
MPCCache: Privacy-Preserving Multi-Party Cooperative

Cache Sharing at the Edge

Duong Tung Nguyen∗ Ni Trieu∗

March 10, 2021

Abstract

Edge computing and caching have emerged as key technologies in the future communication
network to enhance the user experience, reduce backhaul traffic, and enable various Internet of
Things applications. Different from conventional resources like CPU and memory that can be
utilized by only one party at a time, a cached data item, which can be considered as a public
good, can serve multiple parties simultaneously. Therefore, instead of independent caching, it
is beneficial for the parties (e.g., Telcos) to cooperate and proactively store their common items
in a shared cache that can be accessed by all the parties at the same time.

In this work, we present MPCCache, a novel privacy-preserving Multi-Party Cooperative
Cache sharing framework, which allows multiple network operators to determine a set of com-
mon data items with the highest access frequencies to be stored in their capacity-limited shared
cache while guaranteeing the privacy of their individual datasets. The technical core of our
MPCCache is a new construction that allows multiple parties to compute a specific function on
the intersection set of their datasets, without revealing the intersection itself to any party.

We evaluate our protocols to demonstrate their practicality and show that MPCCache scales
well to large datasets and achieves a few hundred times faster compared to a baseline scheme
that optimally combines existing MPC protocols.

1 Introduction

The explosive growth of data traffic due to the proliferation of wireless devices and bandwidth-
hungry applications such as video streaming, mobile gaming, and social networking leads to an
increasing capacity demand across wireless networks to enable scalable wireless access with high
quality of service (QoS). This trend will likely continue for the near future due to the emergence of
new applications like augmented/virtual reality, multi-view content, 4K/8K UHD video, hologram,
and tactile Internet [ETS19]. Thus, it is imperative for mobile operators to develop cost-effective
solutions to meet the soaring traffic demand and diverse requirements of various services in the
next generation communication network.

Enabled by the drastic reduction in data storage cost, edge caching has appeared as one of the
most promising technologies to tackle the aforementioned challenges in wireless networks [BBD14].
In practice, many users in the same service area may request similar content such as highly-rated
Netflix movies, viral YouTube videos, breaking news, mobile operating system and application
updates, maps, and weather information. Additionally, the majority of user requests are associated

∗Arizona State University, {duongnt,nitrieu}@asu.edu

1

(a) Current Model. (b) Edge Caching Model.

Figure 1: The current caching model and the new edge caching model. In the current model, caches are
located in public clouds, CDNs, and mobile core, which are typically hundreds to thousands of miles from
end-users. In edge caching, caches are placed in the network edge (e.g., at base stations, mini DCs, edge
clouds) in the proximity of end-users.

with a small amount of popular content. Hence, by proactively caching popular content at the
network edge (e.g., at base stations, telecom central offices, edge clouds) in advance during off-peak
times, a portion of requests during peak hours can be served locally right at the edge instead of going
all the way through the mobile core and the Internet to reach the origin servers. Therefore, the new
edge caching paradigm can significantly reduce duplicate data transmission, alleviate the backhaul
capacity requirement, mitigate backbone network congestion, increase network throughput, and
improve user experience [ETS19, BBD14, 20117, YHA19].

1.1 Motivation

Figure 1a presents the existing caching system where caches are located in public clouds, Content
Delivery Networks (CDN), and/or mobile core data centers (DCs). When a user requests a content
item (e.g., a YouTube video), her request will first go to the core DC of a telecom operator (Telco),
which is usually hundreds of kilometers away from the user. If the content is available in the core,
the request can be processed directly there. Otherwise, a cache miss occurs, and then the request
can be served from a CDN such as the Google Global CDN, and Limelight. If the content is not
stored in the CDNs, the request will be routed to the origin servers of the Over-the-Top (OTT)
content provider (e.g., YouTube servers, Netflix servers). Currently, cooperative caching among
Telcos is not very beneficial because caches are typically placed very far from mobile subscribers.
Furthermore, core DCs are normally very large and can store a huge amount of content.

To create new revenue streams and reduce network operation costs, some network operators are
also deploying their own mobile CDN within the IP backbone inside their network. Indeed, edge
caches can penetrate even deeper into the telecom networks in proximity of the end-users as shown
in Figure 1b. However, different from the core with massive capacity, edge nodes and edge caches
are resource-constrained. Furthermore, in practice, users of different Telcos (e.g., AT&T, Verizon),
especially users in the same geographical area, usually have very similar content access patterns and
access many common files. Thus, instead of independent deployment and management of separate
edge caching systems, it can be more beneficial if the Telcos cooperatively store highly-accessed
common files in a shared cache, which will drastically reduce content duplication and alleviate the
edge cache deployment costs (investment in caching facilities) for the operators.

Additionally, the emerging edge computing paradigm further creates strong incentives for op-
erators to cooperate and pool some of their compute and storage resources at the edge. They
can significantly benefit from caching common content items in a shared caching facility. With
edge caching, the advantages brought by cooperation becomes clear. Each operator can maintain a

2

private cache and share a shared cache with others. It is worth noting that, besides media content
such as text and video, edge caches can host various different types of files such as an iOS/Android
mobile app update, mobile apps (e.g., Google Maps, Zoom), software programs (e.g., Overleaf,
Jupyter), virtual desktop, and databases of numerous applications. Indeed, many of these files are
commonly used by users of different operators, which reinforces the motivation of the multi-party
edge caching problem.

Despite the benefits of edge caching have been studied extensively in the previous literature
along with many real-world deployments [BBD14, 20117, YHA19], most of the existing works on
cooperative edge caching consider cooperation among edge caches owned by a single operator only
[BBD14, YHA19, PIT+18, ZLH+18]. The potential of cache cooperation among multiple operators
has been largely ignored in the literature.

Furthermore, the data privacy of individuals Telcos is also important. For example, if TelcoA
knows the access pattern of subscribers of TelcoB, TelcoA can learn characteristics of TelcoB’s
subscribers and design incentive schemes and services to attract these subscribers to switch to
TelcoA (e.g., discount plans for accessing certain content/services). An adversary can also attack
(e.g., DDoS) different sites hosting content accessed by TelcoB to degrade the service quality and
reputation of TelcoB. Additionally, TelcoA can play strategically by declaring different values for
their content items to reduce their caching cost, while potentially increasing TelcoB’s cost. A
privacy-preserving sharing and cooperation mechanism is a compelling option and will encourage
Telcos to participate in the proposed scheme without hesitation. Therefore, it is imperative to study
various mechanisms that provide the benefits of cache sharing without compromising privacy.

1.2 Contribution

In this paper, we aim to tackle the cooperative content caching problem at the network edge where
multiple parties (i.e., network operators) can jointly cache common data items in a shared cache.
The problem is to identify the set of common items with the highest access frequency to be cached
in the shared cache while respecting the privacy of each individual party.

To this end, we introduce a novel model, MPCCache, for privacy-preserving cooperative cache
sharing among multiple network operators at the network edge. Indeed, we are among the first
to realize and formally examine the multi-party cooperative caching problem by exploiting the
non-rivalry of cached data items. Furthermore, to the best of our knowledge, we are the first
to tackle this problem through the lens of secure multi-party computation. In terms of technical
contribution, our work presents the efficient construction that outputs only the result of a specific
function computed securely on the intersection set, (i.e., find k best items in the intersection set)
without revealing the intersection itself to any party, and works for the multi-party setting with
more than two parties.

We demonstrate the practicality of our proposed protocol with experimental numbers. For
instance, for the setting of 8 parties each with a data-set of 216 records, our full decentralized
protocol requires 5 minutes to compute k-priority common items for k = 28. We also propose an
optimized server-aid MPCCache construction, which is scalable in the large dataset and number
of parties. With 16 parties, each has 220 records, our optimized scheme takes only 8 minutes to
compute the k-priority common items for k = 28. MPCCache aims at proactive caching where caches
are refreshed periodically (e.g., daily) and do not need to be real-time. Therefore, the running time
of MPCCache is practical in our cooperative cache sharing.

3

Parameters: n parties P1, . . . , Pn, each has a set of mi items, a threshold k, where k is much smaller
than the intersection size.

Functionality:
• Wait for an input Si = {(xi1, vi1), . . . , (ximi

, vimi
)} from the party Pi

• Let I =
⋂
i∈[n]{xi1, . . . , ximi

} to be the intersection set. For each x? ∈ I, compute the sum v? of

associated values, i.e., v? =
∑n
i=1 v

i
ji

where (x?, viji) ∈ Si
• Give parties {x?1, . . . , x?k} where v?1 , . . . , v

?
k are k largest numbers among v?1 , . . . , v

?
|I|.

Figure 2: The MPCCache functionality

.In addition to MPCCache as our main motivating application, we believe that the proposed
techniques can find applications in other areas as well.

2 Related Work and Technical Overview of MPCCache

Consider a single party with a set of items S. Each item includes an identity x (i.e., a file name, a
content ID) and its associated value v. For each set S, an element (x, v) is said to belong to a set
of k-priority elements of S if its associated value v is one of k-largest values in S. Note that the
value of each content item may represent the number of predicted access frequency of the content
or the benefit (valuation) of the operator for the cached content. Because each cache hit can reduce
the content access latency, enhance the quality of service for the user, and reduce the bandwidth
consumption, each network operator has its own criteria to define the value for each content that
can be stored in the shared edge cache space. How to define the value for each content is beyond
the subject of this work.

Since the cache is shared among the operators, they would like to store only common content
items in the cache. Here, a common item refers to an item (based on identity) that is owned
by every party. The common items with the highest values will be placed in the shared cache,
and can be accessed by all the parties. The value of a common item is defined as the sum of the
individual values of the operators for the item. We consider the cooperative caching problem in
the multi-party setting where each party has a set Si = {(xi1, vi1), . . . , (ximi

, vimi
)}. For simplicity,

we assume that parties have the same set size of m. An item (x?, v?) is defined to belong to the set
of the k-priority common elements if it satisfies the two following conditions: (1) x? is the common
identity of all parties; (2) (x?, v?) are the k-priority elements of S? = {(x?1, v?1), . . . , (x?|I|, v

?
|I|)},

where v?i is the sum of the integer values associated with these common identities from each party,
and I =

⋂
i∈[n]{xi1, . . . , ximi

} is the intersection set with its size |I|. In the setting, we consider the
input datasets of each party contain proprietary information, thus none of the parties are willing to
share its data with the other. We describe the ideal functionality of the cooperative cache sharing
MPCCache in Figure 2. For simplicity, we remove under-script of the common item x? and clarify
that a pair (x?, viji) ∈ Si belongs to the party Pi.

A closely related work to MPCCache is a private set intersection (PSI). Recall that the func-
tionality of PSI enables n parties with respective input sets Xi∈[n] to compute the intersection itself⋂
i∈[n]Xi without revealing any information about the items which are not in the intersection. How-

ever, MPCCache requires to evaluate a top-K computation on the top of the intersection
⋂
i∈[n]Xi

while also keeping the intersection secret from parties. A naive solution is to use generic secure
multi-party computation (MPC) protocols by expressing the MPCCache functionality as a circuit.
It has high computational and communication complexity, which is impractical for real-world ap-
plications. The work of Pinkas et al. [PSWW18, PSTY19] addressed the difficulty in designing a

4

circuit for computing on the intersection by deciding which items of the parties need to be com-
pared. Very recently, the work [RS21, CGS21] present new constructions of circuit-PSI based on
Vector-OLE or Relaxed Batch OPPRF. However, their constructions only work for the two-party
setting. The protocol of [IKN+19] is based on Diffie-Hellman and Homomorphic encryption which
is preferable in many real-world applications due to their low communication complexity. But,
their scheme only supports two-party intersection sum computation.

Beyond a rich literature on two-party PSI [PSZ14, OOS17, KKRT16, CLR17, PSZ18, PRTY19,
GS19, KRS+19, LRG19, GN19, PRTY20, CM20], there are several works on multi-party PSI.
However, most of the existing multi-party PSI constructions [SS08, CJS12, HV17, KMP+17] output
the intersection itself. Only very few works [JKU11, NMW13] studied some specific functions on the
intersection. While [JKU11] does not deal with the intersection set of all parties (in particular, an
item in the output set in [JKU11] is not necessarily a common item of all parties), [NMW13] finds
common items with the highest preference (rank) among all parties. [NMW13] can be extended
to support MPCCache which is a general case of the rank computation. However, the extended
protocol is very expensive since if an item has an associated value v, [NMW13] represents the
item by replicating it v times. For ranking, their solution is reasonable with small v. However,
v can be a very large value in MPCCache. We describe a detailed discussion in Appendix A.
Recently, the work of [RJHK19] propose MPCircuits, a customized MPC circuit with state-of-
the-art optimizations. One can extend MPCircuits to identify the secret share of the intersection
and use generic MPC protocols to compute a top-k function on the secret-shared intersection set.
However, the number of secure comparisons inside MPCircuits is large and depends on the number
of parties. We explicitly compare our proposed MPCCache with the MPCircuits-based solution in
Section 7.4. The concurrent work of [ENOPC21, CDG+21] consider circuit-PSI in the multi-party
setting. [ENOPC21] relies on garbled Bloom filters, which requires at least λ× bandwidth cost
more than our construction. The protocol of [ENOPC21] is similar to MPCCache: the first phase
outputs zero/random shares; the second phase invokes generic secure computation. However, the
first phase of [ENOPC21] requires expensive steps to compute the shares of intersection (Step 6
&7, Figure 6). In addition, [ENOPC21, CDG+21] are not customized for top-K.

To the best of our knowledge, this is the first work formally studying top-K computation on
a private set intersection in the multi-party setting. Our decentralized MPCCache construction
contains two main phases. The first one is to obliviously identify the common items (i.e., items in
the intersection set) and aggregate their associated values of the common items in the multi-party
setting. In particular, if all parties have the same x? in their set, they obtain secret shares of
the sum of the associated values v? =

∑n
i=1 v

i
ji

where (x?, viji) ∈ Si. Otherwise, v? equals to zero
and it should not be counted as a k-priority element. A more detailed overview of the approach is
presented in Section 5. It is worth noting that the first phase does not leak the intersection set to
any party.

The second phase takes these secret shares which are either the zero value or the correct sum
of the associated values of common items, and outputs k-priority elements. To privately compute
the k-priority elements of a dataset that is secret shared by n parties, one could study the top-k
algorithms.

In MPC setting, a popular method for securely finding the top-k elements is to use an oblivious
sort algorithm so that parties jointly sort the dataset in decreasing order of the associated values,
and pick the k largest values. There exists several oblivious sorting protocols [AKS83, Goo10, Shi19]
with the complexity of O(m log(m)), however, they are impractical due to a very high constant

5

behind the big-O (see Appendix A.3 for more detail). The more practical sorting algorithm is
Batcher’s network [Bat68] whose computational complexity overhead is O(m log2(m)) of secure
comparisons, where m is the size of datasets while the communication complexity is O(`m log2(m)),
where ` is the bit-length of the element. To output the index of the biggest values, we also need to
keep track of their indexes, therefore, the communication complexity is O((`+ log(m))m log2(m)).
Another approach to compute k-priority elements is to use an oblivious heap that allows to get a
maximum element from the heap (ExtractMax). This solution requires to call ExtractMax k times,
which leads to a number of rounds of the interaction of at least O(k log(m)).

In our MPCCache problem, the size of an edge cache is usually much smaller than the size
of the content library that each party manages. For instance, mobile users of a Telco can access
various types of contents and applications on the Internet. Obviously, an edge cache cannot store
all content (e.g., videos, photos, news, webpages) on the Internet, thus k << m. Also, note that the
size of the edge cache is usually much smaller than the caching facility at the core of the network
operator. Since we are motivated by applications where m is much larger than k, we propose a new
protocol with computational and communication overhead of O(m log2(k)) of secure comparisons
and O((`+ log(m))m log2(k)) bits, respectively. The proposed protocol requires O(log(m)) rounds.

Very recently, Chen et al. [CCD+20] presents a new secure approximate top-K selection with
complexity of O(m+ k2) comparisons and O((`+ log(m))(m+ k2) bits. One could integrate their
algorithm in the second phase of our scheme to achieve a better performance. In some applications
where exact top-K selection required, our k-priority is preferable.

Our decentralized protocol supports the full corrupted majority, which means that if any subset
of parties is corrupted, they learn nothing except the protocol output (i.e., the indices of the k
common items with largest sum associated values). In this paper, we also present the optimization
for MPCCache in the non-colluding semi-honest setting in which we assume to know two non-
colluding parties. This model can be considered as the server-aided model where clients obliviously
distribute (secret share) their private database to non-colluding distrusted servers. Our optimized
server-aided MPCCache construction achieves almost the same cost of our two-party decentralized
protocol.

3 Cryptographic Preliminaries

In this work, the computational and statistical security parameters are denoted by κ, λ, respectively.
We use [.] notation to refer to a set. For example, [m] implies the set {1, . . . ,m}. Additionally, we
use [i, j] to denote the set {i, . . . , j}. The additive secret sharing of a value x is defined as x.

3.1 Secret Sharing

To additively secret share x an `-bit value x of the party Pi to other parties, he first chooses
xi ← Z2` uniformly at random such that x =

∑n
j=1 x

j mod 2`, and then sends each xj to the
party Pj . For ease of composition we omit the mod. To reconstruct a additive shared value x, all
parties Pj sends x = xj to the party Pi, who locally reconstructs the secret value by computing
x ←

∑n
i=1 x

j . Given two shared values x and y, it is easy to non-interactively add the shares by
having parties to compute x+ y = x+ y.

In this work, we also use Boolean sharing in the binary field. Boolean sharing can be seen as
additive sharing in the field Z2. The XOR operation is replaced by the addition operation.

6

3.2 Programmable OPRF

Oblivious PRF [FIPR05] is a 2-party protocol in which the sender learns a PRF key k and the
receiver, with a private input x, learns F (k, x), where F is a PRF.

A programmable OPRF (OPPRF) functionality [PSTY19, KMP+17] is similar to OPRF, except
that it allows the sender to program the output of the PRF on his/her set of points. In OPPRF,
a sender with a set of points S = {(x1, v1), . . . , (xm, vm)} interacts with a receiver who has an
input q. An OPPRF protocol allows the receiver to learn the associated value vi if q = xi, random
otherwise.

3.3 Garbled Circuit

Garbled Circuit (GC) [Yao86, GMW87, BMR90] is currently the most common generic technique
for practical secure computation. An ideal functionality GC is to take the inputs xi from every
party Pi, respectively and computes any function f on them without revealing the secret parties’
inputs. In our protocol, we use f as “less than” and “equality” where inputs are secretly shared
amongst many parties. For example, a “less than” circuit computation takes the parties’ secret
shares x and y as input, and output the shares of 1 if x < y and 0 otherwise. To evaluate a function
f on shared values, GC first reconstructs the shares, performs f on the top of obtained values, and
then secret shares the result f(x, y) to parties. We denote this garbled circuit by z ← GC(x, y, f).
More detail about GC is described in Appendix D.1.

3.4 Oblivious Sort and Merge

The main building block of the sorting algorithm is Compare-Swap operation that takes the secret
shares of two values x and y, then compares and swaps them if they are out of order. It is typical to
measure the complexity of oblivious sort/merge algorithms based on the number of secure Compare-
Swap operations.

Oblivious Sort. We denote the oblivious sorting by {xii∈[m]} ← Fobv-sort({xii∈[m]} which takes
the secret share of m values and returns the refresh shares {x1, . . . , xm}, where {x1, . . . , xm} are
sorted in decreasing order. As discussed in Appendix A.3, Batcher’s network for oblivious sort
requires 1

4m log2(m) Compare-Swap operations.
Oblivious Merge. Given two sorted sequences, each of size m, we also need to merge them

into a sorted array, which is part of the Batcher’s oblivious merge sort. It is possible to divide the
input sequences into their odd and even parts, and then combine them into an interleaved sequence.
This oblivious merge requires 1

2m log(m) Compare-Swap operations and has a depth of log(m). We
denote the oblivious merge by {z1, . . . , z2m} ← Fobv-merge({x1, . . . , xm}, {y1, . . . , ym}).

4 Threat MPCCache Model

4.1 Security Definitions

We consider a set of parties who want to achieve secure cooperative cache sharing function f at the
edge. At the end of the protocol, they learn the output of a function f on the parties’ inputs, and
nothing else. In the real-world execution, the parties often execute the protocol in the presence of
an adversary A who corrupts a subset of the parties. In the ideal execution, the parties interact

7

with a trusted party that evaluates the function f in the presence of a simulator Sim that corrupts
the same subset of parties. There are two classical security models.

Colluding model: This is modeled by considering a single monolithic adversary that captures the
possibility of collusion between the dishonest parties. The protocol is secure if the joint distribution
of those views can be simulated.

Non-colluding model: This is modeled by considering independent adversaries, each captures
the view of each independent dishonest party. The protocol is secure if the individual distribution
of each view can be simulated.

There are also two adversarial models. In the semi-honest (or honest-but-curious) model, the
adversary is assumed to follow the protocol, but attempts to obtain extra information from the
execution transcript. In the malicious model, the adversary may follow any arbitrary strategy.

In this work, we propose two semi-honest MPCCache constructions. One is secure against any
number of corrupt colluding parties. Another is a weaker model where we assume to know at least
two parties that do not collude. Extensions to the malicious model will be the subject of our future
work. In Appendix B, we formally present the security definition considered in our MPCCache
framework, which follows the definition of [KMR11, Ode09] in the multi-party setting.

4.2 Threat MPCCache Model

We consider a problem of cooperative edge caching among different operators. With cooperative
edge caching, each Telco can now reduce its investment on edge caching system while can cache more
content at the edge. As a result, this will drastically decrease costs while significantly improving
user experience. Due to the privacy concern, it is important to decide which files will be stored in
the shared cache without revealing the private data of each operator.

A direct solution to this problem is to utilize a trusted cloud service provider (e.g., AWS) to
whom the parties could send their data. The trusted third-party would then determine the set of
common items (i.e., common identities) that all parties have. Along with this, for each common
item, the third-party also computes the sum of the integer values (from all the parties) associated
with the item, and then chooses the k-priority elements from the intersection set. Finally, this
trusted third-party sends the final results as k-priority common elements to the parties to inform
that these k items will be stored and available in the shared cache. Unfortunately, there may not
exist such a trusted party in real-life scenarios.

With the emergence of edge computing and 5G technology, each Telco can place their database
and computing servers at different nodes (e.g., edge clouds, telecom central offices) in the network
edge. Thus, for our multi-party cooperative edge caching model, the parties are typically close
to each other (i.e., serving the same area like New York City) and the network latency is not a
problem in our design. MPCCache can be executed in a fast network with higher latency. We
build MPCCache system based on MPC from symmetric-key techniques, which is fast in terms of
computation. The MPC allows each distrustful Telco to jointly determine set of common dataitems
with highest access frequency to be stored in their capacity-limited shared cache while guaranteeing
the privacy of their individual datasets.

The system overview of our MPCCache is described in Figure 3. We assume there is an authen-
ticated secure channel between each pair of participants (e.g., with TLS). Each Telco interacts each
other via secure computation with their private input set of items Si = {(xi1, vi1), . . . , (xim, v

i
m)}

and learns a set of k-priority common items. Note that each item consists of an identity xij and

its associated value vij . The operators can value the same item differently due to different benefits

8

(a) The decentralized model (b) The server-aided model

Figure 3: The system overview of our MPCCache

they can obtain from the item being cached (e.g., different predicted access frequency, a different
type of content has a different value to their subscribers). How to define the value for each content
is beyond the subject of this work.

For multi-party cooperative edge caching, we are interested in the setting where parties serve
customers in the same edge location (e.g., a metropolitan area). Thus, the datasets of the operators
can be quite similar with many overlapping content items (e.g., local news), and intersection size
can be much larger than cache size. Revealing only k most-valued items is much more desirable for
the operators compared to revealing the whole intersection set. This indeed motivates us to study
the new k-priority common items problem.

We consider a semi-honest setting for MPCCache. In the cooperative cache sharing scenario
where the computation is between large established organizations (e.g. AT&T Verizon, Sprint). A
large company has a reputation to maintain and policies in place to protect against misbehavior,
so assuming semi-honest security is more reasonable.

Furthermore, suppose a malicious participant wanted to determine whether certain items were
in other participants’ caches. An attacker can set a high value for an item x to infer if x were
in others’ databases. This attack might not be beneficial for the attacker. Specifically, the values
can be understood as bids of each party for the associated files, which are proportional to access
frequencies of the party to the files. If an attacker sets a fake high value for an item, he needs to pay
much more (i.e., expensive to implement the attack). It also reduces the chance for truly popular
files of the attacker to be cached. Because access frequencies can be verified, it is easy to determine
the attacker, and his reputation can be damaged. In cooperative caching business, reputation is
important. Indeed, some economic penalty schemes can be used to enforce truthfulness and prevent
an attacker from inflating values associated with his top elements that he wants to be cached. Thus,
semi-honest guarantee is appropriate for our application.

We propose two models for our MPCCache with different semi-honest security guarantees. The
first one is decentralized which is secure against any number of corrupt, colluding, semi-honest
parties. This model requires all participants involved in the end-to-end system execution. Figure 3a
presents the system overview of our decentralized MPCCache. Note that a generic cryptographic
and secure computation tools may not be suitable and efficient to tackle our MPCCache problem.
Thus, it is highly desirable to seek new theoretical and technical refinements to improve their
performance, as well as propose concrete optimizations tailored to our specific problem setting.
Section 5 presents our customized MPC protocols for this decentralized MPCCache model.

In addition, we show an optimization to our decentralized variant in a weaker security model
where a semi-honest adversary who can corrupt at most one of the two specific parties and any

9

Parameters: Set size m, and n parties
Functionality:
• Wait for secret share values {v1, ..., vm} from the ith party.
• Give all parties k indexes {i1, . . . , ik} such that {vi1 , . . . , vik} are largest values among {v1, ..., vm}.

Figure 4: The k-priority functionality (Fk-prior)

.subset of other parties. We call the considered model as server-aided MPCCache and present its
system overview in Figure 3b. It is worth mentioning that our server-aided security model is weaker
than colluding semi-honest setting since we assume to know two specific non-colluding parties which
we called as servers. However, our model is stronger than the non-colluding semi-honest model
where all parties are assumed to do not collude.

One can view our server-aided protocol as a standard two-server-aided setting where the par-
ties (data owners) outsource the entire computation via XOR-sharing to two untrusted but non-
colluding servers from the very beginning. The two-server MPC has been formalized and used in
various scheme [DG16, BGI15, MZ17, RS20, CGK20]. However, a key difference from the standard
server-aided setting is our proposed secret sharing scheme such that even two servers collude, they
only learn the intersection items and nothing else about other uncommon items. In contrast, in
the standard server-aided setting, the colluding servers learn the entire dataset of the participants.

The server-aided MPCCache is also realistic in the considered cache sharing scenario. For
example, in the US, many small companies are built on a large established company (e.g., virtual
mobile network operators operate on the network infrastructure of a big telco like Verizon or
AT&T). It is reasonable to assume two big companies do not collude (e.g., by law or due to
economic/competition reasons). The small companies and large companies can be considered as
users and servers, respectively. With the established reputation of large companies, assuming non-
colluding security is practical.

5 Our Decentralized MPCCache

We now present our main technical result, an application of MPC tailored to our MPCCache
problem. We denote the n parties by P1, . . . , Pn. Let Si be the input set of party Pi. The
goal is to securely compute the k-priority common items. For sake of simplicity, we assume each
set has m items and write Si = {(xi1, vi1), . . . , (xim, v

i
m)}. We use subscript j to refer to a particular

item (xij , v
i
j).

The construction closely follows the high-level overview presented in Section 2. Recall that our
MPCCache construction contains two main parts. The first phase allows the parties to collectively
and securely generate shares of the sum of the associated values under the so-called conditional
secret sharing condition. If all parties have x in their sets then the sum of their obtained shares
is equal to the sum of the associated values for this common identity x (i.e., common items).
Otherwise, the sum of the shares is zero. These shares are forwarded as input to the second phase,
which ignores the zero sum and returns only k-priority common items. For the second phase, we first
present the Fk-prior functionality of computing k-priority elements in Figure 4. We will explain our
protocol for k-priority in Section 5.3 and then use Fk-prior as a black box to describe our MPCCache
construction.

10

5.1 A special case of our first phase

We start with a special case. Suppose that each party Pi∈[n] has only one item (xi, vi) in its set Si.
Our first phase must satisfy the following conditions:

(1) If all xi are equal, the parties obtain secret shares of the sum of the associated values v? =∑n
i=1 v

i.
(2) Otherwise, the parties obtain secret shares of zero.
(3) The protocol is secure in the semi-honest model, against any number of corrupt, colluding,

semi-honest parties.
The requirement (3) implies that all corrupt parties should learn nothing about the input of

honest parties. To satisfying (3), the protocol must ensure that parties do not learn which of the
cases (1) or (2) occurs.

We assume that there is a leader party (say P1) who interacts with other parties to output
(1). The protocol works as follows. For (xi, vi), the party Pi 6=1 chooses a secret si uniformly at

random, defines wi
def
= vi − si, and computes an encryption of wi under the key xi as Enc(xi, wi).

The party Pi 6=1 then sends the ciphertext to the leader party P1. Using his item x1 as a decryption
key, the party P1 decrypts the received ciphertext and obtains wi if x1 = xi, random otherwise.
Clearly, if all parties have the same x1, P1 receives the correct plaintext wi = vi − si from Pi 6=1.

Now, P1 computes s1 def
= v1 +

∑n
i=2w

i. It easy to verify that
∑n

i=1 s
i = (v1 +

∑n
i=2w

i) +
∑n

i=2 s
i =

v1 +
∑n

i=2(wi + si) =
∑n

i=1 v
i = v?. By doing so, each party Pi has an additive secret share si of

v? as required in (1).
In case that not all xi are equal, the sum of all the shares

∑n
i=1 s

i is a random value since
P1 receives a (random) incorrect plaintext wi from some party. To compute (2) which output the
shares of zero, we use the garbled circuit to turn the random incorrect sum to zero. However, for
(3), the random sum and the correct sum are indistinguishable on the view of all parties. One
might build a garbled circuit on the top of the sum computation. In particular, the circuit does
n equality comparisons to check whether all xi is equal. If yes, the circuit gives refresh shares of
the correct sum, otherwise shares of zero. This solution requires O(n) equality comparisons inside
MPC. We aim to minimize the number of equality tests.

We improve the above solution using zero-sharing [AFL+16, KMP+17, MR18]. An advantage
of the zero-sharing is that the party can non-interactively generate a Boolean share of zero after a
one-time setup. Let’s denote the zero share of the party Pi to be zi. We have

⊕n
i=1 z

i = 0. Similar
to the protocol described above to achieve (1), when the party Pi uses (xi, zi) as input, the party
receives a Boolean secret share ti. If all xi are equal, the XOR of all obtained shares is equal to that
of all associated values. In other words,

⊕n
i=1 t

i =
⊕n

i=1 z
i = 0. Otherwise,

⊕n
i=1 t

i is random.
These obtained shares are used as an if condition to output either (1) or (2). Concretely, parties
jointly execute a garbled circuit to check whether

⊕n
i=1 t

i = 0. If yes (i.e. parties have the same
item), the circuit re-randomizes the shares of v?, otherwise, generates the shares of zero. We call
the final obtained value as a conditional secret share. Since XOR is free in garbled circuit [KS08],
the zero-sharing based solution requires only one equality comparison inside MPC.

In the following, we describe a detail construction to generate zero-sharing and how to compute
ti, wi, ∀i ∈ [n], more efficiently.

a) Zero-sharing key setup: one key is shared between every pair of parties. For example, the
key kij is for a pair (Pi, Pj) where i, j ∈ [n], i < j. It can be done as the party Pi randomly
chooses ki,j ← {0, 1}κ and sends it to the party Pj . Let’s denote a set of the zero-sharing

11

keys as Ki = {ki,1, . . . , ki,(i−1), ki,(i+1), . . . , ki,n}.
b) Generating zero share: Given Ki and a PRF F : {0, 1}κ × {0, 1}∗ → {0, 1}∗, each party

Pi locally computes a zero share as zi =
⊕n

j=1 F (ki,j , 1). It is easy to see that each term

F (ki,j , 1) appears exactly twice in the expression
⊕n

i=1 z
i. Thus,

⊕n
i=1 z

i = 0. We define

f z(Ki, b)
def
=
⊕n

j=1 F (kij , b) for the party Pi to generate the b-th instance of zero share.

c) Computing t1 and w1: the party Pi 6=1 chooses secret values si and ti uniformly at random.

For an input (xi, vi) and a zero share zi, he computes wi
def
= vi − si and yi

def
= zi ⊕ ti and

sends the ciphertext Enc(xi, yi||wi) to the leader party P1. Using his item x1 as a decryption
key, the party P1 obtains the correct yi||wi if x1 = xi, random otherwise. P1 computes

s1 def
= v1 +

∑n
i=2w

i and t1
def
= (
⊕n

i=2 y
i)⊕ z1. At this point, each party has conditional secret

shares si and ti such that
∑n

i=1 s
i = v? and

⊕n
i=1 t

i = 0 if all xi are equal.
So far, we only consider the simple case where each party has only one item. When each

party has m items in his set, a naive solution costs O(mn) equality checks, one for each possible
combination of the sets.

5.2 A general case of our first phase

We show how to efficiently extend our protocol to support the general case where m > 1. At the
high-level idea, we use hashing scheme to map the common items into the same bin, and then
reply on OPPRF to compress each bin into one conditional share so that the parties can evaluate
MPCCache bin-by-bin efficiently. By doing so, we only need to do O(m) secure comparisons instead
of naive O(mn) pair-wise comparisons.

Similar to many PSI constructions [PSSZ15, KKRT16], we use two popular hashing schemes:
Cuckoo and Simple hashing. The leader party P1 uses Cuckoo hashing [PR04] with k̃ = 3 hash
functions to map his {x1

1, . . . , x
1
m} into β = 1.27m bins, each has at most one item. He then pads

his bin with dummy items so that each bin contains exactly one item. This step is to hide his
actual Cuckoo bin size. On the other hand, each party Pi 6=1 use the same set of k̃ Cuckoo hash
functions to place its {xi1, . . . , xim} into β bins (so-called Simple hashing), each item is placed into

k̃ bins with high probability. The party Pi 6=1 also pads his bin with dummy items so that each bin

contains exactly γ = 2 log(m) items. According to [PSSZ15, DRRT18], the parameters β, k̃, γ are
chosen so that with high probability 1 − 2−λ every Cuckoo bin contains at most one item and no
Simple bin contains more than γ items. More detail is described in Appendix D.2.

For each bin bth, P1 and Pi 6=1 can run the protocol for our special case described in Section 5.1.
In particular, let Bi[b] denote the set of items in the bth bin of the party Pi. The party Pi 6=1 chooses
secret values sib and tib uniformly at random, and locally generate a zero share zib ← f z(Ki, b). Note

that
⊕n

i=1 z
i
b = 0. For each (xij , v

i
j) ∈ Bi[b], Pi 6=1 computes wij

def
= vij − sib and yij

def
= zib⊕ tib and sends

the ciphertext Enc(xij , y
i
j ||wij) to the leader party P1. Using his item x1

b ∈ B1[b] as a decryption

key, the party P1 obtains ŷij ||ŵij which is a correct plaintext yij ||wij if x1
b = xij , random otherwise.

Since there are γ pairs {ŷij , ŵij} from Pi 6=1, the leader party P1 has γn−1 possible ways to choose

ji ∈ [γ] and compute his conditional secret shares s1
b

def
=
∑n

i=2 ŵ
i
ji

and t1b
def
=
⊕n

i=2 ŷ
i
ji

as before. Thus,

this solution requires γn−1 equality comparisons to check all combinations whether
⊕n

i=1 t
i
b = 0 to

determinate whether x1
b is common.

To improve the above computation, we use a technique of OPPRF to compress all Enc(xij , y
i
j ||wij)

of the bin into a package so that after the decryption the leader party learns from Pi 6=1 only one

12

pair {ŷi, ŵi} per bin, instead of γ pairs per bin. Given a set of points T = {(x1, e1), . . . , (xγ , eγ)},
a general key idea of OPPRF construction is to pack the set T into a polynomial P of degree γ− 1
such that P (xj) = ej , ∀j ∈ [γ]. Therefore, if x? = xj , P (x?) = ej . The OPPRF construction
contains another PRF step to make sure that P (x?) is random if x? is not equal to any xj . We
refer reader to [KMP+17, PSTY19] for more detail.

By integrating OPPRF as a building block into our protocol, the parties invoke its instance bin-
by-bin as follows. For each bin b, the party Pi 6=1 creates a set of points T ib = {(xij ,Enc(xij , yij ||wij))}.
The leader party P1 acts as OPPRF’s receiver with input x1

b ∈ B1[b] while Pi 6=1 acts as OPPRF’s
sender with the set of points T ib . If both P1 and Pi 6=1 have the same item identity x1

b = xiji , P1

receives the correct output Enc(xij , y
i
ji
||wiji)) and thus obtain a correct plaintext pair {ŷib, ŵib} =

{yiji , w
i
ji
} after the decryption. If x1

b is not in the bin Bi[b] of the party Pi 6=1, the leader party
receives a random pair.

In summary, if all parties have the same item identity xb1 in the bth bin, P1 receives the correct
plaintext ŵib = viji − sib and ŷib = zib ⊕ tib from the corresponding OPPRF execution involving

Pi 6=1. The leader sums up all the obtained values ŵib with the associated value v1
b of the identity

x1
b ∈ B1[b]. i.e. he computes sb1

def
= v1

b +
∑n

i=2 ŵ
i
b. We have

∑n
i=1 s

i
b = v1

b +
∑n

i=2 v
i
ji

if all parties

has the common identity x1
b ∈ B1[b]. In other words,

∑n
i=1 s

i
b is equal to the sum of the associated

values corresponding with the common identity x1
b . Similarly, when defining a conditional secret

share t1b
def
= (
⊕n

i=2 ŷ
i
b) ⊕ z1

b , we have
⊕n

i=1 t
i
b = 0 if all parties have x1

b . Consider a case that some
parties Pi 6=1 might not hold the item x1

b ∈ B1[b] that P1 has, the corresponding OPPRF with these

parties gives P1 random values ŷib||ŵib. Thus t1b
def
= (
⊕n

i=2 ŷ
i
b)⊕z1

b is random for some i, so is
⊕n

i=1 t
i
b.

Similar to Section 5.1, we use garble circuit to check whether
⊕n

i=1 t
i
b = 0 for the bin b, and

outputs either refresh shares of
∑n

i=1 s
i
b or shares of zero. Since P1 only has one s1

b , the protocol
only needs to execute one comparison circuit per bin, thus the number of equality tests needed is
linear in the number of the bins.

Even though the party Pi 6=1 uses the same offset sib, t
i
b to compute wib, y

i
b, respectively, the

OPPRF functionality only gives P1 one pair per bin. Therefore, as long as the OPPRF used is
secure, so is our first phase of MPCCache construction. We will formalize and prove secure our first
phase which is presented, together with a proof of our MPCCache security in Section 5.4.

In our protocol, we choose party P1 as a “leader”, which acts as the receiver to interact with
other parties so that he can collectively and securely generate conditional secret shares of the sum
of the associated values for the common items. It suffices for him to obliviously create the shares of
zero for items that some parties may not hold. We note that any party can be a leader. To avoid
the computation overhead on the leader party, one can divide n parties into several small groups,
each has their local leader, and then these leaders create another group and pick one of them to be
the leader. They build a such tree connection until one party be a global leader. For simplicity, we
present our MPCCache construction based on the former network connection.

5.3 Our second phase: k-priority construction

We present our k-priority construction for the Fk-prior functionality in Figure 5. At the beginning
of the protocol, each party holds a secret share of m values V = {v1, ..., vm}, the end goal is to
output the indexes of k largest values among V without revealing any additional information. In
this section, we measure the complexity of our k-priority protocol based on the number of secure
Compare-Swap operations.

13

Parameters:
• Number of parties n, set size m, and a k value
• An ideal oblivious sort Fobv-sort and oblivious merge Fobv-merge primitives described in Section 3.4.
• A truncation function trunc which returns first k elements in the list as {x1, . . . , xk} ←

trunc({x1, . . . , x2k})

Input of party Pi: secret share values Si = {v1, ..., vm}

Protocol:

1. Parties divide the input set Si into m
k groups, each has k items.

2. For each group i ∈ [mk] consisted of {vi, ..., vi+k−1} from party Pj , they jointly execute an

oblivious sort G[i]← Fobv-sort({vi||i, ..., vi+k−1||(i+ k − 1)}), where G[i]
def
= {vi1 ||i1, ..., vik ||ik}

3. Parties recursively invoke oblivious merges as follows. Assuming that m
k = 2d

Procedure LevelMerge (G[0, . . . , d], d)
if d = 1 then

return {vi1 ||i1, ..., vik ||ik}
else

L = LevelMerge(G[0, . . . , d2 − 1], d2)

R = LevelMerge(G[d2 , . . . , d− 1], d2)
M ← Fobv-merge(L,R)

where M
def
= {vi1 ||i1, ..., vik ||i2k {vi1 ||i1, ..., vik ||ik} ← trunc(M)

end

end

4. Parties jointly reconstruct the share {vi1 ||i1, ..., vik ||ik}, and output {i1, . . . , ik}.
Figure 5: Our secure k-priority construction

.
As discussed in Section 2, one could use oblivious sorting to sort the input set and then takes

the indexes of k biggest values. This approach requires about 1
4m log2(m) Compare-Swap operations

and the depth of log(m). In the following, we describe our construction which costs
(

1
4 log(k) +

1
2

)
m log(k) − 1

2k log(k) Compare-Swap with the same depth. The proposed algorithm achieves an

approximate log2(m)(
log(k)+2

)
log(k)

× improvement.

The main idea of our construction is that parties divide the input set into dmk e groups, each
has k items except possibly the last group which may have less than k items (without loss of gen-
erality, we assume that m is divisible by k). Parties then execute an oblivious sorting invocation
within each group to sort these values of this group in decreasing order. Unlike the very recent
algorithm [CCD+20] for approximate top-K selection where it selects the maximum element within
each group for a further computation, we select the top-K elements of two neighbor groups. Con-
cretely, oblivious merger is built on the top of each two sorted neighbor groups. We select a set
of the top-K elements from each merger and recursively merge two selected sets until reaching the
final result.

Sorting each group requires 1
4k log2(k) Compare-Swap invocations, therefore, for m

k groups the
total Compare-Swap operations needed is m

k

(
1
4k log2(k)

)
. The oblivious odd-even mergers are

performed in a binary tree structure. The merger of two sorted neighbor groups, each has k
items, is computed at each node of the tree. Unlike the sorting algorithm, we truncate this re-
sulted array, maintain the secret shares of k largest sorted numbers among these two groups, and

14

Parameters:
• Set size m, a bit-length θ, security parameter λ, and n parties Pi∈[n]
• A zero-sharing key setup, OPPRF, GC, and k-priority primitives
• An encryption and decryption scheme Enc, Dec.
• A Cuckoo and Simple hashing with 3 hash functions, number of bins β, and max bin size γ.

Input of party Pi∈[n]: A set of key-value pairs Si = {(xi1, vi1), . . . , (xim, v
i
m)} ⊂

(
{0, 1}∗, {0, 1}θ

)m
Protocol:

I. Pre-processing.

1. Parties interact each other to set up a set of zero-sharing keys Ki∈[n] and generate β instances of
zero shares as zib = f zi (Ki, b),∀b ∈ [β].

2. A leader party P1 hashes items {x11, . . . , x1m} into β bins using the Cuckoo hashing scheme. Let
B1[b] denote the item in is bth bin (or a dummy item if this bin is empty).

3. Each party Pi∈[2,n] hashes items {xi1, . . . , xim} into β bins using Simple hashing. Let Bi[b] denote

the set of items in the bth bin of this party.

II. Online.

1. For each bin b ∈ [β]:
a) Each party Pi∈[2,n] chooses tib ← {0, 1}λ+log(n) and sib ← {0, 1}θ uniformly at random, and

generates a set of points T ib = {
(
xij ,Enc(x

i
j , y

i
j ||wij)

)
} where xij ∈ Bi[b], yij

def
= zib⊕ tib, (xij , v

i
j) ∈ Si

and wij
def
= vij − sib. The party then pads T ib with dummy pairs to the max bin size γ.

b) For i ∈ [2, n], the parties Pi and P1 invoke an OPPRF instance where:
- Pi∈[n] acts as a sender with input T ib
- P1 acts as a receiver with x1b ∈ B1[b], and obtains cib.

c) For i ∈ [2, n], P1 computes ŷib||ŵib ← Dec(x1b , c
i
b)

Note that ŷib = ziji⊕t
i
b and ŵib = viji−s

i
b for x1b = x2j2 = . . . = xnjn . Otherwise, ŷib, ŵ

i
b are random.

d) P1 computes t1b
def
= (
⊕n

i=2 ŷ
i
b) ⊕ z1b and sb1

def
= v1b +

∑n
i=2 ŵ

i
b where z1b and v1b are zero share and

the associated value corresponding to x1b , respectively.
e) Parties jointly compute GC:

- Input from Pi is tib and sib.
- Output to Pi is an additive share ub where ub =

∑n
i=1 s

i
b if

⊕n
i=1 t

i
b = 0, otherwise ub = 0.

Note that if x1b is common, ub is equal to the sum of its associated values of the common item
identity x1b .

2. Parties invoke a k-priority functionality with input ub,∀b ∈ [β], and obtain k indexes of the k-priority
common identities.

Figure 6: Our decentralized MPCCache construction.

throw out the rest. By doing so, instead of 2k, only k items are forwarded to the next odd-even
merger. The number of Compare-Swap required for each merger does not blow up, and is equal to
1
2k log(k). After (mk − 1) recursive oblivious merger invocations, parties obtain the secret share of
the k largest values among the input set. In summary, our secure k-priority construction requires(

1
4 log(k) + 1

2

)
m log(k)− 1

2k log(k) Compare-Swap operations.
The above discussion gives parties the secret shares of k largest values. To output their indexes,

before running our protocol we attach the index with its value using the concatenation ||. Namely,
we use (`+ dlog(m)e)-bit string to represent the input. The first ` bits to store the additive share
vi and the last dlog(m)e bits to represent the index i. Therefore, within a group the oblivious
sorting takes {vi||i, ..., vi+k−1||(i+k−1)} as input, use the shares vj , ∀j ∈ [i, i+k−1] for the secure
comparison. The algorithm outputs the secret shares of the indexes, re-randomizes the shares of the

15

values and swaps them if needed. The output of the modified oblivious sorting is {vi1 ||i1, ..., vik ||ik}
where the output values vi1 ∈ {vi, . . . , vi+k−1} are sorted. Similarly, we modify the oblivious merger
structure to maintain the indexes. At the end of the protocol, parties obtains the secret share of
the indexes of k largest values, which allows them jointly reconstruct the secret indexes.

The security proof of our k-priority is given in Appendix C, which straightforwardly follows from
the security of its building blocks.

5.4 Putting All Together: MPCCache system

We formally describe our semi-honest MPCCache construction is in Figure 6. In the pre-processing
step, the parties jointly generate a one-time zero-sharing key setup and then hash their items into
corresponding bins. The online step starts when the parties interact with each other with their
private inputs.

Correctness. From the preceding description, the cuckoo-simple hashing scheme maps the
same items into the same bin. Thus, for each bin #b, if parties have the same identity x1

b ∈ B1[b],
they obtain the secret share of the sum of all corresponding associated values. Otherwise, they
receive the secret share of zero (In practice, the sum of all parties’ associated values for items in the
intersection is not equal to zero). In our protocol, the equation

⊕n
i=1 t

i
b = 0 determines whether

the item x1
b is common. We choose the bit-length of zero share to be λ+ log(n) to ensure that the

probability of the false positive event for this equation is overwhelming (e.g. 1− 2−λ).
The second phase of the online step takes the conditional secret shares from parties, and returns

the indexes of k-priority common elements. Since k must be less than or equal to the intersection
size, the obtained results will not contain an index which its value is equal to zero. In other words,
the output of our protocol satisfies the MPCCache conditions since the identity is common and the
sum of the integer values associated corresponding to this identity is k-largest.

The security of our decentralized MPCCache construction is based on the OPPRF primitive
and the encryption scheme used in the first phase, and the security of our k-priority (proved in
Theorem 1) used in the second phase. The formal proof is given in Theorem 2 in Appendix C.

6 Our Server-aided MPCCache

As mentioned in Section 4.2, the server-aided model is reasonable for the setting of our cooperative
edge cache sharing problem. In this section, we show an optimization to improve the efficiency of
MPCCache. Let assume that parties P1 and P2 are two non-colluding servers, and we call other
parties as users. The server-aided protocol consists of two phases. In the first one, each user
interacts with the servers so that each server holds the same secret value, chosen by all users, for
the common identifies that both servers and all users have. The servers also obtain the additive
secret share of the sum of all the associated value corresponding to these common items. In a case
that an identity xej of the server Pe∈{1,2} is not common, this server receives random value. This
phase can be considered as each user distributes a share of zero and a share of its associated value
under a “common” condition (similar to our conditional secret share). Therefore, if even two servers
collude they only learn the intersection items and nothing else, which provides a stronger security
guarantee than the standard server-aided mentioned in Section 4.2. Our second phase involves
only the servers’ computation, which can be done by using our 2-party decentralized MPCCache
construction described in Section 5.4.

16

Parameters:
• Set size m, a bit-length θ, security parameter λ, and n parties Pi∈[n].
• A OPPRF, MPCCache primitives

Input of party Pi∈[n]: A set of key-value pairs Si = {(xi1, vi1), . . . , (xim, v
i
m)}

Protocol:

I. Centralization.

1. Each user Pi∈[3,n] chooses zij ← {0, 1}λ+log(n) and sij ← {0, 1}θ uniformly at random, and

generates two sets of points T e,i = {(xij ,Enc(xij , zij ||w
e,i
j))}, where (xij , v

i
j) ∈ Si, w

1,i
j

def
= sij

and w2,i
j

def
= vij − sij .

2. For i ∈ [3, n] and e ∈ {1, 2}, the user Pi and the server Pe invoke an OPPRF instance where:
- Pi acts as a sender with input T e,i
- Pe acts as a receiver with xej∈[m], and receives the corresponding output cej

- Pe computes ẑe,ij ||ŵ
e,i
j ← Dec(xej , c

e
j).

3. For j ∈ [m], each server Pe∈{1,2} computes yej
def
=
⊕n

i=3 ẑ
e,i
j and sej

def
= vej +

∑n
i=3 ẑ

e,i
j for each

identity xej .

II. Server-working. Two servers Pe∈{1,2} invoke an instance of MPCCache where each party’s
input is a set of points {(ye1, se1), . . . , (yem, s

e
m)} and learns k-priority common items.

Figure 7: Our server-aided MPCCache construction.

More concretely, in the first phase, each user Pi∈[3,n] chooses, for each item xij ,∀j ∈ [m], secret

values sij ← {0, 1}∗ and zij ← {0, 1}∗ uniformly at random. The user Pi∈[3,n] defines w1,i
j

def
= sij ,

and computes w2,i
j

def
= vij − sij . Similar to our decentralized MPCCache construction described in

Section 5.2, each user Pi∈[3,n] generates two sets of points T e,i = {(xij ,Enc(xij , zij ||w
e,i
j))}, ∀e ∈ {1, 2},

and sends each of them to the server Pe∈{1,2} via OPPRF. Let’s ẑe,ij ||ŵ
e,i
j be an output of the

execution with input xej from the server Pe∈{1,2}. If two servers have the same item x1
k = x2

k′ which

is equal to the item xij of the user Pi, we have ẑ1
k = ẑ2

k′ = ẑij and ŵ1,i
k +ŵ2,i

k′ = vij (since ŵ1,i
k = sij and

ŵ2,i
k′ = vij−sij). Each server Pe∈{1,2} defines yej

def
=
⊕n

i=3 ẑ
e,i
j as an XOR of all the obtained values ẑe,ij

corresponding to each item xej∈[m]. For two indices k and k′, we have y1
k =

⊕n
i=3 ẑ

1,i
j =

⊕n
i=3 ẑ

2,i
j =

y2
k′ if all parties has x1

k = x2
k′ in their set. This property allows servers obliviously determinate the

common items (i.e, checking whether y1
k = y2

k′ , ∀k, k′ ∈ [m]). Moreover, let sej
def
= vej +

∑n
i=3 ŵ

e,i
j . For

two indices k and k′, s1
k and s2

k′ are secret shares of the sum of the associated values for the common

item x1
k = x2

k′ as s1
k + s2

k′ = (v1
k +

∑n
i=3 ŵ

1,i
k) + (v2

k′ +
∑n

i=3 ŵ
2,i
k′) = v1

k + v2
k′ +

∑n
i=3(ŵ1,i

k + ŵ2,i
k′).

In summary, after this first phase, each server Pe∈{1,2} has a set of points {(ye1, se1), . . . , (yem, s
e
m)}

where y1
k = y2

k′ if all parties have the same identity x1
k = x2

k′ , and s1
k + s2

k′ is equal to the sum of
the associated values of the common x1

k.
At this point, the n-party MPCCache can be considered as a two-party case where each server

Pe∈{1,2} has a set of points {(ye1, se1), . . . , (yem, s
e
m)} and wants to learn the k-priority common items.

We formally describe the optimized MPCCache protocol is in Figure 7.
Correctness. Recall that yej =

⊕n
i=3 ẑ

e,i
j , ∀e ∈ {1, 2}, j ∈ [m]. Let i be the highest index of

a user Pi∈[3,n] who did not have the identity x1
k in their input set. That user does not insert a

pair {x1
k, something} to his set T e,i for the OPPRF in Step (I.1). Thus, the obtained value ẑ1

k is
random. The protocol is correct except in the event of a false positive — i.e., y1

k = y2
k′ for some x1

k

17

not in the intersection. It is need to ensure that the probability that of a false positive involving x1
k

is 2−λ. By setting ` = λ+ 2 log2(m), a union bound shows that the probability of any item being
erroneously included in the intersection is 2−λ.

The security proof of our server-aided MPCCache protocol is essentially similar to that of the
decentralized protocol, which is presented in Theorem 3 in Appendix C.

Discussion. From our two-server-aided architecture Figure 7, our protocol can extend to
support a small set of servers (e.g., t servers, t < n). More precisely, in the centralization phase,
each user Pi∈[t+1,n] secret shares their associated value vij∈m to each server Pe∈[t] via OPPRF. Each
server aggregates the share of associated value corresponding to their item. The obtained results are
forwarded to the second phase (server-working) in which the servers Pe∈[t] jointly run MPCCache to
learn k-priority common items. The main cost of our server-aided construction is dominated by the
second phase. Hence, the performance of t-server-aided scheme is similar to that of decentralized
MPCCache performed by t parties. We are interested in two-server aided architecture since we can
take advantage of recent improvements on two-party secure computation for our top-k algorithm
and garbled circuit. Moreover, the two-server setting is common in various cryptography schemes
(e.g. private information retrieval [CGK20], distributed point function [GI14], private database
query [WYG+17]).

7 Implementation

In order to evaluate the performance of our proposed secure edge caching schemes, we implement
building blocks used in our MPCCache and do a number of experiments on a single Linux machine
which has Intel Core i7 1.88GHz CPU and 16GB of RAM, where each party is implemented as
a separate process, and communicate over a simulated 10Gbps network with 0.2ms round-trip
time. We observe that run-time on WAN can be computed with the linear cost model as the
overall running time is equal to the sum of computation time and data transfer time. In real-world
settings, the slow-down would likely be even higher because of network latency. However, the
application of our MPCCache usually runs in the fast and low-latency edge network, especially with
the upcoming 5G technologies [20117, BBD14, ETS19, YHA19]. Indeed, with the emergence of
mobile edge computing, the servers of operators in our application will typically be placed closer
to each other (e.g., in edge clouds in the same area such as New York City).

All evaluations were performed with an identity and its associated value input length 128
bits and θ = 16 bits, respectively, a statistical security parameter λ = 40 and computational
security parameter κ = 128. We use OPPRF code from [KMP+17], oblivious sort and merge
from [WMK16]. To understand the scalability of our scheme, we evaluate it on the range of the
number parties n ∈ {4, 6, 8, 16}. Note that the dataset size m of each party is expected to be not too
large (e.g.,billions). First, the potential of MPCCache is in 5G where each shared cache is deployed
for a specific region. Second, each operator chooses only frequently-accessed files as an input to
MPCCache because the benefit of caching less-accessed files is small. Therefore, we benchmark our
MPCCache on the set size m ∈ {212, 214, 216, 218, 220}. To understand the performance effect of the
k values discussed in Section 5.3, we use k ∈ {26, 27, 28, 29, 210} in our k-priority experiments, and
compare its performance to the state-of-the-art oblivious sort.

We assume there is an authenticated secure channel between each pair of parties (e.g., with
TLS). Our MPCCache is very amenable to parallelization. Specifically, our algorithm can be par-
allelized at the level of bins. In our evaluation, however, we use a single thread to perform the

18

Table 1: The total runtime (minute) and communication per item (KB) of our k-priority construction and
the state-of-the-art oblivious sort, where m is the dataset size.

m
Running Time Communication

Ours k-priority
Sort

Ours k-priority
Sort

k = 27 k = 28 k = 29 k = 210 k = 27 k = 28 k = 29 k = 210

212 0.012 0.014 0.016 0.018 0.014 8.008 10.11 12.38 14.72 18.43
214 0.049 0.056 0.068 0.087 0.071 8.05 10.21 12.6 15.2 25.09
216 0.199 0.238 0.294 0.35 0.382 8.061 10.23 12.65 15.32 32.77
218 0.786 0.996 1.217 1.449 1.964 8.063 10.24 12.67 15.35 41.47
220 2.984 3.798 4.697 5.527 9.844 8.064 10.24 12.67 15.36 51.2

Table 2: The total runtime (minute) of our server-aided and decentralized MPCCache to find k-priority
common items, where the number of parties n, each with dataset size m.

Parameters Server-aided Decentralized
m n k = 26 k = 27 k = 28 k = 29 k = 210 k = 26 k = 27 k = 28 k = 29 k = 210

212
4 0.04 0.043 0.045 0.047 0.05 0.18 0.19 0.2 0.2 0.22
6 0.042 0.045 0.047 0.049 0.05 0.24 0.29 0.3 0.29 0.32
8 0.043 0.047 0.049 0.052 0.05 0.33 0.41 0.38 0.41 0.43

216
4 0.502 0.543 0.582 0.637 0.69 1.94 2.36 2.39 2.77 3.15
6 0.502 0.545 0.584 0.639 0.7 3.01 3.09 3.57 3.8 3.92
8 0.53 0.57 0.61 0.66 0.72 4.29 4.43 4.92 5.01 5.6

220
4 7.67 7.89 7.97 8.02 8.07 28.17 29.3 29.41 32.13 35.7
6 7.7 7.92 8.01 8.1 8.17 46.82 47.16 47.48 49.16 52.98
8 8.03 8.11 8.26 8.32 8.37 66.63 67.52 68.16 69.27 69.51

Table 3: The total runtime (minute) and communication cost per item (KB) of our server-aided MPCCache
with k = 28 for the number of parties n, each with set size m.

#party n Role
Running Time Communication

m = 212 m = 214 m = 216 m = 218 m = 220 m = 212 m = 214 216 m = 218 m = 220

4
User 0.008 0.028 0.105 0.388 1.441 0.58 0.66 0.73 0.81 0.88

Server 0.045 0.171 0.582 2.154 7.971 24.47 26.34 28.06 29.74 31.41

6
User 0.01 0.032 0.107 0.395 1.467 1.17 1.32 1.46 1.61 1.76

Server 0.047 0.175 0.584 2.153 8.009 24.77 26.67 28.43 30.14 31.85

8
User 0.012 0.036 0.13 0.481 1.775 1.75 1.97 2.19 2.42 2.64

Server 0.049 0.179 0.607 2.252 8.263 25.06 27 28.79 30.54 32.28

16
User 0.02 0.058 0.24 0.912 3.374 4.09 4.61 5.12 5.64 6.15

Server 0.058 0.199 0.634 2.287 8.315 26.23 28.32 30.26 32.15 34.04

computation between two parties. We use a one-time pad to implement the encryption scheme.
For example, to compute Enc(xij , y

i
j ||wij) in Step (II.1.a) of Figure 6, we first truncate xij to obtain

a string with λ+ θ+ log(n) bits long, and then xor the result with yij ||wij . Together with OPPRF,

the bit-length of yij is already chosen to guarantee the correctness and security.

7.1 k-priority performance

Our k-priority requires
(

1
4 log(k) + 1

2

)
m log(k)− 1

2k log(k) Compare-Swap instances. We use garbled
circuit [Yao86, BMR90] to perform secure comparisons.

Table 1 presents the concrete communication cost of our k-priority for the different range of top-
K. The cost is measured in KB per item as we would like to show an improved performance factor
of our proposed protocol compared to the state-of-the-art oblivious sort as well as a performance

19

change when increasing k. Recall that the oblivious sort takes about 1
4m log2(m) invocations of a

Compare-Swap computation. Thus, for the dataset size m = 220 and a small k = 27 our approach
shows a 6.3× improvement in terms of the communication cost. As expected, when increasing k to
210, the improved factor decreases to 3.3.

We also report the detailed running time of both constructions in Table 1. Our k-priority protocol
requires only 0.78 minutes for m = 218 elements and k = 27 while the oblivious sort approach takes
1.96 minutes, a 2.5× improvement. For the same set size and k = 210, our total running time is
1.49 minutes.

To see more clearly the performance change for different k values, Figure 8 in Appendix D
presents the total runtime and communication cost per item of our k-priority and the oblivious sort
in two different y-axes bar chart. All numbers are evaluated on the data set size m = 216. As you
can see, there is a minor change in the running time on the k-priority performance when increasing
k.

7.2 MPCCache performance

Table 2 presents the total running time for two variants of our MPCCache: decentralized and server-
aided models described in Figure 6 and Figure 7, respectively. The main difference between the
two constructions is in the steps of equality checks and k-priority. While the decentralized protocol
requires all participants to jointly compute these steps, in the server-aided framework only two
specific servers perform the computation. Therefore, the former model is expensive than the latter
one but provides a stronger security guarantee where any subset of corrupted parties learns nothing
about the dataset of honest parties. Note that the non-colluding assumption in our server-aided
model is realistic for our cooperative edge-sharing application as mentioned in Section 4.2

As can been seen from Table 2, the running time of our server-aided MPCCache shows a minor
change when increasing the number of participants. It dues to the fact that the cost of distributing
the conditional secret shares with OPPRF is minimal. For MPCCache with k = 28, m = 216 items,
the running time of the server-aided model is increasing from 0.58 minutes to 0.61 minutes when
increasing the number of parties from 4 to 8. For the same parameters, the decentralized MPCCache
model takes 4.29 minutes for n = 4 and 28 minutes for n = 8. Note that the running time of our
scheme can be directly speedup by using multiple threads.

The communication cost of our decentralized MPCCache is approximate n× more than that of
the server in the server-aided model presented in Table 3, which leads to a few GBs data transferred
for a large dataset. However, in the case for our deployment, the dataset of participants is located
in the same cloud region thus the high communication cost is not a bottleneck.

7.3 Server-aided MPCCache

Note that the numbers reported in Table 2 are for an end-to-end server-aided MPCCache execution,
which includes the user’s waiting time for the servers’s computation. As discussed Section 6, the
server-aided protocol is asymmetric with respect to the servers Pe∈{1,2} and other parties (user).
Table 3 presents the performance of different roles of the participants.

On the server’s side, the communication is composed of (a) the centralized step, which has an
amortized communication of at most 450 + γ|c| bits per bin, where |c| = λ+ log(n) + θ is the bit-
length ciphertext obtained from the encryption scheme (recall, λ+log(n) and θ are the bit-length of
zero-share and the associated value, respectively); (b) β equality checks inside MPC, each requires

20

to communicate (λ + log(n)) AND gates, thus, costs 256(λ + log(n)) bits; (c) the communication
of k-priority protocol.

Because the user only distributes its dataset to two servers via our conditional secret sharing,
his workload is very light. For the small m = 212, only 0.008 minutes running time and 0.58 KB
communication per item are required in 4-party MPCCache protocol on the user’s side. When
increasing m to 220, each user executes MPCCache in 1.44 minutes with 0.88 KB of communication.
Note that the running time of our protocol on the user’s side does not depend much on the number
of parties due to the parallelizability with a separate secure channel between user and server.

The server’s work is heavy due to equality checks and k-priority computation. The server requires
0.58 minutes to compute the k-priority common elements from n = 4 parties with m = 216, which
is about 5.7× more than the user’s load. For m = 220 and n = 16, the total runtime of the server’s
side is 8.3 minutes. The numbers show that our protocol also scales to a large number of parties.

7.4 Comparison with baseline

By blending standard circuit-based MPC protocols [BMR90, MNPS04] with recent optimized con-
structions [RJHK19], one can design a new protocol to address the multi-party cooperative cache
sharing problem by following similar steps in our proposed protocol. Specifically, this solution can
be implemented in two phases. Based on the recent protocol [RJHK19], MPCircuits, the first phase
is to compute the secret share of the intersection. The second phase uses generic MPC protocols
or our k-priority to compute the top-k function on the obtained results. We consider this solution
as a baseline.

The high-level idea of MPCircuits is to compute the multi-party PSI (or secret shared PSI) in
a binary tree structure as they observed that the set intersection of n sets can be expressed as a
consecutive set intersection of two sets until reaching the final result. Therefore, the intersection
of two sets is computed at each node of the tree, and the final intersection of all sets is computed
at the root of the tree. Using three operations as sort, merge, and compare, the complexity of
their garbled circuit is O(nm` log(m)2) where ` is the bit-length of the element identity. To keep
track θ-bit associated value of the identity, the MPCircuits-based solution requires a complexity of
O(nm(`+ θ) log2(m)). In contrast, with the lightweight OPPRF, our solution requires only single
equality comparison per bin. Thus, the complexity of our circuit is O(m(|z| + θ)), where z is a
bit-length of the zero share which is equal to min (`, λ+ log(n)). It is easy to see that the first phase
of our solution is about n log2(m)× better than that of MPCircuit-based approach. For example,
with n = 8 and m = 220 our solution shows about an 3, 200× improvement.

To hide the intersection set size, the output of the MPCircuits-based computation at the root
of the tree consists of mn secret shares of all zero strings and the elements in the final intersection.
As a result, the second phase of the baseline solution takes mn secret shares as an input of each
party. On the other hand, our MPCCache only takes β = 1.27m secret shares, each per bin.

8 Conclusion and Future Directions

In this work, we design a MPCCache framework for the cooperative content caching at the network
edge where multiple network operators can jointly cache common data items in a shared cache. Our
proposed solution is built on several state-of-the-art cryptographic primitives such as OPPRF and
garbled circuits with various optimizations. In terms of technical contributions, this is the first work

21

formally studying cooperative cache sharing, and top-K computation on the private set intersection
in the multi-party setting. Underlying one of our protocols is a new exact top-K selection tailored
to secure computation. Our performance results show that our MPCCache scales well to massive
datasets and a large number of participants. We highlight some directions for future work:

• Incentive compatibility: In this work, we assume that the parties are truthful by using their
true valuations for each content item in their databases. It is because the access frequency of
each party to each cached file is measurable and known. Additionally, some economic penalty
schemes can be used to enforce truthfulness as mentioned in Section 4.2. How to design
efficient incentive-compatible mechanisms (e.g., specific payment rules, reputation update
rules) [NRTV07] to encourage parties to act truthfully while considering privacy issues is an
exciting research direction.

• Improving scalability: The current implementation of MPCCache only uses single-thread while
the scheme can be implemented in a parallel fashion. To enhance scalability, a parallelization
at the level of bins can be implemented to allow the scheme to deal with a big dataset (e.g.
million points) in seconds. Moreover, our MPCCache construction is from symmetric-key
operations, which requires a high communication cost. In some applications run on slow
networks, the communication might be a bottleneck. Combination MPC and homomorphic
encryption [Gen09] is a potential direction to reduce the network cost.

• Extension to malicious adversaries: In our cooperative cache sharing application, it is suf-
ficient to design a MPCCache secure against semi-honest adversary. However, in other ap-
plications, the requirement of security guarantee is stronger. It is necessary to extend our
scheme to the malicious adversarial setting. One promising direction is to investigate the
SPDZ protocol [DPSZ12].

References

[20117] Accessed November 2017. AT&T Edge Cloud (AEC) - White Paper.
2017. https://about.att.com/ecms/dam/innovationdocs/Edge_Compute_White_

Paper%20FINAL2.pdf.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 805–817. ACM Press, October 2016.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network. In
15th ACM STOC, pages 1–9. ACM Press, April 1983.

[BA12] Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset oper-
ations. In Heung Youl Youm and Yoojae Won, editors, ASIACCS 12, pages 40–41.
ACM Press, May 2012.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–
May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314,
New York, NY, USA, 1968. ACM.

22

https://about.att.com/ecms/dam/innovationdocs/Edge_Compute_White_Paper%20FINAL2.pdf
https://about.att.com/ecms/dam/innovationdocs/Edge_Compute_White_Paper%20FINAL2.pdf

[BBD14] E. Bastug, M. Bennis, and M. Debbah. Living on the edge: The role of proactive
caching in 5g wireless networks. IEEE Communications Magazine, 52(8):82–89, Aug
2014.

[BD10] M. Burkhart and X. Dimitropoulos. Fast privacy-preserving top-k queries using secret
sharing. In 2010 Proceedings of 19th International Conference on Computer Commu-
nications and Networks, pages 1–7, Aug 2010.

[Bf12] Martin Burkhart and Xenofontas Dimitropoulos fontas. Fast private set operations
with sepia. 2012.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 337–367. Springer, Heidelberg, April 2015.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society Press, May 2013.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 503–513, New York, NY, USA, 1990. ACM.

[BNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM CCS 2008, pages 257–266. ACM Press, October 2008.

[CCD+20] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya Razenshteyn, and
M. Sadegh Riazi. Sanns: Scaling up secure approximate k-nearest neighbors search.
In USENIX Security, August 2020.

[CDG+21] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Ob-
battu, Sruthi Sekar, and Akash Shah. Efficient linear multiparty psi and exten-
sions to circuit/quorum psi. Cryptology ePrint Archive, Report 2021/172, 2021.
https://eprint.iacr.org/2021/172.

[CGK20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear
online time. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology –
EUROCRYPT 2020, pages 44–75, Cham, 2020. Springer International Publishing.

[CGS21] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-psi with linear complexity
via relaxed batch opprf. Cryptology ePrint Archive, Report 2021/034, 2021. https:

//eprint.iacr.org/2021/034.

[CJS12] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. Multi-party privacy-preserving
set intersection with quasi-linear complexity. IEICE Transactions, 95-A(8):1366–1378,
2012.

23

https://eprint.iacr.org/2021/172
https://eprint.iacr.org/2021/034
https://eprint.iacr.org/2021/034

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from ho-
momorphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255. ACM Press, Octo-
ber / November 2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer, Heidelberg,
August 2020.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure
two-party computation. In Dario Catalano and Roberto De Prisco, editors, SCN 18,
volume 11035 of LNCS, pages 464–482. Springer, Heidelberg, September 2018.

[DG16] Zeev Dvir and Sivakanth Gopi. 2-server pir with subpolynomial communication. J.
ACM, 63(4), September 2016.

[DPSZ12] Ivan Damgαrd, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Hei-
delberg, August 2012.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scaling private
contact discovery. PoPETs, 2018(4):159–178, 2018.

[ENOPC21] Aner Ben Efraim, Olga Nissenbaum, Eran Omri, and Anat Paskin-Cherniavsky. Psim-
ple: Practical multiparty maliciously-secure private set intersection. Cryptology ePrint
Archive, Report 2021/122, 2021. https://eprint.iacr.org/2021/122.

[ETS19] ETSI. Multi-access Edge Computing. 2019. https://www.etsi.org/technologies/

multi-access-edge-computing.

[FGPS19] Eric J. Friedman, Vasilis Gkatzelis, Christos-Alexandros Psomas, and Scott Shenker.
Fair and efficient memory sharing: Confronting free riders. In The Thirty-Third AAAI
Conference on Artificial Intelligence, USA,, pages 1965–1972, 2019.

[FGS+18] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam Czubak, and Marcin Szymanek.
The dangers of key reuse: Practical attacks on IPsec IKE. In William Enck and
Adrienne Porter Felt, editors, USENIX Security 2018, pages 567–583. USENIX Asso-
ciation, August 2018.

[FHLS19] Alireza Farhadi, MohammadTaghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi.
Lower bounds for external memory integer sorting via network coding. In Moses
Charikar and Edith Cohen, editors, 51st ACM STOC, pages 997–1008. ACM Press,
June 2019.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378
of LNCS, pages 303–324. Springer, Heidelberg, February 2005.

24

https://eprint.iacr.org/2021/122
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology - EUROCRYPT 2004, volume 3027
of Lecture Notes in Computer Science, pages 1–19. Springer, 2004.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 640–658. Springer, Heidelberg, May 2014.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure private
set intersection. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 154–185. Springer, Heidelberg, May 2019.

[Goo10] Michael T. Goodrich. Randomized shellsort: A simple oblivious sorting algorithm. In
Moses Charika, editor, 21st SODA, pages 1262–1277. ACM-SIAM, January 2010.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 3–29. Springer, Heidelberg,
August 2019.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

[HFH99] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy and
trust in electronic communities. In EC, pages 78–86, 1999.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-party
private set-intersection. In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of
LNCS, pages 175–203. Springer, Heidelberg, March 2017.

[IKN+19] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova,
Shobhit Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying se-
cure computing commercially: Private intersection-sum protocols and their busi-
ness applications. Cryptology ePrint Archive, Report 2019/723, 2019. https:

//eprint.iacr.org/2019/723.

[JKU11] Kristján Valur Jónsson, Gunnar Kreitz, and Misbah Uddin. Secure multi-party sort-
ing and applications. Cryptology ePrint Archive, Report 2011/122, 2011. https:

//eprint.iacr.org/2011/122.

[JPV12] K. V. Jonsson, K. Palmskog, and Y. Vigfusson. Secure distributed top-k aggregation.
In 2012 IEEE International Conference on Communications (ICC), pages 804–809,
June 2012.

25

https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2011/122
https://eprint.iacr.org/2011/122

[KFMB17] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. Robus:
Fair cache allocation for data-parallel workloads. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD ’17, pages 219–234, New
York, NY, USA, 2017. ACM.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

[KMCK20] Myungsun Kim, Abedelaziz Mohaisen, Jung Cheon, and Yongdae Kim. Private top-k
aggregation protocols. 02 2020.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 1257–1272. ACM Press, October / November 2017.

[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party
computation. Cryptology ePrint Archive, Report 2011/272, 2011. http://eprint.

iacr.org/2011/272.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Chris-
tian Weinert. Mobile private contact discovery at scale. In 28th USENIX Security
Symposium (USENIX Security 19), 2019.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates
and applications. In Proceedings of the 35th International Colloquium on Automata,
Languages and Programming, Part II, ICALP ’08, pages 486–498, Berlin, Heidelberg,
2008. Springer-Verlag.

[LRG19] Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. Two-party private set intersec-
tion with an untrusted third party. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2403–2420. ACM Press,
November 2019.

[LSX19] Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can we overcome the n log n barrier
for oblivious sorting? In Timothy M. Chan, editor, 30th SODA, pages 2419–2438.
ACM-SIAM, January 2019.

[Man09] Dilip Many. Privacy-preserving collaboration in network security. 2009.

[Mea86] C. Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In IEEE S&P, 1986.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-
party computation system. In Matt Blaze, editor, USENIX Security 2004, pages
287–302. USENIX Association, August 2004.

26

http://eprint.iacr.org/2011/272
http://eprint.iacr.org/2011/272

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine
learning. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 35–52. ACM Press, October 2018.

[MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy,
pages 19–38. IEEE Computer Society Press, May 2017.

[NMW10] Georg Neugebauer, Ulrike Meyer, and Susanne Wetzel. Fair and privacy-preserving
multi-party protocols for reconciling ordered input sets. In Proceedings of the 13th
International Conference on Information Security, ISC’10, page 136–151, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[NMW13] Georg Neugebauer, Ulrike Meyer, and Susanne Wetzel. Smc-muse: A framework for
secure multi-party computation on multisets. In Matthias Horbach, editor, INFOR-
MATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt, pages
131–133, Bonn, 2013. Gesellschaft für Informatik e.V.

[NRTV07] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, USA, 2007.

[Ode09] Goldreich Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively Secure 1-out-of-N OT
Extension with Application to Private Set Intersection. In CT-RSA 2017 - RSA
Conference Cryptographers’ Track, 2017.

[PIA+16] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tassiulas. Caching
and operator cooperation policies for layered video content delivery. In IEEE INFO-
COM 2016 - The 35th Annual IEEE International Conference on Computer Commu-
nications, pages 1–9, April 2016.

[PIT+18] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire. The role of caching
in future communication systems and networks. IEEE Journal on Selected Areas in
Communications, 36(6):1111–1125, June 2018.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 2004.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight
private set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431.
Springer, Heidelberg, August 2019.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer, Heidelberg,
May 2020.

27

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 515–530. USENIX Association, August 2015.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, ed-
itors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer,
Heidelberg, May 2019.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, ed-
itors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157. Springer,
Heidelberg, April / May 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 797–812. USENIX Association, August 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersec-
tion based on ot extension. ACM Trans. Priv. Secur., 21, 2018.

[RJHK19] M. Sadegh Riazi, Mojan Javaheripi, Siam U. Hussain, and Farinaz Koushanfar.
MPCircuits: Optimized circuit generation for secure multi-party computation. In 2019
IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, may 2019.

[RS20] Rahul Rachuri and Ajith Suresh. Trident: Efficient 4pc framework for privacy pre-
serving machine learning. The Network and Distributed System Security Symposium
(NDSS) 2020, 2020.

[RS21] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from vector-
ole. Cryptology ePrint Archive, Report 2021/266, 2021. https://eprint.iacr.org/
2021/266.

[Sha80] Adi Shamir. On the power of commutativity in cryptography. In Automata, Languages
and Programming, 1980.

[Shi19] Elaine Shi. Path oblivious heap : Optimal and practical oblivious priority queue. 2019.

[SS08] Yingpeng Sang and Hong Shen. Privacy preserving set intersection based on bilinear
groups. In Proceedings of the Thirty-first Australasian Conference on Computer Sci-
ence - Volume 74, ACSC ’08, pages 47–54, Darlinghurst, Australia, Australia, 2008.
Australian Computer Society, Inc.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

[WYG+17] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei
Zaharia. Splinter: Practical private queries on public data. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 17), pages 299–313,
Boston, MA, March 2017. USENIX Association.

28

https://eprint.iacr.org/2021/266
https://eprint.iacr.org/2021/266
https://github.com/emp-toolkit

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[YHA19] J. Yao, T. Han, and N. Ansari. On mobile edge caching. IEEE Communications
Surveys Tutorials, 21(3):2525–2553, thirdquarter 2019.

[YWZ+18] Y. Yu, W. Wang, J. Zhang, Q. Weng, and K. Ben Letaief. Opus: Fair and effi-
cient cache sharing for in-memory data analytics. In 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), pages 154–164, July 2018.

[ZLH+18] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang. Cooperative content caching in
5g networks with mobile edge computing. IEEE Wireless Communications, 25(3):80–
87, JUNE 2018.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250.
Springer, Heidelberg, April 2015.

A Related work

A.1 Cache related work

Edge caching has been considered as a key building block in the future communication network
[PIT+18]. Various benefits and technical issues (e.g., network architecture, optimal content place-
ment, content popularity prediction, cooperative caching) of edge caching have been investigated
extensively in the recent literature [YHA19, BBD14, ETS19, 20117, PIT+18, ZLH+18]. However,
most of the existing works studied edge caching from the perspective of a single network operator
and have largely ignored the cooperation ability among network operators by exploiting the non-
rivalry nature of the cached data items. It is worth emphasizing that the extensive literature on
cooperative edge caching [PIT+18, ZLH+18] refers to the cooperation among caches owned by a
single Telco. The advantages of cooperative cache sharing among multiple parties have only been
realized and examined formally in recent works [PIA+16, KFMB17, YWZ+18, FGS+18, FGPS19]
in the context of multi-tenant data centers. In these works, the authors focus mainly on economic
aspects such as fairness and efficiency of cache sharing among different tenants. Different from
the previous literature, our paper aims to address the multi-party cooperative cache sharing prob-
lem from the privacy perspective, which opens a new and interesting research direction on secure
computation on PSI.

A.2 PSI related work

There exist multiple constructions for computing PSI, which can be split into two groups: (1)
constructions that output the intersection itself (PSI); and (2) constructions that output the result
of a function f computed on the intersection (f -PSI).

In this section, we focus on the state-of-the-art semi-honest PSI protocols. The earliest two-
party PSI protocols, based on Diffie-Hellman assumptions, had been proposed in 1980s [Sha80,
Mea86, HFH99], and we refer the reader to [PSZ18] for an overview of different PSI paradigms. The

29

latest PSI protocols in the two-party setting are [PSZ18, PRTY19, GN19, GS19, CM20, PRTY20,
KRS+19].

A multi-party PSI protocol was first proposed by Freedman et al. [FNP04]. The following
works are [SS08, CJS12, HV17] which are heavily based on the public-key operation. This makes
multi-party PSI impractical for the large set size. Later, Kolesnikov et al. [KMP+17] presented
the first multi-party construction from symmetric primitives.

There are very few works on f -PSI, and most of them are in a two-party setting. Suppose that
there are two parties, each has an input set of m items. A naive circuit for f -PSI is to compare
all pair and thus compute O(m2) comparisons. The sort-compare-shuffle f -PSI circuit of [HEK12]
computes O(m log(m)) comparisons. The work of [PSSZ15] based Cuckoo hashing requires a circuit
of O(m log(m)/ log(log(m))) comparisons. By proposing a new variant of Cuckoo hashing in two
dimensions, [PSWW18]’s circuit has an upper-linear complexity of ω(m) comparisons. The first
f -PSI protocols with a linear complexity are [PSTY19] and [CO18]. Even the circuit of [CO18]
computes a linear number of comparisons, but the total communication complexity is higher than
that of [PSTY19].

There exists several multi-party f -PSI protocols [Man09, Bf12, JKU11, NMW10, NMW13,
RJHK19]. In [NMW10, NMW13], the authors provided a construction that outputs common items
with the highest preference (rank) among all parties, which can be considered as a special case of our
k-priority problem. Specifically, they use the polynomial to present the set of each party, and do the
computation on these polynomials based on public-key operations (e.g., homomorphic encryption,
Paillier cryptosystem). More precise, to represent an item with a preference of v, they replicate the
item k times. In other words, the polynomial has a form Pi(x) = (x−x1)v(x−x2)v−1 . . . (x−xm)1

where {x1, . . . , xm} is the input of the i-th party in the decreased order of the preference. For
ranking, their solution is reasonable with small associated value v. However, v can be a very large
value in our case. Clearly, to adapt their protocol for MPCCache, the complexity is O(mn2`) where
2` is the domain of the weighted value (e.g. ` = 16 for 16-bit integer). Thus, their construction is
expensive.

The work [JKU11] improved the constructions of [Man09, Bf12] with an additional feature that
allows to output the top-k items. Unlike MPCCache, the output items in [JKU11] no need to
be common items of all parties. For each item, [JKU11] simply takes the sum of its associated
values from all parties that have the item (some parties may not have it), then chooses top-k items
with largest sum values. In our application, a cached item needs to be common among all the
parties to make cache sharing beneficial. More importantly, their algorithm [JKU11] firstly sorts
the complete list of all parties’s items, ordered by the item’s identity, then computes the sum of
the associated values of the same items and removes the duplication. Due to the oblivious sort
on the set of size mn and the oblivious deduplication, their approach requires much more number
of secure computations than our construction which is 1.27m, where n and m is the number of
parties and the party’s set size, respectively. Moreover, we need to modify [JKU11] to output only
the common items of all parties. One promising direction is to maintain a counter for each item,
indicating a number of the parties has the item and output only the item with the counter n. This
step introduces a certain amount of cost due to equality checks inside MPC.

A very recent work [RJHK19] propose a customized circuit [RJHK19] as MPCircuits to compute
PSI itself. One can extend MPCircuits to compute a top-k function on the secret intersection. We
explicitly compare our proposed MPCCache with the MPCircuits-based solution in Section 7.4. The
result shows that our scheme is at least n× faster than the MPCircuits-based approach.

30

A.3 Secure top-k and oblivious sorting

Secure Top-k Queries. Although the top-k queries problem has many practical applications,
there are only very few works [JPV12, KMCK20, BD10, CCD+20] that have studied this problem
in the privacy-persevering setting. In [JPV12, KMCK20], the authors present algorithm that
allows several participants Pi, each of them holds a secret set Si = {xi1, . . . , xim}, to learn top-k
elements from the union of the input sets

⋃
i Si. In this paper, we are interested in the problem

where all parties’ inputs are under a secret share form. Specifically, each party holds only a secret
share of a set S = {x1, . . . , xm} (i.e., each party does not know what set S is), and wants to learn
the top-K elements of S. While the work [BD10, CCD+20] can solve this problem, its solution is
approximate. For exact top-K selection, a popular method for securely finding the top-k elements
is to use an oblivious sort algorithm.

Oblivious Sorting. Two widely-used sorting networks are the AKS [AKS83] and randomized
shellsort [Goo10] whose complexities are O(m log(m)) for the set size m. However, it has a very
high constant behind the big-O notation, and requires more round complexity. For example, from
the analysis [BA12] of the sorting, a randomized shellsort uses around 5m log(m) Compare-Swap
operations but has a depth (i.e., the number of consecutive Compare-Swap) of approximate 5m. The
number of rounds is equal to this value multiplied by the round complexity of a Compare-Swap.
Additionally, their constructions are optimal due to recent lower bounds provided in the work of
[FHLS19, LSX19].

In the context of MPC, a more practical sorting algorithm is Batcher’s network [Bat68] which
requires O(m log2(m) comparisons. Although Batcher’s network has a high complexity and requires
about 1

4m log2(m) Compare-Swap operations, they use odd-even merge sort which can be more
effectively parallelized using only log(m) consecutive Compare-Swap. Moreover, Batcher’s network
needs fewer comparisons than randomized shellsort for m ≤ 220.

Very recently, Shi [Shi19] proposed a path oblivious sort, which is preferrable than the Batcher’s
sorting network when the client-side storage is small. In our MPCCache model, the Telco’s storage
size is typically quite large. Hence, Batcher sort would result in fewer roundtrips.

B Security Model In Multi-Party Computation

We formally present the security definition considered in this work, which follows the definition of
[KMR11, Ode09] in the multi-party setting.

Real-world execution. The real-world execution of protocol Π takes place between parties
(P1, . . . , Pn) and adversaries (A1, . . . ,Am), where m < n. Let H ∈ [n] denote the honest parties,
I ∈ [n] denote the set of corrupted and non-colluding parties and C ∈ [n] denote the set of corrupted
and colluding parties.

At the beginning of the execution, each party Pi∈[n] receives its input xi and an auxiliary input
zi while each adversary Ai∈[m−1] receives an index i ∈ I that indicates the party it corrupts, while
adversary Am receives C indicating the set of parties it corrupts.

For all i ∈ H, let OUTi denote the output of Pi and for i ∈ I ∪ C, let OUT′i denote the view of
corrupted party Pi during the execution of Π. The ith partial output of a real-world execution of
Π between parties (P1, . . . , Pn) in the presence of adversaries A = (A1, . . . ,Am) is defined as

REALiΠ,A,I,C,zi(k, xi)
def
= {OUTj | j ∈ H} ∪ OUT′i

31

Ideal-world execution. In the ideal-world execution, all the parties interact with a trusted
party that evaluates a function f . As in the real-world execution, the ideal execution begins with
Pi∈[n] receives its input xi and an auxiliary input zi. Since we consider a semi-honest setting, each
party Pi∈[n] sends xi to the trusted party. The trusted party then returns f(x1, . . . , xn) to all the
parties.

For all i ∈ H, let OUTi denote the output returned to Pi by the third party, and for i ∈ I ∪C,
let OUT′i denote some value output by party Pi. The ith partial output of a ideal-world execution
of Π between parties (P1, . . . , Pn) in the presence of independent simulators S = (S1, . . . ,Sm) is
defined as

IDEALiΠ,S,I,C,zi(k, xi)
def
= {OUTj | j ∈ H} ∪ OUT′i

Definition 1. (Semi-Honest Security) Suppose f is a deterministic-time n-party functionality (de-
terministic in all cases considered in this paper), and Π is the protocol. Let xi be the parties’
respective private inputs to the protocol. Let I ∈ [n] denote the set of corrupted and non-colluding
parties and C ∈ [n] denote the set of corrupted and colluding parties. We say that protocol Π(I, C)
securely computes deterministic functionality f if there exist probabilistic polynomial-time simu-
lators Simi∈m for m < n such that all adversaries A = (A1, . . . ,Am), for all x̄ ← {0, 1}∗ and
z̄ ← {0, 1}∗, and for all i ∈ [m],

{REALiΠ,A,I,C,z̄(k, x̄)=̃{IDEALiΠ,Sim,I,C,z̄(k, x̄)}

Where S = (S1, . . . ,Sm) and S = Simi(Ai)

C Security Proof

Theorem 1. The protocol in Figure 5 securely computes the k-priority functionality defined in
Figure 4 in the colluding semi-honest setting, given the ideal oblivious sorting and odd-even merging
primitives defined in Section 3.4.

Sketch of proof: To prove this theorem, we analyze each step in the algorithm with respect
the k-priority functionality defined in Figure 4. The first step of the algorithm is locally executed
by each party, which leaks nothing. In the second step, parties perform oblivious sorting Fobv-sort.
Moreover, the output of Fobv-sort is under a secret shared form, thus, as long as the Fobv-sort used is
secure, so is k-priority until this step. Step 3 recursively calls LevelMerge, which base case is oblivious
odd-even merging, and all intermediate output values of each recursive step are secret-shared. When
using the oblivious odd-even merging functionality, the proof of step (3) is elementary.

Therefore, the security of our k-priority construction follows in a straightforward way from the
security of its building blocks (i.e. oblivious sorting and odd-even merging) and the fact that all
intermediate values are secret-shared.

Theorem 2. The construction of Figure 6 securely implements the MPCCache functionality defined
in Figure 2 in the colluding semi-honest model, given the OPPRF primitive, GC, and k-priority
functionality described in Section 3.2, Section 3.3, and Figure 4, respectively.

Proof. Denote C as a coalition of corrupt parties. We exhibit simulators Sim for simulating C. Sim
simulates the view of corrupt parties, which consists of C’s randomness, input, output and received
messages. Sim proceeds as follows. It calls a simulator for the zero-sharing key setup, and appends

32

its output to the view. Sim simulates Online step (1) bin-by-bin. Let S′i be the set of elements of Si
that are mapped to the bth bucket. If C do not contain the leader P1, the corrupt parties receives
nothing from the OPPRF functionality. Therefore, we only consider a case where C contains the
leader P1. In this case, Sim first chooses ỹib ← {0, 1}∗ and w̃ib ← {0, 1}∗, and then calls OPPRF,
Enc simulators. Sim then appends its output to the general view.

Finally, to simulate the online steps (1e) and 2, Sim runs simulator SimGC and Simk-priority on
the inputs tib, s

i
b, and ub and also append its output to the view.

We now argue the indistinguishability of the produced transcript from the real execution. For
this, we formally show the simulation by proceeding the sequence of hybrid transcripts T0, . . . , T4,
where T0 is real view of C, and T4 is the output of Sim.

Hybrid 1. Let T1 be the same as T0, except the zero-sharing key setup execution is replaced with
running its simulator. Because pseudorandomness guarantees of the underlying simula-
tor, T0 and T1 are indistinguishable.

Hybrid 2. Let T2 be the same as T1, except the OPPRF and Enc executions are replaced as follows.
Consider two following cases:

• If C contains P1: if x1
b is not common, all OPPRF’s outputs are uniformly random

from the view of P1 as well as C. Otherwise, P1 receives Enc(x1
b , ỹ

i
b||w̃ib) and thus

(zij⊕ tib||vij−sib) for the OPPRF involving the non-colluding party Pi. We obverse that

tib and sib is used only in the above expression. Since these values are uniform, so is
ỹib||w̃ib. Therefore, we replace OPPRF’s outputs with random.
• If C does not contain P1: In this case, C receives nothing from the OPPRF functionality

and Enc scheme.

In summary, T2 and T1 are indistinguishable.

Hybrid 3. Let T3 be the same as T2, except the equality GC execution is replaced with running
the simulator SimGC(tib, s

i
b, ub),∀i ∈ [n], b ∈ [β]. Because SimGC is guaranteed to produce

output indistinguishable from real, T3 and T2 are indistinguishable.

Hybrid 4. Let T4 be the same as T3, except the k-priority execution is replaced with running the
simulator Simk-priority(u

i
b,∀i ∈ [n], b ∈ [β]). k-priority takes the secret-shared values corre-

sponding to each bin, which allows to hide the intersection items. Moreover, the output of
Simk-priority is indistinguishable from real execution, thus T4 and T3 are indistinguishable.

Theorem 3. The construction of Figure 7 securely implements the MPCCache functionality defined
in Figure 2 in the non-colluding semi-honest model, given the OPPRF primitive, GC, and k-priority
functionality described in Section 3.2, Section 3.3, and Figure 4, respectively.

Proof. Denote C as a coalition of corrupt parties. We exhibit simulators Sim for simulating C. Sim
simulates the view of corrupt parties, which consists of C’s randomness, input, output and received
messages.

Sim first chooses z̃ij ← {0, 1}∗ and s̃ij ← {0, 1}∗, and calls OPPRF and Enc simulators. Sim
then appends its output to the general view. The proof for “Server-working” phase is elementary
as Sim runs two-party decentralized MPCCache protocol and appends its output to the view.

33

Top-27 Top-28 Top-29 Top-210 Sort

0

10

20

30

40

50

8.
06 10
.2

3

12
.6

5

15
.3

2

3
2.

7
7

C
om

m
u
n
ic

at
io

n
C

os
t

(K
B

p
er

it
em

)

KB

0

0.1

0.2

0.3

0.4

0.5

0.
2 0
.2

4 0.
29

0
.3

5 0.
3
8

R
u
n
n
in

g
T

im
e

(m
in

u
te

)

Mins

Figure 8: The total running time (red bar) in minute and communication cost (blue bar) per item in KB
of our k-priority and oblivious sort for Top-k and data set size m = 216.

If C do not contain any server Pe∈{1,2}, the corrupt parties receive nothing from the OPPRF
functionality as well as the fist phase. Moreover, the second phase does not invoke C. Therefore,
our MPCCache protocol is secure in this case.

We consider a case where C corrupts one of two servers. Without loss of generality, we assume
that P1 ∈ C. We now argue the indistinguishability of the produced transcript from the real exe-
cution. For this, we formally show the simulation by proceeding the sequence of hybrid transcripts
T0, . . . , T2, where T0 is real view of C, and T2 is the output of Sim.

Hybrid 1. Let T1 be the same as T0, except the OPPRF execution is replaced as follows. For a
specific item x1

j , consider two following cases:

• If x1
j is not common, all OPPRF’s outputs are uniformly random from the view of P1

as well as C.
• If x1

j is common, both servers Pe∈{1,2} obtains the same z̃iji for the OPPRF involving
the party Pi. In this protocol, we assume that P1 and P2 do not collude. Therefore,

z̃iji looks random to the corrupted party P1.

In summary, T1 and T0 are indistinguishable.

Hybrid 2. Let T2 be the same as T1, except the “server-working“ execution is replaced with running
the simulator our two-party MPCCache protocol. Because pseudorandomness guarantees
of the underlying simulator (proved in Theorem 2) T2 and T1 are indistinguishable.

D Cryptographic Gadget

D.1 Garbled Circuit

Secure multi-party computation (MPC) allows a set of parties to jointly invoke a distributed com-
putation while ensuring correctness, privacy of the parties’ inputs, and more. Garbled Circuit (GC)

34

is currently the most common generic technique for practical secure computation. GC was first
introduced by Yao [Yao86] and Goldreich et al. [GMW87] for the two-party setting. Later, Beaver
et al. [BMR90] and follow-up work [MNPS04, RJHK19] proposed GC for the multi-party setting
with a constant-round protocol.

In the two-party setting, garbled circuit protocol [Yao86, GMW87] consists of a garbler and
evaluator: the garbler encodes a function (e.g. equality, less than) into a garbled circuit using two
random keys per each wire of the circuit; the evaluator first obtains corresponding keys of the input
wires, and evaluates the circuit to learn the corresponding output wire key. The evaluator finally
takes a decoding table, which maps the final output wire keys to the real values, and decodes the
final output. In the multi-party setting, the garbled circuit [BMR90] is similar to the two-party
construction, but each party jointly plays the role of both garbler and evaluator to garbling the
circuit and evaluate it.

Garbled Circuit technique has seen dramatic improvements in recent years. The most notable
optimized techniques are point-and-permute [BNP08], Free-XOR [KS08], the half-gate [ZRE15],
and fixed-key AES garbling optimizations [BHKR13].

D.2 Hashing Scheme

Cuckoo hashing. In basic Cuckoo hashing, there are β bins denoted B[1, . . . , β], a stash, and k̃
random hash functions h1, . . . , hk̃, each with range β. One can use a variant of Cuckoo hashing such
that each item x ∈ X is placed in exactly one of β bins. Using the Cuckoo analysis [DRRT18] based
on the set size m of X, the parameters β, k̃ are chosen so that with high probability (1− 2λ) every
bin contains at most one item, and no item has to place in the stash during the Cuckoo eviction
(i.e. no stash is required). In this paper, we therefore use k̃ = 3 hash functions and β = 1.27m for
our stash-less hashing scheme.

Simple hashing. One can map his points into bins using the same set of k̃ Cuckoo hash
functions (i.e., each item appears k̃ times in the hash table). Using the standard ball and bin
analysis based on β, k̃, and the Cuckoo table size, one can deduce an upper bound γ such that no
bin contains more than γ items with high probability (1 − 2λ). According to [PSSZ15, DRRT18],
γ = O(log(m)). In this paper, we choose γ equal to 2 log(m) for the set size of m.

35

	Introduction
	Motivation
	Contribution

	Related Work and Technical Overview of MPCCache
	Cryptographic Preliminaries
	Secret Sharing
	Programmable OPRF
	Garbled Circuit
	Oblivious Sort and Merge

	Threat MPCCache Model
	Security Definitions
	Threat MPCCache Model

	Our Decentralized MPCCache
	A special case of our first phase
	A general case of our first phase
	Our second phase: k-priority construction
	Putting All Together: MPCCache system

	Our Server-aided MPCCache
	Implementation
	k-priority performance
	MPCCache performance
	Server-aided MPCCache
	Comparison with baseline

	Conclusion and Future Directions
	Related work
	Cache related work
	PSI related work
	Secure top-k and oblivious sorting

	Security Model In Multi-Party Computation
	Security Proof
	Cryptographic Gadget
	Garbled Circuit
	Hashing Scheme

