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Abstract—We elaborate an approach for determining the order
of an elliptic curve from the family Ep = {Ea : y2 = x3 + a
(mod p), a 6= 0} where p is a prime number > 3. The essence of
this approach consists in combining the well-known Hasse bound
with an explicit formula for that order reduced to modulo p. It
allows to advance an efficient technique of complexity O(log2 p)
for computing simultaneously the six orders associated with the
family Ep when p ≡ 1 (mod 3), thus improving the best known
algorithmic solution for that problem with an order of magnitude.

Index Terms—elliptic curve over Fp, Hasse bound

I. INTRODUCTION

The elliptic curves over finite fields play an important role
in modern cryptography. We refer to [1] for an introduction
concerning their cryptographic significance (see, as well, the
pioneering works of V. Miller and N. Koblitz from 1980’s [2],
[3]). Briefly speaking, the advantage of the so-called elliptic
curve cryptography (ECC) over the non-ECC is that it requires
smaller keys to provide same level of security.

It is well-known that to avoid successful relevant attacks
against an ECC system, the number of points on the involved
curve (called order of the curve) must have at least one very
large prime factor. In particular, if the order itself is a (large)
prime then the entire capabilities of curve are exploited to
achieving maximum security.

An efficient algorithm (of complexity at most a constant
times log8 q bit-operations where q is the order of employed
finite field) which computes the order of a given elliptic curve
of general type is present in [4]. In this paper, however, we
are interested in the whole family of curves Ep = {Ea :
y2 = x3 + a (mod p), a 6= 0} of cardinality p − 1. So, it
seems that there is no deterministic way to apply the Schoof
algorithm (or its improvement, the SEA algorithm) for finding
the orders of all curves in Ep when p is large, although it
is still feasible taking into account the existence of only six
equiprobable possibilities (see, Proposition 8) and the so-called
coupon collector’s problem from probability theory (see, e.g.
[5]).

Nevertheless, there are more efficient approaches to the
problem of interest, like the algorithmic solution presented
in [6] that takes O(log3 p) bit operations. Moreover, an even
better approach (to which this article is devoted) does exist.
There are two main differences between the approach followed
in [6] and our own:
• C. Munuera and J. Tena propose to use a general-purpose

probabilistic algorithm [7] for finding out square root of
arbitrary quadratic residue modulo p in order to find

√
−3

where p ≡ 1 (mod 3). Their algorithm is of complexity
O(log3 p), whereas our proposal for this task improves
to complexity O(log2 p) due to an efficient targeted way
for computing that specific value;

• The authors of [6] find solutions of the Diophantine
equation F (X,Y ) = X2 + XY + Y 2 = 3p, while we
solve for X2+3Y 2 = p. However, both tasks are carried
out by appropriate utilizations of the Euclidean algorithm
involving p and

√
−3 mod p, thus both take O(log2 p)

bit operations (see, e.g. [8] or [9]).
In conclusion, although our proposal is probabilistic as well it
outperforms this followed in [6] with an order of magnitude.

For an analytic solution of the problem considered here, we
refer to [10] where it is obtained explicit formulae for the order
of a curve Ea ∈ Ep in terms of a proper representation of the
prime p in the form p = X2+Y 2−XY for some integers X
and Y . Those formulas, however, distinguish between many
separate cases, and the computational efficiency is certainly
beyond author’s goals (see, for details, [10, Theorem 1]). One
also may find some particular instances of this problem as
exercises in [11, Ch. 8, Ex. 15, 27].

Finally, it is worth pointed out that the results obtained
by the approach followed in this article are comprehensive
and compact, despite that some long-established facts from
the theory of quadratic partitions of primes are used. Also,
that approach has been described in [12] but its efficiency
demonstrated only in case p ≡ 7 (mod 12), while in the
present paper the idea is further refined and elaborated in full
generality.
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The paper is organized as follows. In the next section we
give some preliminaries. Section III exposes our approach to
the problem including the amended computational estimates
for large p. Section IV provides an example with a specially
constructed prime modulo. Some conclusions are drawn in the
last section.

II. PRELIMINARIES

Let p be a prime > 3 and Zp be the ring of residues modulo
p which can be identified as well with the prime field Fp. We
consider a family of elliptic curves defined as Ep = {Ea :
y2 = x3 + a (mod p), a ∈ Z∗p} where Z∗p = Zp \ {0} is
the multiplicative group of Zp. Our aim is to find a suitable
way (involving closed-form formulae) for computing the order
#Ea of a general member of that family, the curve Ea, in
terms of the parameters a and p.

For basic number-theoretic notions as the absolute least and
least non-negative residues, as well as the Legendre symbol
( zp ) of an integer z modulo prime p, we refer to [13, pp. 93,
289] respectively. Notations ”≡” for congruence modulo p and
”=” in Zp will be used in interchangeable manner, depending
on the context.

Hereinafter, we recall some necessary supplementary no-
tions and facts (possibly with slight abuses).

An element z ∈ Z∗p is called a quadratic residue modulo p if
there exists x ∈ Z∗p such that z = x2. Analogously, for d > 2,
an element of z ∈ Z∗p is called d−th power residue modulo p
if there exists x ∈ Z∗p such that z = xd. The set of all d−th
power residues form a subgroup of Z∗p. We will denote the
subgroups of quadratic and cubic residues (d = 2, 3) modulo
p by QRp and CRp, respectively.

The next fact appears to be an immediate extension of the
celebrated Euler criterion from elementary number theory (see,
e.g. [14, Ch. 7.5]).

Proposition 1. If d is a factor of p − 1 then the monomial
m(z) = z

p−1
d takes exactly d distinct values in Z∗p each one

of them p−1
d times. These values are the d−th roots of unity

in Z∗p, i.e. solutions of the equation: Zd = 1. In particular,
m(z) equals to 1 if and only if z is a d−th power residue.

It is well-known that −3 ∈ QRp if and only if p ≡ 1 (mod 3)
(of course,

√
−3 modulo p takes two values with opposite

signs to each other). The following statement, which is crucial
for the efficiency of our approach, shows how to find such a
square root.

Proposition 2. Let z be a cubic non-residue modulo p where
p ≡ 1 (mod 3). Then 2z

p−1
3 +1 is equal to one of the square

roots of −3 modulo p.

Proof. Indeed, according to Proposition 1, the assumption z 6∈
CRp implies z′ = z

p−1
3 is a third root of unity in Z∗p different

from 1. Thus, z′ satisfies the equation Z2 + Z + 1 = 0, i.e.
z′ = −1±

√
−3

2 or equivalently ±
√
−3 = 2z′ + 1.

Remark 1: Proposition 1 (with d = 3) easily implies that
if p ≡ 1 (mod 3) the cardinality of the set of cubic non-

residues modulo p equals to 2
3 (p−1). This can be interpreted

as a reasoning that a randomly selected element of Z∗p is a
cubic non-residue with probability of 2/3. So, provided there
is a high-quality generator of random integers in the interval
[2, p−1], a cubic non-residue can be found after 1.5 attempts
on average. In turn, the square roots of −3 modulo p can be
efficiently determine by using Proposition 2.

The next proposition expresses a folklore fact that is decisive
for our work.

Proposition 3. For an odd prime p let Sk(p) = 1k + 2k +
. . .+ (p− 1)k where k = 0, 1, . . .. Then it holds:

Sk(p) (mod p) =

{
0, if k 6≡ 0 (mod p− 1)

−1, otherwise.

For completeness, we give an alternative proof of the
exposed in [12].

Proof. We use the fact that Z∗p is a cyclic group. Let g be
its generating element, i.e., for any z ∈ Z∗p there exists an
i : 0 ≤ i ≤ p− 2 such that z = gi. This means that Sk(p) =∑p−1

z=1 z
k ≡

∑p−2
i=0 (g

i)k (mod p). Putting u = gk the last
congruence implies Sk(p) (mod p) =

∑p−2
i=0 u

i. Now, there
are two cases to be considered:
• if k 6≡ 0 (mod p − 1), since the order of Z∗p is p − 1

then u 6= 1, which in turn gives that Sk(p) (mod p) =
(up−1 − 1)/(u− 1) = 0.

• otherwise, by the same reasoning Sk(p) ≡ p−1 (mod p),
which completes the proof.

There is no explicit formula for the number of points on a
general type elliptic curve over Zp. The most relevant well-
known result in this direction is the following bound (see, e.g.
[15, Ch. 4]).

Theorem 4. (Hasse) The number of points N on an elliptic
curve over Zp satisfies |(N − 1)− p| ≤ 2

√
p.

At the end of this section, we recall a needed fact from
the theory of quadratic partitions of primes. This is a long-
standing result due to C.G.J. Jacobi (1827) later elaborated by
M.A. Stern (1832) (see, [16, vol. III, p. 55] about historical
facts).

Proposition 5. If p is a prime of the form p = 6k + 1 for
which p = X2 + 3Y 2 then

±2X =
(2k + 1) . . . (3k)

k!
(mod p)

where the sign utilized is such that ±X ≡ 1 (mod 3).

III. OUR APPROACH

As it is mentioned in Introduction the general framework of
our approach was described in [12]. We briefly exhibit here
its basic steps.

The following proposition helps to fix unambiguously the
number N of points on a given elliptic curve, provided one



can compute the absolute least residue of N − 1 modulo p
denoted by ALR(N − 1, p).

Proposition 6. In notations of Theorem 4, for a prime p ≥ 17,
it holds:

N = ALR(N − 1, p) + p+ 1

Proof. Indeed, if p ≥ 17 then evidently 2
√
p < p

2 . Thus, the
Hasse theorem implies |(N − 1) − p| < p

2 which means that
ALR(N − 1, p) = (N − 1)− p.

Remark 2: Note that if one can compute z (mod m), or
equivalently the least non-negative residue R of an integer z
modulo odd m, he/she could easily get:

ALR(z,m) =

{
R, if R < m

2

R−m, otherwise.

A. An explicit formula for the order of elliptic curve Ea ∈ Ep
reduced to modulo p

Initially, we yield the following congruence:

#Ea − 1 ≡ H(a, p) (mod p) (1)

where

H(a, p) =

p−3
2∑

i=0

(p−1
2

i

)
aiS3l(p), (2)

with l = p−1
2 − i and sums S3l(p) defined in Proposition 3.

Further, we evaluate H(a, p) (mod p) using Proposition 3 and
observing that the involved powers are only multiples of 3 in
the interval [3, 3p−1

2 ]. Thus, there are two distinct cases to be
considered:
• p ≡ 5 (mod 6)

In this case, Proposition 3 implies that all summands
in the right-hand-side of Eq. (2) vanish mod p. So,
H(a, p) ≡ 0 (mod p), and Congr. (1) alongside with
Proposition 6 imply that for each a it holds #Ea = p+1.
Indeed, this is a well-known fact (see, e.g. [11, Ch.
18, Ex.1]).

• p ≡ 1 (mod 6)
In this essential case, it can be easily seen that H(a, p)
contains exactly one nonzero summand modulo p, i.e.,
that for i = p−1

6 . Thus, it holds:

H(a, p) ≡
(p−1

2
p−1
6

)
a

p−1
6 Sp−1(p) ≡

−
(p−1

2
p−1
6

)
a

p−1
6 (mod p), (3)

Finally, together with Proposition 6, this immediately implies
the following:

Theorem 7. For a prime p ≥ 19 such that p ≡ 1 (mod 6), it
holds:

#Ea = R(a, p) + p+ 1, (4)

where R(a, p) denotes the absolute least residue of (3).

The next proposition addresses the issue about spectrum of
values #Ea when a varies over Z∗p.

Proposition 8. If p is a prime ≡ 1 (mod 6) then the order of
the curves from Ep takes exactly six distinct values each one
p−1
6 times in accordance with the sixth roots of unity in Z∗p:
±1,±ζ,±(ζ +

√
−3) where ζ = −1−

√
−3

2 .

Sketch of proof. The cases p = 7, 13 are checked directly. For
p ≥ 19, the proof is an immediate consequence of Theorem 7
and Proposition 1 applied for d = 6.

The reader can find a detailed proof of Proposition 8 in [12].

B. Computational issues of point-counting in Ep when p is a
large ≡ 1 (mod 6)

In this subsection, we refine and improve the algorithmic
technique described in [12].

A key part of those computations is that of
( p−1

2
p−1
6

)
(mod p).

Fortunately, this problem can be addressed by noticing that if
p is of the form p = 6k + 1 then it holds:(p−1

2
p−1
6

)
=

(2k + 1) . . . (3k)

k!
.

Hence, Proposition 5 allows modular computation of this
binomial coefficient to be performed by taking the proper
X from a solution of the quadratic Diophantine equation
X2+3Y 2 = p with two unknowns X and Y . Such a solution
can be found by applying similar method as that exhibited in
[17], and consisting of two steps:
• Step 1. Find a square root of −3 in Z∗p;
• Step 2. Find X by applying partly the Euclidean algo-

rithm for p and the already found
√
−3 ∈ Z∗p.

As follows by Proposition 2, Step 1 can be performed if one
knows in advance a cubic non-residue mod p. If, for a given
p, such a non-residue is not available, it can be found after
1.5 attempts on average following Remark 1. Namely, in every
such attempt for a randomly selected integer z ∈ [2, p−1] we
compute the element z′ = z

p−1
3 and check whether z′ 6= 1.

If this happens then 2z′ + 1 is one of the possible
√
−3

in demand. (Remind, that when p ≡ 7 (mod 12) there is a
simple deterministic way to find square root of any quadratic
residue ζ by computing ζ

p+1
4 .) Thus, roughly speaking, the

amount of work in Step 1 is proportional to log2 p taking
into account the complexity of single multiplication [18].
Also, notice that the harder Step 2 is of bit-complexity upper
bounded by O(log2 p) (the details can be seen , e.g. in [9,
Theorem 3.13]).

Besides that, the six possible distinct values of the second
multiplier a

p−1
6 in expression (3) are linearly expressed in

terms of the already found
√
−3.



In conclusion, the total computational complexity for find-
ing simultaneously the orders associated with the family Ep
is dominated by that of modular computation of the binomial
coefficient, and hence around O(log2 p).

IV. EXAMPLE

The example present here illustrates our probabilistic ap-
proach. We choose as modulo the following prime

p = 2256 + 256 + 244 + 1

which is congruent to 1 (mod 12).

Consecutively, we:
• calculate ±

√
−3 (mod p) applying the randomness

based approach:

◦ choose a random number z ∈ [2, p− 1] :

94188671383219429491545384564715608389913166226587832329892090934494399146731

◦ calculate z′ = z
p−1
3 :

12196452385018966969804727228186754702645731547817802002060657077143405857302

◦ z′ 6= 1, thus 2z′ + 1 is a square root of −3 in F∗p:

24392904770037933939609454456373509405291463095635604004121314154286811714605;

• solve the Diophantine equation X2 + 3Y 2 = p and
calculate

( p−1
2

p−1
6

)
(mod p) = 2X :

115792089237316195423570985008687907852841577627951526351327127403406468497407;

• calculate ζ1 = −1−
√
−3

2 and ζ2 = ζ1 +
√
−3:

103595636852297228453766257780501153150624253117822762037396999005955947754986,

12196452385018966969804727228186754702645731547817802002060657077143405857302;

• calculate the values of expression (3) using 1, ζ1 and ζ2
in the role of multiplier a

p−1
6 , and take their opposites.

Finally, we find out the six orders associated with Ep:
115792089237316195423570985008687907853698391703329601727588184762792238727172,

115792089237316195423570985008687907852841577627951526351327127403406468497408,

115792089237316195423570985008687907852597821732376135963590559300783091641217,

* 115792089237316195423570985008687907853942147598904992115324752865415615583363,

115792089237316195423570985008687907853513740561215954427194224185722730468481,

* 115792089237316195423570985008687907853026228770065173651721087980475976756099.

Examining the above numbers by the APR-CL primality
test, we detect the presence of two prime orders (re-
marked by ”*”) which correspond to #E31 and #E11.

V. CONCLUSION

Less or more convenient formulae to compute the orders
of elliptic curves over finite fields do exist in contemporary
literature (see, e.g. [10], [15], [19], etc.). In this article, we
derive an explicit formula for the order of a curve in the family
Ep = {Ea : y2 = x3 + a (mod p), a 6= 0} reduced modulo p.
Alongside with the famous Hasse bound, this formula resolves
the problem we deal with comprehensively and concisely.
Moreover, our approach permits to determine transparently the
spectrum of orders for fixed p ≡ 1 (mod 6), as well as to
re-prove the corresponding known fact in the complementary

case p ≡ 5 (mod 6). Besides that, based on classical results
for quadratic partitions of primes, we describe an efficient
algorithmic technique (with complexity O(log2 p)) to compute
simultaneously the six orders associated with Ep in cases of
interest. This technique improves the best previously known
algorithmic solution [6] with an order of magnitude, thus en-
abling under the same cost to achieve values of the parameter
p peculiar to higher security ECC systems. It is especially
useful when looking (say, by random search) for a prime order
elliptic curves belonging to the family of considered type for
a changing modulo p.

The following abbreviations are used in this manuscript:

ECC Elliptic Curve Cryptography
SEA Schoof-Elkies-Atkin
APR-CL Adleman-Pomerance-Rumely-Cohen-Lenstra
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