
Rank Estimation with Bounded Error via
Exponential Sampling

Liron David
School of Electrical Engineering

Tel Aviv University
Ramat Aviv, 69978, Israel

lirondavid@gmail.com

Avishai Wool
School of Electrical Engineering

Tel Aviv University
Ramat Aviv, 69978, Israel

yash@eng.tau.ac.il

Abstract—Efficient rank estimation algorithms are of prime
interest in security evaluation against side-channel attacks
(SCA) and recently also for password strength estimators. In a
side channel setting it allows estimating the remaining security
after an attack has been performed, quantified as the time
complexity and the memory consumption required to brute
force the key given the leakages as probability distributions over
d subkeys (usually key bytes). In password strength estimators
the rank estimation allows estimating how many attempts a
password cracker would need until it finds a given password.

We propose ESrank, the first rank estimation algorithm with
a bounded error ratio: its error ratio is bounded by γ2d−2,
for any probability distribution, where d is the number of
subkey dimensions and γ > 1 can be chosen according to
the desired accuracy. ESrank is also the first rank estimation
algorithm that enjoys provable poly-logarithmic time- and
space-complexity. Our main idea is to use exponential sampling
to drastically reduce the algorithm’s complexity.

We evaluated the performance of ESrank on real SCA and
password strength corpora. We show ESrank gives excellent
rank estimation with roughly a 1-bit margin between lower
and upper bounds in less than 1 second on the SCA corpus
and 4 seconds preprocessing time and 7µsec lookup time on
the password strength corpus.

Index Terms—Side channel, Password Strength Estimation,
Rank Estimation, Key Enumeration1

I. Introduction
A. Background

Side-channel attacks (SCA) represent a serious threat
to the security of cryptographic hardware products. As
such, they reveal the secret key of a cryptosystem based on
leakage information gained from physical implementation
of the cryptosystem on different devices. Information
provided by sources such as timing [17], power consump-
tion [16], electromagnetic emulation [28], electromagnetic
radiation [2][13] and other sources, can be exploited by
SCA to break cryptosystems.

A security evaluation of a cryptographic device should
determine whether an implementation is secure against
such an attack. To do so, the evaluator needs to determine
how much time, what kind of computing power and how

1A preliminary version of this paper appeared in the proceeding
of the CT-RSA 2019 conference.

much storage a malicious attacker would need to recover
the key given the side-channel leakages. The leakage of
cryptographic implementations is highly device-specific,
therefore the usual strategy for an evaluation laboratory
is to launch a set of popular attacks, and to determine
whether the adversary can break the implementation (i.e.,
recover the key) using “reasonable” efforts.

Most of the attacks that have been published in the
literature are based on a “divide-and-conquer” strategy.
In the first “divide” part, the cryptanalyst recovers multi-
dimensional information about different parts of the key,
usually called subkeys (e.g., each of the d = 16 AES
key bytes can be a subkey). In the “conquer” part the
cryptanalyst combines the information all together in an
efficient way via key enumeration [24], [30], [8]. In the
attacks we consider in this paper, the information that the
SCA provides for each subkey is a probability distribution
over the N candidate values for that subkey, and the
SCA probability of a full key is the product of the SCA
probabilities of its d subkeys.

A security evaluator knows the secret key and aims
to estimate the number of decryption attempts the at-
tacker needs to do before he reaches to the correct
key, assuming the attacker uses the SCA’s probability
distribution. Clearly enumerating the keys in the optimal
SCA-predicted order is the best strategy the evaluator
can follow. However, this is limited by the computational
power of the evaluator. This is a worrying situation
because it is hard to decide whether an implementation is
“practically secure”. For example, one could enumerate
the 250 first keys for an AES implementation (in the
optimal order) without finding the correct key, and then
conclude that the implementation is practically secure
because the attacker needs to enumerate beyond 250

number of keys. But, this does not provide any hint
whether the concrete security level is 251 or 2120. This
makes a significant difference in practice, especially in
view of the possibility of improved measurement setups,
signal processing, information extraction, etc., that should
be taken into account for any physical security evaluation,
e.g., via larger security margins.

1

In addition to the side channel scenario, rank estimation
is useful for password strength estimation. Text passwords
are currently the most popular authentication method
and are still in widespread use. Unfortunately, users often
choose predictable and easy passwords, enabling password
guessing attacks. Password strength estimators are used
to help users avoid picking weak passwords. The most
precise definition of password‘s strength is the number
of attempts that an attacker would need in order to
guess it [10]. Recently it was shown in [9] that password
strength estimation can be cast in the framework of the
rank estimation with d “dimension” such as prefix, suffix,
shift-pattern and more.

Formally, we define the rank estimation [31] problem
as follows: Given d independent subkey spaces each of
size N with their corresponding probability distributions
P1, ..., Pd such that Pi is sorted in decreasing order of
probabilities, and given a key k∗ indexed by (k1, ..., kd),
let p∗ = P1(k1) ·P2(k2) · ... ·Pd(kd) be the probability of k∗
to be the correct key. Estimate the number of full keys with
probability higher than p∗, when the probability of a full
key is defined as the product of its subkey’s probabilities.

In other words, the evaluator would like to estimate k∗’s
rank: the position of the key k∗ in the sorted list of Nd pos-
sible keys when the list is sorted in decreasing probability
order, from the most likely key to the least. If the number
of dimensions d, or k∗’s rank, are small, one can easily
compute the rank of the correct key by a straightforward
key enumeration. However, for a key with a high rank r,
any optimal-order key enumeration requires Ω(r) time —
which may be prohibitive, and the currently-best optimal-
order key enumeration algorithm [30] requires Ω(Nd/2)
space, which again may be prohibitive. Hence developing
fast and low-memory algorithms to estimate the rank,
without enumeration, is of great interest.

B. Related work
The best key enumeration algorithm so far, in terms

of optimal-order, was presented by Veyrat-Charvillon,
Gérard, Renauld and Standaert in [30]. However, its worst
case space complexity is Ω(Nd/2) when d is the number
of subkey dimensions and N is the number of candidates
per subkey - and its space complexity is Ω(r) when
enumerating up to a key at rank r ≤ Nd/2. Thus its
space complexity becomes a bottleneck on real computers
with bounded RAM in realistic SCA attacks.

Since then several near-optimal key enumeration were
proposed, all assuming independent per-dimension prob-
ability distributions [6], [23], [27], [33], [8], [20], [18],
[19], [22], [29]. However, none of these key enumeration
algorithms enumerate the whole key space within a re-
alistic amount of time and with a realistic amount of
computational power: enumerating an exponential key
space will always come at an exponential cost. Hence the
need for efficient and accurate rank estimation for keys
that have a high rank.

The first rank estimation algorithm was proposed by
Veyrat-Charvillon et al. [31]. They suggested to organize
the keys by sorting their subkeys according to the a-
posteriori probabilities provided, and to represent them
as a high-dimensional dataspace. The full key space can
then be partitioned in two volumes: one defined by the key
candidates with probability higher than the correct key,
one defined by the key candidates with probability lower
than the correct key. Using this geometrical representa-
tion, the rank estimation problem can be stated as the one
of finding bounds on these “higher” and “lower” volumes.
It essentially works by carving volumes representing key
candidates on each side of their boundary, progressively
refining the lower and upper bounds on the key rank.
Refining the bounds becomes exponentially difficult at
some point.

A number of works have investigated solutions to
improve upon [31]. In particular, Glowacz et al. [14]
presented a rank estimation algorithm that is based on
a convolution of histograms and allows estimating the
key rank of (even high rank) keys. A comparable result
was developed independently by Bernstein et al. [5]. This
Histogram algorithm is currently the best rank estimation
algorithm we are aware of. The space complexity of this
algorithm is O(dB) where d is the number of dimensions
and B is a design parameter controlling the number of the
histogram bins. However, as we shall see, the Histogram
algorithm’s error ratio is not bounded – it depends on the
probability distributions.

And, since its accuracy depends on the probability
distribution, the desired accuracy cannot be chosen from
advance.

Martin et al. [23] used a score-based rank enumeration,
rather than a probability based rank estimation. They
mapped the rank estimation to a knapsack problem,
which can be simplified and expressed as path counting.
Subsequently, in [21] Martin et al. show that their algo-
rithm [23] is mathematically equivalent to the Histogram
algorithm [14] for a suitable choice of their respective
discretization parameter, thus they can both be equally
accurate. Since the two algorithms are equivalent we
compared our algorithm’s performance only to that of the
Histogram algorithm [14].

Ye et al. investigated an alternative solution based
on a weak Maximum Likelihood (wML) approach [33],
rather than a Maximum Likelihood (ML) one for the
previous examples. They additionally combined this wML
approach with the possibility to approximate the security
of an implementation based on “easier to sample” metrics,
e.g., starting from the subkey Success Rates (SR) rather
than their likelihoods. Later Duc et al. [11] described
a simple alternative to the algorithm of Ye et al. and
provided an “even easier to sample” bound on the subkey
SR, by exploiting their formal connection with a Mutual
Information metric. Recently, Wang at al. [32] presented
a rank estimation for at dependent score lists.

2

Choudary et al. [7] presented a method for estimating
Massey’s guessing entropy (GM) which is the statistical
expectation of the position of the correct key in the sorted
distribution. Their method allows to estimate the GM
within a few bits. However, the actual guessing entropy
(GE), i.e., the rank of the correct key, is sometimes quite
different from the expectation. In contrast, our algorithm
focuses on the real GE.

Poussier et al. [26] compare several solution according
to their maximum or weak maximum likelihood strategy.
Grosso [15] presents a rank estimation with a trade-off
between the efficiency and the tightness that is suitable
for large keys. In addition, using backtracking, a parallel
key enumeration is obtained.

Rank estimation is also useful for password strength
estimations. Recently [9] presented the first method for
estimating the strength of human-chosen text passwords
that is able to tweak the estimation according to each
user’s personal context, without retraining its model of
rank estimation. The idea is to cast the question in the
probabilistic framework. Each password is viewed as a
point in a d-dimensional search space with dimensions
such as the base word, prefix, suffix, capitalization,
l33t pattern etc. The probability distribution of each
dimension is learned separately. This learning process is
based on empirical password frequencies extracted from
leaked password corpora, that are projected onto the
d dimensions. Once the d probability distributions are
learned, the a-priori probability of a given password is
the product of the d probabilities of its sub-passwords.
Using this model, optimal-order password cracking is done
by searching the space in decreasing order of a-priori
password probability, which is analogous to side-channel
key enumeration; likewise, password strength estimation
is analogous to side-channel rank estimation.

C. Contributions
In this paper we propose a simple and effective new rank

estimation method called ESrank, that is fundamentally
different from previous approaches. The ESrank algorithm
is the first rank estimation algorithm that enjoys provable
poly-logarithmic time- and space-complexity, and which
has bounded error ratio of γ2d−2, for any probability
distributions, where d is the number of dimensions and
γ > 1 can be chosen according to the desired accuracy.
Our main idea is to use exponential sampling to drastically
reduce the algorithm’s complexity.

We rigorously analyze its accuracy, time and space com-
plexities. We prove ESrank has a poly-logarithmic time-
and space-complexity: for a design parameter 1 < γ ≤ 2
ESrank has time complexity of O(d2+ϵ(logγ N)2+ϵ) for
0 < ϵ < 1 and space complexity of O(d(logγ N)2), and it
can be driven to any desired level of accuracy (trading off
time and space against accuracy).

We then compared ESrank to the currently-best his-
togram based algorithm. We show that the Histogram’s

accuracy depends on the probability distribution, and that
there exist distributions for which its estimation error is
unbounded.

After rigorously bounding the accuracy, time and space
complexities, we evaluated the performance of ESrank on a
real SCA data corpus and on a password strength corpus,
and compared it to the histogram-based algorithm. We
show that ESrank gives excellent rank estimation (with
roughly a 1-bit margin between lower and upper bounds),
with a performance that is on-par with the Histogram
algorithm: a run-time of under 1 second on a standard
laptop. On the password strength corpus, ESrank achieves
1-bit accuracy with 4 seconds prerocessing time, 7µsec
lookup time. On the same corpus we find that Histogram’s
estimation error cannot be made to vanish for any choice
of parameters.

Our implementation is available as open-source from [3].

II. The ESrank Algorithm for the case d = 2

We start with describing the idea of our algorithm in
case d = 2, then we shall extend this idea for the general
case d ≥ 2.

A. An exact rank estimation for d = 2

Definition 1 (Rank(k∗)): Let d non-increasing subkey
probability distributions Pi for 1 ≤ i ≤ d and the correct
key k∗ = (k1, ..., kd) be given. Let p∗ = P1[k1]·...·Pd[kd] be
the probability of the correct key. Then, define Rank(k∗)
to be the number of keys (x1, ..., xd) s.t. P1[x1]·...·Pd[xd] ≥
p∗.

Note that we require each probability distribution Pi to
be non-increasing (rather than strictly decreasing) is since
it may contain equal probabilities: in fact observing equal-
probability values is extremely common in real corpora.

Definition 2: Let 2 non-increasing subkey probability
distributions P1 and P2, each of size N , the correct key
k∗ = (k1, k2) and an index 1 ≤ i ≤ N be given. Let
p∗ = P1[k1] · P2[k2] be the probability of the correct key.
Then define Hi to be the number of points (i, j) such that
P1[i] · P2[j] ≥ p∗, i.e.,

Hi(k
∗) = |{(i, j)|P1[i] · P2[j] ≥ p∗}|.

The idea of the algorithm is to find Hi(k
∗) for each i.

The rank of the correct key k∗ is the sum of Hi(k
∗) over

1 ≤ i ≤ N , i.e.,

Rank(k∗) =

N∑
i=1

Hi(k
∗).

The pseudo code is described in Algorithm 1. The
correctness of Algorithm 1 stems from the observation
that Hi ≥ Hi+1 for all 1 ≤ i ≤ N − 1. Therefore, to find
Hi+1, j starts from Hi and it is decreased until Hi+1 is
found.

Proposition 1: The running time of Algorithm 1 is Θ(N).
Proof: At the beginning i = 1 and j = N . In each iteration
either i is increased by 1 or j is decreased by 1 until either

3

Algorithm 1 Exact Rank algorithm.
Input: Two non-increasing probability distributions P1, P2

of size N each, the correct key k∗ = (k1, k2) and its
probability p∗ = P1[k1] · P2[k2].

Output: Rank(k∗).
1: i = 1; j = N ; rank = 0
2: while i ≤ N and j ≥ 1 do
3: p = P1[i] · P2[j]
4: if p ≥ p∗ then
5: rank = rank + j {j is Hi(k

∗)}
6: i = i+ 1
7: else
8: j = j − 1
9: end if

10: end while
11: return rank

i = N + 1 or j = 0. Therefore, the number of steps is at
most 2 · N in case both i and j reach their limits, and
is at least N in case only one of them reaches it limit.
Therefore, the running time is Θ(N). □

Algorithm 1 is reminiscent of the Threshold key enu-
meration algorithm of [20].

B. Exponential Sampling with d = 2

To make this algorithm sub-linear, we use exponential
sampling. Intuitively, we sample a set of indices SI and
run Algorithm 1 on the SI × SI grid. On the sampled
indices Algorithm 1 is no longer exact, but we can modify
it to produce lower and upper bounds on Rank(k∗). As
we shall see, if we use exponential sampling, we can bound
the inaccuracy introduced by the sampling.

Given a non-increasing subkey probability distribution
P of size N , the exponential sampling process returns
a sampled probability distribution (SI, SP) of size Ns

where Ns = O(logN). SI contains the sampled indices
and SP contains their corresponding probabilities such
that SP [i] = P [SI[i]] for all i ≤ Ns .

The goal of the exponential sampling is to maintain
an invariant on the ratio between sampled indices. Let
1 < γ ≤ 2 be given and let b be the smallest i such that
i/(i − 1) ≤ γ. The first b sampled indices are the first b
indices of P . The rest of the sampled indices are sampled
from P at powers of γ. Formally,

Definition 3: Given a non-increasing subkey probability
distribution P of size N , the exponential sampling process
returns a sampled probability distribution (SI, SP) of size
Ns such that for all i ≤ Ns − 1:

SI[i] = i if i ≤ b

SI[i]/SI[i− 1] ≤ γ and
SI[i+ 1]/SI[i− 1] > γ otherwise.

(1)

E.g., if γ = 2 then b = 2, and for SI = {1, 2, 4, 8, . . . , N}
invariant (1) holds. The pseudo code of this sampling is

described in Algorithm 2. Note that the indices 1 and N
are always included in SI.

Algorithm 2 Exponential Sampling Process.
Input: A probability distribution P of size N , b, γ.
Output: A sampled probability distribution (SI, SP).

1: for i = 1 to b do
2: SI[i] = i; SP [i] = P [i]
3: end for
4: j = b; i = j + 1; c = j + 1
5: while i < N do
6: if i/j ≤ γ and (i+ 1)/j > γ then
7: SI[c] = i; SP [c] = P [i]
8: c = c+ 1; j = i
9: end if

10: i = i+ 1
11: end while
12: SI[c] = N ; SP [c] = P [N]
13: return (SI, SP)

Lemma 1: If SI is the output of Algorithm 2 then for
any index i ≥ b+ 1 in SI it holds that

SI[i] = ⌊γ · SI[i− 1]⌋.

and
SI[i]− SI[i− 1] = ⌊(γ − 1) · SI[i− 1]⌋.

Proof: According to Algorithm 2, it holds that
SI[i]

SI[i− 1]
≤ γ and SI[i] + 1

SI[i− 1]
> γ.

Therefore,

γ · SI[i− 1]− 1 < SI[i] ≤ γ · SI[i− 1].

Since SI[i] is an integer it holds

SI[i] = ⌊γ · SI[i− 1]⌋.

The difference SI[i]− SI[i− 1] obeys

(γ−1) ·SI[i−1]−1 < SI[i]−SI[i−1] ≤ (γ−1) ·SI[i−1].

The indices of SI are integers, therefore we get

SI[i]− SI[i− 1] = ⌊(γ − 1) · SI[i− 1]⌋.

□
Proposition 2: Let Ns = |SI| be the size the sample

returned by Algorithm 2. Then

b+ logγ(N/b) ≤ Ns < b+ logγ(N/(b− 1)).

Proof: Since b · γNs ≥ N and b · γNs−1 < N .

To calculate the upper and lower bounds of the correct
key k∗ = (k1, k2) given two sampled probability distribu-
tions, we generalize Hi(k

∗) for the sampled case:
Definition 4: Let a sampled probability distribution

(SI, SP1) of size Ns, a probability distribution P2 of
size N , the correct key k∗ = (k1, k2), its probability p∗

4

and an index 1 ≤ i ≤ Ns be given. Then define HS
i

to be the number of points (i, j) s.t. 1 ≤ j ≤ N and
SP1[i] · P2[j] ≥ p∗, i.e.,
HS

i (k
∗) = |{(i, j)|1 ≤ j ≤ N and SP1[i] · P2[j] ≥ p∗}|.

The difference between every two successive indices in
the sampled probability distributions might be bigger than
1, i.e., SI[i+1]−SI[i] > 1 therefore, besides counting HS

i

for each i ≤ Ns we also need to add the number of points
(i′, j) such that SI[i] < i′ < SI[i+1] for each i ≤ Ns − 1.
Recall that Algorithm 2 always includes i = N in SI.

Definition 5: Let a sampled probability distribution
(SI, SP1) of size Ns, a probability distribution P2 of size
N , the correct key k∗ = (k1, k2), its probability p∗ and
an index 1 ≤ i ≤ Ns be given. Then define HS

a,b be the
number of (i, j) s.t. 1 ≤ j ≤ N and SI[a] < i < SI[b] and
SP1[i] · P2[j] ≥ p∗, i.e.,

HS
a,b(k

∗) = |{(i, j)|1 ≤ j ≤ N and SP1[i] · P2[j] ≥ p∗

and SI[a] < i < SI[b]}|.
The idea of Algorithm 3 is to find HS

i (k
∗) for each

i ∈ {1, ..., Ns} and HS
i,i+1(k

∗) for each i ∈ {1, ..., Ns − 1}.
The rank of the correct key k∗ is the following sum:

Rank(k∗) =

Ns∑
i=1

HS
i (k

∗) +

Ns−1∑
i=1

HS
i,i+1(k

∗).

Since we are given sampled distributions, we cannot
calculate the exact values of HS

i (k
∗) and HS

i,i+1(k
∗).

Instead we calculate upper and lower bounds for each
HS

i (k
∗) and HS

i,i+1(k
∗) as illustrated in Figure 1.

Definition 6: Let up(HS
i (k

∗)) be an upper bound of
HS

i (k
∗) and let up(HS

i,i+1(k
∗)) be an upper bound of

HS
i,i+1(k

∗), i.e.,
HS

i (k
∗) ≤ up(HS

i (k
∗))

and
HS

i,i+1(k
∗) ≤ up(HS

i,i+1(k
∗)).

Definition 7: Let low(HS
i (k

∗)) be a lower bound of
HS

i (k
∗) and let low(HS

i,i+1(k
∗)) be a lower bound of

HS
i,i+1(k

∗), i.e.,
HS

i (k
∗) ≥ low(HS

i (k
∗))

and
HS

i,i+1(k
∗) ≥ low(HS

i (k
∗)).

Therefore, it holds
Ns∑
i=1

low(Hi(k
∗)) +

Ns−1∑
i=1

low(Hi,i+1(k
∗)) ≤ Rank(k∗)

≤
Ns∑
i=1

up(Hi(k
∗)) +

Ns−1∑
i=1

up(Hi,i+1(k
∗)).

(2)
Our algorithm is intuitively similar to exponential

searching [4]; note that in our case the parameter γ is
fractional.

Algorithm 3 Calculating Upper and Lower bounds.
Input: Sampled probability distributions SP1, SP2 each

of size Ns, b, the correct key k∗ = (k1, k2) probability
p∗.

Output: Upper and lower bounds on Rank(k∗).
1: i = 1; j = Ns; ub = 0; lb = 0; uPrev = 0
2: while i ≤ Ns and j ≥ 1 do
3: pCurr = SP1[i] · SP2[j]
4: if pCurr ≥ p∗ then
5: u = l = SI[j];
6: ub = ub+ u; lb = lb+ l;
7: if i ≥ b+ 1 then
8: ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1)
9: lb = lb+ l · (SI[i]− SI[i− 1]− 1)

10: end if
11: i = i+ 1; uPrev = u
12: else if j > 1 then
13: pNext = SP1[i] · SP2[j − 1]
14: if pNext < p∗ < pCurr then
15: u = SI[j]− 1; l = SI[j − 1];
16: ub = ub+ u; lb = lb+ l
17: if i ≥ b+ 1 then
18: ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1)
19: lb = lb+ l · (SI[i]− SI[i− 1]− 1)
20: end if
21: i = i+ 1; uPrev = u
22: else
23: j = j − 1
24: end if
25: else
26: j = j − 1
27: end if
28: end while
29: if j < 1 and i ≤ Ns then
30: ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1)
31: end if
32: return (lb, ub)

C. Bounding the Sampled Distributions

Given two probability distributions P1 and P2, each of
size N , we first sample the indices using Algorithm 2.
We get sampled probability distributions (SI, SP1) and
(SI, SP2) each of size Ns when SI is the set of sampled
indices and SP1, SP2 are the corresponding sampled prob-
abilities. Given these sampled probability distributions,
the next step is to calculate an upper bound and a lower
bound for Rank(k∗). This is done in Algorithm 3.

To do this, Algorithm 3 keeps two variables: ub for the
upper bound and lb for the lower bound. At the beginning,
both ub and lb are initialized to 0.

In the algorithms analysis we find it useful to use the
following definition:

Definition 8: Given a key k∗, and given 1 ≤ i ≤ Ns, let
ui be the value of u at iteration i in Algorithm 3 and let

5

Fig. 1. The red bars represent the un-sampled Hi’s, and the black grid represents the sampled indices in SI. For each sampled index
1 ≤ i ≤ Ns the blue circles are upper and lower bounds on HS

i (k∗). The yellow-shaded rectangles represent HS
i,i+1(k

∗) for each b ≤ i ≤ Ns−1,
for two different keys. Note that the yellow-shaded rectangles stop exactly one index before the sampled indices, in both dimensions.

li be the value of l at iteration i in Algorithm 3.
Algorithm 3 starts with i = 1 and j = Ns. It decreases

j until one of the two options happens:
(a) (line 14) We reach the highest j such that

SP1[i] · SP2[j] < p∗ < SP1[i] · SP2[j − 1].

In this case (i, j − 1) ∈ HS
i (k

∗) but (i, j) /∈ HS
i (k

∗),
therefore

SI[j − 1] ≤ HS
i (k

∗) ≤ SI[j]− 1.

Therefore the values of li and ui become

li = SI[j − 1] and ui = SI[j]− 1, (3)

and the running totals ub and lb are updated (line 16).
(b) (line 4) We reach the highest j such that

SP1[i] · SP2[j] ≥ p∗.

In this case we have the exact value of HS
i (k

∗) which is

HS
i (k

∗) = SI[j].

Therefore the values of li and ui become

li = ui = SI[j], (4)

and the running totals ub and lb are updated (line 6).
In the next step, after finding bounds on HS

i , the
algorithm moves to i+1 and finds bounds on HS

i+1. Since
HS

i ≥ HS
i+1 we start from j of the previous iteration i.e.,

j s.t. SI[j − 1] ≤ HS
i ≤ SI[j] and decrease it to get the

corresponding bounds on HS
i+1.

Once i ≥ b+1 (lines 7, 17) the difference SI[i]−SI[i−
1] ≥ 1 therefore HS

i−1,i(k
∗) ≥ 1 and it should be added. To

upper bound this number we multiply the upper bound of
HS

i−1, which is uPrevi = ui−1, by the width of HS
i−1,i(k

∗),
which is (SI[i]−SI[i−1]−1) (lines 8, 17). To lower bound
HS

i−1,i(k
∗) we multiply the lower bound of HS

i , which is
li by the width of HS

i−1,i(k
∗), (lines 9, 18); see Figure 1.

Theorem 1: Let two sampled probability distributions
SP1 and SP2, which are sampled from the probability
distributions P1 and P2 respectively using Algorithm 2
with γ > 1 be given and let b be the smallest i such that
i/(i− 1) ≤ γ. For a key k∗, let ub and lb be the outputs
of Algorithm 3. Then ub/lb ≤ γ2.
Proof: From Equation (2) it holds that

ub =

Ns∑
i=1

up(Hi(k
∗)) +

Ns−1∑
i=1

up(Hi,i+1(k
∗)).

Since

up(HS
i (k

∗)) = ui

and

up(Hi,i+1(k
∗)) = ui · (SI[i+ 1]− SI[i]− 1)

we get

ub =

Ns∑
i=1

ui +

Ns−1∑
i=1

ui · (SI[i+ 1]− SI[i]− 1).

Since SI[i + 1] − SI[i] = 1 for all 1 ≤ i ≤ b − 1, the first
b− 1 elements of the second sum are 0.

ub =

Ns∑
i=1

ui +

Ns−1∑
i=b

ui · (SI[i+ 1]− SI[i])− 1)

b−1∑
i=1

ui +

Ns−1∑
i=b

(
ui + ui · (SI[i+ 1]− SI[i]− 1)

)
+ uNs

b−1∑
i=1

ui +

Ns−1∑
i=b

ui · (SI[i+ 1]− SI[i])) + uNs

6

Separating the b’th term from the second sum we get

ub ≤
(b−1∑

i=1

ui

)
+ ub · (SI[b+ 1]− SI[b]) + uNs

+

Ns−1∑
i=b+1

ui · (SI[i+ 1]− SI[i]).

(5)

Similarly from Equation (2) it holds that

lb =

Ns∑
i=1

low(Hi(k
∗)) +

Ns−1∑
i=1

low(Hi,i+1(k
∗)).

Since
low(HS

i (k
∗)) = li

and
low(Hi,i+1(k

∗)) = li+1 · (SI[i+ 1]− SI[i]− 1)

(Note the shift in indices where the multiplication is by
the lower bound of i+ 1) we get

lb =

Ns∑
i=1

li +

Ns−1∑
i=1

li+1 · (SI[i+ 1]− SI[i]− 1).

Again the first b − 1 elements of the second sum are 0,
therefore

lb =

Ns∑
i=1

li +

Ns−1∑
i=b

li+1 · (SI[i+ 1]− SI[i]− 1).

By shifting index i by 1 in the second sum, we get

lb =

Ns∑
i=1

li +

Ns∑
i=b+1

li · (SI[i]− SI[i− 1]− 1)

=

b∑
i=1

li +

Ns∑
i=b+1

(
li + li · (SI[i]− SI[i− 1]− 1)

)
=

b∑
i=1

li +

Ns∑
i=b+1

li · (SI[i]− SI[i− 1])

≥
b∑

i=1

li +

Ns−1∑
i=b+1

li · (SI[i]− SI[i− 1]).

(6)

In order to show ub/lb ≤ γ2, we prove the following two
Lemmas:

Lemma 2:(∑Ns−1
i=b+1 ui · (SI[i+ 1]− SI[i])

)
(∑Ns−1

i=b+1 li · (SI[i]− SI[i− 1])

) ≤ γ2 (7)

Proof: We shall prove that for all b+ 1 ≤ i ≤ Ns − 1

ui · (SI[i+ 1]− SI[i])/li · (SI[i]− SI[i− 1]) ≤ γ2

and that will prove Equation (7). From Equation (3) and
Equation (4) either li = SI[j − 1], ui = SI[j] − 1 or li =
ui = SI[j], therefore

ui/li ≤ γ,

and we only need to prove

(SI[i+ 1]− SI[i])/(SI[i]− SI[i− 1]) ≤ γ. (8)

From Lemma 1, it holds that

SI[i+ 1]− SI[i] = ⌊(γ − 1) · SI[i]⌋

and
SI[i]− SI[i− 1] = ⌊(γ − 1) · SI[i− 1]⌋

therefore Equation (8) is
SI[i+ 1]− SI[i]

SI[i]− SI[i− 1]
=

⌊(γ − 1) · SI[i]⌋
⌊(γ − 1) · SI[i− 1]⌋

≤ (γ − 1) · SI[i]
⌊(γ − 1) · SI[i− 1]⌋

.

By Lemma 1 Equation (8) is

=
(γ − 1) · ⌊γ · SI[i− 1]⌋
⌊(γ − 1) · SI[i− 1]⌋

=
(γ − 1) · ⌊γ · SI[i− 1]⌋

⌊γ · SI[i− 1]− SI[i− 1]⌋
.

Since SI[i− 1] is an integer it holds

=
(γ − 1) · ⌊γ · SI[i− 1]⌋

⌊γ · SI[i− 1]⌋ − ⌊SI[i− 1]⌋

= γ − 1 +
(γ − 1) · ⌊SI[i− 1]⌋

⌊γ · SI[i− 1]⌋ − ⌊SI[i− 1]⌋

= γ − 1 +
(γ − 1) · SI[i− 1]

⌊γ · SI[i− 1]− SI[i− 1]⌋

= γ − 1 +
(γ − 1) · SI[i− 1]

⌊(γ − 1) · SI[i− 1]⌋
≤ γ.

□
Lemma 3:((∑b−1

i=1 ui

)
+ ub · (SI[b+ 1]− SI[b]) + uNs

)
(∑b

i=1 li

) ≤ γ2. (9)

Proof: We can write Equation 9 in the following way:(∑b−1
i=1 ui

)
+ ub · (SI[b+ 1]− SI[b]) + uNs∑b

i=1 li
=∑b

i=1 ui∑b
i=1 li

+
ub · (SI[b+ 1]− SI[b]− 1) + uNs∑b

i=1 li
.

Since ui/li ≤ γ, Equation (9) is upper bounded by

≤ γ +
ub · (SI[b+ 1]− SI[b]− 1) + uNs∑b

i=1 li
.

By Lemma 1 and since l1 ≥ l2 ≥ ... ≥ lb and ub ≥ uNs
,

we get

≤ γ +
ub · ((γ − 1) · SI[b]− 1) + ub

b · lb
.

Since SI[b] = b and ui/li ≤ γ

≤ γ +
γ · lb · (γ − 1) · b

b · lb
= γ + γ · (γ − 1) = γ2.

□

7

To finish Theorem 1 proof, from Equations (5) and (6)
we get:

ub/lb ≤
(
∑b−1

i=1 ui) + ub · (SI[b+ 1]− SI[b]) + uNs∑b
i=1 li +

∑Ns−1
i=b+1 li

+∑Ns−1
i=b+1 ui · (SI[i+ 1]− SI[i])∑b

i=1 li +
∑Ns−1

i=b+1 li

From Lemma 2 and Lemma 3 we get:

ub/lb ≤
γ2(

∑b
i=1 li) + γ2(

∑Ns−1
i=b+1 li)∑b

i=1 li +
∑Ns−1

i=b+1 li
≤ γ2

□

III. The general case d > 2

Given d > 2 sampled probability distributions

(SI, SP1), ..., (SI, SPd),

and the correct key k∗ = (k1, ..., kd), we now follow the
intuition of the d = 2 case to solve the general case. To
do so, we merge each two sampled distributions into one
joint distribution, sub-sample the joint distributions, and
continue in the same way until we get to a single pair of
sampled distributions. We achieve this via a sequence of
algorithms described below.

A. Merging two sampled distributions into a joint distri-
bution

Given two sampled non-increasing probability distri-
butions (SI, SP1), (SI, SP2), each of size Ns, we wish
to merge them into one non-increasing distribution, and
compute lower and upper bounds on the ranks of the
points. Algorithm 4 implements this task.

First, the algorithm goes over the grid of N2
s points (i, j)

such that 1 ≤ i ≤ Ns and 1 ≤ j ≤ Ns. For each point
(i, j) it calculates the point’s probability SP1[i] · SP2[j].
Then, it sorts these points in decreasing order of their
probabilities.

Given two consecutive points (i1, j1) and (i2, j2) in the
sorted order such that Prob(i1, j1) ≥ Prob(i2, j2), all the
points whose probability is greater than Prob(i1, j1) have
probability greater than Prob(i2, j2), therefore, all the
points in the rank of (i1, j1) are contained in the rank
of (i2, j2). Relying on this observation, if we know the
order of the N2

s points according to their probabilities,
we can bound the accumulative rank of these points while
going over them from the most likely point to the least. In
this way, the upper-bound of the rank of the current point
(ic, jc) is the upper bound of the previous point (ip, jp)
plus the following expressions:

(SI[jp + 1]− SI[jp]) · (SI[ip + 1]− SI[ip]− 1)

+ SI[jp + 1]− SI[jp]− 1

+ 1

= (SI[jp + 1]− SI[jp]) · (SI[ip + 1]− SI[ip]).

(10)

The first term in (10), (SI[jp +1]− SI[jp]) · (SI[ip +1]−
SI[ip] − 1), represents the number of points that might
come after the previous point and before the current point,
which are not on the SI grid. I.e., these are the points
(i, j) s.t.

SI[ip] < i < SI[ip + 1] and SI[jp] ≤ j < SI[jp + 1].

SI[jp + 1] is not included since we haven’t reached that
point yet.

The second term in (10), SI[jp+1]−SI[jp]−1, represents
the number of points that might come after the previous
point and before the current point which are on the SI
grid. I.e., these are the points (i, j) s.t.

i = SI[ip] and SI[jp] < j < SI[jp + 1].

SI[jp] is not included since the point (SI[ip], SI[jp]) is the
previous point and it was already included and SI[jp +1]
is not included since we haven’t reached that point yet.

The last addition in (10) is 1, accounting for the current
point itself.

The resulting expression can be seen in Algorithm 4
(line 13). A similar derivation can be done for the lower
bound (omitted).

Algorithm 4 Calculating the joint probability distribution.
Require: Sampled probability distributions SP1, SP2 each

of size Ns.
Ensure: Joint probability distribution.

1: r = 1
2: for i = 1 to Ns do
3: for j = 1 to Ns do
4: Y (r, 1) = SP1[i] · SP2[j];
5: Y (r, 2) = (i, j);
6: r = r + 1
7: end for
8: end for
9: Y = Sort(Y) in decreasing order of Y (r, 1)

10: ub(1) = 1; lb(1) = 1; p(1) = SP1[1] · SP2[1]
11: for r = 2 to N2

s do
12: (ic, jc) = Y (r, 2); (ip, jp) = Y (r − 1, 2)
13: ub(r) = ub(r− 1) + (SI(jp + 1)− SI(jp)) · (SI(ip +

1)− SI(ip))
14: lb(r) = lb(r − 1) + (SI(jc)− SI(jc − 1)) · (SI(ic)−

SI(ic − 1))
15: p(r) = Y (r, 1)
16: end for
17: return (ub, lb, p)

B. Sampling the joint probability distribution
The output of Algorithm 4 is a distribution over N2

s

elements. We now show that we can sub-sample this
distribution, via exponential sampling, using the same
parameters b and γ used to create the one-dimension
samples. Theorem 2 below shows that a sub-sampling with
the same b and γ always exists.

8

We would like to sample this joint probability distri-
bution using Algorithm 2, using b and γ, except now
instead of the 1-dimensional ranks we sample using the
rank-upper/lower-bounds, See Algorithm 5.

For this, we shall prove in Lemma 5 that the first b
indices of the joint probability distribution are 1, ..., b and
we shall prove in Theorem 2 that the ratio between any
two successive upper ranks is at most γ.

Algorithm 5 Sub-Sampling the joint distribution.
Require: A joint probability distribution (ub, lb, p) of size

N2
s , b, γ

Ensure: Sampled probability distribution (SU, SL, SP)
1: for i = 1 to b do
2: SU [i] = i; SL[i] = i; SP [i] = p[i]
3: end for
4: j = b; i = j + 1; c = j + 1
5: while i < N2

s do
6: if ub[i]/ub[j] ≤ γ and ub[i+ 1]/ub[j] > γ then
7: SU [c] = ub[i]; SL[c] = ul[i]; SP [c] = p[i]
8: c = c+ 1; j = i
9: end if

10: i = i+ 1
11: end while
12: SU [c] = ub[N2

s]; SL[c] = lb[N2
s]; SP [c] = p[N2

s]
13: return (SU, SL, SP)

Lemma 4: For any index i ≥ b+ 1 in SI it holds that
SI[i]− SI[i− 1] ≤ (γ − 1) · SI[i− 1].

Lemma 5: Given two sampled probability distributions
(SI, SP1) and (SI, SP2) that are sampled by Algorithm 2
merged by Algorithm 4. The first b upper ranks in the
upper joint probability distribution are the integers 1, .., b
and the first b lower ranks in the lower joint probability
distribution are the integers 1, .., b.
Proof: According to the sampling process in Algorithm 2
it holds: ∀i ≤ b SI[i] = i. Therefore, the joint probability
contains the indices of (i, j) ∈ {1, ..., b} × {1, ..., b}. Since
the first b points with the highest probabilities are some-
where in the square: {1, ..., b}× {1, ..., b}. The rank of the
first b composed only from points in this square, therefore
for i ≤ b, the upper bound and lower bound of the i’th
element in the joint distribution are equal to each other
and equal to i.

Theorem 2: Given the joint probability
distribution of the sampled probability distributions
(SI, SP1), (SI, SP2), The ratio between any two
consecutive upper bound ranks is at most γ, where
1 < γ ≤ 2.
Proof: Let up(ic, jc) be the upper bound on the rank
of point (ic, jc) as in Algorithm 4. As can be seen in
Algorithm 4 the difference between the upper bound ranks
of any two consecutive points (ic, jc) and (ip, jp) is

up(ic, jc)− up(ip, jp) =

(SI(jp + 1)− SI(jp)) · (SI(ip + 1)− SI(ip)).

By Lemma 4 it holds that
SI(jp + 1)− SI(jp) ≤ SI(jp) · (γ − 1)

SI(ip + 1)− SI(ip) ≤ SI(ip) · (γ − 1).

Therefore,

up(ic, jc)− up(ip, jp) ≤ SI(jp) · SI(ip) · (γ − 1)2

The trivial lower bound of rank(ip, jp) is the multiplica-
tion of its indexes SI(ip) and SI(jp), therefore

up(in, jn)− up(ip, jp) ≤ up(ip, jp) · (γ − 1)2

Since 1 < γ ≤ 2, it holds (γ − 1)2 ≤ (γ − 1), therefore

up(ic, jc)− up(ip, jp) ≤ up(ip, jp) · (γ − 1)

and we get
up(ic, jc) ≤ up(ip, jp) · γ.

□
Theorem 2 shows that in the joint Ns×Ns distribution,

the upper bounds of every two consecutive points (in
sorted order) obey the invariant ub(ic, jc) ≤ γ · ub(ip, jp).

Corollary 1: The sample produced by Algorithm 5 on
an input distribution of size N2

s consists of O(Ns) ranks.
C. The ESrank Algorithm: Putting it all together

Given d > 2 sampled probability distributions

(SI, SP1), ..., (SI, SPd)

, and the correct key k∗ = (k1, ..., kd), we first merge
the d sampled probability distributions into 2 sampled
joint distributions in the following way: we merge the
first two sampled distributions [SI, SP1] and [SI, SP2]
into one sampled [SU12, SL12, SP12]. Next we merge the
results with [SI, SP3] using Algorithm 6 which is the
extended version of Algorithm 4. We continue in the
same way until the first d − 1 sampled distributions are
merged into one sampled joint distribution. Now, we apply
Algorithm 7 which is the extended version of Algorithm 3
on the sampled joint distribution of the first d−1 sampled
distributions [SU1...d, SL1...d, SP1...d] and [SI, SPd] to get
the upper and the lower bound of Rank(k∗). Algorithm 8
shows the complete pseudo-code for ESrank.
D. Theoretical Performance

1) Time complexity: At each level of Algorithm 8 it uses
Algorithm 4 to merge the sampled distributions received
from the previous level. Algorithm 4 goes over N2

s pairs,
calculates their probabilities using Θ(N2

s) time, and sorts
them using Θ(N2

s · logNs) time. Let T (d, γ) be the total
the running time. Then

T (d, γ) ≤
d−2∑
i=1

i(logγ N)2 log (i(logγ N)2)

≤ d2(logγ N)2 log(d logγ N)

= O(d2+ϵ(logγ N)2+ϵ) for 0 < ϵ < 1.

I.e., we see that ESrank has a poly-logarithmic time
complexity (in N).

9

Algorithm 6 Calculating the extended joint probability
distribution
Input: Sampled probability distributions [SI, SP1],

[SU2, SL2, SP2] each of size Ns.
Output: Joint probability distribution.

1: r = 1
2: for i = 1 to Ns do
3: for j = 1 to Ns do
4: Y (r, 1) = SP1[i] · SP2[j]; Y (r, 2) = (i, j)
5: r = r + 1
6: end for
7: end for
8: Y = Sort(Y) in decreasing order of Y (r, 1)
9: ub(1) = 1; lb(1) = 1; p(1) = SP1[1] · SP2[1]

10: for r = 2 to N2
s do

11: (ic, jc) = Y (r, 2); (ip, jp) = Y (r − 1, 2)
12: ub(r) = ub(r−1)+(SU2(jp+1)−SU2(jp)) ·(SI(ip+

1)− SI(ip)
13: lb(r) = lb(r−1)+(SL2(jc)−SL2(jc−1)) · (SI(ic)−

SI(ic − 1)
14: p(r) = Y (r, 1)
15: end for
16: return (ub, lb, p)

2) Accuracy: Assume the correct key is k∗ =
(k1, ..., kd). For a key (ki, ki+1) and (SI, SPi), (SI, SPi+1)
let ki,i+1 be the real rank of (ki, ki+1). At the lowest
level Theorem 1 and Algorithm 3 give that up(ki, ki+1) ≤
γ2ki,i+1. In the next level, each rank in the sampled
joint distribution is multiplied by at most γ2, therefore
each term in the sum that composes up(γ2ki,i+1, ki+2)
is multiplied by at most γ2. Hence up(γ2ki,i+1, ki+2) ≤
γ2up(ki,i+1, ki+2) ≤ γ2γ2ki,i+1,i+2 = γ4ki,i+1,i+2. We
continue in the same way, and get

up(Rank(k∗))/Rank(k∗) ≤
d−1∏
i=1

γ2 = γ2d−2. (11)

Since rank(k∗) might be any value in

[low(Rank(k∗), up(Rank(k∗),]

we get

accuracy(d, γ) = up(Rank(k∗))/low(Rank(k∗)) ≤ γ2d−2.

E.g., for AES-128 with a preprocessing step of merging
the 16 8-bit distributions into d = 8 16-bit distributions
we get 2d− 2 = 14.

3) Space complexity: In the first step we need to
store d distributions of size logγ N from Algorithm 2. In
order to merge each pair of distributions into one, we
need additional memory of (logγ N)2. After merging 2
distributions each of size (logγ N), we get one sampled
distribution of size (logγ N

2) which is 2(logγ N). Since we
don’t need the original pair anymore, we can overwrite
this space of size 2(logγ N) and store the new distribution

Algorithm 7 Calculating Upper and Lower bounds -
Extended version.
Input: Sampled probability distributions [SI, SP1],

[SU2, SL2, SP2] each of size Ns, b, the correct key
k∗ = (k1, k2) probability p∗.

Output: Upper and lower bounds on Rank(k∗).
1: i = 1; j = Ns; ub = 0; lb = 0
2: while i ≤ Ns and j ≥ 1 do
3: pCurr = SP1[i] · SP2[j]
4: if pCurr ≥ p∗ then
5: u = SU2[j]; l = SL2[j]
6: ub = ub+ u; lb = lb+ l
7: if i ≥ b+ 1 then
8: ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1)
9: lb = lb+ l · (SI[i]− SI[i− 1]− 1)

10: end if
11: i = i+ 1; uPrev = u
12: else if j > 1 then
13: pNext = SP1[i] · SP2[j − 1]
14: if pNext < p∗ < pCurr then
15: u = SU2[j]− 1; l = SL2[j − 1]
16: ub = ub+ u; lb = lb+ l
17: if i ≥ b+ 1 then
18: ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1)
19: lb = lb+ l · (SI[i]− SI[i− 1]− 1)
20: end if
21: i = i+ 1; uPrev = u
22: else
23: j = j − 1
24: end if
25: else
26: j = j − 1
27: end if
28: end while
29: if j < 1 and i ≤ Ns then
30: ub = ub+ uPrev · (SI[i]− SI[i− 1]− 1)
31: end if
32: return (lb, ub)

into it. Therefore, the sampled joint distribution of size
2(logγ N) overwrites the two distributions each of size
(logγ N). In the next step, we merge two distributions, one
of size 2 logγ N and one of size logγ N , therefore we need
additional space of 2(logγ N)2. Again, the new sampled
joint distribution of size 3 logγ N overwrites the two
distributions of size logγ N and 2 logγ N . In the last step,
we need to merge 2 distributions, one of size (d−2) logγ N
and one of size logγ N , therefore the maximum additional
space we need is (d− 2)(logγ N)2. In total we get

space(d, γ) = d logγ N+(d−2)(logγ N)2 = O(d(logγ N)2).

E. How to select the parameter Gamma
One of the significant advantageous of our ESrank

algorithm is that the error is bounded and it can be tuned

10

Algorithm 8 ESrank: Calculating the upper and lower
bounds for d > 2.
Input: The probability distributions P1, ..., Pd, the correct

key k∗ = (k1, ..., kd) probability p∗, b and γ.
Output: Upper and lower bounds of rank(k∗).

for i = 1 to d do
(SI, SPi) = Alg2(Pi, b, γ) {Sample the input distri-
butions}

end for
(SUc, SLc, SPc) = (SI, SI, SP1)
for i = 2 to d− 1 do
(ubc, lbc, pc) = Alg6((SI, SPi), (SUc, SLc, SPc))
{Merge}
(SUc, SLc, SPc) = Alg5(ubc, lbc, pc, b, γ) {Sub-
Sample}

end for
(ub, lb) = Alg7((SI, SPd), (SUc, SLc, SPc), b, p

∗)
{Calculate bounds on rank}
return (ub, lb)

to the desired accuracy. Therefore, if we want accuracy of
λ, i.e., that the ratio between the the upper bound and the
lower bound in number of bits will be λ, then we should
solve the following equation:

γ2d−2 = λ.

This leads us to the desired γ:

γ = λ1/(2d−2). (12)

For example, to get 1-bit accuracy we need to use λ = 2,
and if d = 5 then γ is 1.09.

IV. The Unbounded Error of the Histogram Algorithm
The currently best rank estimation algorithm is the

Histogram algorithm of [14], [25]. The authors did not
provide a bound on its estimation error: in this section
we demonstrate that its error is in fact unbounded. We
do so by constructing an infinite family of probability
distributions for which the ratio between the Histogram
upper- and lower-bounds on a key’s rank can be arbitrarily
large: effectively the gap between the lower and upper
bounds will be a multiplicative factor of N or more.

To explain our construction we need to briefly review
the Histogram algorithm (see Algorithm 9). The algorithm
receives as input d probability distributions {Pi}di=1. Let

lmin =
d

min
i=1

N
min
j=1

logPi[j]

and define the log-probabilities as

LPi[j] = logPi[j]− lmin.

Notice that the log-probabilities obey LPi[j] ≥ 0 for all
i, j. Let

lmax =
d

max
i=1

N
max
j=1

LPi[j].

For a given number of bins B and for each LPi, define its
corresponding histogram with B equally-sized bins as

Hi = hist(LPi, B, lmax).

Let the bin width be

w = lmax/B.

The Histogram algorithm sequentially executes a convolu-
tion between all the histograms to obtain a final histogram
of dB bins denoted by HF . For a given secret key
k∗ = (k1, ..., kd) it calculates the bin of HF corresponding
to k∗ by

b∗ =
1

w

d∑
i=1

LPi[ki].

Finally, based on HF [b
∗], it returns upper and lower

bounds of the given key’s rank by summing the weight
of the bins in HF either with, or without, the ball of
radius d/2 around b∗.

Algorithm 9 Histogram Algorithm.
Input: The d vectors of log probabilities {LPi}di=1, the

number of bins B, and the secret key indices k∗ =
(k1, ..., kd)

Output: upper and lower bounds on the rank of k∗
1: lmax = max(max(LP0), ...,max(LPd))
2: w = lmax/B
3: h0 = hist(LP0, B, lmax)
4: h1 = hist(LP1, B, lmax)
5: HF = conv(h0, h1) {convolution}
6: for i = 2 to d do
7: hi = hist(LPi, B, lmax)
8: HF = conv(hi,HF)
9: end for

10: b∗ = ⌊ 1
w

∑d
i=1(LPi(ki))⌋

11: bin_lower = min(b∗ + ⌈d/2⌉+ 1, size(HF))
12: bin_upper = max(b∗ − ⌈d/2⌉, 0)
13: upper =

∑size(HF)
i=bin_upper HF [i]

14: lower =
∑size(HF)

i=bin_lower HF [i]
15: return [upper, lower]

As can be seen in Algorithm 9, the accuracy of the
Histogram rank estimation depends on HF [i] for each i ∈
[b∗ − d/2, b∗ + d/2], which means that it depends on the
probability distribution.

Our construction is such that almost all the the prob-
abilities are mapped to the same bin. Intuitively, in the
first dimension, we set the highest probability, P1[1], to be
some value x, and divide the remaining 1− x probability
mass almost equally among the other N−1, so each of the
smaller probabilities has a value of y ≈ (1 − x)/(N − 1)
(within a range of size ϵ). If the range of the probabilities
y ≈ (1 − x)/(N − 1), after converting them to log
probabilities, is smaller than w, then they will be mapped
to the same bin, therefore the histogram of this dimension

11

will have exactly two non-zero bins: one bin with N − 1
elements, and one bin with one element. For all the
other dimensions j ∈ [2, d] we set the probabilities to be
Pj [r] ≈ 1/N , so all the probability mass falls into a single
bin in its dimension’s histogram. Below we work out the
technical constraints on the choice of the values of x and
ϵ as functions of N and B.

For a given B and N , choose x such that:

x ≥
(1− 1

B) · (B+1
B−1)

B

N − 1 + (1− 1
B) · (B+1

B−1)
B

B→∞−−−−→ e2

N − 1 + e2

e.g., if N ≥ 10 we can use x = 1
2 . Let y be:

y =
1− x

N − 1

and let ϵ be
ϵ =

2(1− x)

B(N − 1)(N − 2)
.

This value of ϵ guarantees that the range of the proba-
bilities y ≈ (1− x)/(N − 1), after converting them to log
probabilities, is in fact smaller than w, therefore they will
be mapped to the same bin. Define P as the following
probability distribution of the first dimension:

P = [x, y + ϵ
(N − 2

2

)
, ..., y, ..., y − ϵ

(N − 2

2

)
]

i.e., all the probabilities except for the largest are almost
equal to y, and they span a range of ϵ(N − 2). Clearly P
sums to 1.

We can see that the range of the smallest positively
shifted log probabilities, i.e., LP1[2] - LP1[N] is bounded
by the bin width, i.e., w = LP1[1]/B:

log

[
y + ϵ

(
N−2
2

)
y − ϵ

(
N−2
2

)] ≤ w = log

[(
x

y − ϵ
(
N−2
2

)) 1
B
]

Therefore, as planned, the (N − 1) smallest probabilities
of the first dimension are mapped to the same first bin,
and we get the following histogram:

H1[0] = N − 1,H1[B − 1] = 1,H1[i] = 0 for i ∈ [1, B − 2]

For dimension j ∈ [2, d] the histogram is

Hj [a] = N,Hj [i] = 0 for i ̸= a

where a is the corresponding bin of the probability 1/N .
After all d− 1 convolutions we get the following HF :

HF [(d−1)·a] = (N−1)Nd−1,HF [(d−1)·a+(B−1)] = Nd−1

HF [i] = 0 for all other indexes i.

For the (N − 1)Nd−1 keys k∗ = (k1, ..., kd) s.t k1 ̸= 1,
the Histogram algorithm error ratio is

upper

lower
=

Nd

Nd−1
= N

and for the Nd−1 keys k∗ = (k1, ..., kd) s.t. k1 = 1, the
Histogram algorithm error ratio is not defined since the

lower bound is 0 and the upper bound is Nd−1. I.e.,
the error is unbounded/undefined for any user-selected
parameter B.

We conclude that since Histogram depends on the prob-
ability distribution, there are cases in which its accuracy
is poor.

In contrast, ESrank has a bounded error which does
not depend on the probability distribution or on N . As
shown by equation (11), the error ratio is always bounded
by γ2d−2 for any d probability distributions, and γ can be
chosen to achieve the desired accuracy, for any probability
distribution.

V. Empirical Evaluation
We evaluated the performance of the ESrank algorithm

through an extensive simulation study. We compared our
algorithm to the currently best rank estimation algorithm:
the Histogram algorithm of [14]. We implemented both in
Matlab. We published our ESrank Matlab code in GitHub
[3]. We ran both algorithms on a 2.80GHz i7 PC with
8GB RAM running Microsoft Windows 7, 64bit. The later
experiments, with the password strength corpus, were run
on the same computer after its RAM was increased to
32GB.

For the performance evaluation we used two different
types of data: data from a side-channel attack [12] and
data from a password strength estimator [9].
A. Side channel attack corpus

Within this data corpus there are 611 probability
distribution sets gathered from a specific SCA. The SCA
of [12] was against AES [1] with 128-bits keys running
on an embedded processor with an unstable clock. Each
set represents a particular setting of the SCA: number
of traces used, whether the clock was jittered, and the
values of tunable attack parameters. The attack grouped
the key bits into 16 8-bit subkeys, and hence its output
probability distributions are over these byte values. Each
set in the corpus consists of the correct secret key and 16
distributions, one per subkey. The distributions are sorted
in non-increasing order of probability, each of length 28.
We used the same technique suggested in [14]: merge the
d = 16 probability lists of size N = 28 into d = 8 lists
of size N = 216. We measured the upper bound, lower
bound, time and space for each trace using ESrank and
the Histogram rank estimation.

1) Bound Tightness: Figure 2 shows that the analytical
performance of equation (11) indeed agrees with the
empirical results. For different values of γ we get accuracy
which corresponds to at most γ14: e.g., when γ = 1.055
Figure 2 shows a margin of at most 1 bit. We can see
that as γ becomes closer to 1, the accuracy becomes
closer to 0. As we expected, the maximum gap between
the upper bound and the lower bound happens for ranks
around 100 − 120 since the difference between any two
successive indices in the sampled set becomes greater when
the indices become greater.

12

Fig. 2. The accuracy (log2 of the ratio between the upper- and lower-
bounds) for the ESrank algorithm as a function of log2(Rank(k∗))
for different parameter settings: γ = 1.055 (blue), γ = 1.045 (red),
γ = 1.035 (gray).

Time Space Accuracy < 1 bit
(Seconds) (MB) (%)

γ = 1.035 0.603 5.01 100
γ = 1.045 0.356 3.06 100
γ = 1.055 0.231 2.07 100
B = 55K 0.757 3.52 100
B = 45K 0.524 2.88 100
B = 35K 0.307 2.24 100

TABLE I
Performance summary of the ESrank and Histogram algorithms in

the side-channel corpus. The Accuracy column indicates the
percentage of traces for which the difference between the upper-

and lower-bounds of the estimated ranks was below 1 bit.

2) Time and Space Analysis: Table I shows the time,
the space and the percentage of the traces for which
the accuracy is better than 1 bit, for ESrank with γ =
1.035, 1.045, 1.055 and for Histogram [14] with B =55,000,
45,000, 35,000. As we can see, the two algorithms, using
the described parameters - all take less than 0.8 seconds
and use under 5.5 MB of memory. In a practical sense
ESrank is on-par with the Histogram algorithm: both
exhibit a run-time of under 1 second using less than 5.5
MB, to get a 1-bit margin of uncertainty in the rank for
all ranks up to 2128 on this corpus.

B. Password strength estimator corpus

In this corpus there are 5 probability distributions,
each representing one dimension in the password strength
estimator of [9]. The password strength estimator receives
as an input a password probability. Based on the five
probability lists, it returns the rank of the received
password (see Table II). Each one of the five probability
distributions is sorted in decreasing order.

Note that this corpus is qualitatively different from the
SCA corpus: the dimension lengths are very skewed, with
the baseword dimension being 5 orders of magnitude larger
than the l33t dimension. Furthermore, the dimensions
have many “ties”: e.g., in the baseword dimension there are
999,533 words with probability of exactly 5.521·10−10. The
equal-probability values make the distributions “lumpy”

dimension length
1 prefix 7,136,112
2 base word 221,271,911
3 suffix 10,933,957
4 capitalization 239,626
5 l33t 2,704

TABLE II
Password strength estimator of [9] dimension.

Fig. 3. The accuracy (log2 of the ratio between the upper- and lower-
bounds) for the ESrank algorithm as a function of log2(Rank(k∗))
for different parameter settings: γ = 1.025 (green), γ = 1.09 (blue)
and the Histogram algorithm as a function of log2(Rank(k∗)) for
different parameter settings: B = 10K (grey), B = 50K (orange)
and B = 100K (black). The grey and orange symbols are mostly
obscured by the black B = 100K symbols .

with long “plateaux” sections, and as we shall see, such
distributions stress rank estimation algorithms.

Since only the last step of ESrank depends on the input
password probability and since the password strength es-
timator always uses ESrank with the same five probability
distributions, we can divide the algorithm into two steps: a
preprocessing step and a lookup step. The preprocessing
is executed only once, and the lookup step is executed
for any input password probability. The preprocessing
step includes the merge steps till we get the two last
merged sampled probability distributions. The lookup step
includes the calculation of the upper and the lower bounds
of the received password probability based on the two
probability lists.

For comparison, we adapted the Histogram algorithm to
work with dimensions of different lengths. We also divided
the Histogram rank estimation into a preprocessing step
and a lookup step. The preprocessing step includes the
convolutions to get the final histogram and also includes
the calculation of an accumulated sum histogram. Then,
in lookup step, given a password, the correct bin index
b∗ is calculated and the corresponding lower and upper
bounds are returned.

We went over the probabilities of the possible passwords
in the volume and for each password we calculated the
preprocessing time, the lookup time, the preprocessing
space, the lookup space, the accuracy (number of bits
of upper/lower) using the ESrank and the Histogram
algorithms.

Figure 3 shows the accuracy of both algorithms with

13

preprocessing Time Lookup Time preprocessing Space Lookup Space Accuracy
(Seconds) (µSeconds) (MB) (MB) (bits)

γ = 1.025 4.4473 25.032 7.088 0.024 0.147
γ = 1.09 4.1621 9.515 0.678 0.007 0.547
γ = 1.15 4.1271 7.104 0.275 0.044 0.870
B = 100K 3.0691 0.273 4 4 1.215
B = 50K 3.1494 0.346 2 2 1.216
B = 10K 2.8072 0.399 0.4 0.4 1.263

TABLE III
Performance summary of the ESrank and Histogram algorithms in the password corpus.

different setting. For this corpus with d = 5, to obtain an
accuracy of 1-bit, equation (11) requires

γ2d−2 = γ8 ≤ 2

so γ ≤ 1.09. As can be seen in the figure, γ = 1.09
gives accuracy noticeable better than 1 bit. The curves
in Figures 3 show the same pattern we observed on the
SCA corpus in Figure 2: the best accuracy is achieved for
the lowest- and highest-ranks and the poorest accuracy,
closest to the bound γ2d−2, occurs near the high ranks.
We also see that decreasing γ to γ = 1.025 improves
the accuracy for all ranks. The double “trail” of accuracy
levels for ranks up to 75 bits is due to the fact that the
distributions are “lumpy” with many ties. All the k∗’s
whose value ki has the same probability behave equally for
this dimension - so we can observe a “trail” for passwords
for which this occurs and another trail when it does not.

Figure 3 also shows the accuracy of the Histogram
algorithm, for 3 choices of B. First, the figure shows
that the worst-case error is relatively high (1.2 bits).
But more importantly, the figure also shows that poor
accuracy which does not vanish can be observed for the
lowest ranks, and also for ranks around 230, 250, 275, 290,
again due to the many ties in the distributions. While
the empirical accuracy is not as catastrophic as in the
extreme distribution constructed in Section IV, Figure 3
does demonstrate that increasing B does not guarantee an
improved accuracy. This is in contrast with ESrank that
enjoys a bounded error and whose accuracy improves with
smaller gamma.

In Table III we can see the preprocessing time, the
preprocessing space, the lookup time, the lookup space
and the accuracy of the ESrank and the histogram in
different parameters. As can be seen, the ESrank is on-
par with the Histogram algorithm in terms of time and
space, however, we can see that the maximum error in
the Histogram is stable at 1.2 bits and is not significantly
changed with larger number of bins B.

VI. Conclusion

In this paper we proposed a simple and effective
new rank estimation method called ESrank. It is the
first rank estimation algorithm that enjoys provable
poly-logarithmic time- and space-complexity, which has

bounded error ratio of γ2d−2, for any probability distri-
butions, where d is the number of dimensions and γ can
be chosen according to the desired accuracy.

Our main idea is to use exponential sampling to
drastically reduce the algorithm’s complexity. We have
rigorously analyzed its accuracy, and its time and space
complexities. We proved ESrank has a poly-logarithmic
time- and space-complexity, and it can be driven to any
desired level of accuracy (trading off time and space
against accuracy).

We then compared ESrank to the currently-best his-
togram based algorithm. We show that the Histogram’s
accuracy depends on the probability distribution, and that
these exist distributions for which its estimation error is
unbounded.

After rigorously bounding the accuracy, time and space
complexities, we evaluated the performance of ESrank on a
real SCA data corpus and on a password strength corpus,
and compared it to the histogram-based algorithm. We
show that ESrank gives excellent rank estimation (with
roughly a 1-bit margin between lower and upper bounds),
with a performance that is on-par with the Histogram
algorithm. On the password strength corpus we find that
Histogram’s estimation error cannot be made to vanish for
any choice of number of Histogram bins. Hence ESrank is
an important and useful addition to the SCA evaluator’s
toolbox.

References

[1] FIPS PUB 197, advanced encryption standard (AES), 2001.
U.S. Department of Commerce/National Institute of Standards
and Technology (NIST).

[2] Agrawal, D., Archambeault, B., Rao, J., and Rohatgi, P. The
EM side-channel(s). In Cryptographic Hardware and Embedded
Systems-CHES 2002. 2003, pp. 29–45.

[3] Anonymous. ESrank Matlab implementation, 2019.
[4] Bentley, J. L., and Yao, A. C.-C. An almost optimal algorithm

for unbounded searching. Information processing letters 5, 3
(1976), 82–87.

[5] Bernstein, D. J., Lange, T., and van Vredendaal, C. Tighter,
faster, simpler side-channel security evaluations beyond com-
puting power. IACR Cryptology ePrint Archive 2015 (2015),
221.

[6] Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., and
Witteman, M. Fast and memory-efficient key recovery in side-
channel attacks. In Selected Areas in Cryptography (SAC)
(2015).

14

[7] Choudary, M. O., and Popescu, P. Back to massey: Impressively
fast, scalable and tight security evaluation tools. In Interna-
tional Conference on Cryptographic Hardware and Embedded
Systems (2017), Springer, pp. 367–386.

[8] David, L., and Wool, A. A bounded-space near-optimal key
enumeration algorithm for multi-subkey side-channel attacks.
In Proc. RSA Conference Cryptographers’ Track (CT-RSA’17),
LNCS 10159 (San Francisco, Feb. 2017), Springer Verlag,
pp. 311–327.

[9] David, L., and Wool, A. Online password
guessability via multi-dimensional rank estimation.
https://arxiv.org/abs/1912.02551.

[10] Dell’Amico, M., and Filippone, M. Monte carlo strength
evaluation: Fast and reliable password checking. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 158–169.

[11] Duc, A., Faust, S., and Standaert, F.-X. Making masking
security proofs concrete. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques
(2015), Springer, pp. 401–429.

[12] Fledel, D., and Wool, A. Sliding-window correlation attacks
against encryption devices with an unstable clock. In Proc. 25th
Conference on Selected Areas in Cryptography (SAC) (Calgary,
Aug. 2018).

[13] Gandolfi, K., Mourtel, C., and Olivier, F. Electromagnetic
analysis: Concrete results. In Cryptographic Hardware and
Embedded Systems—CHES 2001 (2001), Springer, pp. 251–261.

[14] Glowacz, C., Grosso, V., Poussier, R., Schueth, J., and Stan-
daert, F.-X. Simpler and more efficient rank estimation for
side-channel security assessment. In Fast Software Encryption
(2015), pp. 117–129.

[15] Grosso, V. Scalable key rank estimation (and key enumeration)
algorithm for large keys. In International Conference on Smart
Card Research and Advanced Applications (2018), Springer,
pp. 80–94.

[16] Kocher, P., Jaffe, J., and Jun, B. Differential power analysis.
In Advances in Cryptology—CRYPTO’99 (1999), Springer,
pp. 388–397.

[17] Kocher, P. C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Advances in
Cryptology—CRYPTO’96 (1996), pp. 104–113.

[18] Li, Y., Meng, X., Wang, S., and Wang, J. Weighted key
enumeration for em-based side-channel attacks. In 2018 IEEE
International Symposium on Electromagnetic Compatibility
and 2018 IEEE Asia-Pacific Symposium on Electromagnetic
Compatibility (EMC/APEMC) (2018), IEEE, pp. 749–752.

[19] Li, Y., Wang, S., Wang, Z., and Wang, J. A strict key
enumeration algorithm for dependent score lists of side-channel
attacks. In International Conference on Smart Card Research
and Advanced Applications (2017), Springer, pp. 51–69.

[20] Longo, J., Martin, D. P., Mather, L., Oswald, E., Sach, B.,
and Stam, M. How low can you go? using side-channel data
to enhance brute-force key recovery. IACR Cryptology ePrint
Archive 2016 (2016), 609.

[21] Martin, D. P., Mather, L., and Oswald, E. Two sides of the same
coin: counting and enumerating keys post side-channel attacks
revisited. In Cryptographers’ Track at the RSA Conference
(2018), Springer, pp. 394–412.

[22] Martin, D. P., Mather, L., Oswald, E., and Stam, M. Char-
acterisation and estimation of the key rank distribution in the
context of side channel evaluations. In International Conference
on the Theory and Application of Cryptology and Information
Security (2016), Springer, pp. 548–572.

[23] Martin, D. P., O’Connell, J. F., Oswald, E., and Stam, M.
Counting keys in parallel after a side channel attack. In
Advances in Cryptology–ASIACRYPT 2015. Springer, 2015,
pp. 313–337.

[24] Pan, J., Van Woudenberg, J. G., Den Hartog, J. I., and
Witteman, M. F. Improving dpa by peak distribution analysis.
In International Workshop on Selected Areas in Cryptography
(2010), Springer, pp. 241–261.

[25] Poussier, R. Key Enumeration, Rank Estimation and Horizontal
Side-Channel Attacks. PhD thesis, ICTEAM Institute, 2017.

[26] Poussier, R., Grosso, V., and Standaert, F.-X. Comparing
approaches to rank estimation for side-channel security evalua-
tions. In International Conference on Smart Card Research and
Advanced Applications (CARDIS) (2015), Springer, pp. 125–
142.

[27] Poussier, R., Standaert, F.-X., and Grosso, V. Simple key
enumeration (and rank estimation) using histograms: an inte-
grated approach. In Proc. 18th Cryptographic Hardware and
Embedded Systems–CHES 2016. Springer, 2016, pp. 61–81.

[28] Quisquater, J.-J., and Samyde, D. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. In
Smart Card Programming and Security. Springer, 2001, pp. 200–
210.

[29] Shepherd, D. Quantum key search with side channel advice. In
Selected Areas in Cryptography–SAC 2017: 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised
Selected Papers (2018), vol. 10719, Springer, p. 407.

[30] Veyrat-Charvillon, N., Gérard, B., Renauld, M., and Standaert,
F.-X. An optimal key enumeration algorithm and its application
to side-channel attacks. In International Conference on Selected
Areas in Cryptography (2012), Springer, pp. 390–406.

[31] Veyrat-Charvillon, N., Gérard, B., and Standaert, F.-X. Se-
curity evaluations beyond computing power. In Advances in
Cryptology–EUROCRYPT 2013. Springer, 2013, pp. 126–141.

[32] Wang, S., Li, Y., and Wang, J. A new key rank estimation
method to investigate dependent key lists of side channel
attacks. In 2017 Asian Hardware Oriented Security and Trust
Symposium (AsianHOST) (2017), IEEE, pp. 19–24.

[33] Ye, X., Eisenbarth, T., and Martin, W. Bounded, yet sufficient?
how to determine whether limited side channel information
enables key recovery. In Smart Card Research and Advanced
Applications (CARDIS). 2014, pp. 215–232.

15

