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Abstract As the world adopts Artificial Intelligence (AI), the privacy risks are many.
AI can improve our lives, but may leak or misuse our private data. Private AI is based
on Homomorphic Encryption (HE), a new encryption paradigm which allows the
cloud to operate on private data in encrypted form, without ever decrypting it, en-
abling private training and private prediction with AI algorithms. The 2016 ICML
CryptoNets [26] paper demonstrated for the first time evaluation of neural net pre-
dictions on homomorphically encrypted data, and opened new research directions
combining machine learning and cryptography. The security of Homomorphic En-
cryption is based on hard problems in mathematics involving lattices, a candidate for
post-quantum cryptography. This paper gives an overview of my Invited Plenary Lec-
ture at the International Congress of Industrial and Applied Mathematics (ICIAM),
explaining Homomorphic Encryption, Private AI, and real-world applications.

1 Motivation: Privacy in Artificial Intelligence

These days more and more people are taking advantage of cloud-based artificial
intelligence (AI) services on their smart phones to get useful predictions such as
weather, directions, or nearby restaurant recommendations based on their location
and other personal information and preferences. The AI revolution that we are
experiencing in the high tech industry is based on the following value proposition:
you input your private data and agree to share it with the cloud service in exchange
for some useful prediction or recommendation. In some cases the data may contain
extremely personal information, such as your sequenced genome, your health record,
or your minute-to-minute location.
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This quid pro quo may lead to the unwanted disclosure of sensitive information
or an invasion of privacy. Examples during the year of ICIAM 2019 include the case
of the Strava fitness app which revealed the location of U.S. army bases world-wide,
or the case of the city of Los Angeles suing IBM’s weather company over deceptive
use of location data. It is hard to quantify the potential harm from loss of privacy,
but employment discrimination or loss of employment due to a confidential health
or genomic condition are potential undesirable outcomes. Corporations also have a
need to protect their confidential customer and operations data while storing, using,
and analyzing it.

To protect privacy, one option is to lock down personal information by encrypting
it before uploading it to the cloud. However, traditional encryption schemes do not
allow for any computation to be done on encrypted data. In order to make useful
predictions, we need a new kind of encryption which maintains the structure of the
data when encrypting it so that meaningful computation is possible. Homomorphic
Encryption allows us to switch the order of encryption and computation: we get the
same result if we first encrypt and then compute, as if we first compute and then
encrypt.

The first solution for a Homomorphic Encryption scheme which can process
any circuit was proposed in 2009 by Gentry [25]. Since then, many researchers in
cryptography have worked hard to find schemes which are both practical and also
based on well-known hard math problems. In 2011, my team at Microsoft Research
collaborated on the Homomorphic Encryption schemes [8, 9] and introduced a
practical encoding method and improvements [34] which are now widely used in
applications of Homomorphic Encryption. In 2012, using this practical data encoding
method, the “ML Confidential” paper [27] was the first to demonstrate training ML
algorithms on homomorphically encrypted data and to show initial performance
numbers for simple models such as linear means classifiers and gradient descent.
Then in 2016, a surprise breakthrough in the influential CryptoNets paper [26]
demonstrated for the first time that evaluation of neural network predictions was
possible on encrypted data.

Thus began our Private AI project, the topic of my Invited Plenary Lecture at the
International Congress of Industrial and Applied Mathematics in Valencia in July
2019. Private AI refers to our Homomorphic Encryption-based tools for protecting
the privacy of enterprise, customer, or patient data, while doing Machine Learning
(ML)-based AI, both learning classification models and making valuable predictions
based on such models.

You may ask, “What is privacy?” Preserving “privacy” can mean different things
to different people or parties. Researchers in many fields including social science
and computer science have formulated and discussed definitions of privacy. My
favorite definition of privacy is: a person or party should be able to control how and
when their data is used or disclosed. This is exactly what Homomorphic Encryption
enables.
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1.1 Real-world applications

In 2019, the British Royal Society released a report on Protecting Privacy in Practice:
Privacy Enhancing Technologies in Data Analysis. The report covers Homomorphic
Encryption (HE) and Secure Multi-Party Computation (MPC), but also technologies
not built with cryptography, including Differential Privacy (DP) and secure hardware
hybrid solutions. Our Homomorphic Encryption project was featured as a way to
protect “privacy as a human right” at the Microsoft Build world-wide developers’
conference in 2018 [43]. Private AI forms one of the pillars of Responsible ML at
Microsoft Research as part of our collection of Responsible AI research, and Private
Prediction notebooks were released in Azure ML at Build 2020.

Over the last 8 years, my team has created demos of Private AI in action, running
private analytics services in the Azure cloud. I showed a few of these demos in my
talk at ICIAM in Valencia. Our applications include an encrypted fitness app, which
is a cloud service which processes all your workout and fitness data and locations
in the cloud in encrypted form, and displays your summary statistics to you on
your phone after decrypting the results of the analysis locally. Another application
shows an encrypted weather prediction app, which takes your encrypted zip-code
and returns encrypted versions of the weather at your location to be decrypted and
displayed to you on your phone. The cloud service never learns your location or
what weather data was returned to you. Finally, I showed a private medical diagnosis
application, which uploads an encrypted version of a chest X-ray image. The medical
condition is diagnosed by running image recognition algorithms on the encrypted
image in the cloud, and the encrypted diagnosis is returned to the doctor.

Over the years, my team1 has developed other Private AI applications, enabling
private predictions such as sentiment analysis in text, cat/dog image classification,
heart attack risk based on personal health data, neural net image recognition of
hand-written digits, flowering time based on the genome of a flower, and pneumonia
mortality risk using intelligible models. All of these operate on encrypted data in
the cloud to make predictions, and return encrypted results in a matter of fractions
of a second.

Many of these demos and applications were inspired by collaborations with re-
searchers in medicine, genomics, bioinformatics, and machine learning (ML). We
worked together with finance experts and pharmaceutical companies to demonstrate
a range of ML algorithms operating on encrypted data. The UK Financial Conduct
Authority (FCA) ran an international hackathon in August 2019 to combat money-
laundering with encryption technologies by allowing banks to share confidential
information with each other. Since 2015, the annual NIH-funded iDASH competi-
tion has attracted teams from around the world to submit solutions to the Secure
Genome Analysis Competition. Participants include researchers at companies such

1 My collaborators on the SEAL team include: Kim Laine, Hao Chen, Radames Cruz, Wei Dai,
Ran Gilad-Bachrach, Yongsoo Song, Shabnam Erfani, Sreekanth Kannepalli, Jeremy Tieman, Tarun
Singh, Hamed Khanpour, Steven Chith, James French, with substantial contributions from interns
Gizem Cetin, Kyoohyung Han, Zhicong Huang, Amir Jalali, Rachel Player, Peter Rindal, Yuhou
Xia as well.
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as Microsoft and IBM, start-up companies, and academics from the U.S., Korea,
Japan, Switzerland, Germany, France, etc. The results provide benchmarks for the
medical research community of the performance of encryption tools for preserving
privacy of health and genomic data.

2 What is Homomorphic Encryption?

I could say, "Homomorphic Encryption is encryption which is homomorphic." But
that is not very helpful without further explanation. Encryption is one of the building
blocks of cryptography: encryption protects the confidentiality of information. In
mathematical language, encryption is just a map which transforms plaintexts (unen-
crypted data) into ciphertexts (encrypted data), according to some recipe. Examples
of encryption include blockciphers, which take sequences of bits and process them
in blocks, passing them through an S-box which scrambles them, and iterating that
process many times. A more mathematical example is RSA encryption, which raises
a message to a certain power modulo a large integer 𝑁 , whose prime factorization is
secret, 𝑁 = 𝑝 ·𝑞, where 𝑝 and 𝑞 are large primes of equal size with certain properties.

A map which is homomorphic preserves the structure, in the sense that an op-
eration on plaintexts should correspond to an operation on ciphertexts. In practice
that means that switching the order of operations preserves the outcome after de-
cryption: i.e. encrypt-then-compute and compute-then-encrypt give the same answer.
This property is described by the following diagram:

𝑎, 𝑏
compute

−−−−−−−−−−−−−−−−−−→ 𝑎 ∗ 𝑏

encrypt

y
y encrypt

𝐸 (𝑎), 𝐸 (𝑏)
compute

−−−−−−−−−−−−−−−−−−→ 𝐸 (𝑎) 𝐸 (𝑏) 𝐸 (𝑎 ∗ 𝑏)

Fig. 1 Homomorphic Encryption

Starting with two pieces of data, 𝑎 and 𝑏, the functional outcome should be the
same when following the arrows in either direction, across and then down (compute-
then-encrypt), or down and then across (encrypt-then-compute):

𝐸 (𝑎 + 𝑏) = 𝐸 (𝑎) + 𝐸 (𝑏).

If this diagram holds for two operations, addition and multiplication, then any circuit
of AND and OR gates can be evaluated on data encrypted under the map 𝐸 . It is
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important to note that Homomorphic Encryption solutions provide for randomized
encryption, which is a crucial property to protect against so-called dictionary attacks.
This means that new randomness is used each time a value is encrypted, and it should
not be computationally feasible to detect whether two ciphertexts are the encryption
of the same plaintext or not. Thus the ciphertexts in the bottom right corner of the
diagram need to be decrypted in order to detect whether they are equal.

The above description gives a mathematical explanation of Homomorphic En-
cryption by defining its properties. To return to the motivation of Private AI, another
way to describe Homomorphic Encryption is to explain the functionality that it
enables. Figure 2 shows Homer-morphic encryption, where Homer Simpson is a
jeweler tasked with making jewelry given some valuable gold. Here the gold repre-
sents some private data, and making jewelry is analogous to analyzing the data by
applying some AI model. Instead of accessing the gold directly, the gold remains in
a locked box, and the owner keeps the key to unlock the box. Homer can only handle
the gold through gloves inserted in the box (analogous to handling only encrypted
data). When Homer completes his work, the locked box is returned to the owner who
unlocks the box to retrieve the jewelry.

Fig. 2 Homer-morphic Encryption

To connect to Figure 1 above, outsourcing sensitive work to an untrusted jeweler
(cloud) is like following the arrows down, across, and then up. First the data owner
encrypts the data and uploads it to the cloud, then the cloud operates on the encrypted
data, then the cloud returns the output to the data owner to decrypt.



6 Kristin E. Lauter

2.1 History

Almost 5 decades ago, we already had an example of encryption which is homomor-
phic for one operation: the RSA encryption scheme [40]. A message 𝑚 is encrypted
by raising it to the power 𝑒 modulo 𝑁 for fixed integers 𝑒 and 𝑁 . Thus the product
of the encryption of two messages 𝑚1 and 𝑚2 is 𝑚𝑒

1𝑚
𝑒
2 = (𝑚1𝑚2)𝑒. It was an open

problem for more than thirty years to find an encryption scheme which was homo-
morphic with respect to two (ring) operations, allowing for the evaluation of any
circuit. Boneh-Goh-Nissim [3] proposed a scheme allowing for unlimited additions
and one multiplication, using the group of points on an elliptic curve over a finite
field, along with the Weil pairing map to the multiplicative group of a finite field.

In 2009, Gentry proposed the first Homomorphic Encryption scheme, allowing
in theory for evaluation of arbitrary circuits on encrypted data. However it took
several years before researchers found schemes which were implementable, relatively
practical, and based on known hard mathematical problems. Today all the major
Homomorphic Encryption libraries world-wide implement schemes based on the
hardness of lattice problems. A lattice can be thought of as a discrete linear subspace
of Euclidean space, with the operations of vector addition, scalar multiplication, and
inner product, and its dimension, 𝑛, is the number of basis vectors.

2.2 Lattice-based solutions

The high-level idea behind current solutions for Homomorphic Encryption is as
follows. Building on an old and fundamental method of encryption, each message
is blinded, by adding a random inner product to it: the inner product of a secret
vector with a randomly generated vector. Historically, blinding a message with
fresh randomness was the idea behind encryption via one-time pads, but those
did not satisfy the homomorphic property. Taking inner products of vectors is a
linear operation, but if Homomorphic Encryption involved only addition of the inner
product, it would be easy to break using linear algebra. Instead, the encryption must
also add some freshly generated noise to each blinded message, making it difficult
to separate the noise from the secret inner product. The noise, or error, is selected
from a fairly narrow Gaussian distribution.

Thus the security of the encryption is based on the hard problem called Learning-
With-Errors (LWE), to find the secret vector, 𝑠 given many samples of noisy inner
products with the secret. It is a noisy decoding problem in a linear space, essentially
Bounded Distance Decoding (BDD) or a Closest Vector Problem (CVP) in a lattice.
Decryption is possible with the secret key, because the decryptor can subtract the
secret inner product and then the noise is small and is easy to cancel.

Although the above high-level description was formulated in terms of lattices, in
fact the structure that we use in practice is a polynomial ring. A vector in a lattice
of 𝑛 dimensions can be thought of as a monic polynomial of degree 𝑛, where the
coordinates of the vector are the coefficients of the polynomial. Any number ring is
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given as a quotient of Z[𝑥], the polynomial ring with integer coefficients, by a monic
irreducible polynomial 𝑓 (𝑥). The ring can be thought of as a lattice in R𝑛 when
embedded into Euclidean space via the canonical embedding. To make all objects
finite, we consider these polynomial rings modulo a large prime 𝑞, which is often
called the ciphertext modulus.

The ring version of the Learning With Errors problem is called Ring Learning
With Errors (RLWE). The first homomorphic encryption solution based on RLWE
was proposed in [10], where they introduced a variant of RLWE called the Polynomial
Learning With Errors (PLWE) problem. It was later shown that the Polynomial
Learning With Errors (PLWE) problem is not hard for general polynomial rings and
small error [22]. This attack was then extended to apply to the RLWE problem for
many rings and small error [23, 14]. However none of these attacks apply to the
2-power cyclotomic polynomial rings which are used in practice.

2.3 Encoding data

When thinking about practical applications, it becomes clear that real data first has
to be embedded into the mathematical structure that the encryption map is applied
to, the plaintext space, before it is encrypted. This encoding procedure must also be
homomorphic in order to achieve the desired functionality. The encryption function
will be applied to elements in the polynomial ring with integer coefficients modulo
𝑞, so real data must be embedded into this polynomial ring.

In a now widely cited 2011 paper, “Can Homomorphic Encryption be Practical?”
([34, Section 4.1]), we introduced a new way of encoding real data in the polynomial
space which allowed for efficient arithmetic operations on real data, opening up a
new direction of research focusing on practical applications and computations. The
encoding technique was simple: embed an integer 𝑚 as a polynomial whose 𝑖𝑡ℎ

coefficient is the 𝑖𝑡ℎ bit of the binary expansion of 𝑚 (using the ordering of bits
so that the least significant bit is encoded as the constant term in the polynomial).
This allows for direct multiplication of real integers, represented as polynomials,
instead of encoding and encrypting data bit-by-bit, which requires a deep circuit just
to evaluate simple integer multiplication. When using this approach, it is important
to keep track of the growth of the size of the output to the computation. In order to
assure correct decryption, we limit the total size of the polynomial coefficients to 𝑡.
Note that each coefficient was a single bit to start with, and a sum of 𝑘 of them grows
to at most 𝑘 . We obtain the correct decryption and decoding as long as 𝑞 > 𝑡 > 𝑘 ,
so that the result does not wrap around modulo 𝑡.

This encoding of integers as polynomials has two important implications, for
performance and for storage overhead. In addition to enabling multiplication of
floating point numbers via direct multiplication of ciphertexts (rather than requiring
deep circuits to multiply data encoded bit wise), this technique also saves space by
packing a large floating point number into a single ciphertext, reducing the storage
overhead. These encoding techniques help to squash the circuits to be evaluated, and
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make the size expansion reasonable. However, they limit the possible computations
in interesting ways, and so all computations need to be expressed as polynomials.
The key factor in determining the efficiency is the degree of the polynomial to be
evaluated.

2.4 Brakerski/Fan-Vercauteren Scheme (BFV)

For completeness, I will describe one of the most widely used Homomorphic En-
cryption schemes, the Brakerski/Fan-Vercauteren Scheme (BFV) [7, 24], using the
language of polynomial rings.

2.4.1 Parameters and notation.

Let 𝑞 � 𝑡 be positive integers and 𝑛 a power of 2. Denote Δ = b𝑞/𝑡c. Define

𝑅 = Z[𝑥]/(𝑥𝑛 + 1),

𝑅𝑞 = 𝑅/𝑞𝑅 = (Z/𝑞Z) [𝑥]/(𝑥𝑛 + 1),

and 𝑅𝑡 = Z/𝑡Z[𝑥]/(𝑥𝑛 + 1), where Z[𝑥] is the set of polynomials with integer
coefficients and (Z/𝑞Z) [𝑥] is the set of polynomials with integer coefficients in the
range [0, 𝑞).

In the BFV scheme, plaintexts are elements of 𝑅𝑡 , and ciphertexts are elements
of 𝑅𝑞 × 𝑅𝑞 . Let 𝜒 denote a narrow (centered) discrete Gaussian error distribution.
In practice, most implementations of Homomorphic Encryption use a Gaussian
distribution with standard deviation 𝜎[𝜒] ≈ 3.2. Finally, let 𝑈𝑘 denote the uniform
distribution on Z ∩ [−𝑘/2, 𝑘/2).

2.4.2 Key generation.

To generate a public key, pk, and a corresponding secret key, sk, sample 𝑠 ← 𝑈𝑛
3 ,

𝑎 ← 𝑈𝑛
𝑞 , and 𝑒 ← 𝜒𝑛. Each of 𝑠, 𝑎, and 𝑒 is treated as an element of 𝑅𝑞 , where the

𝑛 coefficients are sampled independently from the given distributions. To form the
public key–secret key pair, let

pk = ( [−(𝑎𝑠 + 𝑒)]𝑞 , 𝑎) ∈ 𝑅2
𝑞 , sk = 𝑠

where [·]𝑞 denotes the (coefficient-wise) reduction modulo 𝑞.
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2.4.3 Encryption.

Let 𝑚 ∈ 𝑅𝑡 be a plaintext message. To encrypt 𝑚 with the public key pk = (𝑝0, 𝑝1) ∈
𝑅2
𝑞 , sample 𝑢 ← 𝑈𝑛

3 and 𝑒1, 𝑒2 ← 𝜒𝑛. Consider 𝑢 and 𝑒𝑖 as elements of 𝑅𝑞 as in
key generation, and create the ciphertext

ct = ( [Δ𝑚 + 𝑝0𝑢 + 𝑒1]𝑞 , [𝑝1𝑢 + 𝑒2]𝑞) ∈ 𝑅2
𝑞 .

2.4.4 Decryption.

To decrypt a ciphertext ct = (𝑐0, 𝑐1) given a secret key sk = 𝑠, write

𝑡

𝑞
(𝑐0 + 𝑐1𝑠) = 𝑚 + 𝑣 + 𝑏𝑡 ,

where 𝑐0 + 𝑐1𝑠 is computed as an integer coefficient polynomial, and scaled by the
rational number 𝑡/𝑞. The polynomial 𝑏 has integer coefficients, 𝑚 is the underlying
message, and 𝑣 satisfies ‖𝑣‖∞ � 1/2. Thus decryption is performed by evaluating

𝑚 =

⌊
𝑡

𝑞
(𝑐0 + 𝑐1𝑠)

⌉
𝑡

,

where b·e denotes rounding to the nearest integer.

2.4.5 Homomorphic computation

Next we see how to enable addition and multiplication of ciphertexts. Addition
is easy: we define an operation ⊕ between two ciphertexts ct1 = (𝑐0, 𝑐1) and
ct2 = (𝑑0, 𝑑1) as follows:

ct1 ⊕ ct2 = ( [𝑐0 + 𝑑0]𝑞 , [𝑐1 + 𝑑1]𝑞) ∈ 𝑅2
𝑞 .

Denote this homomorphic sum by ctsum = (𝑐sum
0 , 𝑐sum

1 ), and note that if

𝑡

𝑞
(𝑐0 + 𝑐1𝑠) = 𝑚1 + 𝑣1 + 𝑏1𝑡 ,

𝑡

𝑞
(𝑑0 + 𝑑1𝑠) = 𝑚2 + 𝑣2 + 𝑏2𝑡 ,

then
𝑡

𝑞
(𝑐sum

0 + 𝑐sum
1 𝑠) = [𝑚1 + 𝑚2]𝑡 + 𝑣1 + 𝑣2 + (𝑏1 + 𝑏2)𝑡 ,

As long as ‖𝑣1 + 𝑣2‖∞ < 1/2, the ciphertext ctsum is a correct encryption of
[𝑚1 + 𝑚2]𝑡 .

Similarly, there is an operation ⊗ between two ciphertexts that results in a cipher-
text decrypting to [𝑚1𝑚2]𝑡 , as long as ‖𝑣1‖∞ and ‖𝑣2‖∞ are small enough. Since ⊗
is more difficult to describe than ⊕, we refer the reader to [24] for details.
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2.4.6 Noise.

In the decryption formula presented above the polynomial 𝑣 with rational coefficients
is assumed to have infinity-norm less than 1/2. Otherwise, the plaintext output by
decryption will be incorrect. Given a ciphertext ct = (𝑐0, 𝑐1) which is an encryption
of a plaintext 𝑚, let 𝑣 ∈ Q[𝑥]/(𝑥𝑛 + 1) be such that

𝑡

𝑞
(𝑐0 + 𝑐1𝑠) = 𝑚 + 𝑣 + 𝑏𝑡 .

The infinity norm of the polynomial 𝑣 called the noise, and the ciphertext decrypts
correctly as long as the noise is less than 1/2.

When operations such as addition and multiplication are applied to encrypted data,
the noise in the result may be larger than the noise in the inputs. This noise growth
is very small in homomorphic additions, but substantially larger in homomorphic
multiplications. Thus, given a specific set of encryption parameters (𝑛, 𝑞, 𝑡, 𝜒), one
can only evaluate computations of a bounded size (or bounded multiplicative depth).

A precise estimate of the noise growth for the YASHE scheme was given in [4] and
these estimates were used in [5] to give an algorithm for selecting secure parameters
for performing any given computation. Although the specific noise growth estimates
needed for this algorithm do depend on which Homomorphic Encryption scheme is
used, the general idea applies to any scheme.

2.5 Other Homomorphic Encryption Schemes

In 2011, researchers at Microsoft Research and Weizmann Institute published the
(BV/BGV [8, 9]) Homomorphic Encryption scheme which is used by teams around
the world today. In 2013, IBM released HELib, a Homomorphic Encryption library
for research purposes, which implemented the BGV scheme. HELib is written in
C++ and uses the NTL mathematical library. The Brakerski/Fan-Vercauteren (BFV)
scheme described above was proposed in 2012. Alternative schemes with different
security and error-growth properties were proposed in 2012 by Lopez-Alt, Tromer,
and Vaikuntanathan (LTV [37]), and in 2013 by Bos, Lauter, Loftus, and Naehrig
(YASHE [4]). The Cheon-Kim-Kim-Song (CKKS [16]) scheme was introduced in
2016, enabling approximate computation on ciphertexts.

Other schemes [18, 21] for general computation on bits are more efficient for
logical tasks such as comparison, which operate bit-by-bit. Current research attempts
to make it practical to switch between such schemes to enable both arithmetic and
logical operations efficiently ([6]).
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2.6 Microsoft SEAL

Early research prototype libraries were developed by the Microsoft Research (MSR)
Cryptography group to demonstrate the performance numbers for initial applications
such as those developed in [4, 5, 27, 33]. But due to requests from the biomedical
research community, it became clear that it would be very valuable to develop a well-
engineered library which would be widely usable by developers to enable privacy
solutions. The Simple Encrypted Arithmetic Library (SEAL) [41] was developed in
2015 by the MSR Cryptography group with this goal in mind, and is written in C++.
Microsoft SEAL was publicly released in November 2015, and was released open
source in November 2018 for commercial use. It has been widely adopted by teams
worldwide and is freely available online (http://sealcrypto.org).

Microsoft SEAL aims to be easy to use for non-experts, and at the same time
powerful and flexible for expert use. SEAL maintains a delicate balance between
usability and performance, but is extremely fast due to high-quality engineering.
SEAL is extensively documented, and has no external dependencies. Other publicly
available libraries include HELib from IBM, PALISADE by Duality Technologies,
and HEAAN from Seoul National University.

2.7 Standardization of Homomorphic Encryption [1]

When new public key cryptographic primitives are introduced, historically there
has been roughly a 10-year lag in adoption across the industry. In 2017, Microsoft
Research Outreach and the MSR Cryptography group launched a consortium for
advancing the standardization of Homomorphic Encryption technology, together
with our academic partners, researchers from government and military agencies,
and partners and customers from various industries: Homomorphic Encryption.org.
The first workshop was hosted at Microsoft in July 2017, and developers for all the
existing implementations around the world were invited to demo their libraries.

At the July 2017 workshop, participants worked in groups to draft three white
papers on Security, Applications, and Schemes. We then worked with all relevant
stakeholders of the HE community to revise the Security white paper [12] into the
first draft standard for Homomorphic Encryption [1]. The Homomorphic Encryption
Standard (HES) specifies secure parameters for the use of Homomorphic Encryp-
tion. The draft standard was initially approved by the HomomorphicEncryption.org
community at the second workshop at MIT in March 2018, and then was finalized
and made publicly available at the third workshop in October 2018 at the University
of Toronto [1]. A study group was initiated in 2020 at the ISO, the International
Standards Organization, to consider next steps for standardization.
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3 What kind of computation can we do on encrypted data?

3.1 Statistical computations

In early work, we focused on demonstrating the feasibility of statistical computations
on health and genomic data, because privacy concerns are obvious in the realm of
health and genomic data, and statistical computations are an excellent fit for efficient
HE because they have very low depth. We demonstrated HE implementations and
performance numbers for statistical computations in genomics such as the chi-square
test, Cochran-Armitage Test for Trend, and Haplotype Estimation Maximization [33].
Next, we focused on string matching, using the Smith-Waterman algorithm for edit
distance [17], another task which is frequently performed for genome sequencing
and the study of genomic disease.

3.2 Heart Attack Risk

To demonstrate operations on health data, in 2013 we developed a live demo pre-
dicting the risk of having a heart attack based on six health characteristics [5]. We
evaluated predictive models developed over decades in the Framingham Heart study,
using the Cox proportional hazard method. I showed the demo live to news reporters
at the 2014 AAAS meeting, and our software processed my risk for a heart attack in
the cloud, operating on encrypted data, in a fraction of a second.

In 2016, we started a collaboration with Merck to demonstrate the feasibility
of evaluating such models on large patient populations. Inspired by our published
work on heart attack risk prediction [5], they used SEAL to demonstrate running the
heart attack risk prediction on one million patients from an affiliated hospital. Their
implementation returned the results for all patients in about 2 hours, compared to 10
minutes for the same computation on unencrypted patient data.

3.3 Cancer patient statistics

In 2017, we began a collaboration with Crayon, a Norwegian company that develops
health record systems. The goal of this collaboration was to demonstrate the value
of SEAL in a real world working environment. Crayon reproduced all computations
in the 2016 Norwegian Cancer Report using SEAL and operating on encrypted
inputs. The report processed the cancer statistics from all cancer patients in Norway
collected over the last roughly 5 decades.
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3.4 Genomic Privacy

A growing community of researchers in bioinformatics and biostatistics concerned
with patient privacy issues invited me to give a tutorial on Homomorphic Encryption
at the 2014 Biological Data Sciences meeting at Cold Spring Harbor Labratories.
This interdisciplinary community was interested in the development of a range of
cryptographic techniques to apply to privacy problems in the health and biological
sciences arenas. A manual for using SEAL for common tasks in bioinformatics was
published in their special issue [20]. One measure of the growth of this community
over the last five years has been participation in the iDASH Secure Genome Analysis
Competition, a series of annual international competitions funded by the National
Institutes of Health (NIH) in the U.S.. The iDASH competition has included a
track on Homomorphic Encryption for the last five years 2015–2019, and our team
from MSR submitted winning solutions for the competition in 2015 ([31]) and
2016 ([11]). The tasks were: chi-square test, modified edit distance, database search,
training logistic regression models, genotype imputation. Each year, roughly 5-10
teams from research groups around the world submitted solutions for the task, which
were bench-marked by the iDASH team. These results provide the biological data
science community and NIH with real and evolving measures of the performance
and capability of Homomorphic Encryption to protect the privacy of genomic data
sets while in use. Summaries of the competitions are published in [42, 44].

3.5 Machine Learning: training and prediction

The 2012 “ML Confidential” paper [27] was the first to propose training ML algo-
rithms on homomorphically encrypted data and to show initial performance numbers
for simple models such as linear means classifiers and gradient descent. Training
is inherently challenging because of the large and unknown amount of data to be
processed.

Prediction tasks on the other hand, process an input and model of known size,
so many models and tasks can be processed efficiently. For example, in 2016 we
developed a demo using SEAL to predict the flowering time for a flower. The model
processed 200, 000 SNPs from the genome of the flower, and evaluated a Fast Linear
Mixed Model (LMM). Including the round-trip communication time with the cloud
running the demo as a service in Azure, the prediction was obtained in under a
second.

Another demo developed in 2016 using SEAL predicted the mortality risk for
pneumonia patients based on 46 characteristics from the patient’s medical record.
The model in this case is an example of an intelligible model and consists of 46
degree 4 polynomials to be evaluated on the patient’s data. Data from 4, 096 patients
can be batched together, and the prediction for all 4, 096 patients was returned by
the cloud service in a few seconds (in 2016).
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These two demos evaluated models which were represented by shallow circuits,
linear in the first case and degree 4 in the second case. Other models such as deep
neural nets (DNNs) are inherently more challenging because the circuits are so deep.
To enable efficient solutions for such tasks requires a blend of cryptography and
ML research, aimed at designing and testing ways to process data which allow for
efficient operations on encrypted data while maintaining accuracy. An example of
that was introduced in CryptoNets [26], showing that the activation function in the
layers of the neural nets can be approximated with a low-degree polynomial function
(𝑥2) without significant loss of accuracy.

The CryptoNets paper was the first to show the evaluation of a neural net pre-
dictions on encrypted data, and used the techniques introduced there to classify
hand-written digits from the MNIST [35] data set. Many teams have since worked
on improving the performance of CryptoNets, either with hybrid schemes or other
optimizations [19, 29, 39]. In 2018, in collaboration with Median Technologies,
we demonstrated deep neural net predictions for a medical image recognition task:
classification of liver tumors based on medical images.

Returning to the challenge of training ML algorithms, the 2017 iDASH contest
task required the teams to train a logistic regression model on encrypted data. The
data set provided for the competition was very simple and did not require many
iterations to train an effective model (the winning solution used only 7 iterations [30,
32]). The MSR solution [13] computed over 300 iterations and was fully scalable
to any arbitrary number of iterations. We also applied our solution to a simplified
version of the MNIST data set to demonstrate the performance numbers.

Performance numbers for all computations described here were published at the
time of discovery. They would need to be updated now with the latest version of
SEAL, or can be estimated. Hardware acceleration techniques using state-of-the-art
FPGAs can be used to improve the performance further ([38]).

4 How do we assess security?

The security of all Homomorphic Encryption schemes described in this article is
based on the mathematics of lattice-based cryptography, and the hardness of well-
known lattice problems in high dimensions, problems which have been studied for
more than 25 years. Compare this to the age of other public key systems such as
RSA (1975) or Elliptic Curve Cryptography ECC (1985). Cryptographic applica-
tions of Lattice-based Cryptography were first proposed by Hoffstein, Pipher, and
Silverman [28] in 1996 and led them to launch the company NTRU. New hard prob-
lems such as LWE were proposed in the period of 2004-2010, but were reduced to
older problems which had been studied already for several decades: the Approximate
Shortest Vector Problem (SVP) and Bounded Distance Decoding.

The best known algorithms for attacking the Shortest Vector Problem or the
Closest Vector Problem are called lattice basis reduction algorithms, and they have a
more than 30-year history, including the LLL algorithm [36]. LLL runs in polynomial



Private AI: Machine Learning on Encrypted Data 15

time, but only finds an exponentially bad approximation to the shortest vector. More
recent improvements, such as BKZ 2.0 [15], involve exponential algorithms such as
sieving and enumeration. Hard Lattice Challenges were created by TU Darmstadt
and are publicly available online for anyone to try to attack and solve hard lattice
problems of larger and larger size for the record.

Homomorphic Encryption scheme parameters are set such that the best known
attacks take exponential time (exponential in the dimension of the lattice, n, meaning
roughly 2𝑛 time). These schemes have the advantage that there are no known polyno-
mial time quantum attacks, which means they are good candidates for Post-Quantum
Cryptography (PQC) in the ongoing 5-year NIST PQC competition.

Lattice-based cryptography is currently under consideration for standardization in
the ongoing NIST PQC Post-Quantum Cryptography competition. Most Homomor-
phic Encryption deployments use small secrets as an optimization, so it is important
to understand the concrete security when sampling the secret from a non-uniform,
small distribution. There are numerous heuristics used to estimate the running time
and quality of lattice reduction algorithms such as BKZ2.0. The Homomorphic En-
cryption Standard recommends parameters based on the heuristic running time of
the best known attacks, as estimated in the online LWE Estimator [2].

5 Conclusion

Homomorphic Encryption is a technology which allows meaningful computation on
encrypted data, and provides a tool to protect privacy of data in use. A primary ap-
plication of Homomorphic Encryption is secure and confidential outsourced storage
and computation in the cloud (i.e. a data center). A client encrypts their data locally,
keeps their encryption key(s) locally, then uploads the encrypted data to the cloud
for long-term storage and analysis. The cloud processes the encrypted data without
decrypting it, and returns encrypted answers to the client for decryption. The cloud
learns nothing about the data other than the size of the encrypted data and the size of
the computation. The cloud can process Machine Learning or Artificial Intelligence
(ML or AI) computations, either to make predictions based on known or private
models or to train new models, while preserving the client’s privacy.

Current solutions for HE are implemented in 5-6 major open source libraries
world-wide. The Homomorphic Encryption Standard [1] for using HE securely was
approved in 2018 by HomomorphicEncryption.org, an international consortium of
researchers in industry, government, and academia.

Today, applied Homomorphic Encryption remains an exciting direction in cryp-
tography research. Several big and small companies, government agencies and con-
tractors, and academic research groups are enthusiastic about the possibilities of
this technology. With new algorithmic improvements, new schemes, an improved
understanding of concrete use-cases, and an active standardization effort, wide-scale
deployment of Homomorphic Encryption seems possible within the next 2-5 years.
Small-scale deployment is already happening.
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Computational performance, memory overhead, and the limited set of operations
available in most libraries remain the main challenges. Most Homomorphic Encryp-
tion schemes are inherently parallelizable, which is important to take advantage of to
achieve good performance. Thus, easily parallelizable arithmetic computations seem
to be the most amenable to Homomorphic Encryption at this time and it seems plau-
sible that initial wide-scale deployment may be in applications of Machine Learning
to enable Private AI.
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