:1;:t2) € G, 5 These curves decompose
as OO,\/E = LoU Fy and 007_\/5 = Fy UF,, where F), are Fermat cubics (cf. the equations
(1)). The latter are obviously elliptic curves (of j-invariant 0). In accordance with Lemma
2 we have (Cj . 5N Co)(F,) = 0. Note also that (Fy N Fy)(F,) = (L; N Fy)(F,) = 0 for all
i,k € {0,1,2}.

In turn, (Co N Ly)(F,) =0 according to Lemma 2, hence h™'(O) = C(FF,). Be&des
Sing(Cw)(IF,) = 0 (see Lemma 3). As a result, we obtain the bijection 0 : C/_(F,) = (]Fq).
Finally, the geometric genus g(C.,) = 1 by virtue of Theorem 3.

Now take P = (x,y) € Ey(F,) \ {£F, O}. The case y =  does not occur, because 3?2 —
b = 8b is not a cubic residue in [,. In compliance with Lemmas 1, 2 we see that

(Ci,y N Cw)(F ) (Cz y Cz+1 y)( ) (Czy NL )( ) @ #(Ci,y A Lk)(]Fq) <3

for all i, k € {0, 1, 2}. Besides, the z-coordinates of h(ty, t2) and h(wty, t2) (resp. h(ty,wts)) are
always different if 7 € {0, 1} (resp. i = 2), because (t1,t2) = O(wty,t2) = 0(t1,wty). Therefore

2 2

W ({P, [WI(P), WA (P)}) = Uh_l([w]i(P)) = Uci,y(Fq) \ (Li-1 U L)

Since #h 7 ([w]'(P)) = #h™* ([w]™(P)), we obtain

3-#h7(P) = Z #Ciy(F) \ (Lie1 U Lis).

Consequently,
2

D (#C(E) ~0) <3#h7(P) < 3 #0L(E)

i=0
Further, #C; ,(F,) = #Cit1,,(F,) according to Lemma 1. Thus

3(#Ciy(Fy) — 6) < 3407 (P) < 3-#C;y(F,)

and hence

|#h_1(P) - #Oz}y(Fq” < 6.



At the same time, Theorem 3 says that ¢(C;,) = 7. Besides, Sing(C;,)(F,) =0 (see
Lemma 3). As a result, 0;,: C} (F,) = C;,(IF,). We eventually obtain

[#h ™ (P) = (¢ + D] < [#h7H(P) = #Ciy (F)| + [#Ciy (F) — (g + 1) < 6+ 7[2v/4).
The theorem is proved. ]
Corollary 1. The map h:F; — Ey(F,) is surjective at least for ¢ > 211.

Corollary 2. The distribution on E,(F,) defined by h is e- statzstzcally indistinguishable from
the uniform one [10, Definition 3], where € := 16¢~/2 + O(q7}).

Proof. For any point P € Ey(F,) put

_ #h'(P) ’#h_l _1’ ‘1_ 1 _
op): q? #Eb q| |¢ #E(F)
_ I#h*I(P)—QIJFI#Eb( q)—CJI o 1#TNP )—al 2yl +1
¢ ¢#EF,) ¢ alg+1—[2y/4))
#h71(P) — 9 1
B 2 o)

If P ¢ {£P,, O} from Theorem 4 we obtain

5(P) = 20 +O(i).

PP e
Similarly,
2 1 1 1 4 1

S(R)=_+0(am).  S-R)=_+0(55).  90)=55+0(5).

Thus
16 1 3 1 16 1
Pe;;)(m < (at12va) =2+ 0(5)) + -+ 0(am) = T +0():

The corollary is proved. O

For t, € F, consider the encoding hy,: F, — E,(F,) of the form hy,(t1) := h(t1,t2). By
definition, ho(t,) = Py for any t; € F,. Nevertheless, by analogy with [12, Theorem 2| we can
prove the next lemma. Its main difference is that hy, (t1) = hy, (wt1) whenever /g, € Iy, hence
10 appears instead of 6.

Lemma 6. Forty € F} and P € Ey(F,) we have #h;) (P) < 10 and hence q/10 < #Im(hy,).

By this lemma [10, Algorithm 1] still works well in the case of h. Indeed, for P € Ey(F,)
pick uniformly at random ¢, € I, and then find uniformly at random ¢; € ht_Ql(P). This gives

Remark 2. The map h is samplable [10, Definition 4].

Remarks 1, 2 and Corollary 2 imply that h is admissible in the sense of [10, Definition 4].
Finally, using [10, Theorem 1|, we establish

Corollary 3. Consider the composition H := hol: {0,1}* — Ey(F,) of a hash function b:
{0,1}* — ]qu and h. The hash function H is indifferentiable from a random oracle if § is so.
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