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Abstract. At CRYPTO 2019, Gohr improved attacks on Speck32/64 using deep
learning. In 2020, Chen et al. proposed a neural aided statistical attack that is
more generic. Chen et’s attack is based on a statistical distinguisher that covers a
prepended differential transition and a neural distinguisher. When the probability of
the differential transition is pq, its impact on the data complexity is O(p−2q−2). In
this paper, we propose an improved neural aided statistical attack based on a new
concept named Homogeneous Set. Since partial random ciphertext pairs are filtered
with the help of homogeneous sets, the differential transition’s impact on the data
complexity is reduced to O(p−1q−2). As a demonstration, the improved neural aided
statistical attack is applied to round-reduced Speck. And several better attacks are
obtained.
Keywords: Cryptanalysis · Deep learning · Homogeneous set · Statistical attack ·
Speck families

1 Introduction
Background. Neural aided cryptanalysis is a refreshing cryptanalysis technique that
exploits deep learning. It has attracted much attention from the last century. Rivest in
[Ron91] reviewed various connections between machine learning and cryptography. Some
possible directions of research in cryptanalytic applications of machine learning were also
suggested. Greydanus proved that a simplified version of Enigma can be simulated by
recurrent neural networks [Gre17]. At Crypto 2019, Gohr proposed a neural distinguisher
and improved key recovery attack on 11-round Speck32/64 [Goh19]. This is the first
work that successfully shows the capability of deep learning in conventional cryptanalysis.
However, there are several constraints in the application of such an attack.

Inspired by Gohr’s work, Chen et al.[CY20] proposed a neural aided statistical attack
(NASA) that is almost as generic as the differential cryptanalysis[BS91]. Its potential
has been proven with applications to round-reduced Speck and DES. NASA is based
on a new statistical distinguisher that covers a prepended differential transition and a
neural distinguisher. Based on the analysis in [CY20], the data complexity of the NASA
is mainly affected by the differential transition. When the probability of the differential
transition is p0 = pq, its impact on the data complexity is O(p−2

0 ). This is a serious
bottleneck when p0 is very low.
Our work. In this paper, our core target is to reduce the data complexity of the NASA.
To achieve the target, we introduce a new concept named Homogeneous Set which
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summarizes a common phenomenon that exists in differential cryptanalysis. If one plaintext
pair passes a given differential transition, we can generate multiple plaintext pairs based
on this plaintext pair. These new plaintext pairs can also pass the differential transition
simultaneously. In [ER04] and [BLT20], researchers both exploited such a phenomenon,
although the concrete techniques for generating new plaintext pairs are different.

Based on the new concept, we propose an improved NASA. The prepended differential
transition ∆P → ∆S2 with a probability of p0 = p × q is divided into two parts: the
first part ∆P → ∆S1 with a probability of p, and the second part ∆S1 → ∆S2 with a
probability of q. Then the impact of the probability of the prepended differential transition
on the data complexity can be reduced from O(p−2q−2) to O(p−1q−2). In order to verify
the superiority of the improved NASA, we apply it to round-reduced Speck[BSS+15].
The summary of our attacks together with the previous best ones is shown in Table 1.

Table 1: Summary of key recovery attacks on round reduced Speck. DD: differential
distinguisher. ND: neural distinguisher. SD: neural aided statistical distinguisher. CP:
Chosen-Plaintext.

cipher Distinguisher Rounds Complexity Data Source

Speck32/64

DD 11 246.7 230.1CP [ALLW14]
DD 11 246 214CP [Din14]
ND 11 238 214.5CP [Goh19]
SD 11 232.29 223.44CP [CY20]
SD 11 226.71 221.39CP Section 5.1
DD 12 251 219CP [Din14]
ND 12 - - [Goh19]
SD 12 240.35 227.93CP [CY20]
SD 12 237.39 224.92CP Section 5.2
DD 13 257 225CP [Din14]
SD 13 258 228.7CP [CY20]
SD 13 255.17 225.87CP Section 5.3

Speck48/72 DD 12 243 243CP [BRV14]
SD 12 244.86 232.37CP Section 6.1

Speck48/96 DD 12 243 243CP [BRV14]
SD 12 244.86 232.37CP Section 6.2

1 Complexity is given in terms of the full decryption of the attacked cipher.
2 Gohr also provided an attack on 12-round Speck32/64, but the data, computation
complexity were not presented in [Goh19].

Compared with that of Chen et’s attacks on Round reduced Speck32/64, the data
complexity of our improved NASA is lower. For Speck32/64 reduced to 11, 12, 13 rounds,
our attacks require lower computation complexity than previous attacks. For Speck48/X
reduced to 12 rounds, the computation complexity of our attack is similar to that of
previous attacks, and the data complexity is significantly reduced.

The neural distinguisher can also affect the data complexity. As we know, the target
of the training of neural networks solving classification problems is to obtain an optimal
classification accuracy. But Chen et al. didn’t explain whether this common training
target is useful for reducing the data complexity. In this paper, we also present an analysis
of this issue.
Organizations. In Section 2, we will review the NASA. Our improvement to the
differential part and the improved NASA are proposed in Section 3. Several practical
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experiments for the verification of homogeneous sets are provided in Section 4. Then we
apply the improved NASA to round-reduced Speck for security analysis (Section 5, 6).
At last, the analysis about the training of neural distinguishers is given in Section 7.

2 Review of Neural Aided Statistical Attack [CY20]
2.1 Overview
Consider a cipher reduced to h rounds, we first review the NASA by taking an attack
with 1-round decryption as an example. Figure 1 summarizes the general scheme of the
NASA.

Figure 1: General scheme of the neural aided statistical attack.

NASA is based on a statistical distinguisher SD that covers a differential transition
∆P → ∆S and a neural distinguisher ND. The neural distinguisher is a neural network
that aims at distinguishing two classes of ciphertext pairs

Y (C0, C1) =
{

1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

(1)

where Y is the sample label, and ∆S is the target difference of the intermediate state.
If S0 ⊕ S1 = ∆S, we denote (C0, C1) as a positive sample (Y = 1). Or we denote it
as a negative sample (Y = 0). The neural distinguisher ND can output the posterior
probability of a sample

Pr(Y = 1 |(C0, C1) ) = F (C0, C1), P r(Y = 1 |(C0, C1) ) ∈ [0, 1] (2)

where F (·) is the posterior probability estimation function learned by ND. When
F (C0, C1) > 0.5, the predicted label of the input sample is 1.

In the NASA setting, the adversary tests a subkey guess kg by

1. Randomly generate N plaintext pairs (P i0, P i1), P i0 ⊕ P i1 = ∆P, i ∈ {1, · · · , N}.

2. Collect corresponding N ciphertext pairs.

3. Decrypt N ciphertext pairs with kg.

4. Feed partially decrypted ciphertext pairs (Ci0, Ci1), i ∈ {1, · · · , N} into ND.
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5. Collect corresponding posterior probabilities
Zi = Pr(Y = 1

∣∣(Ci0, Ci1) )

6. Calculate the following statistic T

T =
N∑
i=1

φ (Zi), φ (Zi) =
{

1, if Zi > c
0, if Zi 6 c

(3)

where c is a posterior probability threshold that is set in advance.
When T exceeds a decision threshold t, kg is returned as a subkey candidate.

2.2 Distribution of the Statistic under Right and Wrong keys
In [CY20], Chen et al. presented a theoretical analysis about the data complexity N and
the decision threshold t. We mainly review conclusions related to our work.

When the posterior probability threshold c is set, the classification over a ciphertext
pair is modeled as a Bernoulli experiment. The probability that Z > c holds is stable and
can be estimated experimentally. According to the key recovery process, there are three
situations:

1. Decrypting a positive sample with the right subkey. S0 ⊕ S1 = ∆S, kg = sk.

2. Decrypting a positive sample with wrong subkeys. S0 ⊕ S1 = ∆S, kg 6= sk.

3. Decrypting negative samples. S0 ⊕ S1 6= ∆S.
where sk is the right subkey. The probabilities of Z > c in these three situations are
denoted as p1, p2, p3 respectively.

Then the distributions of the statistic (formula 3) in these three situations are

T1 ∼ N (µ1, σ1), µ1 = N1 × p1, σ1 =
√
N1 × p1 × (1− p1)

T2 ∼ N (µ2, σ2), µ2 = N2 × p2, σ2 =
√
N2 × p2 × (1− p2)

T3 ∼ N (µ3, σ3), µ3 = N3 × p3, σ3 =
√
N3 × p3 × (1− p3)

(4)

if N1, N2, N3 are high enough. N (µi, σi) is a normal distribution with mean µi and
standard deviation σi, i ∈ {1, 2, 3}. When the probability of the differential is p0 and N
samples are collected randomly, thus N1 = N2 = N × p0, N3 = N(1− p0).

When the subkey guess is right, the distribution of the statistic is
Tr = T1 + T3 ∼ N (µr, σr) (5)

µr = N(p0 × p1 + (1− p0)p3), σr =
√
N × p0 × p1(1− p1) +N(1− p0)p3(1− p3) (6)

When the subkey guess is wrong, the distribution of the statistic is
Tw = T2 + T3 ∼ N (µw, σw) (7)

µw = N(p0 × p2 + (1− p0)p3), σw =
√
N × p0 × p2(1− p2) +N(1− p0)p3(1− p3) (8)

Since p1 6= p2, these two distributions Tr, Tw are different. Then the distinguishing between
two normal distributions provides a theoretical framework for calculating N and t (see
Section 2.3).
Remark 1. The choice of p2 is related to the target of the key recovery attack. For a cipher
with a subkey size of L, all the 2L subkey guesses are divided into L+1 subspaces according
to the Hamming distance d1 between sk and kg. For each specific d1, the probability that
Z > c is denoted as p2|d1 . If the adversary hopes that the Hamming distance between
returned subkey guesses and sk doesn’t exceed d, the final value of p2 should be

p2 = max
{
p2|d1 |d1 > d

}
(9)

More details about the estimation of p2 can refer to [CY20].
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2.3 Distinguishing between Two Normal Distributions
Consider two normal distributions: N (µ1, σ1), and N (µ0, σ0). A sample s is sampled
from either N (µ1, σ1) or N (µ0, σ0). We have to decide if this sample is from N (µ1, σ1) or
N (µ0, σ0). The decision is made by comparing the value s to some threshold t. Without
loss of generality, assume that µ1 > µ0. If s > t, the decision is s ∈ N (µ1, σ1). If s < t,
the decision is s ∈ N (µ0, σ0). Then there are error probabilities of two types:

β1 = Pr {s ∈ N (µ0, σ0) |s ∈ N (µ1, σ1)}
β0 = Pr {s ∈ N (µ1, σ1) |s ∈ N (µ0, σ0)}

(10)

Here a condition is given on µ1, µ0, σ1, σ0 such that the error probabilities are β1 and
β0. The proof can refer to related research [Fel68, GHPS74].

Proposition 1. For the test to have error probabilities of at most β1 and β0, the parameters
of the normal distribution N (µ1, σ1) and N (µ0, σ0) with µ1 > µ0 have to be such that

z1−β1 × σ1 + z1−β0 × σ0

µ1 − µ0
= 1 (11)

where z1−β1 and z1−β0 are the quantiles of the standard normal distribution.

2.4 Data Complexity
According to Proposition 1, Chen et al. presented the final conclusions about the data
complexity N and the decision threshold t:

a1 = p1(1− p1), a2 = p2(1− p2), a3 = p3(1− p3) (12)

√
N =

z1−βr ×
√
p0 × a1 + (1− p0)a3 + z1−βw ×

√
p0 × a2 + (1− p0)a3

(p1 − p2)× p0
(13)

t = µr − z1−βrσr = µw + z1−βwσw (14)

The impact of p0 on the data complexity is O(p−2
0 ). The impact of p3 on the data

complexity is O(p3). The impact of p1, p2 on the data complexity is O((p1 − p2)−2).

3 Improved Neural Aided Statistical Attack
The impact of p0 on the data complexity is O(p−2

0 ), which is one of the main bottlenecks
for the raw NASA [CY20]. We will improve it by reducing the impact of the differential.

3.1 Overview
Similarly, we also take the key recovery attack with 1-round decryption as an example.
Figure 2 summarizes the scheme of the improved NASA.

The core idea is dividing the differential transition into two parts: ∆P → ∆S1 with a
probability of p, ∆S1 → ∆S2 with a probability of q. The statistical distinguisher only
covers the second part.

When we perform a key recovery attack using the statistical distinguisher, the data
complexity is calculated based on q and the neural distinguisher. Let’s denote the data
complexity as N1. Now, the core task is collecting N1 samples that satisfy the first
differential transition ∆P → ∆S1. To solve this task, we propose a concept named
Homogeneous Set that can be implemented via various techniques.
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Figure 2: Scheme of the improved neural aided statistical attack.

Definition 1. Consider a differential transition ∆P → ∆S1. A homogeneous set is a
special set S consisting of M plaintext pairs

S = {(P 0
0 , P

0
1 ), · · · , (PM0 , PM1 )}, P i0 ⊕ P i1 = ∆P, i ∈ {1, · · · ,M} (15)

Without loss of generality, we can assume that the M plaintext pairs are derived from
(P 0

0 , P
0
1 ) using a certain rule. After encryption, these M plaintext pairs can pass the

differential transition together in a high probability if (P 0
0 , P

0
1 ) passes the differential

transition.

In [ER04], neutral bits were used to generate multiple messages that can pass a
differential transition simultaneously. In [BLT20], authors divided a round reduced cipher
into two independent sub-ciphers for generating multiple homogeneous plaintext pairs.
Maybe there are more techniques that could be used to generate homogeneous sets. Any
applicable techniques for generating homogeneous sets can be applied to our improved
NASA. Thus we propose such a unified concept for introducing our work.

If the homogeneous set passes the first differential transition, we denote it as a valid
homogeneous set. Or we denote it as an invalid homogeneous set. Then the target
of gathering N1 samples becomes gathering enough valid homogeneous sets. Now, the key
recovery contains two following steps:

1. Data Collection:

(a) Randomly generate a plaintext pair (P 0
0 , P

0
1 ), P 0

0 ⊕ P 0
1 = ∆P .

(b) Generate a homogeneous set S based on (P 0
0 , P

0
1 ).

(c) Test whether S is a valid homogeneous set.
(d) Repeat three steps above until enough valid homogeneous sets are saved.

2. Perform the key recovery with gathered N1 samples.

Since the probability that (P 0
0 , P

0
1 ) passes the first differential ∆P → ∆S1 is p, intuition

tells us that such a strategy can reduce the differential’s impact on the total data complexity
from O(p−2q−2) to O(p−1q−2). We will present a formal theoretical analysis about the
total data complexity later. Now, we wonder how to identify valid homogeneous sets.
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3.2 Identify the Valid Homogeneous Set
The valid homogeneous set can be identified by performing the NASA. Let’s take the
identification with 1-round decryption as an example, the process is

1. Generate a homogeneous set S randomly.

2. Encrypt S with the attacked cipher.

3. Collect corresponding ciphertext pairs (Ci0, Ci1), i ∈ {1, · · · ,M}.

4. Decrypt M ciphertext pairs with a subkey guess kg.

5. Feed partially decrypted ciphertext pairs into the neural distinguisher ND.

6. Collect the neural distinguisher’s outputs and calculate the statistic T (formula (3)).

3.2.1 Distribution of the statistic under valid homogeneous sets

The probability of the differential ∆S1 → ∆S2 is q. Then there are about M × q positive
samples and M × (1− q) negative samples.

When kg is the right subkey, the distribution of the statistic(formula (3)) is

TV1 = T1 + T3 ∼ N (µV1 , σV1) (16)

µV1 = M(qp1 + (1− q)p3), σV1 =
√
Mqp1(1− p1) +M(1− q)p3(1− p3) (17)

If kg is a wrong subkey guess, the distribution of the statistic(formula (3)) is

TV0 = T2 + T3 ∼ N (µV0 , σV0) (18)

µV0 = M(qp2 + (1− q)p3), σV0 =
√
Mqp2(1− p2) +M(1− q)p3(1− p3) (19)

3.2.2 Distribution of the statistic under invalid homogeneous sets

When S is an invalid homogeneous set, the distribution of the statistic(formula (3)) is

TI = T3 ∼ N (µI , σI) (20)

µI = Mp3, σI =
√
Mp3(1− p3) (21)

3.2.3 Identify valid homogeneous sets by counting surviving subkey guesses

No matter whether the key guess kg is right or wrong, distributions of the statistic under
valid and invalid homogeneous sets are different. This finding can be used to identify valid
homogeneous sets.

For convenience, we can denote p1, p2 as the same parameter pV . Then TV1/TV0 can
be represented in the same form

TV ∼ N (µV , σV )

µV = M [qpV + (1− q)p3], σV =
√
MqpV (1− pV ) +M(1− q)p3(1− p3)

According to Proposition 1 in Section 2.3, the condition for distinguishing TV and TI is

z1−βV × σV + z1−βI × σI
µV − µI

= 1 (22)
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where

βV = Pr {s ∈ N (µI , σI) |s ∈ N (µV , σV )}
βI = Pr {s ∈ N (µV , σV ) |s ∈ N (µI , σI)}

(23)

For invalid homogeneous sets, the maximum probability that subkey guesses survive the
NASA is βI . Divide the whole subkey space into several subspaces according to the
Hamming distance d1 between the right subkey sk and key guess kg. For valid homogeneous
sets, the minimum probability that subkey guesses in the target subspace (related to pV )
survive the NASA is 1− βV .

Let K denote the set of all possible subkey guesses

K = KR +KW

where KR is the set of subkey guesses in the target subspace, and KW is the set of subkey
guesses in other subspaces. Then the lower bound of the number of surviving subkeys is
|KR| × (1− βV ) when S is a valid homogeneous set. The upper bound of the number of
surviving subkeys is |K| × βI when S is an invalid homogeneous set.

By setting two proper error probabilities βV , βI , we can ensure the following condition
always holds

|KR| × (1− βV ) >> |K| × βI (24)

Then we can set another decision threshold tS that satisfies the condition

|KR| × (1− βV ) > tS >> |K| × βI (25)

It’s expected that we can always identify valid homogeneous sets by comparing the number
of surviving subkey guesses with tS . Algorithm 1 summarizes the concrete process of
identifying valid homogeneous sets.

Algorithm 1 Identify valid homogeneous sets
Input: a homogeneous set S with a size of M(formula 23);

a statistical distinguisher that covers a differential and a neural distinguisher ND;
the posterior probability threshold c;
a decision threshold tM for filtering subkey guesses;
a decision threshold tS for identifying valid homogeneous sets.

Output: the classification of the homogeneous set S.
1: Encrypt M plaintext pairs of the homogeneous set S and collect the ciphertexts;
2: Initialize a counter cp← 0;
3: for each possible subkey guess kg do
4: Decrypt M ciphertext pairs with kg;
5: Feed partially decrypted ciphertext pairs into the neural distinguisher ND;
6: Save the outputs of the neural distinguisher, Zi, i ∈ {1,∼,M};
7: Count the number of Zi > c, and denote it as TM ;
8: if TM > tM then
9: cp← cp+ 1;

10: end if
11: end for
12: if cp > tS then
13: Return 1 (S is a valid homogeneous set).
14: else
15: Return 0 (S is an invalid homogeneous set).
16: end if
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3.2.4 Further analysis about pV

According to formula (22), the lower bound of the size of the homogeneous set M and the
decision threshold tM are

aV = pV (1− pV ), a3 = p3(1− p3) (26)

√
M =

z1−βV ×
√
qaV + (1− q)a3 + z1−βI ×

√
a3

(pV − p3)× q (27)

tM = µV − z1−βV σV = µI + z1−βIσI (28)

When pV increases, M will decrease (see the following proof).

Proof.
√
M =

z1−βV ×
√
qpV (1− pV ) + (1− q)a3 + z1−βI ×

√
a3

(pV − p3)× q

=
z1−βV ×

√
q(1− pV ) + (1−q)a3

pV
+ z1−βI×

√
a3

pV

(√pV − p3√
pV

)× q

If pV increases, the numerator will decrease and the denominator will increase. Then M
will decrease.

When the Hamming distance d1 between the right subkey sk and subkey guess kg
increases, Chen et al.[CY20] has proved that p2|d1 will decrease in general. But the number
of subkey guesses in the subspace may increase sharply when d increases (d 6 L

2 , L is the
subkey size). Thus the choice of pV is a trade-off. As long as the condition (formula (24))
holds, we advise pV = p2|d1 where d1 should be as small as possible.

3.3 Key Recovery
Now we can summarize the general model (Algorithm 2) of our improved NASA.

Algorithm 2 Model of the improved neural aided statistical attack
Input: the first differential ∆P → ∆S1, the second differential ∆S1 → ∆S2;

a neural distinguisher ND built on ∆S2, the posterior probability threshold c;
the size of homogeneous sets M , the number of samples for key recovery N1;
the decision threshold t for filtering wrong subkey guesses.

Output: all the possible subkey guesses.
1: Collect

⌈
N1
M

⌉
valid homogeneous sets using Algorithm 1(Section 3.2).

2: Pick N1 samples from valid homogeneous sets randomly
3: for each subkey guess kg do
4: Decrypt N1 samples with kg.
5: Feed partially decrypted ciphertext pairs into ND.
6: Collect corresponding posterior probabilities Zi, i ∈ {1, · · · , N1}.
7: Count the number of Zi > c and denote it as tp.
8: if tp > t then
9: save kg as a subkey candidate.

10: end if
11: end for
12: Test all the subkey candidates against a necessary number of plaintext-ciphertext pairs

according to the unicity distance for the attacked cipher.
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Algorithm 2 is the general model. If the key recovery only involves 1-round decryption,
the second step can be further simplified. Since the process of finding valid homogeneous
sets has already filtered wrong subkey guesses.

Before we analyze the total data complexity, there is one remaining problem. In the
next, we will introduce one method for generating homogeneous sets.

3.4 Generate Homogeneous Sets Using Probabilistic Neutral Bits
Probabilistic neutral bit (PNB) is a typical technique for generating homogeneous sets.
PNB is a generalized concept of the neutral bit [ER04], which is proposed for dividing
the key space of stream ciphers [AFK+08].

The initial definition of the PNB is proposed for a specific scenario, which can’t be
directly applied to generate homogeneous sets. Thus we modify its definition so that it
can be used to generate homogeneous sets. For convenience, we also make a little change
about the initial form of the neutrality measure.

Definition 2. Consider a differential P0 ⊕ P1 = ∆P → S1,0 ⊕ S1,1 = ∆S1. Encrypt
P0 ⊕ (1 << j), P1 ⊕ (1 << j) and denote the difference between the resulting ciphertext
pair as ∆Snew. The probability that ∆Snew conforms to ∆S1 is the neutrality measure of
the j-th bit of P0, P1.

Algorithm 3 Computing probabilistic neutral bits
Input: Number of samples X, the differential ∆P → ∆S1, the index j
Output: the neutrality γj of the j-th bit.
1: Initialize two counters cp1← 0, cp2← 0
2: for i = 1 to X do
3: Generate a random pair, (P0, P1)|P0 ⊕ P1 = ∆P
4: if Enc(P0)⊕ Enc(P1) = ∆S1 then
5: cp1← cp1 + 1
6: if Enc(P0 ⊕ (1 << j))⊕ Enc(P1 ⊕ (1 << j)) = ∆S1 then
7: cp2← cp2 + 1
8: end if
9: end if

10: end for
11: γj = cp2/cp1

Let γj denote the neutrality of the j-th bit, which can be experimentally estimated
using Algorithm 3. A homogeneous set S consisting of 2m plaintext pairs can be created
from a set B that contains m PNBs. Then the probability that S is a valid homogeneous
set is

p
∏
j∈B

γj (29)

where p is the probability of the differential transition ∆P → ∆S1.

3.5 Data Complexity and the Impact of the Differential
According to the model of the improved NASA (Algorithm 2), the data complexity
is related to three factors: the number of samples for recovering key N1, the size of
homogeneous setsM (formula (27)), and the probability (formula (29)) that a homogeneous
set is a valid homogeneous set. The value of N1 can be calculated according to formula
(13).



Yi Chen and Hongbo Yu 11

The simplest method for generating N1 samples is gathering
⌈
N1
M

⌉
valid homogeneous

sets by running Algorithm 1 many times. Thus the total data complexity N of the improved
NASA is

N =
⌈
N1

M

⌉
×M × (p×

∏
j∈B

γj)−1 (30)

where M is present in formula (27). The impact of q on N1 is O(q−2). As for M , we have

√
M =

z1−βV ×
√
qaV + (1− q)a3 + z1−βI ×

√
a3

(pV − p3)× q

∝
z1−βV ×

√
qaV + (1− q)a3 + z1−βI ×

√
a3

q

⇒M ∝ q−2[a3 + a2
4a3 + q(aV − a3) + 2a6

√
a3
√
qaV + (1− q)a3]

where a4 = z1−βI
z1−βV

. Thus the impact of q on M is also O(q−2). Then the impact of q on
dN1
M e is O(1). Finally, we have

N ∝M × p−1

Compared with the initial NASA [CY20], the differential’s impact on the total data
complexity N is reduced from O(p−2q−2) to O(p−1q−2).
A little trick for reducing the data complexity. If there are m high PNBs
(eg. γ ≈ 1) in the differential ∆P → ∆S1, we can reduce the required number of valid
homogeneous sets when 2m >> M . Once a valid homogeneous set is found, we can
generate another 2m −M samples directly. If 2m > N1, we just need to find 1 valid
homogeneous set instead of dN1

M e valid homogeneous sets.

4 Verification about Homogeneous Sets
There are two important factors that will affect our improved NASA. The first is the
success rate of identifying valid homogeneous sets. The second is the success rate of
filtering invalid homogeneous sets. To verify our analysis about the condition (formula
(24)) for identifying valid homogeneous sets, two experiments are performed with the help
of a 9-round Speck32/64.

A 1-round differential transition ∆S1 = (0x2800, 0x10) → ∆S2 = (0x40, 0) with a
probability of q = 2−2 is followed by a 7-round student distinguisher NDs

7 that is also
provided in [CY20]. A student distinguisher is built on partial ciphertext bits, and the
subscript set of selected ciphertext bits is denoted as Γ . Table 2 shows the estimation of
p2|d1 of the NDs

7, which is also provided in [CY20].

Table 2: The estimation of p2|d1 of NDs
7 when Γ = {30 ∼ 23, 14 ∼ 7}, c = 0.55

d1 0 1 2 3 4 5 6 7 ∼ 8
p2|d1 0.3576 0.3230 0.3036 0.2940 0.2893 0.2873 0.2866 0.2863

When pV decreases, the value of M will increase. In these two experiments, we adopt
the following settings

c = 0.55, d = 1, pV = p2|d1=d, p3 = 0.2863, βV = 0.1, βI = 2−8 (31)

It means that the Hamming distance between subkey guesses of the target subspace KR
and the right subkey is d = 1. Besides, we have

M = 37941 ≈ 215.21, tM = 11096 (32)
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Since only 8 subkey bits sk9[7 ∼ 0] are considered, the lower bound of the number of
surviving subkey guesses for valid homogeneous sets is:

|KR| × (1− βV ) = 8× (1− 0.1) = 7.2 ≈ 8

And the upper bound of the number of surviving subkey guesses for invalid homogeneous
sets is:

|K| × βI = 28 × 2−8 = 1
Let the decision threshold for distinguishing valid homogeneous sets be tS = 8.
Identification of simulated valid homogeneous sets. We have performed this
experiment 100 times with M = 37941. For each experiment, we randomly generate
M plaintext pairs (P i0, P i1)|P i0 ⊕ P i1 = ∆S1, i ∈ {1, · · · ,M} to form a simulated valid
homogeneous set S, and then run Algorithm 2.

The final results are:

1. We have successfully identified the valid homogeneous set in 100 experiments.

2. In 5 experiments, the number of surviving subkey guesses is 8 that is the theoretic
lower bound.

Identification of simulated invalid homogeneous sets. We have performed this
experiment 100 times with M = 37941. For each experiment, we randomly generate
M plaintext pairs (P i0, P i1)|P i0 ⊕ P i1 6= ∆S1, i ∈ {1, · · · ,M} to form a simulated invalid
homogeneous set S, and then run Algorithm 2.

The final results are:

1. The invalid homogeneous set is successfully identified in 98 experiments.

2. The average number of surviving subkey guesses in 100 experiments is 0.95 that is
smaller than the theoretic upper bound.

3. In 72 experiments, the number of surviving subkey guesses is 0. In 9 experiments,
the number of surviving subkey guesses is 1.

Analysis about two experiments. The reason why we perform experiments with
simulated homogeneous sets is that the basicNASA requires that all the plaintext pairs are
randomly sampled. Besides, the condition for distinguishing between valid homogeneous
sets and invalid ones is also based on this assumption. The two experiments above can
prove our analysis about homogeneous sets. And the derived condition is also applicable.

When the concrete implementation of homogeneous sets decreases the sampling ran-
domness, it will result in a negative influence on the key recovery. But based on our
practical experiments (Section 5) of attacking 11-round Speck32/64, we know the negative
influence doesn’t break the correctness of our improved NASA.

5 Key Recovery Attacks on Round Reduced Speck32/64
To prove the superiority of our improved NASA, we perform key recovery attacks on
Speck32/64 reduced to 11, 12, 13 rounds. In these three attacks, we adopt the same two
1-round differential transitions

∆P = (0x211, 0xa04) p−→ ∆S1 = (0x2800, 0x10) q−→ ∆S2 = (0x40, 0) (33)

where p = 2−4 and q = 2−2.
Let X = 224 and run Algorithm 3 for each plaintext bit, we have estimated the

neutrality of each plaintext bit for Speck32/64. Table 3 shows the estimation of each
plaintext bit’s neutrality.
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Table 3: Neutrality γ of each plaintext bit for (0x211, 0xa04)→ (0x2800, 0x10)

Index 0 1 2 3 4 5 6 7
γ 0.998 0.996 0 0.992 0.984 0.969 0.937 0.875

Index 8 9 10 11 12 13 14 15
γ 0.75 0 0.5 1 0.5 0 1 1

Index 16 17 18 19 20 21 22 23
γ 0 0.5 0 0.5 1 1 1 0.998

Index 24 25 26 27 28 29 30 31
γ 0.996 0 0.992 0.984 0.969 0.937 0.875 0.75

Based on ∆S2 = (0x40, 0), we have trained five teacher distinguishers NDt
4, NDt

5,
NDt

6, NDt
7, NDt

8 using the same training pipeline presented in [Goh19]. A teacher
distinguisher is built on the complete ciphertext pair instead of partial bits. Table 4 shows
the estimation of p2|d1 of these five teacher distinguishers.

Table 4: The estimation of p2|d1 of five teacher distinguishers against round reduced
Speck32/64. For NDt

4, ND
t
5, ND

t
6, ND

t
7, c = 0.55. For NDt

8, c = 0.5.

NDt
4

d1 0 1 2 3 4 5
p2|d1 0.995 0.5065 0.2815 0.1686 0.1088 0.0735
d1 6 7 8 9 10 11
p2|d1 0.0521 0.039 0.0301 0.0239 0.0198 0.0169
d1 12 13 14 15 16
p2|d1 0.0146 0.0129 0.0117 0.0107 0.01

NDt
5

d1 0 1 2 3 4 5
p2|d1 0.8889 0.5151 0.3213 0.2168 0.1556 0.1189
d1 6 7 8 9 10 11
p2|d1 0.0956 0.08 0.0694 0.0617 0.056 0.0516
d1 12 13 14 15 16
p2|d1 0.0483 0.0456 0.0436 0.0419 0.0407

NDt
6

d1 0 1 2 3 4 5
p2|d1 0.6785 0.4429 0.3135 0.2384 0.1947 0.1684
d1 6 7 8 9 10 11
p2|d1 0.1518 0.1408 0.1334 0.1283 0.1247 0.1219
d1 12 13 14 15 16
p2|d1 0.1201 0.1183 0.117 0.1171 0.1188

NDt
7

d1 0 1 2 3 4 5
p2|d1 0.4183 0.3369 0.2884 0.2607 0.2442 0.234
d1 6 7 8 9 10 11
p2|d1 0.2276 0.2236 0.2211 0.2193 0.2183 0.2175
d1 12 13 14 15 16
p2|d1 0.2172 0.2167 0.2159 0.2161 0.209

NDt
8

d1 0 1 2 3 4 5
p2|d1 0.5184 0.5056 0.4993 0.4957 0.4939 0.4927
d1 6 7 8 9 10 11
p2|d1 0.4925 0.4918 0.4917 0.4914 0.4913 0.4913
d1 12 13 14 15 16
p2|d1 0.4911 0.4913 0.4914 0.491 0.4914

According to the two-stage training algorithm proposed in [CY20], we have also trained
three student distinguishers NDs

5, ND
s
6, ND

s
7. It’s worth noticing that the subscript set for

training student distinguishers is Γ = {30 ∼ 23, 14 ∼ 7}. Let c = 0.55, Table 5 summarizes
the estimation of p2|d1 of these three student distinguishers.
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Table 5: The estimation of p2|d1 of NDs when Γ = {30 ∼ 23, 14 ∼ 7}, c = 0.55

NDs
5

d1 0 1 2 3 4 5 6 ∼ 8
p2|d1 0.7192 0.5498 0.4342 0.3566 0.3048 0.2708 6 0.2486

NDs
6

d1 0 1 2 3 4 5 6 ∼ 8
p2|d1 0.5132 0.4057 0.3402 0.3025 0.2817 0.2706 6 0.265

NDs
7

d1 0 1 2 3 4 5 6 ∼ 8
p2|d1 0.3576 0.3230 0.3036 0.2940 0.2893 0.2873 6 0.2866

According to the definition of p1, we know p1 = p2|d1=0. We have also estimated p3 for
each neural distinguisher. Table 6 summarizes the estimation of p3 of these eight neural
distinguishers.

Table 6: The estimation of p3 of eight neural distinguishers. For NDt
8, c = 0.5. For other

7 neural distinguishers, c = 0.55.
ND NDt

4 NDt
5 NDt

6 NDt
7 NDt

8 NDs
5 NDs

6 NDs
7

p3 0.0069 0.0384 0.1161 0.2162 0.4914 0.1291 0.2603 0.2863

To attack round-reduced Speck32/64, the following 8 neural aided statistical distin-
guishers are built as shown in Table 7.

Table 7: Eight neural aided statistical distinguishers for attacking Speck32/64

SD ∆S1 → ∆S2 q ND c p1 d p2 p3

SDt
8 (0x2800, 0x10)→ (0x40, 0) 2−2 NDt

8 0.5 0.5184 1 0.4993 0.4914
SDs

7 (0x2800, 0x10)→ (0x40, 0) 2−2 NDs
7 0.55 0.3576 1 0.3036 0.2863

SDt
7 (0x2800, 0x10)→ (0x40, 0) 2−2 NDt

7 0.55 0.4183 1 0.2884 0.2162
SDs

6 (0x2800, 0x10)→ (0x40, 0) 2−2 NDs
6 0.55 0.5132 1 0.3402 0.2603

SDt
6 (0x2800, 0x10)→ (0x40, 0) 2−2 NDt

6 0.55 0.6785 1 0.3135 0.1161
SDs

5 (0x2800, 0x10)→ (0x40, 0) 2−2 NDs
5 0.55 0.7192 0 0.5498 0.1291

SDt
5 (0x2800, 0x10)→ (0x40, 0) 2−2 NDt

5 0.55 0.8889 0 0.5151 0.0384
SDt

4 (0x2800, 0x10)→ (0x40, 0) 2−2 NDt
4 0.55 0.995 0 0.5065 0.0069

5.1 Key Recovery Attack on 11-round Speck32/64
Attack setting. To recover the last 4 subkeys, the whole attack is divided into seven
stages. Table 8 summarizes the attack settings.
Theoretical complexities. Based on Table 8, we have N1 = 214.94. To gather N1
samples that pass the first differential ∆P → ∆S1, the neural aided statistical distinguisher
SDs

7 is adopted. According to the setting presented in Section 4, we have M = 215.21.
Since M > N1, we only need to find a valid homogeneous set by selecting 16 high

PNBs. Let the subscript set of neutral bits be

B = {11, 14, 15, 20, 21, 22, 0, 1, 3, 23, 24, 26, 4, 27, 5, 28} (34)

Then the probability (formula 29) that a homogeneous set is a valid homogeneous set is

p
∏
j∈B

γj = 2−4 ×
∏
j∈B

γj ≈ 2−4 × 0.884 ≈ 2−4.18
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Table 8: Settings of the key recovery attack on 11-round Speck32/64. SKS: surviving key
space. EUB: expected upper bound.

stage SD βr βw N key space related keys SKS
1 SDs

7 0.005 2−8 214.94 28 sk11[7 ∼ 0] 24(EUB)
2 SDt

7 0.005 2−16 212.94 24+8 sk11 25(EUB)
3 SDs

6 0.001 2−13 212.2 25+8 sk11, sk10[7 ∼ 0] 24(EUB)
4 SDt

6 0.001 2−16 29.7 24+8 sk11, sk10 25(EUB)
5 SDs

5 0.001 2−13 211.73 25+8 sk11, sk10, sk9[7 ∼ 0] 2(EUB)
6 SDt

5 0.001 2−16 28.78 21+8 sk11, sk10, sk9 2(EUB)
7 SDt

4 0.001 2−17 26.98 21+16 sk11, sk10, sk9, sk8 2(EUB)

Thus the theoretical data complexity is

N = 24.18 ×M = 24.18+15.21+1 = 220.39 (35)

As for the computation complexity, it contains two parts. The first is the complexity of
finding a valid homogeneous set, which is about 220.39 × 28 × 1

11 ≈ 224.93. The second
is the complexity of recovering the right key. It’s worth noticing that stage 1 has been
finished when we try to find the valid homogeneous set. Thus the complexity of the key
recovery is about 224.45. Then the total computation complexity is 224.93 + 224.45 ≈ 225.71.
Remark 2. In our improved NASA, we also need to perform the verification of neural
distinguishers one time after each ciphertext pair is decrypted. Thus we can also measure
the complexity as advised in [CY20]. The computation complexity is in terms of full
decryption of the attacked cipher. And the time consumption of neural distinguishers is
put aside.
Practical experiments. Before performing the key recovery attacks, we first conduct the
same two experiments as introduced in Section 4. Now, the homogeneous set is generated
using the 16 PNBs as shown in formula (34). After performing the two experiments 100
times respectively, we find

1. To generate 100 valid homogeneous sets, we have generated 1821 homogeneous sets.
Thus the probability that a homogeneous set is a valid homogeneous set is about
2−4.18, which is consistent with the estimated value above.

2. The valid homogeneous set is successfully identified in 100 experiments.

3. The invalid homogeneous set is successfully identified in 94 experiments.

To verify the theoretical analysis of the key recovery attack on 11-round Speck32/64, we
have performed practical experiments according to the attack setting above. The target is to
recover (sk10, sk11), which contains the first 4 stages. In four stages, the number of samples
and the decision threshold are (N, t) = (31341, 9322), (7853, 1995), (4707, 1426), (830, 181)
respectively. For each experiment, we first find a valid homogeneous set using Algorithm 1.
After performing this experiment 100 times, we find

1. In 48 experiments, there are no surviving subkey guess pairs (kg10, kg11).

2. In the remaining 52 experiments, the right subkeys (sk10, sk11) survives.

3. If we consider all the 100 experiments, the average numbers of surviving subkey
guesses are 6.38 (stage 1), 24.31 (stage 2), 13.93 (stage 3), 9.8 (stage 4). If we focus
on the 52 experiments, the average numbers of surviving subkey guesses are 11.01
(stage 1), 46.03 (stage 2), 26.46 (stage 3), 18.84 (stage 4).
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As we have presented in Section 4, the sampling randomness is a very important
point. When we generate homogeneous sets with PNBs, the sampling randomness is likely
to be decreased when the number of encryption rounds covered by the first differential
transition is very small. In our attack, ∆P → ∆S1 only covers 1 round. Thus, for a valid
homogeneous set, resulting N intermediate state pairs (Si1,0, Si1,1), i ∈ {1, · · · , N} will be
very close to each other in the high-dimensional space.

This will cause a chain reaction. First, corresponding ciphertext pairs may also be
close to each other in the input space of neural distinguishers. When we decrypt these
ciphertext pairs using several subkey guesses, partially decrypted ciphertext pairs may
also possess the similarity. The resulting negative influence is that these subkey guesses
will simultaneously survive the attack or be filtered in a high probability.

As we find in the 100 experiments above, there are no surviving subkey guess pairs in
some experiments. In the remaining ones, the number of surviving subkey guess pair is a
little higher than the expected upper bound. These two phenomenons both occur due to
the same cause. Although this negative influence exists, it doesn’t break the correctness of
our improved NASA. This is based on following clues

1. The estimation of data complexity for recovering the right subkey is accurate.

2. The number of surviving keys basically meets expectations when all the 100 experi-
ments are considered.

The above analysis can be proved by performing the key recovery attack with simulated
valid homogeneous sets. This is completely equivalent to a key recovery attack on 10-round
Speck32/64 based on the original NASA. Chen et al. has performed this attack in [CY20].

To ensure the success rate is 1, we can also make a correction to the theoretical
complexities of the attack on 11-round Speck32/64 based on our practical experiments.
Then the data complexity is about 220.39 × 2 = 221.39, and the computation complexity is
about 225.71 × 2 = 226.71.

We have performed more experiments about the negative influence presented above.
Generally speaking, the negative influence will be alleviated (even tackled) when the first
differential transition or the statistical distinguisher covers more rounds. Thus when we
estimate theoretical complexities of attacks based on our improved NASA, it’s acceptable
to neglect the negative influence. Chen et al. took about 15 days for performing the
above experiment 30 times [CY20]. If we adopt the same hardware, although the time
consumption of neural distinguishers is high, we can still perform the attack 100 times in
one day.

5.2 Key Recovery Attack on 12-round Speck32/64
Attack setting. The whole attack is divided into six stages. Table 9 summarizes the
attack settings.

Table 9: Settings of the key recovery attack on 12-round Speck32/64.

stage SD βr βw N key space related keys SKS
1 SDt

8 0.005 2−16 218.93 216 sk12 25(EUB)
2 SDs

7 0.005 2−13 215.44 25+8 sk12, sk11[7 ∼ 0] 24(EUB)
3 SDt

7 0.005 2−16 212.94 24+8 sk12, sk11 25(EUB)
4 SDs

6 0.001 2−13 212.2 25+8 sk12, sk11, sk10[7 ∼ 0] 24(EUB)
5 SDt

6 0.001 2−16 29.7 24+8 sk12, sk11, sk10 25(EUB)
6 SDt

5 0.001 2−21 29.03 25+16 sk12, sk11, sk10, sk9 2(EUB)
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Theoretical complexities. Based on Table 9, we have N1 = 218.93. To gather N1
samples that pass the first differential ∆P → ∆S1, the neural aided statistical distinguisher
SDt

8 is adopted.
The following setting is adopted for finding valid homogeneous sets

c = 0.5, d = 1, pV = p2|d1=d = 0.5056, p3 = 0.4914, βV = 0.1, βI = 2−16

According to formula (27), we can know M = 589314 ≈ 219.17.
Since M > N1, we only need to find a valid homogeneous set by selecting 20 high

PNBs. Let the subscript set of neutral bits be

B = {11, 14, 15, 20, 21, 22, 0, 1, 3, 23, 24, 26, 4, 27, 5, 28, 6, 29, 7, 30}

Then the probability (formula (29)) that a homogeneous set is a valid homogeneous set is

p
∏
j∈B

γj = 2−4 ×
∏
j∈B

γj ≈ 2−4 × 0.594 ≈ 2−4.75 (36)

Thus the theoretical data complexity is

N = 24.75 ×M × 2 = 24.75+19.17+1 = 224.92 (37)

The complexity of finding a valid homogeneous set is about 224.92× 216× 1
12 ≈ 237.34. The

complexity of the key recovery is about 232.39. Thus the total computation complexity is
237.34 + 232.39 ≈ 237.39.

5.3 Key Recovery Attack on 13-round Speck32/64
Attack setting. The whole attack is divided into three stages. Table 10 summarizes
the attack settings.

Table 10: Settings of the key recovery attack on 13-round Speck32/64.

stage SD βr βw N key space related keys SKS
1 SDt

8 0.005 2−32 219.7 232 sk12, sk11 26(EUB)
2 SDt

7 0.005 2−22 213.28 26+16 sk12, sk11, sk10 25(EUB)
3 SDt

6 0.001 2−21 29.97 25+16 sk12, sk11, sk10, sk9 25(EUB)

Theoretical complexities. Based on Table 10, we have N1 = 219.7. To gather N1
samples that pass the first differential ∆P → ∆S1, the neural aided statistical distinguisher
SDt

8 is adopted.
The following setting is adopted for finding valid homogeneous sets

c = 0.5, d = 1, pV = p2|d1=d = 0.5056, p3 = 0.4914, βV = 0.1, βI = 2−32

According to formula (27), we can know M = 1119074 ≈ 220.09.
Since M > N1, we only need to find a valid homogeneous set by selecting 21 high

PNBs. Let the subscript set of neutral bits be

B = {11, 14, 15, 20, 21, 22, 0, 1, 3, 23, 24, 26, 4, 27, 5, 28, 6, 29, 7, 30, 8}

Then the probability (formula (29)) that a homogeneous set is a valid homogeneous set is

p
∏
j∈B

γj = 2−4 ×
∏
j∈B

γj ≈ 2−4 × 0.446 ≈ 2−5.17 (38)
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Thus the theoretical data complexity is

N = 25.17 ×M × 2 = 25.17+19.7+1 = 225.87 (39)

The complexity of finding a valid homogeneous set is about 225.87× 232× 2
13 ≈ 255.17. The

complexity of the key recovery is about 232.65. Thus the total computation complexity is
255.17 + 232.65 ≈ 255.17.

6 Key Recovery Attacks on Round Reduced Speck48/X
To prove the superiority of our improved NASA, we have performed key recovery attacks
on 12-round Speck48/72 and Speck49/96. In these two attacks, we adopt the same 1-round
differential transition and 4-round differential transition

∆P = (0x400052, 0x504200) p−→ ∆S1 = (0x820200, 0x1202)
∆S1 = (0x820200, 0x1202) q−→ ∆S2 = (0x808000, 0x808004)

(40)

where p = 2−5 and q = 2−7.
Let X = 224 and run Algorithm 3 for each plaintext bit, we have estimated the

neutrality of each plaintext bit for Speck48/X. Table 11 shows the estimation of each
plaintext bit’s neutrality.

Table 11: Neutrality γ of each plaintext bit for (0x400052, 0x504200)→ (0x820200, 0x1202)

Index 0 1 2 3 4 5 6 7 8 9
γ 0.999 0.993 0.993 0.991 0.969 0.932 0.872 0.76 0.51 1

Index 10 11 12 13 14 15 16 17 18 19
γ 0.981 0.969 0.938 0.865 0 0.75 0.504 0 1 1

Index 20 21 22 23 24 25 26 27 28 29
γ 0 1 0 1 0.483 1 1 1 0 1

Index 30 31 32 33 34 35 36 37 38 39
γ 0 1 0.998 0.995 0.994 0.985 0.971 0.936 0.865 0.758

Index 40 41 42 43 44 45 46 47
γ 0.503 0 0.985 0.972 0.947 0.881 0 0.74
Based on ∆S2 = (0x808000, 0x808004), we have trained three teacher distinguishers

NDt
3, NDt

4, NDt
5 using the same training pipeline presented in [Goh19]. Let Γ = {47 ∼

32, 23 ∼ 8}, we have trained two student distinguishers NDs
5, ND

s
4. Let c3 = 0.55, Table

12 shows the estimation of p2|d1 of the five neural distinguishers.

Table 12: The estimation of p2|d1 of five neural distinguishers against Speck48/X
NDt

3
d1 0 1 2 3 4 5 6 ∼ 24
p2|d1 0.9871 0.5885 0.3508 0.2158 0.1397 0.095 6 0.0678

NDt
4

d1 0 1 2 3 4 5 6 ∼ 24
p2|d1 0.7494 0.5531 0.4189 0.329 0.2688 0.2299 6 0.2035

NDs
4

d1 0 1 2 3 4 5 6 ∼ 16
p2|d1 0.6555 0.5057 0.4152 0.3588 0.323 0.3 6 0.2849

NDt
5

d1 0 1 2 3 4 5 6 ∼ 24
p2|d1 0.3304 0.2906 0.2629 0.2448 0.2312 0.2226 6 0.2162

NDs
5

d1 0 1 2 3 4 5 6 ∼ 16
p2|d1 0.2942 0.2696 0.2545 0.2454 0.2407 0.2369 6 0.2354

According to the definition of p3, we have also estimated p3 for each neural distinguisher.
Table 13 summarizes the estimation of p3 of these five neural distinguishers.

Based on these five neural distinguishers above, the following 5 neural aided statistical
distinguishers are built as shown in Table 14.
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Table 13: The estimation of p3 of five neural distinguishers, c = 0.55.
ND NDt

3 NDs
4 NDt

4 NDs
5 NDt

5

p3 0.0102 0.2352 0.1349 0.2304 0.1999
Table 14: Five neural aided statistical distinguishers for attacking Speck48/X. ∆S1 → ∆S2
= 0x820200/0x1202→ 0x808000/0x808004.

SD q ND c p1 d p2 p3

SDs
5 2−12 NDs

5 0.55 0.2942 1 0.2545 0.2304
SDt

5 2−12 NDt
5 0.55 0.3304 1 0.2629 0.1999

SDs
4 2−12 NDs

4 0.55 0.6555 1 0.4152 0.2352
SDt

4 2−12 NDt
4 0.55 0.7494 0 0.5531 0.1349

SDt
3 2−12 NDt

3 0.55 0.9871 0 0.5885 0.0102

6.1 Key Recovery Attack on 12-round Speck48/72
Attack setting. To attack 12-round Speck48/72, we need to recover the last 3 subkeys.
Table 15 summarizes the attack settings.

Table 15: Settings of the key recovery attack on 12-round Speck48/72 with p0 = 2−12.
stage SD βr βw N key space related keys SKS
1 SDs

5 0.005 2−16 226.32 216 sk12[15 ∼ 0] 24(EUB)
2 SDt

5 0.001 2−24 225.27 24+8 sk12 25(EUB)
3 SDs

4 0.001 2−21 221.64 25+16 sk12, sk11[15 ∼ 0] 25(EUB)
4 SDt

4 0.001 2−24 221.74 25+8 sk12, sk11 2(EUB)
5 SDt

3 0.001 2−25 216.36 21+24 sk12, sk11, sk10 2(EUB)

Theoretical complexities. Based on Table 15, we have N1 = 226.32. To gather N1
samples that pass the first differential ∆P → ∆S1, the neural aided statistical distinguisher
SDs

5 is adopted.
The following setting is adopted for finding valid homogeneous sets

c = 0.55, d = 1, pV = p2|d1=d = 0.2696, p3 = 0.2304, βV = 0.1, βI = 2−16

According to formula (27), we can know M = 56194311 ≈ 225.74.
Since M > 225, we need to select 26 high PNBs for finding a valid homogeneous

set. Since M < N1 < 2 ×M , we need to gather 2 valid homogeneous sets. However,
by exploiting a plaintext bit which has γ = 1, we can generate N1 samples with 1 valid
homogeneous set. Let the subscript set of neutral bits be

B = {0 ∼ 4, 10 ∼ 12, 18, 19, 21, 23, 25 ∼ 27, 29, 31 ∼ 37, 42 ∼ 44}

Then the probability (formula (29)) that a homogeneous set is a valid homogeneous set is

p
∏
j∈B

γj = 2−5 ×
∏
j∈B

γj ≈ 2−5 × 0.65 ≈ 2−5.62 (41)

It’s worth noticing that γ9 = 1. After a valid homogeneous set is found, we can generate
the left N1 −M samples by flipping the ninth plaintext bit of M plaintext pairs. Thus the
total data complexity is

N = 25.62 ×M × 2 + (N1 −M)× 2 ≈ 232.37 (42)

The complexity of finding a valid homogeneous set is about 25.62 ×M × 2× 216 × 1
12 ≈

244.78. The complexity of the key recovery is about 240.58. Thus the total computation
complexity is 244.78 + 240.58 ≈ 244.86.
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6.2 Key Recovery Attack on 12-round Speck48/96
Attack setting. To attack 12-round Speck48/96, we need to recover the last 4 subkeys.
The attack setting for 12-round Speck48/72 can be adopted for recovering the last 3
subkeys of Speck48/96. We can recover sk9 by adopting a teacher distinguisher NDt

2.
And the extra computation complexity is negligible.
Theoretical complexity. Based on the attack setting, we know the data complexity is
N ≈ 232.37. The computation complexity is about 244.86.

7 Analysis of the Neural Distinguisher’s Training
During the training of neural distinguishers, the optimization goal is distinguishing accuracy.
We wonder whether this goal is useful for performing a better NASA.

To answer this question, we can set the posterior probability threshold to c = 0.5.
Denote the distinguishing accuracy of the neural distinguisher as acc, then the relation
between acc and p1, p3 is

acc = 0.5× p1 + 0.5× (1− p3)

The target of a neural distinguisher’s training is increasing acc. This is equivalent
to increasing p1 or decreasing p3. The impacts of p1, p3 on the data complexity are
O((p1 − p2)−2) and O(p3) respectively, thus the goal of optimizing the distinguishing
accuracy is useful for NASA. When we change the value of c, the difference only has a
slight influence on the data complexity. Conclusion above still holds.

8 Conclusions
In this paper, we have proposed an improved neural aided statistical attack for crypt-
analysis. By dividing the prepended differential transition into two parts, the impact
of the probability p of the first part on the data complexity can be reduced to O(p−1)
with the help of the newly proposed homogeneous set. Applications to round reduced
Speck32/64, Speck48/72, Speck48/96 have proved the superiority of the improved neural
aided statistical attack. Actually, our work in this paper is equivalent to filtering wrong
pairs in differential cryptanalysis.

Next, our research will focus on the following issues. The first is exploring the properties
of the neural distinguisher. If we know how to build neural distinguishers against more
rounds, the statistical attack model can be greatly improved. The second is understanding
the knowledge learned by the neural distinguisher. It can help us get rid of the dependence
on neural distinguishers and improve the theoretical framework. The third is developing
a more efficient and generic key search strategy. Applying techniques of the artificial
intelligence community to cryptanalysis is an exciting research topic. We believe more
aspects of cryptography will benefit from the development of this promising direction.
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A.1 The Key Schedule and Round Function
Speck is a family of block ciphers containing 10 variants. The variants are identified with
a 2n/mn label, and defined with rotation constants α and β and a number of rounds T .
The block size is 2n bits and the internal word size is n bits. The key size is mn bits.

The key schedule of Speck family expands the initialm−word master key (`m−2, · · · , `0, k0)
into h round key words k0, k1, · · · , kh−1 according to the algorithm 4. Figure 3 shows the
round function of Speck32/64.

Algorithm 4 Key Schedule of Speck
1: for i = 0 to h− 2 do
2: `i+m−1 ← (ski � (`i≫ α))⊕ i;
3: ski+1 ← (ski≪ β)⊕ `i+m−1;
4: end for

Figure 3: The round function of Speck. For Speck32/64, α = 7, β = 2. For Speck48/X,
α = 8, β = 3.

A.2 Key Schedule Inversion
The master key of h-round Speckmn/2n can be directly recovered once the last m subkeys
are recovered. This is based on the key schedule inversion algorithm [Din14].

Given a sequence of m round key words skj−m, skj−m+1, skj−m+2, skj−m+3 for any
j ∈ {m, · · · , h}, we can efficiently invert the key schedule and calculate the master key.

First, we can determine skj−m−1 using the following key schedule equalities

`j+m−3 = skj−1 ⊕ (skj−2 ≪ β) (43)

`j−2 = ((`j+m−3 ⊕ (j − 2))� skj−2)≪ α (44)

skj−m−1 = (skj−m ⊕ `j−2)≫ β (45)

Next, given skj−m−1, · · · , skj−2, we iteratively continue the inversion of the key schedule
and derive the master key.
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