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Abstract

We introduce a class of interactive protocols, which we call sumcheck arguments, that establishes a
novel connection between the sumcheck protocol (Lund et al. JACM 1992) and folding techniques for
Pedersen commitments (Bootle et al. EUROCRYPT 2016).

Informally, we consider a general notion of bilinear commitment over modules, and show that the
sumcheck protocol applied to a certain polynomial associated with the commitment scheme yields a
succinct argument of knowledge for openings of the commitment. Building on this, we additionally obtain
succinct arguments for the NP-complete language R1CS over certain rings.

Sumcheck arguments enable us to recover as a special case numerous prior works in disparate
cryptographic settings (such as discrete logarithms, pairings, groups of unknown order, lattices), providing
one abstract framework to understand them all. Further, we answer open questions raised in prior works,
such as obtaining a lattice-based succinct argument from the SIS assumption for satisfiability problems
over rings.
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1 Introduction

Sumcheck protocols. The sumcheck protocol is an interactive proof introduced in [LFKN92] that has
played a fundamental role in the theory of probabilistic proofs in complexity theory (e.g., [BFL91; BFLS91;
GKR08]) and, more recently, in cryptography. The sumcheck protocol has been used widely in a line of
works on succinct arguments [CMT12; VSBW13; Wah+17; ZGKPP17; WTSTW18; XZZPS19; Set20]. One
of the main benefits of the sumcheck protocol is that, in certain settings, the prover can be implemented in
a linear number of operations [Tha13] or as a streaming algorithm [CMT12]; this avoids operations such
as the Fast Fourier Transform (common in other succinct arguments) that are costly in time and in memory.
The sumcheck protocol also satisfies strong soundness properties that facilitate proving the security of the
Fiat–Shamir transformation in the plain model [CCHLRR18], which is notoriously hard to analyze for many
other interactive proofs. Moreover, variants of the sumcheck protocol have spawned new lines of research:
the univariate sumcheck of [BCRSVW19] was used in numerous succinct arguments [BCGGRS19; ZXZS;
CHMMVW20; COS20; CFFQR20; BFHVXZ20]; and the sumcheck protocol for tensor codes of [Mei13]
was used to obtain probabilistic proofs with rate 1 [RR20] and with linear-time provers [BCG20; BCL20].

Folding techniques. Separately, a line of works starting with [BCCGP16] constructs succinct arguments
based on “folding techniques” for Pedersen commitments in the discrete logarithm setting. Informally, to
prove knowledge of a long message opening of a given Pedersen commitment, the prover engages with the
verifier in a reduction that halves the message length by folding the message “around” a verifier challenge.
This can be repeatedly applied until the message length is small enough to send the message directly. Beyond
commitment openings, [BCCGP16] give protocols for scalar-product relations, which lead to succinct
arguments for NP languages such as arithmetic circuit satisfiability. These succinct arguments can be realized
via a linear number of group scalar multiplications, or alternatively as streaming algorithms [BHRRS20].

Folding techniques, subsequently improved in [BBBPWM18], have been deployed as part of cryp-
tocurrencies (Monero [Mon] and PIVX [Piv]) and are widely used thanks to popular open-source libraries
[dalek18; Adj]. These practical applications have motivated careful analyses of concrete security [JT20],
which facilitates setting security parameters in applications.

Folding techniques have been adapted to work in other cryptographic settings, such as pairings [LMR19],
groups of unknown order (GUO) [BFS20], and lattices [BLNS20]. They have also been formulated in more
abstract settings: [BMMTV19] study sufficient properties of commitment schemes which enable folding
techniques; and [AC20; ACF20; ACR20] have applied folding techniques to general group homomorphisms.

Folding techniques for Pedersen (and related) commitments are arguably not fully understood, despite the
numerous works and applications mentioned above. For example, they are typically used as non-interactive
arguments after the Fiat–Shamir transformation is applied to the (public-coin) interactive argument. Yet
the security of this non-interactive argument, even in the random oracle model, has only been proven via a
superpolynomial-time extractor [BMMTV19] or in the algebraic group model [GT20]. Moreover, almost all
succinct arguments are obtained via some type of probabilistic proof (and there are settings where this is
inherent [RV09; CY20]) but no such probabilistic proof is evident in folding techniques.

A connection? The sumcheck protocol and folding techniques seem rather different protocols but they
share several common features. Both protocols have a prover that can be realized via a linear number of
operations [Tha13; BCCGP16], or alternatively as a streaming algorithm [CMT12; BHRRS20]; moreover,
both protocols satisfy similar notions of strong soundness [CCHLRR18; GT20], which facilitate proving
useful security properties. Are these similarities mere coincidences?
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1.1 Our results

We introduce a class of interactive protocols, which we call sumcheck arguments, that establishes a novel
connection between the sumcheck protocol and folding techniques for Pedersen commitments. This provides
a single framework to understand numerous prior works in disparate cryptographic settings (such as discrete
logarithms, pairings, GUO, lattices) and also enables us to answer open questions raised in prior works. We
elaborate on these contributions below, and summarize the technical ideas underlying them in Section 2.

(1) Sumcheck arguments. Recall that the sumcheck protocol is an interactive proof for statements of the
form

∑
~ω∈H` p(~ω) = τ for a given summation domain H , `-variate polynomial p, and claimed sum τ . While

typically stated for polynomials over finite fields, the sumcheck protocol works for polynomials over any
module M over a ring R (given certain mild conditions).1 Let Σ[R,M,H, `, p, τ ] denote the sumcheck
protocol for the statement

∑
~ω∈H` p(~ω) = τ when H ⊆ R, p ∈M [X1, . . . , X`], and τ ∈M .

A sumcheck argument is, informally, a sumcheck protocol used to succinctly prove knowledge of openings
for certain commitments. Let CM be a commitment scheme that is bilinear, which informally means that
(a) the message space Mn, commitment key space Kn, and commitment space C are all modules over a ring
R; and (b) the commitment function is linear in the “first-half” of the message and commitment key, and
is also linear in the “second-half” of the message and commitment key. We observe that we can transform
the statement “I know m such that CM.Commit (ck,m) = cm” into the sumcheck-like statement “I know m
such that

∑
~ω∈{−1,1}logn fCM(pck(~ω), pm(~ω)) = cm” for certain low-degree polynomials fCM, pck, pm that

depend on the scheme CM, commitment key ck, and message m, respectively. Our main technical result is to
construct a knowledge extractor for the sumcheck protocol applied to such statements.

Theorem 1 (informal). Let CM be a bilinear commitment scheme satisfying certain properties. Let cm ∈ C
be a commitment to a message m ∈Mn using a commitment key ck ∈ Kn. Then

Σ
[
R,M = C, H = {−1, 1}, ` = log n, p = fCM(pck, pm), τ = cm

]
is an argument of knowledge for an opening to cm with respect to ck. The round complexity is O(log n), the
communication complexity is O(log n) elements in C, and the prover and verifier complexity is O(n).

The above informal statement omits many technical details, such as commitment randomness and relaxed
notions of commitment opening necessary to express settings over lattices or GUO.

As we elaborate in Section 2, well-known folding techniques from prior works can be viewed, perhaps
surprisingly, as special cases of a sumcheck argument. We remark that while the usual security notion of
the sumcheck protocol is an unconditional soundness guarantee, the security notion that we establish for a
sumcheck argument is a knowledge guarantee, proved under certain properties of CM. In turn these properties
may hold unconditionally or under certain hardness assumptions (we give examples of this in Section 2).2

(2) Succinct arguments for R1CS over rings. Building on sumcheck arguments, we obtain zero-knowledge
succinct arguments for satisfiability problems defined over rings. This is in contrast to most prior succinct
arguments, which support satisfiability problems defined over prime-order fields (which are the “scalar
fields” associated to underlying cryptographic prime-order groups). This extension is motivated by the fact
that certain computations are more efficiently expressed over certain rings (e.g., approximate arithmetic
[CCKP19]), and parallels analogous lines of work for secret-sharing schemes and multiparty computation
protocols [CDESX18; ACDEY19; Abs+20] for supporting computations defined over rings.

1A module is a mathematical structure the extends a vector space by allowing scalars to be from a ring rather than a field.
2Thus sumcheck arguments are distinct from direct algebraic generalizations of the sumcheck protocol to rings [CCKP19].

4



In more detail, we focus on the ring variant of the NP-complete problem known as rank-1 constraint
satisfiability (R1CS), which is a widely used generalization of arithmetic circuit satisfiability. We obtain a
zero-knowledge succinct argument for R1CS over any ring R∗ with suitable algebraic properties, assuming
the hardness of the bilinear relation assumption over a related ring, which is a natural generalization of
assumptions such as the DL assumption, the SIS assumption, and others.

Definition 1 (informal). The R1CS problem asks: given a ring R∗, coefficient matrices A,B,C ∈ RN×N∗
each containing at most M = Ω(N) non-zero entries, and an instance vector x over R∗, is there a witness
vector ~w over R∗ such that ~z := (x, ~w) ∈ RN∗ and A~z ◦ B~z = C~z? (Here “◦” denotes the entry-wise
product of vectors over R∗.)

Theorem 2. Let R∗ be a ring with suitable algebraic properties. Assuming hardness of the bilinear relation
assumption over a related ring, there is a zero-knowledge succinct argument of knowledge for the R1CS
problem over R∗. For N ×N coefficient matrices with at most M non-zero entries, the argument has round
complexity O(logN), communication complexity O(logN), and prover and verifier complexity O(M).

One immediate application of our result is to lattice cryptography. Prior work used folding techniques to
obtain (zero-knowledge) succinct arguments of knowledge for lattice commitments [BLNS20], but left open
the question of obtaining succinct arguments for NP-complete problems relevant to lattices.3 Our Theorem 2
directly implies a solution to this open question. This may seem surprising, as sumcheck arguments, like
many other lattice-based arguments of knowledge, may only provide relaxed openings, which means that
the knowledge extractor may only be able to find an opening of a multiple of a bilinear commitment. This
notwithstanding we still derive from it a knowledge extractor for the R1CS problem.

Corollary 1. Let R∗ := Zp[X]/(Xk + 1) for a prime p and k a power of 2. Assuming hardness of the SIS
problem over a related ring, there is an argument of knowledge for R1CS over R∗ with round complexity
O(logN), communication complexity O(logN), and prover and verifier complexity O(M).

Our new lattice-based argument system shows that one can efficiently prove general relations over rings
pertinent to lattice cryptography with the same asymptotics as in other settings, despite the fact that most
lattice-based proofs of knowledge suffer from relaxed soundness properties. This allows users to prove
statements about lattice-based encryption and signature schemes directly over their native rings rather than
having to convert them into statements tractable for other proof systems, which often leads to computational
overheads in practical schemes [BCOS20].

Moreover, Corollary 1 contributes a new succinct argument that is plausibly post-quantum, adding to a
surprisingly short list of such candidates. (Prior constructions of plausibly post-quantum succinct arguments
are from hash functions [CMS19] or lattice knowledge assumptions [BISW17; BISW18; GMNO18].) An
intriguing question left open by our work is whether the security reduction of the construction in Corollary 1
can be carried out against an efficient quantum adversary.

Finally, returning to Theorem 2, having a single construction of a zero-knowledge succinct argument
over general rings may simplify future practical applications. Our theorem enables having a single abstract
implementation that can be debugged and audited once and for all, and can then be instantiated over disparate
algebraic settings depending on an application’s needs, by simply specifying the desired ring.

(3) On instantiations. By instantiating the bilinear commitment CM in Theorem 1 we obtain succinct
arguments of knowledge for different relations of interest, as we now explain.

3This differs from using lattices to instantiate the collision-resistant hash function in Kilian’s PCP-based protocol [Kil92], because
this would not lead to a succinct argument for computations expressed over relevant rings.
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As a simple example, the Pedersen commitment scheme can be formulated in an abstract setting where
messages and group generators are replaced by elements of appropriate rings or modules. This generalised
Pedersen commitment scheme satisfies the conditions in Theorem 1, either unconditionally or under the
same assumptions that imply its binding properties. Our sumcheck argument for the generalised Pedersen
commitment scheme thus yields succinct protocols for opening Pedersen commitments in different settings,
such as discrete logarithms, pairings, GUO, and lattices.

Another example is a generalised scalar product commitment, which is a commitment scheme that
includes a commitment to the scalar product of two parts of the message. This draws inspiration from
[BCCGP16; BBBPWM18; BMMTV19] which consider bilinear commitment schemes for discrete logarithms
or pairings. Proving knowledge of an opening implies that the commitment was correctly computed, and
therefore in this case that a scalar-product relation is satisfied. These scalar-product commitments in fact
underlie our proof of Theorem 2 based on Theorem 1.

In Figure 1 we provide a comparison between succinct arguments with comparable efficiency in prior
works, classified by type of relation and algebraic setting. The table demonstrates that our sumcheck
arguments recover all prior types of relations and all algebraic settings as special cases, and additionally
contribute new combinations that were not achieved before.

DL pairings GUO ideal lattices
basic

commitment [BLNS20]

linear-function commitment
or polynomial commitment [ACR20; AC20] [BFS20] previously open

scalar-product
commitment [BCCGP16] [LMR19] previously open

bilinear [BMMTV19] previously open
commitment sumcheck arguments from this work

Figure 1: Comparison of prior works that use folding techniques to achieve succinct arguments of knowledge,
and also our sumcheck arguments. The rows from top to bottom indicate increasingly more general types of
commitment (and so a result in a row directly implies a result in all rows above it). The columns indicate different
cryptographic settings in which the commitments are constructed. Results spanning multiple columns indicate an
abstraction that simultaneously captures all those settings. We see that our work captures all prior settings and
types of commitments, and also achieves functionalities that were left open by prior works.

1.2 New connections and new opportunities

The novel connection between folding techniques and the sumcheck protocol, captured by our sumcheck
arguments, casts many aspects of prior works in a new light. Here are several examples.

• [BCCGP16] describes folding techniques for splitting a long vector into more than two pieces before
folding, to allow trading argument size for round complexity. This corresponds to running a sumcheck
argument using polynomials of fewer variables and a higher individual degree.

• [BBBPWM18] improves the efficiency of folding techniques via a more complicated use of verifier
challenges. This corresponds to running a sumcheck argument using a different evaluation domain, and
using polynomials described using a different monomial basis.

• [PLS19] gives a zero-knowledge version of folding techniques that achieves better concrete efficiency by
using less prover randomness. This relates to derandomization of zero-knowledge sumcheck arguments.
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• [CHJKS20] gives weighted inner product arguments to improve concrete efficiency of satisfiability argu-
ments. This corresponds to running a sumcheck argument for a weighted sum of polynomial evaluations.

• [BMMTV19] and [BFS20] consider subprotocols for delegating expensive verifier computation to the
prover. This corresponds to delegating polynomial evaluation, to help the verifier outsource the expensive
task of evaluating polynomials of commitment keys. Sumcheck arguments neatly conceptualize the role of
polynomials in folding protocols and simplify the task of applying delegation protocols in other settings.

We expect that other folding techniques such as [ACR20; Lee20] can also be viewed as sumcheck arguments.
Looking forward, many design options for sumcheck protocols (such as the use of the Lagrange basis)

have not yet been tested with particular folding techniques, and may improve concrete efficiency. Further, the
successful analysis of sumcheck protocols provides a roadmap for proving strong soundness properties of
folding protocols in the random oracle model and in quantum settings.

1.3 Related work

Figure 1 summarizes the main relationship between sumcheck arguments for bilinear commitments and prior
work that uses folding techniques. Below we additionally discuss the prior works that have studied folding
techniques for abstract commitment schemes and homomorphisms.

Bünz et al. [BMMTV19] present folding techniques for doubly-homomorphic commitments over prime-
order groups, which are both key-homomorphic and message homomorphic. These can capture non-linear
relations such as scalar-product relations under computational assumptions.

Attema et al. [ACF20] present folding techniques for pre-images of general group homomorphisms over
prime-order groups. These were extended further from prime-order groups to Z-modules in [BDFG20], who
also noted that a Z-module homomorphism could be phrased as a Pedersen-like function. These techniques
give proofs for homomorphisms and linear relations, without relying on any computational assumptions.

Both general group homomorphisms and doubly-homomorphic commitment schemes are special cases
of bilinear commitment schemes. Our work also finds the same distinction between proofs and arguments;
our sumcheck protocols for “linear” commitment schemes such as the generalised Pedersen commitment
scheme do not require computational assumptions, whereas our sumchecks for “quadratic relations” do
require computational assumptions. We note that according to results on interactive proofs [GH98], one
cannot expect efficient folding techniques for quadratic relations without any computational assumptions, as
proofs or arguments for quadratic relations imply the same for NP-complete languages.

We also note that while NP-complete relations can be interactively reduced to linear relations (under
computational assumptions) as in [ACF20], the reduction uses secret-sharing techniques implemented through
interpolation. This is likely to use Fast Fourier Transforms, which require linear space-complexity for the
prover. By contrast, we expect that by reducing to sumcheck arguments for bilinear relations, one can benefit
from the streaming properties of the sumcheck protocol, leading to a logarithmic-space prover.

In defining our sumcheck polynomials, we show that by exploiting homomorphic properties, ordinary
commitment schemes can be made to take polynomials as input. In the case of ordinary (singly) homomor-
phic commitments, this corresponds to creating a polynomial commitment scheme by committing to each
coefficient of a polynomial individually. Other work [ACR20] uses a similar idea to show that “bilinear gates”
over pairing groups may act on polynomials, whereas we consider the more general setting of polynomials
over more general modules. We also highlight an interesting duality with [BDFG20], who create commitment
schemes by using polynomial commitments to each monomial of a polynomial individually.

Like [BMMTV19; ACF20; BDFG20], sumcheck arguments easily capture optimisations of folding
techniques which compress several target commitment values into one (such as the optimisation from

7



[BCCGP16] to [BBBPWM18]) as folding techniques applied to alternative commitment schemes or group
homomorphisms.

However, none of these works directly prove relations over more complicated rings and modules, nor
capture the folding techniques of [BLNS20] over ideal lattices, which use public-coin challenges from a
special set in line with other practically-efficient lattice-based protocols.
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2 Techniques

We summarize the main ideas behind our results. The first few subsections are dedicated to explaining
sumcheck arguments (Theorem 1) in several steps of progressive generality. In Section 2.1 we describe the
connection between folding techniques and the sumcheck protocol in the simplest possible setting: succinct
arguments of knowledge for Pedersen commitments. Then in Section 2.2 we show how to lift this connection
to any bilinear commitment, but still in the context of prime-order groups. Finally in Section 2.3 we explain
the main considerations in generalizing further to consider bilinearity over rings, and in Section 2.4 we give
an example of how commitments can be formulated in this framework. After that we turn our attention to
our other contributions. In Section 2.5 we discuss a generic scalar-product protocol built from sumcheck
arguments, and then in Section 2.6 explain how it enables us to obtain zero-knowledge succinct arguments for
R1CS over rings (Theorem 2). Finally, in Section 2.7 we discuss how we also obtain polynomial commitment
schemes over rings from sumcheck arguments.

2.1 From split-and-fold to sumcheck

2.1.1 Split-and-fold techniques for Pedersen commitments

We review a simple recursive technique for proving knowledge of an opening of a given Pedersen commitment.
For now we ignore the goal of zero knowledge, and instead focus on achieving communication complexity that
is much smaller than (indeed, logarithmic in) the message whose knowledge is being proved. The technique,
introduced in [BCCGP16], relies on a “split-and-fold” interactive reduction that halves the message length
and, when applied recursively, yields the desired protocol.

The construction below, which we refer to as ΠF (for “folding”), illustrates this reduction. Let G be a
group of prime order q and let F be the finite field of size q.

Protocol 1: split-and-fold for Pedersen commitments (ΠF)

For n = 2`, the prover and verifier receive as input a commitment key ~G ∈ Gn and commitment C ∈ G.
The prover also receives as input an opening ~a ∈ Fn such that C = 〈~a, ~G〉.

If n = 1 then the prover sends a ∈ F to the verifier, and the verifier checks if a · G = C as claimed.
If n > 1, the interactive reduction works as follows.

1. Parse ~G ∈ Gn as (~G0, ~G1) ∈ Gn/2 ×Gn/2, and ~a ∈ Fn as (~a0,~a1) ∈ Fn/2 × Fn/2.
2. The prover computes “cross terms” C− := 〈~a0, ~G1〉 and C+ := 〈~a1, ~G0〉 and sends them to the

verifier.
3. The verifier samples r ← F and sends r to the prover.
4. The verifier outputs the new commitment key ~G′ := r · ~G0 + ~G1 ∈ Gn/2 and the new commitment

C′ := C− + r · C + r2 · C+. The prover outputs the new opening ~a′ := ~a0 + r · ~a1 ∈ Fn/2.

The reduction preserves completeness because if we expand the new commitment C′ then the original
commitment C appears as the middle coefficient of the polynomial in r with C+ and C− as the other terms:

〈~a′, ~G′〉 = 〈~a0 + r · ~a1, r · ~G0 + ~G1〉 = 〈~a0, ~G1〉+ r · 〈~a, ~G〉+ r2 · 〈~a1, ~G0〉 = C− + r · C + r2 · C+ = C′ .

So ~a′ is a new opening for the new commitment C′ under the new commitment key ~G′. Intuitively, the
reduction is secure because the prover sends the cross terms C+ and C− before receiving the challenge r.
(Turning this intuition into a proof requires an extraction argument, which is discussed in Section 2.1.4.)
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After the reduction, the prover may send the new opening ~a′ to the verifier, who checks that C′ = 〈~a′, ~G′〉.
Alternatively, the interactive reduction can be applied recursively until the final opening is a single field
element a, the final Pedersen commitment key is a single group element G, and the verifier checks that the
final commitment C∗ satisfies C∗ = a · G. (The total number of recursions is ` = log2 n.)

2.1.2 A sumcheck protocol for Pedersen commitments

We describe a sumcheck-like protocol that, as we shall see, proves knowledge of an opening for a given
Pedersen commitment — we call that a sumcheck argument. After this, in Section 2.1.3, we show that the
sumcheck argument is equivalent to ΠF (Protocol 1). The protocol below is written as an interactive reduction
to be repeated a logarithmic number of times. We review the original sumcheck protocol [LFKN92] in
Appendix A, and refer to it as ΠSC from now on.

We now describe the sumcheck argument. Let ~v be a vector of length n = 2` over F or G, whose entries
we index via binary strings (i1, . . . , i`) ∈ {0, 1}`; we use rv(~v) to denote ~v in reverse order. We define the
`-variate polynomial p~v over F or G by

p~v(X1, . . . , X`) :=
∑

i1,...,i`∈{0,1}

vi1,...,i`X
i1
1 · · ·X

i`
` .

Protocol 2: sumcheck argument (ΠSA)

For n = 2`, the prover and verifier receive as input a commitment key ~G ∈ Gn and commitment C ∈ G.
The prover also receives as input an opening ~a ∈ Fn such that C = 〈~a, ~G〉.

For H := {−1, 1} ⊆ F, the prover and verifier engage in a sumcheck round for the claim∑
ω1,...,ω`∈H

p~a(ω1, . . . , ω`) · prv(~G)(ω1, . . . , ω`) ·
ω1

2
· · · ω`

2
= C .

In other words, if ` = 0 then the prover sends pa ∈ F to the verifier, and the verifier uses prv(G) ∈ G to
check if pa · prv(G) = C as claimed. If ` > 0 then the interactive reduction works as follows.

• The prover P sends the polynomial q(X) ∈ G[X] to the verifier, computed as follows:

q(X) :=
∑

ω2,...,ω`∈H
p~a(X,ω2, . . . , ω`) · prv(~G)(X,ω2, . . . , ω`) ·

ω2

2
· · · ω`

2
. (1)

• The verifier V samples r ← F and sends r to the prover.
• The verifier checks that C =

∑
ω∈H q(ω) · ω2 . (If not, it rejects.)

• The verifier outputs the new commitment key ~G′ ∈ Gn/2 that is the coefficients of p
rv(~G)

(r,X2, . . . , X`) ∈
G[X2, . . . , X`] in reverse order, and the new commitment C′ := q(r) ∈ G. The prover outputs the
new opening ~a′ ∈ Fn/2 that is the coefficients of p~a(r,X2, . . . , X`) ∈ F[X2, . . . , X`]. The new
sumcheck claim about these is:∑

ω2,...,ω`∈H
p~a′(ω2, . . . , ω`) · prv(~G′)(ω2, . . . , ω`) ·

ω2

2
· · · ω`

2
= C′ .
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The interactive reduction can be applied recursively until the final opening is a single field element a, the
final Pedersen commitment key is a single group element G, and the verifier checks that the final commitment
C∗ satisfies C∗ = pa ·prv(G). The sumcheck argument ΠSA is remarkably similar to the sumcheck protocol ΠSC.
The two protocols, however, also have differences: (a) in ΠSA the summation is over a particular polynomial
p derived from the commitment key and opening; (b) when ` = 0, in ΠSA the prover sends the witness to
the verifier to allow them to check the final verification equation, whereas in ΠSC the verifier checks the
final verification equation alone; (c) as we elaborate in Section 2.1.4, ΠSA and ΠSC have different security
guarantees.

Before we proceed, however, we wish to clarify that ΠSA is mathematically well-defined. The “multi-
plication” operation implicit in the expression p~a · prv(~G) which maps F[X1, . . . , X`]×G[X1, . . . , X`]→
G[X1, . . . , X`], is a natural extension of the scalar multiplication operation a · G which maps F×G→ G.

Consider the polynomials P (X) = a+ a′ ·X ∈ F[X] and Q(X) = G +X · G′ ∈ G[X], and let r ∈ F.
The product of P (r) and Q(r) can be written as follows:

P (r) ·Q(r) = (a+ a′r) · (G + r · G′)
= a · (G + r · G′) + a′r · (G + r · G′)
= a · G + ar · G′ + a′r · G + a′r2 · G′

= a · G + r · (a · G′ + a′ · G) + r2 · (a′ · G′) ,

where the second and third equalities follow from the bilinear properties of scalar multiplication.4 This holds
for any r ∈ F, and so it makes sense to define the “scalar multiplication” of P (X) and Q(X):

P (X) ·Q(X) = (a+ a′X) · (G +X · G′) := a · G +X · (a · G′ + a′ · G) +X2 · (a′ · G′) .

The polynomial p~a(X1, . . . , X`) · prv(~G)(X1, . . . , X`), whose coefficients lie in G, is defined this way.

Remark 2.1 (sumcheck protocol for rings). Chen et al. [CCKP19] study the sumcheck protocol (Protocol 6)
for polynomials defined over certain rings. This is distinct from our sumcheck argument (Protocol 2), which
provides a knowledge guarantee for certain commitments rather than a soundness guarantee for a given
polynomial (we elaborate on this in Section 2.1.4).

2.1.3 Equivalence between sumcheck argument and split-and-fold

We explain how ΠSA (Protocol 2) is essentially mathematically equivalent to ΠF (Protocol 1). The equivalence
of the two protocols is established through a series of technical components, but is independent of the analysis
of ΠSA and our other results. Hence, skipping this section does not affect the understanding of the rest of the
discussion.

(1) Pedersen commitment as polynomial summation. One can express the Pedersen commitment C =
〈~a, ~G〉 ∈ G (the scalar product of a vector over F and a vector over G) as a sum of evaluations of p~a · prv(~G):∑

ω1,...,ω`∈{−1,1}

p~a(ω1, . . . , ω`) · prv(~G)(ω1, . . . , ω`) ·
ω1

2
· · · ω`

2
= 〈~a, ~G〉 .

Below we follow [BCG20] which explains the same for the scalar product of two vectors over F.
4For any a, a′ ∈ F and G,G′ ∈ G we have (a+ a′) · G = a · G+ a′ · G and a · (G+ G′) = a · G+ a · G′.

11



Each contribution to the coefficient of X1 · · ·X` in p~a · prv(~G) arises from a multiplication of the

monomials in the terms ai1,...,i`X
i1
1 · · ·X

i`
` and Gi1,...,i`X

1−i1
1 · · ·X1−i`

` , which multiply to give ai1,...,i` ·
Gi1,...,i` ·X1 · · ·X`. Thus, the coefficient of X1 · · ·X` in p~a · prv(~G) is equal to 〈~a, ~G〉 = C.

Next, observe that for any univariate polynomial P (X), summing P (X) ·X/2 over its evaluations at 1
and −1 gives the sum of the odd coefficients of P . Applying the same idea to p( ~X) = p~a( ~X) · p

rv(~G)
( ~X)

and summing p( ~X) · X1/2 · · ·X`/2 over each variable returns the sum of the coefficients p~i such that
~i ≡ 1 mod 2. The only such non-zero coefficient is the coefficient of X1 · · ·X`, which is 〈~a, ~G〉 = C. This
yields the claimed summation equation.

(2) New commitment key and new opening. ΠF and ΠSA produce the same new commitment key and
new opening in each reduction. Label the entries of ~G and ~a as (G~i)~i∈{0,1}` and (a~i)~i∈{0,1}` , in order of their
binary representation.

• The new commitment key in ΠF is ~G′ = r · ~G0 + ~G1 ∈ Gn/2 and its entries are G′i2,...,i` = r · G0,...,i` +

G1,...,i` =
∑

i1∈{0,1} Gi1,...,i`r
1−i1 . In ΠSA, we have

p
rv(~G)

(r,X2, . . . , X`) =
∑

i1,...,i`∈{0,1}

G1−i1,...,1−i`r
i1Xi2

2 · · ·X
i`
`

and so rv(~G′) are the coefficients of p
rv(~G)(r,X2,...,X`)

.

• The new opening in ΠF is ~a′ = ~a0 + r · ~a1 ∈ Fn/2q and its entries are a′i2,...,i` = a0,...,i` + r · a1,...,i` =∑
i1∈{0,1} ai1,...,i`r

i1 . In ΠSA, we have

p~a(r,X2, . . . , X`) =
∑

i1,...,i`∈{0,1}

ai1,...,i`r
i1Xi2

2 · · ·X
i`
`

and so ~a′ are the coefficients of p~a(r,X2, . . . , X`).

(3) The cross terms as coefficients of q. The cross terms C+ and C− in ΠF are the coefficients of the
polynomial q(X) in ΠSA. The coefficients of q(X) in Equation (1) are equal to the coefficients of X2 · · ·X`,
X1X2 · · ·X` and X2

1X2 · · ·X` of the polynomial p~a( ~X) · p
rv(~G)

( ~X). We have already established that the

coefficient of X1X2 · · ·X` is C = 〈~a, ~G〉.
Next, each contribution to the X2 · · ·X` term of p~a · prv(~G) arises from a multiplication of the monomials

in the terms a0,i2,...,i`X
i2
2 · · ·X

i`
` and G1,i2,...,i`X

1−i2
2 · · ·X1−i`

` , which multiply to give a0,i2,...,i` ·G1,i2,...,i` ·
X1 · · ·X`. Thus, the coefficient of X2 · · ·X` in p~a · prv(~G) is equal to 〈~a0, ~G1〉, which is equal to C−. Similar
reasoning applies to C+.

(4) The verification equations. The verification equations in ΠSA simplify to give the calculation of the
new commitment key in ΠF. Note that in ΠSA the prover sends q(X) = q0 +X · q1 +X2 · q2 to the verifier;
the verifier checks that C = 1/2 · q(1)− 1/2 · q(−1). The new commitment C′ is q(r) = q0 + r · q1 + r2 · q2.

However, we have already seen that an honest prover will use (q0, q1, q2) = (C−,C,C+). Therefore,
instead of performing the verification check, which amounts to checking that C = q1, and then computing the
new instance q(r), the prover can send only q0 and q2 to the verifier, who will use C as q1, since the two are
supposed to be equal. Thus, ΠF incorporates a simple optimization to ΠSA.
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2.1.4 Soundness of the sumcheck argument

The security guarantee offered by a sumcheck argument is different from that of the sumcheck protocol. The
sumcheck protocol (Protocol 6) has a soundness guarantee: if the polynomial p does not have the claimed
sum τ then the verifier accepts with small probability. In contrast, the sumcheck argument (Protocol 2) has
a knowledge soundness guarantee: there exists an extractor that, given a suitable collection of accepting
transcripts for a given commitment C, efficiently finds an opening ~a such that C = 〈~a, ~G〉. This difference
makes sense: any given Pedersen commitment C can always be expressed as a scalar product of some opening
~a and the commitment key generators ~G; in fact, there are many different possible openings ~a for which this
is true! Therefore, soundness is not a meaningful notion for the sumcheck argument.

The knowledge extractor for the sumcheck argument is a translation of the knowledge extractor for the
split-and-fold protocol (Protocol 1) studied in prior works. Interestingly, as noted in [ACF20; BDFG20], in
this case knowledge soundness can be established without relying on any computational assumptions.

Assume that the interactive reduction is applied recursively ` times. The knowledge extractor takes as
input 3` accepting protocol executions for strings r1, . . . , r` ∈ F of verifier challenges which are arranged in
a 3-ary tree format. In more detail, the root of the tree is labelled with a value of the first challenge r1 ∈ F.
Each non-leaf node at level i is labelled with some challenge value ri, and has three children, each labelled
with a distinct value of ri+1.

The extractor works inductively. Let qi(Xi) be a polynomial produced in the i-th reduction, for some
path (r1, . . . , ri−1) in the tree. Given suitable openings of length 2`−i to the commitment qi(ri), for three
different values of ri (enough to specify the quadratic polynomial qi), the extractor can find an opening of
1/2 · qi(1) − 1/2 · qi(−1) of length 2`−(i−1). Since 1/2 · qi(1) − 1/2 · qi(−1) = qi−1(ri−1) according to
the verifier’s checks, we can apply the same technique at the next level.

For example, at level 1 in the tree, the knowledge extractor for the split-and-fold protocol is given three
different vectors ~a′1,~a

′
2,~a
′
3 ∈ Fn/2, for three different challenge values r(1), r(2), r(3) ∈ F, such that

〈~a′1, ~G′1〉 = C− + r(1) · C + (r(1))2 · C+ ,

〈~a′2, ~G′2〉 = C− + r(2) · C + (r(2))2 · C+ ,

〈~a′3, ~G′3〉 = C− + r(3) · C + (r(3))2 · C+ .

Above ~G′i = r(i) · ~G0 + ~G1 is the commitment key ~G = (~G0, ~G1) ∈ Gn folded with respect to r(i). The
knowledge extractor can then use linear algebra to find ~a ∈ Fn such that 〈~a, ~G〉 = C. This idea can then be
applied recursively starting from the last round and going backwards to the first round.

Similarly, the knowledge extractor for the sumcheck argument is given an opening ~a′i of length n/2 to the
commitment q(r(i)), with respect to commitment key ~G′i for i = 1, 2, 3, and uses these openings to find an
opening of length n to the middle coefficient of q(X), which is equal to 1/2 · q(1)− 1/2 · q(−1). According
to the verifier’s check, we know that 1/2 · q(1)− 1/2 · q(−1) = C, so the extractor obtained an opening to C.

A key ingredient of the knowledge extractor is the ability to double the length of known openings
by manipulating multiple transcripts for a given recursion round. The Pedersen commitment, being a
homomorphism into G, allows this unconditionally. Jumping ahead, this property of a commitment scheme,
which we call invertibility, may require computational assumptions, and is a central component of our
sumcheck argument stated for the general setting of bilinear commitments (see Sections 2.2 and 2.3).
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2.2 Sumcheck arguments for bilinear commitments

We explain how to formulate a sumcheck argument for proving knowledge of an opening for any bilinear
commitment that satisfies certain functionality and security properties. We proceed in two steps: in Sec-
tion 2.2.1 we focus on the special case of scalar product protocols under Pedersen commitments to gain
intuition, and then in Section 2.2.2 we extend this to apply to a bilinear commitment.

2.2.1 The case of scalar-product protocols under Pedersen commitments

We have seen how to re-express the split-and-fold protocol for Pedersen commitments as a sumcheck
argument. The split-and-fold techniques in [BCCGP16] actually achieve more: proving knowledge of
openings of two Pedersen commitments such that the scalar product of the two openings is a publicly-known
value. We recall that protocol below and then explain how to re-express it as a sumcheck argument too.

Protocol 3: scalar product protocol for Pedersen commitments

For n = 2`, the prover and verifier receive as input commitment keys ~G, ~H ∈ Gn, commitments
C0,C1 ∈ G, and target value t ∈ F. The prover also receives as input openings ~a,~b ∈ Fn such that
C0 = 〈~a, ~G〉, C1 = 〈~b, ~H〉, and t = 〈~a,~b〉.
If n = 1 then the prover sends a, b ∈ F to the verifier, and the verifier checks that a ·G = C0, b ·H = C1,
and a · b = t as claimed. If n > 1, the interactive reduction works as follows.

1. The prover and the verifier parse each vector as two parts half its size: ~G = (~G0, ~G1) ∈ Gn/2×Gn/2,
~H = (~H0, ~H1) ∈ Gn/2 ×Gn/2, ~a = (~a0,~a1) ∈ Fn/2 × Fn/2, and~b = (~b0,~b1) ∈ Fn/2 × Fn/2.

2. The prover computes “cross terms”

Ca,− := 〈~a0, ~G1〉 Cb,− := 〈~b0, ~H1〉 t+ := 〈~a0,~b1〉

Ca,+ := 〈~a1, ~G0〉 Cb,+ := 〈~b1, ~H0〉 t− := 〈~a1,~b0〉

and sends these commitments and values to the verifier.
3. The verifier samples r ← F and sends r to the prover.
4. The verifier outputs new commitment keys, commitments, and target value:

~G′ := r · ~G0 + ~G1 ∈ Gn/2 C′0 := Ca,− + r · C0 + r2 · Ca,+ t′ := t+ + r · t+ r2 · t−
~H′ := ~G0 + r · ~G1 ∈ Gn/2 C′1 := r2 · Cb,− + r · C1 + Cb,+

The prover outputs new openings ~a′ := ~a0 + r ·~a1 and~b′ := r ·~b0 +~b1 ∈ Fn/2q , which are such that
C′0 = 〈~a′, ~G′〉, C′1 = 〈~b′, ~H′〉, and t′ = 〈~a′,~b′〉.

The scalar product C0 = 〈~a, ~G〉 can be expressed as a weighted sum of evaluations of p~a ·prv(~G). Similarly,

we can express C1 = 〈~b, ~H〉 via a weighted sum of p
rv(~b)
· p~H and t = 〈~a,~b〉 via a weighted sum of p~a · prv(~b).

Hence Protocol 3 can be phrased as a sumcheck on the polynomial:

p := (p~a · prv(~G), prv(~b) · p~H, p~a · prv(~b)) ∈ (G×G× F)[X1, . . . , X`] .

The first two components of polynomial p are well-defined because of the implicit multiplication which
maps F[X1, . . . , X`]×G[X1, . . . , X`]→ G[X1, . . . , X`] as in Section 2.1.2. The multiplication in the third
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component p~a ·prv(~b) is a natural extension of the group operation. Viewed another way, we obtain an opening

protocol for the commitment scheme that, given a commitment key (~G, ~H), maps a message (~a,~b) to

Commit(~G, ~H;~a,~b) := (〈~a, ~G〉, 〈~b, ~H〉, 〈~a,~b〉) .

The protocol is a sumcheck argument on a polynomial which we denote Commit(p
rv(~G)

, p~H; p~a, prv(~b)). We
provide a more formal definition of this polynomial in Section 2.2.2. As before, the cross terms of Protocol 3
correspond exactly to the coefficients of the polynomial q in the sumcheck argument.

The above sumcheck argument can be shown to satisfy the following knowledge soundness property:
there exists an extractor that, given a suitable collection of accepting transcripts for a given commitment C,
efficiently finds an opening (~a,~b) such that C = Commit(~G, ~H;~a,~b), assuming that the discrete logarithm
problem is hard over G. Proving knowledge soundness follows a similar approach to that for ΠF (Protocol 1)
sketched in Section 2.1.4. The main difference is that “inverting” from a given round to the previous one
involves not only solving linear equations to find openings ~a and~b of Pedersen commitments C0 and C1, but
also arguing that ~a and~b are a preimage of (C0,C1, t) under Commit; in other words, that 〈~a,~b〉 = t. Here
this requires assuming the hardness of the discrete logarithm over G (which one may have assumed anyway
to make the commitment binding), unlike for Protocol 1 where no assumptions were necessary.5

In sum, we have seen that the scalar-product protocol of [BCCGP16] can be rephrased as a sumcheck
argument for a specific commitment scheme. (The subsequent more optimized protocol from [BBBPWM18]
can also be viewed via a related sumcheck argument.)

2.2.2 Extending to any bilinear commitment

We have seen that Protocol 1 and Protocol 3 can be phrased as sumcheck arguments on different commitment
schemes. Both commitment schemes are examples of a bilinear commitment scheme, defined next.

Definition 2. Let M,K,C be Fq-vector spaces. A commitment scheme CM is bilinear if (i) the message
m ∈Mn can be split into left and right messages (mL,mR) ∈Mn/2×Mn/2; (ii) the commitment key ck can
be split into neutral, left, right commitment keys (ck0, ckL, ckR) ∈ K0 ×Kn/2 ×Kn/2, where K0 might not
be an Fq-vector space; (iii) the commitment function is linear with respect to the left parts and the right parts.

The third condition implies that for any keys ckL, ckL′, ckR, ckR′ and messages mL,mL′,mR,mR′,

CM.Commit (ck0, ckL + ckL′, ckR;mL + mL′,mR)
= CM.Commit (ck0, ckL, ckR;mL,mR)

+CM.Commit (ck0, ckL
′, ckR;mL′,mR)

CM.Commit (ck0, ckL, ckR + ckR′;mL,mR + mR′)
= CM.Commit (ck0, ckL, ckR;mL,mR)

+CM.Commit (ck0, ckL, ckR
′;mL,mR′)

Definition 2 naturally extends to apply to hiding commitment schemes CM with commitment randomness.
Since the key space K and the message space M are Fq-vector spaces, multilinear polynomials such as

pckL( ~X) and pmL( ~X) over K and M can be evaluated over points in Fq as part of Protocol 4. Then, as we
shall explain shortly, bilinearity allows us to “lift” the commitment function to polynomials, which enables
us to define the following polynomial

p(X1, . . . , X`) = CM.Commit
(
ck0, pckL( ~X), pckR( ~X); pmL( ~X), pmR( ~X)

)
. (2)

We can then obtain an opening protocol for CM via a sumcheck argument on this polynomial.

5Using a cryptographic assumption to prove security in this setting is not surprising because the commitment scheme is bilinear,
and as we shall see directly implies succinct arguments for NP, which can only be computationally sound.

15



Protocol 4: sumcheck argument for a bilinear commitment

For n = 2`, the prover and verifier receive as input a commitment key (ck0, ckL, ckR) ∈ K0×Kn×Kn

and commitment cm ∈ C. The prover also receives as input an opening (mL,mR) ∈Mn ×Mn such
that cm = CM.Commit ((ck0, ckL, ckR), (mL,mR)).

For H := {−1, 1} ⊆ F, the prover and verifier engage in a sumcheck round for the claim∑
~ω∈H`

CM.Commit (ck0, pckL(~ω), pckR(~ω), pmL(~ω), pmR(~ω)) = 2` · cm .

In other words, if ` = 0 then the prover sends pmL, pmR ∈ M to the verifier, and the verifier uses
pckL, pckR ∈ K to check if CM.Commit (ck0, pckL, pckR, pmL, pmR) = C as claimed. If ` > 0 then the
prover and verifier engage in an interactive reduction, using polynomial q(X) produced by summing
p(X1, ω2, . . . , ω`) over ω2, . . . , ω` ∈ H .

After a reduction using randomness r, the verifier outputs new commitment keys (ckL′, ckR′) ∈
Kn/2 × Kn/2 and the new commitment cm′ := q(r) ∈ C. The prover outputs the new opening
(mL′,mR′) ∈ Fn/2 × Fn/2.

The above opening protocol for the bilinear commitment scheme CM has perfect completeness if CM is
extendable and is knowledge sound if CM is invertible; we discuss both of these properties shortly.

Theorem 3. Protocol 4 is an opening protocol for any bilinear commitment scheme CM that is extendable
and invertible. (There exists an extractor that given a commitment cm, commitment key ck = (ck0, ckL, ckR),
and suitable tree of accepting transcripts for Protocol 4, finds an opening m = (mL,mR) such that
cm = CM.Commit (ck,m).)

A generic sumcheck argument. Protocol 4 captures as a special case the split-and-fold techniques of
Protocol 1 and Protocol 3. (In particular, Pedersen commitments are a special case of bilinear commitments
where the left message input and right commitment key input are simply ignored.) Moreover, Protocol 4
contributes a powerful generic understanding for describing even more split-and-fold techniques: for the
commitment scheme used in the Bulletproofs protocol [BBBPWM18], and for pairing-based commitment
schemes appearing in works such as [LMR19; BMMTV19],6 in which the message space and key space
are Fq-vector spaces, and the commitment schemes are bilinear, extendable, and have a suitable invertibility
property.

Defining a sumcheck polynomial. We explain why the polynomial in Equation (2) is well-defined.
The bilinear property of the commitment scheme makes it possible to extend the commitment scheme

to take polynomials as input, just as Protocol 1 and Protocol 3 could ultimately be written as sumcheck
arguments because the scalar-multiplication map is bilinear.

For example, if CM.Commit (. . .) is bilinear, then for messages mL,mL′, mR,mR′ and commitment
keys ckL, ckL′, ckR, ckR′ and ck0, we have

CM.Commit
(
ck0, ckL + r · ckL′, ckR + r · ckR′;mL + r ·mL′,mR + r ·mR′

)
= CM.Commit

(
ck0, ckL, ckR + r · ckR′;mL,mR + r ·mR′

)
6The key-homomorphic message-homomorphic commitment schemes in [BMMTV19] are a special case of bilinear commitments,

where the left message input and right commitment key input are simply ignored.
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+ r · CM.Commit
(
ck0, ckL

′, ckR + r · ckR′;mL′,mR + r ·mR′
)

= CM.Commit (ck0, ckL, ckR;mL,mR)

+ r ·
(
CM.Commit

(
ck0, ckL, ckR

′;mL,mR′
)

+ CM.Commit
(
ck0, ckL

′, ckR;mL′,mR
))

+ r2 · CM.Commit
(
ck0, ckL

′, ckR′;mL′,mR′
)
.

Thus, it makes sense to write

CM.Commit
(
ck0, ckL +X · ckL′, ckR +X · ckR′;mL +X ·mL′,mR +X ·mR′

)
= CM.Commit (ck0, ckL, ckR;mL,mR)

+X ·
(
CM.Commit

(
ck0, ckL, ckR

′;mL,mR′
)

+ CM.Commit
(
ck0, ckL

′, ckR;mL′,mR
))

+X2 · CM.Commit
(
ck0, ckL

′, ckR′;mL′,mR′
)
.

With this in mind, the sumcheck polynomial is defined to be

p(X1, . . . , X`) = CM.Commit
(
ck0, pckL( ~X), pckR( ~X); pmL( ~X), pmR( ~X)

)
=

∑
~i∈{0,1}`

CM.Commit
(
ck0, ckL~i, pckR( ~X);mL~i, pmR( ~X)

)
·Xi1

1 · · ·X
i`
`

=
∑

~i,~j∈{0,1}`
CM.Commit

(
ck0, ckL~i, ckR~j ;mL~i,mR~j

)
·Xi1+j1

1 · · ·Xi`+j`
` .

The second and third equalities above are justified by the bilinearity of the commitment scheme.

Remark 2.2. When discussing previous examples, such as Protocol 2 and Protocol 3, we used multilinear
polynomials such as “p

rv(~G)
”, with the entries of ~G appearing in reverse order, in order to recover protocols

already appearing in the literature as closely as possible. However, having understood the connection to
sumcheck protocols, it will be sufficient, and notationally simpler, to avoid vectors in reverse order.

Completeness. We say that CM is extendable if for all commitment keys (ck0, ck) (where ck includes a
left and right key), and m ∈Mn+n′ , we have

CM.Commit (ck0, ck;m) =CM.Commit (ck0, ck[: n];m[: n])

+ CM.Commit (ck0, ck[n :];m[n :])

We sketch why if CM is extendable then Protocol 4 has perfect completeness. It suffices to express cm =
CM.Commit (ck0, ckL, ckR;mL,mR) as a sum of evaluations of the sumcheck polynomial p in Equation (2).

Consider P (X) = (a0 + a1X)(b0 + b1X). We can obtain the scalar product a0b0 + a1b1 from P (X)
using 1/2 · P (1) + 1/2 · P (−1). Applying a similar idea to p( ~X) gives∑

~ω∈{−1,1}`
p(~ω) = 2` ·

∑
~i≡~0 mod 2

p~i

= 2` ·
∑

~i∈{0,1}`
CM.Commit

(
ck0, ckL~i, ckR~i;mL~i, ckR~i

)
= 2` · CM.Commit (ck0, ckL, ckR;mL,mR) = 2` · cm .
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The equality between the penultimate and final lines follows from the extendability of the commitment
scheme.
Knowledge soundness. If CM is invertible then Protocol 4 is knowledge sound. Informally, a commitment
scheme is invertible if there exists an efficient algorithm that, given a commitment cm ∈ C after i-th level
of recursion, and a suitable number of openings (mL′,mR′) ∈ Mn/2` ×Mn/2` of the commitment cm′ at
the (i + 1)-th level, corresponding to distinct challenges r, can find an opening of cm with respect to the
commitment key of the i-th level. The proof of Theorem 3 relies on a similar strategy to that described in
Section 2.1.4, but may use computational assumptions to prove invertibility. We remark that invertibility
is incomparable with the binding property of the bilinear commitment scheme, since in Section 2.1.4, the
Pedersen commitment scheme can be inverted without any computational assumptions, whereas inverting the
commitment scheme of Section 2.2.1 requires the hardness of the discrete logarithm problem.

2.3 Extending sumcheck arguments to modules over rings

We have so far discussed sumcheck arguments for bilinear commitments where the message space, key
space, and commitment space are vector spaces over a finite field F. However, split-and-fold techniques have
appeared in other cryptographic settings, such as groups of unknown order [BFS20] and lattices [BLNS20].
Sumcheck arguments can be generalized to capture these settings as well. We explain this extension in several
steps. First, we extend the definition of bilinear commitments to more general algebraic structures and to
valid openings of particular form. Second we show how this definition suffices for capturing the additional
cryptographic settings. Third we show the necessary changes in the sumcheck argument and argue for its
correctness and soundness.

The most natural algebraic structures for sumcheck arguments that suffice for our results are rings and
modules. More specifically, the message space M, key space K, and commitment space C are modules over
a ring R, and challenges in the protocol are sampled from a subset C ⊆ R. The properties that this subset
needs to satisfy are related to knowledge soundness and are explained below. Additionally, valid openings to
a commitment are only “small” elements, so the underlying ring and message space must be equipped with a
norm. The commit function is a mapping CM.Commit : Mn ×Kn → C.

We highlight the required changes using the example of Pedersen commitments, which we show how to
define in general settings in Section 2.4. The same changes apply to the sumcheck argument for any bilinear
commitment. In the case of Pedersen commitments, CM.Commit

(
~a, ~G

)
= 〈~a, ~G〉, where ~a is the message

vector, ~G is the key vector, and M and K are such that the mapping 〈·, ·〉 is well-defined. To motivate the
changes in sumcheck arguments, let us start by reviewing the Pedersen commitment scheme in the RSA
group and lattice setting.

• In the RSA setting, ~a is a vector in Zn<q for some prime q and ~G = (G,Gq, . . . ,Gq
n−1

) where G is a random
element of the RSA group. The underlying ring in this case is Z, the message space is also a subset of Z,
and the commitment and key spaces are equal to a group G. Valid openings consist of elements with norm
less than q.

• In the lattice setting, ~a is a vector of “short” ring elements and ~G is a matrix of random ring elements. The
most widely-used ring isR = Zq[X]/〈Xd+1〉 and “short” ring elements belong to the set Z≤BSIS

[X]/〈Xd+
1〉 for some bound BSIS. In this case, message, key, and commitment spaces are equal to the ring R. Valid
openings consist of “short” ring elements with norm less than BSIS.

We rewrite Protocol 4 for the case of Pedersen commitments incorporating the properties required for
capturing disparate cryptographic settings.

18



Protocol 5: generalised sumcheck argument for Pedersen commitments (Π′SA)

For n = 2`, the prover and verifier receive as input a commitment key ~G ∈ Kn and commitment C ∈ C.
The prover also receives as input an opening ~a ∈Mn such that C = 〈~a, ~G〉.

For H := {−1, 1} ⊆ R, the prover and verifier engage in a sumcheck round for the claim∑
ω1,...,ω`∈H

p~a(ω1, . . . , ω`) · p~G(ω1, . . . , ω`) = C .

In other words, if ` = 0 then the prover sends pa ∈ M to the verifier, and the verifier checks that
‖pa‖ ≤ BSA and uses pG ∈ K to check if pa ·pG = C as claimed. If ` > 0 then the interactive reduction
works as follows.

• The prover P sends the polynomial q(X) ∈ K[X] to the verifier, computed as follows:

q(X) :=
∑

ω2,...,ω`∈H
p~a(X,ω2, . . . , ω`) · p~G(X,ω2, . . . , ω`) . (3)

• The verifier V samples r ← C and sends r to the prover.
• The verifier checks that C =

∑
ω∈H q(ω). (If not, it rejects.)

• The verifier outputs the new commitment key ~G′ ∈ Kn/2, which consists of the coefficients of
p~G(r,X2, . . . , X`) ∈ K[X2, . . . , X`], and the new commitment C′ := q(r) ∈ C. The prover outputs
the new opening ~a′ ∈Mn/2 that as the coefficients of p~a(r,X2, . . . , X`) ∈M[X2, . . . , X`]. The new
sumcheck claim about these is:∑

ω2,...,ω`∈H
p~a′(ω2, . . . , ω`) · p~G′(ω2, . . . , ω`) = C′ .

Remark 2.3. Note that Protocol 5 follows the syntax of Protocol 4 instead of Protocol 2. The extension to
general bilinear commitments is direct. However, the updates related to spaces and norm checks can be easily
incorporated directly in Protocol 2 as well. This results in a sumcheck argument for generalised Pedersen
commitments analogous to [BLNS20] in different cryptographic settings.

Completeness. The check ‖pa‖ ≤ BSA is satisfied if the constant BSA is set to be an upper bound on the
norm of p~a(~r). The constant BSA can be computed based on n, the maximum norm of elements of C, and the
message space M. For the other checks, the proof of completeness of Section 2.3 is still applicable.

Knowledge soundness. Similarly to the discrete logarithm case, given enough accepting transcripts it is
possible to extract an opening of the commitment. In contrast to the previous protocols, random challenges
need to be sampled from a set of low-norm elements which additionally satisfy a special invertibility property.
We call sets which satisfy this invertibility property sampling sets. This allows us to recover a “relaxed”
opening of the commitment, which differs from a regular opening in two ways: (a) the extracted opening
might have larger norm than the committed value, (b) it might not satisfy the commitment equation, but only
a closely related equation. In the case of Pedersen commitments, the extracted value is an opening for a small
multiple of the original commitment. Note that this opening is not equivalent to an original opening because
of the low-norm requirement. Theorem 3 is updated to include these changes as follows.
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Theorem 4. Protocol 5 is an opening protocol for the Pedersen commitment scheme CM in cryptographic
settings where CM is invertible. Specifically, there exists an extractor that given a commitment C for a
message with norm less than BC, a commitment key ck = ~G, a suitable tree of accepting transcripts, finds a
relaxed valid opening m = ~a ∈M such that c · C = 〈~a, ~G〉. The norm of m can be larger than BC, but since
it is a valid opening it has to be smaller than the norm bound specified in the commitment scheme.

The slackness factor c depends on the setting. Out of all the settings that we consider, c 6= 1 only in the
lattice setting, where we recover the result of [BLNS20]. Similarly to Section 2.2.2, we argue knowledge
soundness through invertibility. As before, a commitment scheme is invertible if there exists an efficient
algorithm that, given the commitment C ∈ C of level i and a suitable collection of relaxed openings
(~a′, ~G′) ∈Mn/2` ×Kn/2` of the commitment C′ of the i+ 1-level of recursion for distinct challenges r, can
find a relaxed opening (with possibly different slackness) of C with respect to the key of the i-th level. The
opening of C might have larger norm than the relaxed openings ~a′; in particular, invertibility is parametrized
by a constant D such that if ‖~a′‖ ≤ B, then the opening of level i has norm less than D · B. Also, the
slackness factor of the i-th level opening might be larger; specifically, invertibility is parametrized by a
constant C such that if the slackness in level i+ 1 is c, then the slackness in level i is C · c.

2.4 Instantiations of bilinear commitments for sumcheck arguments

Our main theorem on sumcheck arguments (Theorem 1) applies to any bilinear commitment that is invertible.
In this section we explain how to define a generalized Pedersen commitment over any bilinear module, and
how this commitment can be shown to satisfy the required properties for several cryptographic settings:
(i) discrete logarithms; (ii) pairings; (iii) GUO; and (iv) lattices. In this paper we also consider generalized
commitments over bilinear modules that capture scalar products, which we discuss in Section 2.5. Details on
all instantiations of bilinear commitments that we study can be found in Section 5.

A bilinear moduleM = (R,ML,MR,MT , e) consists of a normed ring R, three modules ML,MR,MT

over R, and a non-degenerate bilinear map e : ML ×MR →MT ; the modules ML, MR and MT are related
to the message space, key space, and commitment space of the Pedersen commitments scheme. A bilinear
moduleM is argument-friendly if ML is equipped with a norm, andM is also associated with a sampling
set C ⊆ R and a constant Bmax (which indicates the norm bound for valid commitment openings).

Definition 2.4 (informal). The generalized Pedersen commitment scheme for messages of length n has
messages of the form ~a ∈ Mn

L such that ‖~a‖ ≤ Bmax, and commitment keys of the form ~G ∈ Mn
R. A

commitment is computed as e(~a, ~G), which for notational simplicity we denote as 〈~a, ~G〉.
In the hiding version, the commitment key has an extra component ~G0 ∈M rPed

R and the commitment is
computed as 〈~a, ~G〉+ 〈~ρ, ~G0〉, where ~ρ ∈M rPed

L is sampled such that ‖~ρ‖ ≤ Bmax, for a parameter rPed that
depends on the setting. An opening with slackness c ∈ R for a commitment C ∈MT under the commitment
key (~G, ~G0) ∈Mn

R ×M
rPed
R is a vector (~a, ~ρ) ∈Mn

L ×M
rPed
L such that c · C = 〈~a, ~G〉+ 〈~ρ, ~G0〉.

The generalized Pedersen commitment scheme is binding under the bilinear relation assumption, a
natural extension of the discrete logarithm assumption. Moreover, its bilinearity holds unconditionally, and
can be argued in a similar way as for the usual Pedersen commitment scheme (over prime-order groups).

Establishing invertibility, however, is more involved because we cannot establish it “once and for all” for
all bilinear modules; rather, we establish it individually for each cryptographic setting of interest. One intuitive
reason for why invertibility is more involved to establish is that it is incomparable to the binding property of
a bilinear commitment scheme. In some cases it holds unconditionally (e.g., for the discrete logarithm setting
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as described in Section 2.1.4) and in other cases it follows from specific hardness assumptions (as previewed
in Section 2.3).

To highlight the complications of each cryptographic setting, rather than specifically discussing invert-
ibility, in this high level overview we describe the extraction algorithm for the Schnorr protocol for each
cryptographic setting. This protocol is a simple zero-knowledge argument of knowledge for a commitment
opening, and the extractor is asked to produce a (possibly relaxed) opening for the commitment given two
accepting transcripts sharing the same first message.

Definition 2.5 (informal). In the Schnorr protocol for bilinear modules, the prover and verifier have a
commitment C ∈ MT and commitment key G ∈ MR, while the prover additionally has a witness a ∈ ML

with ‖a‖ ≤ Bmax such that C = a · G. The prover and verifier then interact as follows:
• the prover sends t = b · G ∈MT for random b ∈ML with ‖b‖ ≤ Bb (here Bb depends on Bmax);
• the verifier sends a random challenge r ∈ C;
• the prover sends the response s := r · a+ b ∈MT ;
• the verifier accepts if s · G = r · C + t.

DL setting. The extractor recovers openings of C and t given two accepting transcripts (t, r1, s1) and
(t, r2, s2) sharing the same first message t but with distinct challenges r1 and r2. First, subtracting one copy
of the verification equation from the other shows that (s1− s2) ·G = (r1− r2) ·C. Then, since the challenges
r1 and r2 are distinct elements of Fq, we can multiply by (r1 − r2)−1 to recover an opening a′ := (s1−s2)

(r1−r2) of
C. The opening of t is then computed as b′ := s1 − a′ · r1. In this setting, all Fq-vectors are valid openings,
so there is no special consideration regarding norms.
Pairing setting. Invertibility of the commitment scheme is similar to the discrete logarithm setting, in that
all pairwise differences of distinct challenges are invertible.
GUO setting. Here invertibility will rely on cryptographic assumptions, similar to [BFS20]. Because the
order of the group is unknown it is not possible to compute (r1 − r2)−1. However, finding (s1 − s2) that
is not divisible by (r1 − r2) breaks a cryptographic assumption known as the Fractional Root Assumption.
Then, if (s1−s2)

(r1−r2) ∈ Z, we can compute (s1−s2)
(r1−r2) · G. It must be that C = s1−s2

r1−r2 · G, since otherwise
(r1 − r2)(C− s1−s2

r1−r2 · G) = 0, which would break the Order Assumption.
Another consideration in this setting is the choice of the sampling set and how it affects the size of the

extracted commitment openings. The challenges are sampled from the set C = [−p−1
2 , p−12 ] for a small prime

p. Then, if ‖s1‖, ‖s2‖ ≤ B, the extracted opening of C, which is equal to a′ = (s1−s2)
(r1−r2) , has norm less than

2 · B, and the extracted opening of t, which is equal to b′ = s1 − a′ · r1 = s1r2−s2r1
r1−r2 , has norm less than

(p− 1) ·B. This means that p must be chosen appropriately, because openings are valid only if their norm is
less than q.
Lattice setting. Similar considerations relating to extracted openings exist in the lattice setting. In this
setting there is no a priori bound on the norm of (r1 − r2)−1 even if r1 and r2 have small norm. Because
valid openings must be ring elements with small norm, we cannot recover an opening of C by multiplying
by (r1 − r2)−1. Instead we use a special sampling set introduced in [BCKLN14], which contains ring
elements with norm 1 and has norm bounds for “relaxed” inverses. In particular, for r1, r2 ∈ C it holds that
2(r1 − r2)−1 is an element of norm 1. This relaxation factor translates into a slackness of the commitment
opening. Namely, instead of extracting a′ and b′ such that C = a′ ·G and t = b′ ·G, we have that 2 ·C = a′ ·G
and 2 · t = b′ · G.

The norm bounds on the extracted openings are easily recovered. If ‖s1‖, ‖s2‖ ≤ B, the extracted
opening of C, which is equal to a′ = 2 s1−s2r1−r2 , has norm less than 2 ·B, and the extracted opening of t, which
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is equal to b′ = 2s1 − a′ · r1 = 2 s1r2−s2r1r1−r2 , has norm less than 2 ·B.

2.5 Succinct argument for scalar products over rings

We explain how to use sumcheck arguments to obtain zero-knowledge succinct arguments of knowledge for
scalar-product relations over rings. Informally, this involves choosing a specific bilinear commitment to plug
in to Theorem 1, and also carefully using randomness to achieve zero knowledge (which is not a guarantee of
Theorem 1). Afterwards, in Section 2.6 we explain how to build on this to prove Theorem 2.

Fix a bilinear moduleM = (R,ML,MR,MT , e) where ML is not merely an R-module but also a ring
itself (so that scalar products over ML are defined).7 The commitment scheme that we consider has two-part
messages and includes a commitment to the scalar-product of these two parts; it is the natural extension of
the scalar-product commitment from Section 2.2.1 to bilinear modules.

Definition 2.6 (informal). The generalized scalar-product commitment scheme for messages of length n
has messages of the form (~a,~b) ∈Mn

L ×Mn
L such that ‖~a‖, ‖~b‖ ≤ Bmax, and commitment keys of the form

(~G, ~G0, ~H, ~H0,U, ~U0) ∈Mn+rPed
R ×Mn+rPed

R ×M1+rPed
R . A commitment is computed as(

〈~a, ~G〉+ 〈~ρa, ~G0〉, 〈~b, ~H〉+ 〈~ρb, ~H0〉, 〈~a,~b〉 · U + 〈~ρt, ~U0〉
)

;

where ~ρa, ~ρb and ~ρt ∈M rPed
L are sampled with norms at most Bmax, for a parameter rPed that depends on

the setting. In other words, a commitment is the sum of three generalized Pedersen commitments: for the first
part of the message ~a, for the second part of the message~b, and for their scalar product 〈~a,~b〉 ∈ML.

A valid opening for a commitment C ∈ MT with keys (~G, ~G0, ~H, ~H0U, ~U0) ∈ Mn+rPed
R ×Mn+rPed

R ×
M1+rPed
R and slackness c ∈ R is a vector (~a,~b, ~ρa, ~ρb, ~ρt) ∈Mn

L ×Mn
L ×M

3rPed
L such that

c2 · C =
(
c · 〈~a, ~G〉+ c · 〈~ρa, ~G0〉, c · 〈~b, ~H〉+ c · 〈~ρb, ~H0〉, 〈~a,~b〉 · U + 〈~ρt, ~U0〉

)
.

The generalized scalar-product commitment scheme is binding under the bilinear relation assumption.
Moreover, its bilinearity holds unconditionally. The proof of invertibility for the different cryptographic
settings follows from algebraic manipulations analogous to the case of generalized Pedersen commitments
discussed in Section 2.4. Witness extraction in this case requires computational assumptions even in the
discrete logarithm setting (as discussed in Section 2.2.1).

We give a zero-knowledge succinct argument of knowledge for the following relation related to the
scalar-product of committed messages, which we denote byRcomSP.

Definition 2.7 (informal). The committed scalar-product relationRcomSP(c,BC) consists of instance-witness
pairs (x,w) where the instance x contains
• an argument-friendly bilinear moduleM = (R,ML,MR,MT , e, C, BC, Bmax), where C is a sampling

set,
• an ideal I ⊆ML,8

• commitment keys (~G, ~G0, ~H, ~H0,U, ~U0) ∈Mn
R ×M

rPed
R ×Mn

R ×M
rPed
R ×MR ×M rPed

R , and
• commitments C0,C1,CSP ∈MT

7In the pairing setting where ML is not a ring, we define scalar-product commitments slightly differently. We refer to Section 5
for more details.

8An ideal I ⊆ R is a subset which is a group under addition, and closed under multiplication by scalars in R; in other words, a
subset of R which is also a submodule.
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and the witness w = (~a, ~ρ0,~b, ~ρ1, ~ρ) ∈M2n+3rPed
L is such that ‖~a‖, ‖~ρ0‖, ‖~b‖, ‖~ρ1‖, ‖~ρ‖ ≤ BC and

• (~a, ~ρ0) is a valid opening of the Pedersen commitments C0 with slackness c,
• (~b, ~ρ1) is a valid opening of the Pedersen commitments C1 with slackness c, and
• (〈~a,~b〉 mod I, ~ρ) is a valid opening of the Pedersen commitment CSP with slackness c2.

The relation reasons about scalar-product relations over the quotient ring R∗ = ML/I , or modulo I ,
for some ideal I ⊆ ML. In certain settings, such as the lattice setting, where it is only possible to extract
openings to commitments with slackness c, we will choose I so that we can “cancel out” the slackness c
modulo I as part of knowledge extraction algorithms and prove exact scalar-product relations over R∗.

Now we explain how the argument works. The prover begins by making a commitment to 〈~a,~b〉. The
argument consists of: (i) a consistency check that the committed values 〈~a,~b〉 and 〈~a,~b〉 mod I (which may
not be equal) are equivalent modulo I; (ii) an interactive reduction masking the three Pedersen commitments
to ~a,~b and 〈~a,~b〉, and then converting them into a single scalar-product commitment by using various random
linear combinations; (iii) a sumcheck argument to prove knowledge of an opening to the scalar-product
commitment.

Checking consistency modulo I . To check consistency modulo I , we run a Schnorr-like protocol on the
commitments to 〈~a,~b〉 and t. As part of the Schnorr-protocol, the prover will commit to a masking value yC
and send the commitment and the value yC mod I to the verifier, and after receiving a random challenge
γ ∈ C from the verifier, the prover will send a value eC = γ(〈~a,~b〉 − t) + yC to the verifier. The verifier may
then check that eC = yC mod I . Intuitively, if 〈~a,~b〉 is not equal to t modulo I , then there is only a small
probability that γ(〈~a,~b〉 − t) + yC can be equal to yC mod I , which was fixed before the verifier sent the
random challenge γ. To prove this intuition, we require that the challenge space C must remain a sampling set
modulo I and the relaxation factor in the soundness guarantee for opening commitments must be invertible
modulo I , which holds for all of our instantiations.

The interactive reduction. To make the argument zero-knowledge, the prover and verifier first rerandomise
the commitments to ~a,~b and 〈~a,~b〉 to ~za := γ~a+ ~ya, ~zb := γ~b+ ~yb and 〈~za, ~zb〉 = γ2〈~a,~b〉+ γv1 + v0 using
masking values ~ya and ~yb. The prover commits to ~ya, ~yb and to v1 and v0 (which depend only on ~a,~b, ~ya and
~yb), in advance. The openings of the rerandomised commitments do not leak any information about ~a or~b,
and so the prover can safely send the commitment randomness to the verifier.

Next, the verifier uses the commitments to ~za, ~zb and 〈~za, ~zb〉 and the randomness to compute a single
scalar-product commitment without any commitment randomness. Finally, the verifier runs a sumcheck
argument on this scalar-product commitment.

The full details of the protocol are described in Section 6.

2.6 Succinct argument for R1CS over rings

We explain the main ideas behind Theorem 2, which provides a zero-knowledge succinct argument of
knowledge for R1CS over rings. Recall that the R1CS problem over a ring R∗ asks: given coefficient
matrices A,B,C ∈ RN×N∗ and an instance vector x over R∗, is there a witness vector ~w over R∗ such that
~z := (x, ~w) ∈ RN∗ satisfies A~z ◦ B~z = C~z? To a first order, Theorem 2 is proved by reducing the R1CS
problem over R∗ to several scalar-product sub-problems over R∗, and then relying on the zero-knowledge
succinct argument for scalar products in Section 2.5. This means that we can ultimately support R1CS over
the rings supported in that section: R∗ = ML/I , where ML is the left module of an argument-friendly
bilinear module, and I ⊆ML is an ideal. Below we summarize the reduction from R1CS to scalar products.

The prover P sends commitments to the full assignment ~z ∈ RN∗ and to its linear combinations ~zA, ~zB ∈
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RN∗ . Then P is left to convince the verifier V that the committed information satisfies these conditions:

~zA = A~z , ~zB = B~z , ~zA ◦ ~zB = C~z , x is a prefix of ~z .

To reduce the first three conditions, the verifier V sends a structured challenge vector ~r. Multiplying on the
left by ~rᵀ reduces the first three conditions to 〈~r, ~zA〉 = 〈~rA, ~z〉, 〈~r, ~zB〉 = 〈~rB, ~z〉, 〈~r ◦ ~zA, ~zB〉 = 〈~rC , ~z〉;
here we defined ~rA := ~rᵀA, ~rB := ~rᵀB, and ~rC := ~rᵀC. Moreover, to reduce the last condition, the verifier
sends V a random challenge vector ~s of the same length as x; padding ~s with zeroes to get ~s′ of the same
length as ~z, we have 〈~s′, ~z〉 = 〈~s, x〉. Note that both parties can each individually compute ~rA, ~rB, ~rC by
right-multiplying ~r by A,B,C respectively, and also both parties can each individually compute 〈~s, x〉.

Next, the prover P sends a commitment to ~z′A := ~r ◦ ~zA, and also commitments to α := 〈~rA, ~z〉,
β := 〈~rB, ~z〉, and γ := 〈~rC , ~z〉. Then the prover and verifier engage in scalar-product sub-protocols
(described in Section 2.5) to verify these 7 scalar products (recall each party can compute 〈~s, x〉):

〈~r, ~zA〉 = α
〈~rA, ~z〉 = α

,
〈~r, ~zB〉 = β
〈~rB, ~z〉 = β

,
〈~z′A, ~zB〉 = γ
〈~rC , ~z〉 = γ

, 〈~s′, ~z〉 = 〈~s, x〉 .

The prover and verifier use an additional challenge vector ~y and 2 further scalar-product sub-protocols to
check that 〈~z′A, ~y〉 = 〈~zA, ~r ◦ ~y〉, which shows that ~z′A was correctly computed from ~zA and ~r.

All commitments in the protocol are hiding, and hence do not leak any information about the witness
vector ~w. Hence the zero-knowledge property of the above protocol directly reduces to the zero-knowledge
property of the scalar-product sub-protocols.

We conclude by noting that if we instantiate the bilinear module with lattices then Theorem 2 gives
Corollary 1: a zero-knowledge succinct argument of knowledge for R1CS based on the SIS assumption.

2.7 Polynomial commitments over rings

As another direct application of the scalar-product protocol over rings, we construct a polynomial commitment
scheme over rings. In a polynomial commitment, the prover commits to a polynomial p and then later proves
the correct evaluation of the polynomial at a desired point. In our case, the committed polynomial is over a
ring R and the evaluation is performed modulo I for an ideal I ⊆ R as in Section 2.5.

Assume that the committed polynomial p is univariate in monomial basis, then p is represented as the
vector of coefficients ~a = (a0, . . . , ad) and p(z) = 〈~a,~b〉 where ~b = (1, z, z2, . . . , zd). The polynomial
commitment scheme consists of a binding commitment scheme for a message space R[X] of polynomials
over some ring R, which in our construction is the generalised Pedersen commitment over an argument-
friendly bilinear module, and an interactive public-coin protocol between a prover and a verifier. The protocol
convinces the verifier that for some values z and v it holds that p(z) = v mod I for some ideal I ⊆ R. Based
on the observation that the polynomial evaluation can be implemented as a scalar-product, the interactive
evaluation protocol is the sumcheck protocol for generalised scalar-product relations.

Theorem 2.8 (informal). The generalized Pedersen commitment defines a polynomial commitment where the
evaluation protocol reduces to a sumcheck argument for the scalar-product relation over rings. The evaluation
protocol has round complexity O(log d), communication O(log d), and prover and verifier complexity O(d),
where d is the degree of the committed polynomial.

Similar constructions apply to both univariate and multivariate polynomials which are represented in
monomial or Lagrange basis.
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3 Preliminaries

Notation. We denote rings with R, modules with M , fields with F, and groups with G. We use subscripts
to define various rings, e.g. R1, R2. We use ~x to denote a vector.

3.1 Rings and modules

Rings are mathematical structures that generalise fields. A ring is equipped with addition and multiplication
operations, but unlike fields, multiplicative inverses need not exist. In this paper, we will use only commutative
rings, where the multiplication operation commutes. A module over a ring extends the notion of vector space
over a field, where the scalars are elements of a ring.

Normed rings and modules. We define rings and modules equipped with norms. The following definitions
are slightly different than the ones in standard algebra textbooks due to the expansion factors used, but are
more convenient for our purposes.

Definition 3.1. Let R be a ring. A norm for R is a map ‖·‖R : R → R≥0 that satisfies the following
properties: (i) ‖0‖R = 0 and ‖1‖R = 1; (ii) for all r ∈ R, ‖r‖R = ‖−r‖R; (iii) for all a, b ∈ R,
‖a+ b‖R ≤ ‖a‖R + ‖b‖R; (iv) there exists a constant “expansion factor” γR ∈ R>0 such that, for all
a, b ∈ R, ‖ab‖R ≤ γR ‖a‖R ‖b‖R.

Definition 3.2. Let R be a ring with norm ‖·‖R, and let M be an R-module. A norm for M is a map
‖·‖M : R→ R≥0 that satisfies the following properties: (i) ‖0‖M = 0; (ii) for all r ∈ R, ‖r‖M = ‖−r‖M ;
(iii) for all a, b ∈M , ‖a+ b‖M ≤ ‖a‖M + ‖b‖M ; (iv) there exists a constant “expansion factor” γM ∈ R>0

such that, for all a ∈ R and b ∈M , ‖ab‖M ≤ γM ‖a‖R ‖b‖M .

Definition 3.3. For a ring R with norm ‖·‖R, R(B) denotes the set of ring elements with norm at most B:

R(B) := {r ∈ R : ‖r‖R ≤ B} .

and similarly for a module M and set M(B).
For a set C ⊆ R, m(C) = maxx∈C ‖x‖.

Polynomials and challenge spaces over rings and modules. Let R be a ring and M an R-module.
We denote by M [X1, . . . , X`] the set of polynomials in variables X1, . . . , X` with coefficients in M . A
polynomial p ∈M [X1, . . . , X`] defines a function from R` to M .

We consider sumcheck protocols for polynomials defined over general R-modules M , and must use a
suitable challenge space C ⊆ R. Prior work [CCKP19] discusses soundness of the sumcheck protocol over
rings R, based on an extension of the Schwartz–Zippel lemma for challenge spaces which are “sampling
sets”. We state generalisations of the Schwartz–Zippel lemma and the notion of sampling sets to modules.

Definition 3.4. A sampling set C for an R-module M is a subset of R such that for all c1, c2 ∈ C with
c1 6= c2, the mapping M →M that sends m 7→ (c1 − c2)m is injective.

We recover the sampling sets of [CCKP19] as a special case of Definition 3.4 by setting M = R.

Lemma 3.5. Let R be a ring, let M be an R-module, and let f ∈M [X1, . . . , X`] be a non-zero `-variate
polynomial of total degree D over R. Let C be a sampling set for M . Then Pr~r←C` [f(~r) = 0] ≤ D

|C| .
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Sketch. The proof follows the same template as the usual inductive proof of the standard Schwartz–Zippel
lemma. The properties of C are used to establish that a polynomial f ∈M [X] of degree D has at most D
roots in C which is the base case and is also used in the inductive step.

The condition that Definition 3.4 is a sampling set for M is a sufficient condition to prove soundness of
the sumcheck protocol over modules Protocol 6. We will prove soundness guarantees for our sumcheck
arguments via a knowledge-extraction argument, and alongside Definition 3.4, require the following slightly
stronger property from our challenge space.

Definition 3.6. A strong sampling set C for an R-module M is a subset of R such that for all c1, c2 ∈ C
with c1 6= c2, there exists r ∈ R (depending on c1 and c2) such that r(c1 − c2)m = m for all m ∈M .

Again, setting M = R recovers strong sampling sets for rings mentioned in [CCKP19].
It is easy to see that a strong sampling set C for M is also a sampling set for M . Conversely, for many

rings, a sampling set is also a strong sampling set, as shown in the following lemma.

Lemma 3.7. Let R be a finite commutative ring. If r ∈ R is not a zero-divisor then r is invertible.

Proof. The function f : R→ R defined as f(x) := r · x is a ring homomorphism. The kernel of f contains
only 0, as otherwise r would be a zero divisor. By the first Isomorphism Theorem for rings, we know that
R/ ker(f) ' Im(f), and we can write |R| = | ker(f)| · |Im(f)|. But | ker(f)| = 1, so |R| = |Im(f)|. Since
R is finite and Im(f) ⊆ R, we deduce that Im(f) = R. Hence, there exists s ∈ R such that rs = 1.

Note that Lemma 3.7 does not hold over infinite rings. For example, take R = Z and r = 2. (The proof
breaks down because Im(f) = 2Z has the same cardinality as Z, but is a subset of Z.)

3.2 Commitments

A (non-interactive) commitment scheme is a tuple of algorithms CM = (Setup,KeyGen,Commit,Open)
with the following syntax.

• CM.Setup(1λ, n)→ pp: samples public parameters given a security parameter and a message length. The
public parameters specify a key space K∗, message space Mn, randomizer space R, and commitment space
C.

• CM.KeyGen(pp)→ ck: samples a commitment key (which itself contains a description of pp).

• CM.Commit (ck;m; ρ) → cm: the sender commits to m ∈ Mn using a commitment key ck ∈ K∗ by
sampling ρ from R according to some distribution and computing a commitment cm ∈ C.

• CM.Open (ck,m, ρ, cm, c)→ b ∈ {0, 1}: checks that cm ∈ C is a commitment to the message m ∈ Mn

with randomness ρ ∈ R and slackness value c ∈ Z under commitment key ck ∈ K∗.

We require CM to satisfy completeness and binding, and sometimes also hiding, as specified below.

Definition 3.8. CM is complete if for every n ∈ N and adversary A,

Pr

CM.Open (ck,m, ρ, cm, 1) = 1

∣∣∣∣∣∣∣∣
pp← CM.Setup(1λ, n)
ck← CM.KeyGen(pp)

(m, ρ)← A(pp, ck)
(cm, ρ)← CM.Commit (ck;m; ρ)

 = 1 .
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Definition 3.9. CM is (computationally) binding if for every n ∈ N and polynomial-size adversary A,

Pr

 m0 6= m1

CM.Open (ck,m0, ρ0, cm, c) = 1
CM.Open (ck,m1, ρ1, cm, c) = 1

∣∣∣∣∣∣
pp← CM.Setup(1λ, n)
ck← CM.KeyGen(pp)

(cm,m0,m1, ρ0, ρ1, c)← A(pp, ck)

 = negl(λ) .

Definition 3.10. CM is (statistically) hiding if for every n ∈ N and adversary A,

Pr

A(cm) = b

∣∣∣∣∣∣∣∣∣∣
pp← CM.Setup(1λ, n)
ck← CM.KeyGen(pp)
(m0,m1)← A(pp, ck)

b← {0, 1}
(cm, ρ)← CM.Commit (ck;mb)

 =
1

2
+ negl(λ) .

If we the above probability equals 1/2 then CM is perfectly hiding.

3.3 Interactive arguments

We say that ARG = (G,P,V) is an interactive argument of knowledge for a relation R if it satisfies the
following completeness and knowledge properties.

• Completeness. For every adversary A,

Pr

[
(x,w) 6∈ R or

〈P(pp,x,w),V(pp,x)〉 = 1
pp← G(1λ)

(x,w)← A(pp)

]
= 1 .

• Witness-extended emulation. There exists an expected polynomial-time emulator E such that for every
polynomial-size adversary A the following probabilities are negl(λ)-close:

Pr

A(tr) = 1
pp← G(1λ)

(x, s)← A(pp)
tr← 〈A(pp,x, s),V(pp,x)〉

 and

Pr

 A(tr) = 1
if tr is accepting, then (x,w) ∈ R

pp← G(1λ)
(x, s)← A(pp)

(tr,w)← EA(pp,x,s)(pp,x)

 .

Above E has oracle access to (the next-message functions of) A(pp,x, s).

We also consider argument systems with a zero knowledge property.

• Semi-honest-verifier (statistical) zero knowledge: There exists a probabilistic polynomial-time simulator S
such that for every interactive stateful adversary A the following probabilities are negl(λ)-close:

Pr

 (x,w) ∈ R
A(tr) = 1

pp← G(1λ)
(x,w, ρ)← A(pp)

(tr, b)← 〈P(pp,x,w),V(pp,x; ρ)〉

 and Pr

 (x,w) ∈ R
A(tr) = 1

pp← G(1λ)
(x,w, ρ)← A(pp)

(tr, b)← S(pp,x, ρ)

 .
Above, ρ is the randomness used by the verifier.
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3.3.1 Extraction from trees

We say that ARG is public coin if each verifier message is a uniform random string (of a prescribed length).
The public-coin interactive arguments in this paper have the property that a witness can be extracted from an
appropriate tree of accepting transcripts. The definition below is a natural generalization of special-soundness
for Sigma-protocols (where m = 1 and n1 = 2).

Definition 3.11. Let ARG be a public-coin interactive argument for a relation R where the verifier sends
m messages. For n1, . . . , nm ∈ Z, we say that T is a (n1, . . . , nm)-tree of accepting transcripts for x if
(1) T is a tree of depth m where, for each i ∈ [m], each vertex at layer i has ni children (so the tree has∏
i∈[m] ni leaves); (2) the ni outgoing edges of every vertex in layer i are labeled with ni different choices

of randomness for the verifier’s i-th message; (3) each vertex in layer i is labeled with a prover message;
(4) every path from the root to a leaf in the tree is an accepting transcript for the interactive argument.

Definition 3.12. ARG has (n1, . . . , nm)-tree extraction if

Pr

 T is a (n1, . . . , nm)-tree of accepting transcripts for x
(x,w) 6∈ R

pp← G(1λ)
(x, T )← A(pp)
w← χ(pp,x, T )

 = negl(λ) .

The following lemma from [BCCGP16] states that tree extraction implies witness-extended emulation.
Throughout this paper we rely on this generic implication in that it will suffice for our technical statements to
establish tree extraction for the protocols that we study.

Lemma 3.13. Let ARG be a public-coin interactive argument where the verifier sends m messages. If ARG
has (n1, . . . , nm)-tree extraction and

∏
i∈[m] ni = poly(λ) then ARG has witness-extended emulation.
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4 Sumcheck argument for opening a bilinear commitment

Throughout this section, we use multilinear polynomials whose coefficients are defined by a vector ~v as
follows.

Definition 4.1. Let R be a ring and M an R-module. For n ∈ N a power of 2, set ` := log n and let
~v ∈Mn be vector whose entries we index via binary strings (i1, . . . , i`) ∈ {0, 1}`. The `-variate polynomial
p~v ∈M [X1, . . . , X`] is defined as follows:

p~v(X1, . . . , X`) :=
∑

i1,...,i`∈{0,1}

vi1,...,i`X
i1
1 · · ·X

i`
` .

4.1 Summing polynomials over subgroups

We state a straightforward generalization of a lemma from [BCG20] concerning sums of polynomials; we
rely on this in our sumcheck argument.

Lemma 4.2. Let H be a cyclic subgroup of the multiplicative group of a ring R. Let M be an R-module
and let p(X1, . . . , X`) ∈ M [X1, . . . , X`] be a polynomial. If we denote by pi1,...,i` ∈ M the coefficient of
Xi1

1 · · ·X
i`
` in the polynomial p(X1, . . . , X`), then

∑
~ω∈H`

p(~ω) =

 ∑
~i≡~0 mod |H|

p~i

 · |H|` . (4)

In Section 4.3 we will obtain a scalar-product protocol based on the sumcheck protocol, by applying
Lemma 4.2 with H = {−1, 1} and p equal to a polynomial derived from multilinear polynomials encoding a
message m and commitment key ck. In this case, p will be quadratic in each variable, and by the bilinear
properties of the commitment scheme and the only term contributing to the right hand side of Equation (4)
will be a multiple of the commitment CM.Commit (ck;m).

4.2 Bilinear commitments

Suppose that K,M,R,C are modules over a ring R, and additionally M has an associated norm. To define
bilinear and extendable commitments, we require the commitment scheme to have a special form, where
the commitment key can be “unrolled” to a large key. In particular, let CM.ExtendCK be an algorithm that
takes as input a commitment key ck ∈ K∗ and outputs an element of Kn ×K0 and CM.BilinearCommit be
an algorithm such that for all commitment keys ck ∈ K∗, it holds that

CM.BilinearCommit(CM.ExtendCK(ck);m; ρ) = CM.Commit (ck;m; ρ) .

We now define a bilinear property of commitments. Note that this does not imply standard homomorphic
properties such as Definition 5.8.

Definition 4.3. CM is bilinear if for all λ ∈ N and n ∈ N, all ckL, ckL′, ckR, ckR′ ∈ Kn/2 such that
(ck0, ckL, ckR) = CM.ExtendCK(ck), (ck0, ckL

′, ckR′) = CM.ExtendCK(ck′) for ck, ck′ ← CM.KeyGen(pp),
all (mL,mL′,mR,mR′) ∈Mn/2, all ρ, ρ′ ∈ R and all r ∈ R, we have

CM.BilinearCommit(ck0, ckL + ckL′, ckR;mL + mL′,mR; ρ+ ρ′)
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= CM.BilinearCommit(ck0, ckL, ckR;mL,mR; ρ)

+ CM.BilinearCommit(ck0, ckL
′, ckR;mL′,mR; ρ′)

CM.BilinearCommit(ck0, ckL, ckR + ckR′;mL,mR + mR′; ρ+ ρ′)

= CM.BilinearCommit(ck0, ckL, ckR;mL,mR; ρ)

+ CM.BilinearCommit(ck0, ckL, ckR
′;mL,mR′; ck0, ρ

′)

r · CM.BilinearCommit(ck0, ckL, ckR;mL,mR; ρ)

= CM.BilinearCommit(ck0, r · ckL, ckR; r ·mL,mR; r · ρ)

= CM.BilinearCommit(ck0, ckL, r · ckR;mL, r ·mR; r · ρ)

We consider polynomials of commitments, writing expressions such as “CM.Commit
(
pm( ~X), pck( ~X)

)
”.

We explain what this notation means in more detail. In this case, p( ~X) is not a “polynomial commitment”
to pm( ~X) and pck( ~X) in the sense of e.g. Section 8, but is obtained by treating ~X as a collection of formal
variables in the commitment algorithm. This notation is well-defined when CM.Commit (·, ·) is bilinear.

Lemma 4.4. Let CM.BilinearCommit : K0 ×K2 ×M2 ×R→ C be a bilinear function (see Definition 4.3).
Let ~X = (X1, . . . , X`) be formal variables. There is a bilinear function ˜Commit : K0 × (K[ ~X])2 ×
(M[ ~X])2×R→ C[ ~X] such that for every ck0 ∈ K0, (p1( ~X), p2( ~X); p3( ~X), p4( ~X)) ∈ (K[ ~X])2× (M[ ~X])2,
and ~r ∈ R`, it holds that

CM.BilinearCommit(ck0, p1(~r), p2(~r); p3(~r), p4(~r); 0) = ˜Commit (ck0, p1, p2; p3, p4; 0) (~r) . (5)

Proof. Without loss of generality, we may assume that each polynomial has the same support (can be
expressed as a linear combination of the same set of monomials) by padding the polynomials with extra
monomials with zero coefficients. Write pj( ~X) =

∑
~i∈I pj,~i

~X
~i for j = 1, 2, 3, 4. Then we have

CM.BilinearCommit(ck0, p1(~r), p2(~r); p3(~r), p4(~r); 0)

=
∑
~i∈I

CM.BilinearCommit(ck0, p1,~i, p2(~r); p3,~i(~r), p4(~r); 0) · ~r ~i

=
∑
~i,~j∈I

CM.BilinearCommit(ck0, p1,~i, p2,~j ; p3,~i, p4,~j ; 0) · ~r ~i+~j

So we define ˜Commit (ck0, p1, p2; p3, p4; 0) ( ~X) :=
∑
~i,~j∈I CM.Commit

(
ck0, p1,~i, p2,~j ; p3,~i, p4,~j ; 0

)
· ~X~i+~j .

From now on, we simply use notation such as “CM.Commit
(
ck0, pckL( ~X), pckR( ~X); pmL( ~X), pmR( ~X); 0

)
”,

with the understanding that this actually refers to an application of “ ˜Commit” via the correspondence estab-
lished in Lemma 4.4.

4.3 Construction

Let CM be an extendable bilinear commitment scheme over a normed ring R. We present a variant of the
sumcheck protocol, which, given a commitment cm ∈ C, proves knowledge of an opening m ∈ M of cm
with respect to a commitment key ck ∈ K×K0 such that cm = CM.Commit (ck;m; 0).
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Using bilinear commitments. Our sumcheck protocol works by applying a sumcheck to the polynomial
p( ~X) := CM.Commit

(
ck0, pckL( ~X), pckR( ~X); pmL( ~X), pmR( ~X); 0

)
, for ckL, ckR ∈ Kn/2, mL,mR ∈

Mn/2 and ck0 ∈ K0 which is defined over the commitment space.
By the extendability and bilinear properties of the commitment scheme, and Lemma 4.2, we have that∑

~ω∈{−1,1}`
p(~ω) = 2` · CM.Commit (ck0, ckL, ckR;mL,mR; 0) .

Our protocol works by applying a standard sumcheck protocol to the polynomial p, with one important
difference. In the final step of the standard sumcheck protocol, the verifier would usually compute p(~r) for a
random point ~r. Note that in our setting, p(~r) is a commitment. Our protocol ends differently, with the prover
sending an opening of p(~r) to the verifier. This is crucial in showing that the modified sumcheck protocol is a
proof of knowledge.

Formally, we give a sumcheck protocol for the following relation.

Definition 4.5. The relationRSC(c,BC) is the set of tuples

(x,w) =
(

(CM, pp, ck0, ckL, ckR, cm), (mL,mR)
)
,

where CM = (Setup,KeyGen,Commit,Open) is a bilinear commitment scheme over a ring R (see Def-
inition 4.3), pp = (K0 × Kn,Mn,C), (ck0, ckL, ckR) ∈ K0 × Kn/2 × Kn/2, cm ∈ C, (mL,mR) ∈
M(BC)n/2 ×M(BC)n/2, and it holds that CM.Open ((ck0, ckL, ckR), (mL,mR), 0, cm, c) = 1.

Our protocol proceeds in rounds, where in each round the messages and keys are halved in size. To
facilitate the protocol description and the subsequent proofs, we use the following definition for round keys
and messages.

Definition 4.6 (round commitment keys and messages). Let n = 2`. Let ckL, ckR ∈ Kn and let mL,mR ∈
Mn. Let r1, . . . , r` ∈ R. Define ckL(j) ∈ K2`−j to be the vector of coefficients of the polynomial
pckL(r1, . . . , rj , Xj+1, . . . , X`):

pckL(r1, . . . , rj , Xj+1, . . . , X`) =
∑

~i(>j)∈{0,1}`−j
ckL

(j)
~i(>j)

·Xij+1

j+1 · · ·X
i`
` .

Note that the entries of ckL(j) satisfy the recurrence relations

ckL
(j)
~i(>j)

= ckL
(j−1)
0,~i(>j)

+ rj · ckL(j−1)1,~i(>j)
,

and that ckL(0) = ckL, and ckL(`) = pckL(~r). The vectors ckR(j) ∈ K2`−j and mL(j), mR(j) ∈ M2`−j are
defined similarly in terms of the polynomials pckR(r1, . . . , rj , Xj+1, . . . , X`), pmL(r1, . . . , rj , Xj+1, . . . , X`),
and pmR(r1, . . . , rj , Xj+1, . . . , X`), and satisfy similar relations.

Construction 4.7 (sumcheck argument). We describe a public-coin interactive argument SCA = (P,V) for
the relation RSC(1, BC). The prover P takes as input an instance x = (CM, pp, ck0, ckL, ckR, cm) and a
witness w = (mL,mR). The verifier V takes as input the instance x. The instance and witness jointly define
the polynomial

p( ~X) := CM.BilinearCommit(ck0, pckL( ~X), pckR( ~X); pmL( ~X), pmR( ~X); 0) .

The prover and verifier work as follows.
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1. Interaction. For i = 1, . . . , `:

• The prover computes and sends qi(Xi) := 2−(`−i)
∑

ωi+1,...,ω`∈{−1,1} p(r1, . . . , ri−1, Xi, ωi+1, . . . , ω`),
which consists of three elements of C.9

• Verifier sends a random challenge ri ← C.

2. Opening. The prover computes the opening values mL(`) = pmL(~r) and mR(`) = pmR(~r) to the commit-
ment p(~r), and sends mL(`),mR(`) ∈M to the verifier.

3. Verification: The verifier computes the commitment keys ckL(`) = pckL(~r) and ckR(`) = pckR(~r). Then
the verifier checks that the following conditions hold:

-
∥∥mL(`)

∥∥
M,
∥∥mR(`)

∥∥
M ≤ n · (γRm(C))` ·BC;

- q1(1) + q1(−1) = 2 · cm;

- for every i ∈ {2, . . . , `}, qi(1) + qi(−1) = 2 · qi−1(ri−1);

- CM.Open
(
(ck0, ckL

(`), ckR(`)), (mL(`),mR(`)), 0, q`(r`), 1
)

= 1.

Above C is the challenge space, γR is the expansion factor of the norm over M when multiplying by
scalars in R (see Definition 3.2) and m(C) is the maximum norm of elements in C (see Definition 3.3).

Theorem 4.8. The sumcheck argument SCA in Construction 4.7 satisfies the following properties:
• The prover performs the following operations: O(n) scalar multiplications in K; O(n) scalar multiplica-

tions in M; O(n) commitments of length 1; and O(n) additions in C.
• The verifier performs the following operations: O(n) additions and scalar multiplications in K; 1 commit-

ment of length 1; and O(log n) additions and scalar multiplications in C.
• If CM is extendable (see Definition 4.11), then Construction 4.7 has perfect completeness.
• If CM is invertible (see Definition 4.14), then Construction 4.7 is a proof of knowledge.

Proof. We prove the theorem via several lemmas. In Lemma 4.9 and Lemma 4.10 we discuss the arithmetic
complexity of the prover and of the verifier. In Lemma 4.12 we prove perfect completeness. In Definition 4.14
we define the invertibility property, and in Lemma 4.16 we prove knowledge soundness.

4.4 Efficiency

Lemma 4.9. The prover in Construction 4.7 performs the following operations: O(n) scalar multiplications
in K; O(n) scalar multiplications in M; O(n) commitments of length 1; and O(n) additions in C.

Proof. We describe how the honest prover, given vectors ckL, ckR ∈ Kn, mL,mR ∈ Mn, ck0 ∈ K0 and
challenges r1, . . . , r` ∈ C, can compute the coefficients of the quadratic polynomials q1(X1), . . . , q`(X`) in
O(n) arithmetic and commitment operations over K, M and C. (The honest prover can then evaluate each of
these polynomials at the locations −1, 0, 1, and send the evaluations.)

We proceed as follows. First, we recall the definitions of the polynomials p( ~X) and qj(Xj) for each
j ∈ [`]. Next, we express each qj(Xj) in terms of these coefficients. Finally, we give an algorithm that
computes the coefficients of q1(X1), . . . , q`(X`) in O(n) operations.

9Note that computing polynomials qi(Xi) does not require division by powers of 2 in the ring R. This is justified in Lemma 4.9
where an efficient prover algorithm is presented and analysed.
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Recall that p( ~X) = CM.Commit
(
ck0, pckL( ~X), pckR( ~X); pmL( ~X), pmR( ~X); 0

)
and

qj(Xj) = 2−(`−j) ·
∑

ωj+1,...,ω`∈{−1,1}

p(r1, . . . , rj−1, Xj , ωj+1, . . . , ω`) .

We discuss partial evaluations of pckL( ~X), pckR( ~X), pmL( ~X) and pmR( ~X), and give explicit formulae
for computing the polynomials qj(Xj) in terms of ckL(j), ckR(j), mL(j) and mR(j).

Expanding p(r1, . . . , r`−1, X`) using the bilinear properties of CM.Commit, we see that

p(r1, . . . , r`−1, X`) = q`(X`) =CM.Commit
(
ck0, ckL

(`−1)
0 , ckR

(`−1)
0 ;mL

(`−1)
0 ,mR

(`−1)
0 ; 0

)
(6)

+X` · CM.Commit
(
ck0, ckL

(`−1)
0 , ckR

(`−1)
1 ;mL

(`−1)
0 ,mR

(`−1)
1 ; 0

)
+X` · CM.Commit

(
ck0, ckL

(`−1)
1 , ckR

(`−1)
0 ;mL

(`−1)
1 ,mR

(`−1)
0 ; 0

)
+X2

` · CM.Commit
(
ck0, ckL

(`−1)
1 , ckR

(`−1)
1 ;mL

(`−1)
1 ,mR

(`−1)
1 ; 0

)
.

Since q`−1(r`−1) = 1
2 (q`(1) + q`(−1)), which is the sum of the constant andX2

` coefficients in Equation (6),
we have

q`−1(r`−1) = CM.Commit
(
ck0, ckL

(`−1)
0 , ckR

(`−1)
0 ;mL

(`−1)
0 ,mR

(`−1)
0 ; 0

)
+CM.Commit

(
ck0, ckL

(`−1)
1 , ckR

(`−1)
1 ;mL

(`−1)
1 ,mR

(`−1)
1 ; 0

)
.

Expanding using the recurrence relations, one finds that

q`−1(r`−1) =
∑

i`∈{0,1}

CM.Commit
(
ck0, ckL

(`−1)
i`

, ckR
(`−1)
i`

;mL
(`−1)
i`

,mR
(`−1)
i`

; 0
)

=
∑

i`∈{0,1}

CM.Commit
(
ck0, ckL

(`−2)
0,i`

, ckR
(`−2)
0,i`

;mL
(`−2)
0,i`

,mR
(`−2)
0,i`

; 0
)

+ r`−1 ·
∑

i`∈{0,1}

CM.Commit
(
ck0, ckL

(`−2)
0,i`

, ckR
(`−2)
1,i`

;mL
(`−2)
0,i`

,mR
(`−2)
1,i`

; 0
)

+ r`−1 ·
∑

i`∈{0,1}

CM.Commit
(
ck0, ckL

(`−2)
1,i`

, ckR
(`−2)
0,i`

;mL
(`−2)
1,i`

,mR
(`−2)
0,i`

; 0
)

+ r2`−1 ·
∑

i`∈{0,1}

CM.Commit
(
ck0, ckL

(`−2)
1,i`

, ckR
(`−2)
1,i`

;mL
(`−2)
1,i`

,mR
(`−2)
1,i`

; 0
)
.

Continuing, we see that for each j ∈ [`], we can express qj(Xj) in terms of the coefficients ckL
(j−1)
~i(>j)

,

ckR
(j−1)
~i(>j)

, mL
(j−1)
~i(>j)

and mR
(j−1)
~i(>j)

:

qj(rj) =
∑
~i(>j)

CM.Commit
(
ck0, ckL

(j−1)
0,~i(>j)

, ckR
(j−1)
0,~i(>j)

;mL
(j−1)
0,~i(>j)

,mR
(j−1)
0,~i(>j)

; 0
)

+Xj−1 ·
∑
~i(>j)

CM.Commit
(
ck0, ckL

(j−1)
0,~i(>j)

, ckR
(j−1)
1,~i(>j)

;mL
(j−1)
0,~i(>j)

,mR
(j−1)
1,~i(>j)

; 0
)
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+Xj−1 ·
∑
~i(>j)

CM.Commit
(
ck0, ckL

(j−1)
1,~i(>j)

, ckR
(j−1)
0,~i(>j)

;mL
(j−1)
1,~i(>j)

,mR
(j−1)
0,~i(>j)

; 0
)

+X2
j−1 ·

∑
~i(>j)

CM.Commit
(
ck0, ckL

(j−1)
1,~i(>j)

, ckR
(j−1)
1,~i(>j)

;mL
(j−1)
1,~i(>j)

,mR
(j−1)
1,~i(>j)

; 0
)
. (7)

We now give an algorithm that computes the coefficients of q1(X1), . . . , q`(X`) in O(n) arithmetic
operations. For j = 0, the prover already knows the coefficients ckL(0)~i(>0)

, ckR(0)
~i(>0)

, mL
(0)
~i(>0)

and mR
(0)
~i(>0)

.

Then, for each j ∈ [`]:

• The prover has the coefficients ckL(j)~i(>j)
, ckR(j)

~i(>j)
, mL

(j)
~i(>j)

and mR
(j)
~i(>j)

for every~i(> j) ∈ {0, 1}`−j .

• The sums in Equation (7) giving the coefficients of qj(Xj) contain 4 · 2`−j terms in total. Given the values
of ckL(j)~i(>j)

, ckR(j)
~i(>j)

, mL
(j)
~i(>j)

and mR
(j)
~i(>j)

for every~i(> j) ∈ {0, 1}`−j we can compute all of the terms

in 4 · 2`−j commit operations of length 1 and add them together in 4 · 2`−j additions over C to find the
coefficients of qj(Xj).

• On receiving rj from V, the prover computes the coefficients ckL(j)~i(>j)
, ckR(j)

~i(>j)
, mL

(j)
~i(>j)

and mR
(j)
~i(>j)

for

every~i(> j) ∈ {0, 1}`−j via the recurrence relations. This requires 2`−j scalar multiplications and 2`−j

additions in K and M. The prover need not compute ckL(`) or ckR(`).

This means that the total cost of computing the quadratic polynomials q1(X1), . . . , q`(X`) is the sum of
a geometric series and is O(2`) = O(n) commit operations of length 1 and additions over K. Each of
the polynomials q1(X1), . . . , q`(X`) can be evaluated to find the necessary evaluation points to send to the
verifier when required.

Lemma 4.10. The verifier in Construction 4.7 performs the following operations: O(n) additions and scalar
multiplications in K; 1 commitment of length 1; and O(log n) additions and scalar multiplications in C.

Proof. In the verification phase (Item 3), the verifier: (a) computes the commitment keys ckL(`) = pckL(~r)
and ckR(`) := pckR(~r) using O(n) additions and scalar multiplications in K; (b) uses O(`) = O(log n)
arithmetic operations over C to check that q1(1) + q1(−1) = 2 · cm and, for each i ∈ {2, . . . , `},
that qi(1) + qi(−1) = 2 · qi−1(ri−1); (c) uses 1 commit operation of length 1 to check that q`(r`) =
CM.Commit

(
ck0, ckL

(`), ckR(`);mL(`);mR(`); 0
)
. Note that computing the commitment keys is the compu-

tation that dominates the verifier’s running time.

4.5 Completeness

Definition 4.11. CM is extendable if for all λ, n, n′ ∈ N, pp← CM.Setup(1λ, n+ n′), for all (ck0, ck) ∈
K0 × Kn+n′ , such that (ck0, ck) = CM.ExtendCK(ck) for ck ← CM.KeyGen(pp) , m ∈ Mn+n′ and all
ρ ∈ R, ρ′ ∈ R′, we have

CM.BilinearCommit(ck0, ck;m; ρ+ ρ′) =CM.BilinearCommit(ck0, ck[: n];m[: n]; ρ)

+ CM.BilinearCommit(ck0, ck[n :];m[n :]; ρ′)

Lemma 4.12. If CM is extendable, then Construction 4.7 has perfect completeness.

34



Proof. Fix any challenges r1, . . . , r` ∈ C from the verifier. We need to show that the (honest) prover makes
the verifier accept (all the conditions in Item 3 of the protocol hold).

First, the definitions of p( ~X) and {qi(Xi)}i=1,...,`, along with polynomial arithmetic, directly imply
that q`(r`) = CM.Commit

(
pckL,~r , pmL,~r ; pckR,~r , pmR,~r ; ck0, 0

)
, which by the completeness property of the

commitment scheme implies that CM.Open
(
(ck0, ckL

(`), ckR(`)), (mL(`),mR(`)), 0, q`(r`), 1
)

= 1. The
fact that qi(1) + qi(−1) = 2 · qi−1(ri−1) holds for each i ∈ {2, . . . , `} also follows from the definitions of
p( ~X) and {qi(Xi)}i=1,...,`, along with polynomial arithmetic.

Next, the norm bounds on pckL,~r = pckL(~r) and pckR,~r = pckR(~r) follow from applications of the triangle
inequality and the multiplicative property of the norm.

Finally, we are left to show that q1(1)+q1(−1) = 2·cm, for which it suffices to show that
∑

~ω∈{−1,1}` p(~ω) =

2` · cm because q1(1) + q1(−1) = 2−(`−1) ·
∑

~ω∈{−1,1}` p(~ω). We have

p( ~X) = CM.Commit
(
ck0, pckL( ~X), pckR( ~X); pmL( ~X), pmR( ~X); 0

)
=

∑
~i∈{0,1}`

CM.Commit
(
ck0, ckL~i, pckR( ~X);mL~i, pmR( ~X); 0

)
· ~X~i

=
∑

~i,~j∈{0,1}`
CM.Commit

(
ck0, ckL~i, ckR~j ;mL~i,mR~j ; 0

)
· ~X~i+~j .

By Lemma 4.2 and the extendability property of CM, we deduce that∑
~ω∈{−1,1}`

p(~ω) = 2` ·
∑

~i≡~0 mod 2

p~i

= 2` ·
∑

~i∈{0,1}`
CM.Commit

(
ck0, ckL~i, ckR~i;mL~i, ckR~i; 0

)
= 2` · CM.Commit (ck0, ckL, ckR;mL,mR; 0) = 2` · cm .

4.6 Knowledge soundness

Before defining invertibility and proving the knowledge soundness of the protocol, we define commitment
keys with respect to a part of an extraction tree. This definition is similar to Definition 4.6 with the exception
that it considers multiple different random challenges for the same round.

Definition 4.13. Let ~r be randomness labels in a path of length j − 1 of the tree T and {r(i)j }i∈[K] be the

randomness labels of its K outgoing edges. Let ckL(j,i), ckR(j,i) ∈ K2`−j be the vectors of coefficients
of the polynomials pckL(~r, r

(i)
j , Xj+1, . . . , X`), and pckR(~r, r

(i)
j , Xj+1, . . . , X`), where ` = log n. As in

Lemma 4.9, the following recurrence relations hold between coefficients:

ckL
(j,i)
~i(>j)

= ckL
(j−1)
0,~i(>j)

+ r
(i)
j · ckL

(j−1)
1,~i(>j)

.

Similarly for ckR.

Now, we are ready to define invertibility, which is our main tool for proving knowledge soundness.
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Definition 4.14. Let CM = (Setup,KeyGen,Commit,Open) be a bilinear commitment scheme. For
K,BINV, C,D : N→ R (possibly functions of the security parameter λ), we say that CM is (K,BINV, C,D)-
invertible for the challenge space C if there is a polynomial-time inverter algorithm D such that for every
n ∈ N, L = 2I ≤ n/2, vector ~r ∈ CI , distinct challenges r(i)j ∈ C for i ∈ [K], and any polynomial-time
algorithm A, the following experiment outputs 1 with all but negligible probability.

1. pp← CM.Setup(1λ, n).
2. (ck0, ckL

∗, ckR∗) = CM.ExtendCK(ck), where ck← CM.KeyGen(pp).
3. A(pp, ck) outputs messages (mL(1),mR(1)),. . . , (mL(K),mR(K)) ∈M(B)L ×M(B)L, where D ·B ≤
BINV, a polynomial q(X) = q0 + q1X + q2X

2 in C[X], and a slackness c ∈ Z.
4. Let ckL(`−I+1,i), ckR(`−I+1,i), ckL = ckL

(`−I)
0,~i(>j)

, ckL′ = ckL
(`−I)
1,~i(>j)

, ckR = ckR
(`−I)
0,~i(>j)

, and ckR′ =

ckR
(`−I)
1,~i(>j)

be the keys corresponding to ~r and r(i)j as in Definition 4.13. The experiment outputs 1 if either

CM.Open
(

(ck0, ckL
(`−I+1,i), ckR(`−I+1,i), (mL(i),mR(i)), 0, q(r

(i)
j ), c

)
6= 1 ,

for some i ∈ [K], or the inverter D, that takes the input pp, ck and the output of A, outputs ML,MR ∈
M(D ·B)2L, such that ML,MR are distinct and satisfy

CM.Open
(
(ck0, ckL||ckL′, ckR||ckR′), (ML,MR), 0, 1/2 · (q(1) + q(−1)), C c

)
= 1 ,

Otherwise, the output is 0.

Remark 4.15. For many of our instantiations, ck0, ckL∗, ckR∗ are all uniformly random vectors over a module.
This implies that the derived commitment key (ck0, ckL, ckL

′, ckR, ckR′) ∈ K0 ×KL ×KL ×KL ×KL in
Definition 4.14 is simply a uniformly random vector of a different length over the same module. In these
cases, Definition 4.14 can be simplified accordingly.

Lemma 4.16. Suppose that CM is (K,BINV, C,D)-invertible for challenge space C, and B′ := n ·
(γRm(C)D)` · BC satisfies B′ ≤ BINV . Then there exists an efficient algorithm χ such that, given a
commitment key (ck0, ckL, ckR) ∈ K0 × Kn/2 × Kn/2, commitment cm ∈ C, and a K`-tree of accepting
transcripts for Construction 4.7 applied toRSC(1, BC), extracts a witness forRSC(c,B′) with c := C`.

Proof. First we describe the extractor algorithm, then show that it runs in polynomial time, and finally prove
that it produces the required output.

The extractor. We describe the extractor χ for Construction 4.7. The inputs and output are as follows:

• Input: The instance (CM, pp, ck0, ckL, ckR, cm) and aK`-tree of accepting transcripts for Construction 4.7,
for which the opening messages satisfy

∥∥mL(`)
∥∥
M,
∥∥mR(`)

∥∥
M ≤ n · (γRm(C))` ·BC.

• Output: Messages (mL,mR) ∈M(B′)n/2×M(B′)n/2, satisfying CM.Open ((ck0, ckL, ckR), (mL,mR), 0, cm, c) =
1.

Let ~r (i)
j = (r1, . . . , r

(i)
j ) for i ∈ [K] be the prefix of K`−j paths of the extraction tree and let qj [~rj−1](Xj)

be the polynomial of the j-th round in the transcript corresponding to ~rj−1 = (r1, . . . , rj−1). Define
ckL(j,i), ckR(j,i) ∈ K2`−j to be the vector of coefficients of pckL(~r

(i)
j , Xj+1, . . . , X`), and pckR(~r

(i)
j , Xj+1, . . . , X`)

as in Definition 4.13. The algorithm works as follows.

For j = `, . . . , 1:
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• Let L = 2`−j and p
mL,~r

(i)
j

, p
mR,~r

(i)
j

∈M(n D`−j γ`R m(C)` ·BC)L be the opening values associated with

challenge string ~r (i)
j = (r1, . . . , r

(i)
j ).

• For each subtree {~r (i)
j }i∈[K] = {(r1, . . . , rj−1, r(i)j )}i∈[K] in the extraction tree:

– For each i ∈ [K], we have that

CM.Open

(
(ck0, ckL

(j,i), ckR(j,i)), (p
mL,~r

(i)
j

, p
ckR,~r

(i)
j

), 0, qj [~rj−1](r
(i)
j ), C`−j

)
= 1

– Run the inverter D on input pp, the keys (ck0, ckL, ckR), the messages (p
mL,~r

(i)
j

, p
ckR,~r

(i)
j

), the

polynomial qj [~rj−1] and the slackness C`−j to produce new opening values pmL,~rj−1
, pmR,~rj−1

∈
M(n D`−j γ`R m(C)` ·BC)2L such that

CM.Open

(
(ck0, ckL

(j−1)
0,~i(>j)

‖ckL(j−1)
1,~i(>j)

, ckR
(j−1)
0,~i(>j)

‖ckR(j−1)
1,~i(>j)

), (p
mL,~r

(i)
j−1

, p
ckR,~r

(i)
j−1

), 0, cmj−1, C
`−j+1

)
= 1

for cmj−1 = 1/2 · (qj [~rj−1](1) + qj [~rj−1](−1)) = qj−1[~rj−2](rj−1). If the inverter fails to produce a
valid output, then output ⊥.

The values of c = C` and B′ := n · (γRm(C)D)` ·BC follow in a straightforward manner by induction.

Running time. Let T (L) denote the running time of the inverter D on inputs with parameter L. At step j,
the extractor runs the inverter D a total of Kj−1 times with parameter L = 2`−j . Therefore, the running time
of the extractor is

∑`
j=1K

j−1T (2`−j).

Success probability. Let ε(L) denote the failure probability of the inverter D on properly-distributed inputs
with length parameter L. If any execution of the inverter for any j fails then the extractor will terminate in
failure rather than producing an opening of cm. Therefore, by a union bound, the failure probability of the
extractor is at most

∑`
j=1K

j−1ε(2`−j).
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5 Instantiations of bilinear commitments

We describe several instantiations of bilinear commitments that are suitable for a sumcheck argument
(Section 4); in particular, we will require the commitment to be extendable and invertible.

We proceed as follows. In Section 5.1 we describe the bilinear relation assumption, which is an abstract
cryptographic assumption that captures several well-known assumptions, such as the discrete logarithm
assumption, assumptions based on bilinear pairings, the SIS assumption, and assumptions related to groups
of unknown order; to support all these settings, we use the notion of an argument-friendly bilinear module.

Next, we provide examples of bilinear commitments. In Section 5.2 we describe a generalization of the
Pedersen commitment. Then, in Section 5.3 we define the scalar-product commitment, a commitment scheme
that depends on the scalar-product of parts of the message. Finally, in Section 5.4 we observe that in certain
cases we can also define a compressed version of the scalar-product commitment.

5.1 Bilinear modules

We define bilinear modules and then describe a general cryptographic assumption, the bilinear relation
assumption, that will imply the binding property of bilinear commitments that we consider.

Definition 5.1. A bilinear module is a tuple M = (R,ML,MR,MT , e) where ML,MR,MT are R-
modules with a non-degenerate bilinear map e : ML ×MR →MT . An argument-friendly bilinear module
is a tupleM = (R,ML,MR,MT , e, C, BC, Bmax) where (R,ML,MR,MT , e) is a bilinear module, C ⊆ R
is a sampling set, BC, Bmax ∈ Z, and R and ML are equipped with norms ‖·‖R and ‖·‖ML

respectively.

To simplify notation in later analysis, although multiplication of elements of ML and R may cause
norm expansion by different factors γR and γML

, we will only use the notation γR, which will represent the
maximum of these quantities.

We use arithmetic notation as a shorthand for the application of e. For example, given a ∈ ML and
G ∈MR, we use “a ·G” to denote e(a,G) ∈MT . Similarly, given ~a ∈Mn

L and ~G ∈Mn
R, we use “〈~a, ~G〉” to

denote
∑

i∈[n] e(ai,Gi) ∈MT .

Definition 5.2. Let G be an algorithm that on input 1λ, n ∈ N, and a relation S outputs an argument-friendly
bilinear moduleM, let K be an algorithm that outputs a vector in Mn

R. We say that (G,K,S) satisfies the
bilinear relation assumption if for every n ∈ N and polynomial-size adversary A

Pr


S(M) = 1
~G ∈Mn

R

~a ∈ML(Bmax)n

~a 6= 0n

〈~a, ~G〉 = 0

M = (R,ML,MR,MT , e, C, BC, Bmax)← G(1λ, n)
~G← K(M)

~a← A(M, ~G)

 = negl(λ) .

The relation S will be used to control the “gap” between the parameter BC, which represents the norm
of honestly committed messages in some protocol we wish to execute, and Bmax, which represents the
maximum norm of messages for which we wish the bilinear relation assumption to be hard, in order to
prove that the sumcheck argument (Construction 4.7) is secure. In particular, Lemma 4.16 shows that when
Construction 4.7 is executed on input messages with norm at most BC, then one can extract openings of
norm at most B′ := n · (γRm(C)D)` · BC. We choose S to guarantee that BINV ≤ Bmax, where BINV

depends on B′ and the commitment scheme. We discuss the choice of relations S used in the bilinear relation
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assumption, and explain what suffices when applying the sumcheck argument (Construction 4.7) to each of
the commitment schemes in the corresponding sections.

Algebraic instantiations. We describe instantiations of the Bilinear Relation Assumption in several
cryptographic settings. In each setting, we specify the output of the algorithms G(1λ, n) and K(M). The
bilinear relation assumption in each of these settings gives us a corresponding well-known cryptographic
assumption (such as the discrete logarithm or SIS assumptions).

• Discrete logarithms. The algorithm GDL(1λ, n) samples a discrete logarithm group G of prime order
q = exp(λ) with generator G (ignoring n). Here R := Fq, ML := Fq equipped with the trivial norm
(equals 1 for any non-zero element of R and equals 0 otherwise), MR := G, MT := G, e is group
exponentiation, C := Fq, BC := 1 and Bmax := 1. The bilinear relation assumption becomes the discrete
logarithm assumption, linked to the original Pedersen commitment scheme.

• Pairings. The algorithm GBP(1λ, n) samples groups G1,G2,GT of prime order q = exp(λ), G1 that
generates G1, G2 that generates G2, GT that generates GT and a map e : G1 ×G2 → GT . Here R := Fq,
ML := G1 equipped with the trivial norm, MR := G2, MT := GT , e is the map as above, C := Fq,
BC := 1 and Bmax := 1.

The bilinear relation assumption becomes the double-pairing assumption, which is implied by the decisional
Diffie-Hellman in G2, and connected to the commitment scheme of [AFGHO16]. One could also construct
a commitment scheme with ML := G2 and MR := G1.

• Lattices. The algorithm GSIS(1λ, n) outputs a ring Z[X]/〈Xd + 1〉, where d is a power of 2, a prime
number q, and numbers BSIS, B ∈ Z. Here R := Z[X]/〈Xd + 1〉, ML := Z[X]/〈Xd + 1〉 equipped with
the `∞-norm, MR :=

(
Zq[X]/〈Xd + 1〉

)r, MT =
(
Zq[X]/〈Xd + 1〉

)r, e is polynomial multiplication
modulo q and Xd + 1, C := {Xi ∈

(
Z[X]/〈Xd + 1〉

)
: 0 ≤ i ≤ 2d− 1}, BC := B, and Bmax := BSIS.

The algorithm KSIS(M) outputs a uniformly random vector in Mn
R = (Zq[X]/〈Xd + 1〉)r×n.

The parameter BSIS should be less than min{q, 22
√
r log q log δ}10 so that it is difficult to find solutions to

the SIS problem of norm less than BSIS [GN08], which implies the bilinear relation assumption used in our
commitment schemes, in this case connected to Ajtai’s one way function.

• Groups of unknown order. There are two instantiations of groups of unknown order (GUO), the RSA
groups and the class groups of an imaginary quadratic order. Both relate to the commitment schemes of
[BFS20].

The algorithm GRSA(1λ, n) outputs an RSA group G and primes q and p (which are unrelated to the primes
that determine the order of G). Here R := Z, ML := Z equipped with the `∞-norm, MR = G, MT = G,
e is group exponentiation, C = Z(p−12 ), BC := p−1

2 and Bmax = q−1
2 . The algorithm KRSA(M) samples

a uniformly random element G ∈MR = G and outputs the vector (G,Gq, . . . ,Gq
n−1

) ∈Mn
R.

The algorithm GCL(1λ, n) outputs a class group G and primes q and p (which are unrelated to the primes
that determine the order of G). HereR := Z, ML := Z equipped with the `∞-norm, MR = G, MT = G, e
is group exponentiation, C = Z(p−12 ), BC := p−1

2 and Bmax = b q−14 c
11. The algorithm KCL(M) samples

a uniformly random element G ∈MR = G and outputs the vector (G,Gq, . . . ,Gq
n−1

) ∈Mn
R.

10The constant δ is related to the optimal block-size in the BKZ algorithm applied to the SIS problem [GN08] and is typically set
to δ ≈ 1.005.

11The difference in Bmax between RSA and class groups is related to the fact that computing square roots is easy in class groups.
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On challenge spaces and sampling sets. We discuss the sampling properties of the challenge space for
each instantiation.

• Discrete logarithms. In this setting, C = Fq, and any non-zero challenge difference is invertible in Fq.
Hence, C is a strong sampling set for R = ML = Fq and also a strong sampling set for MR = MT = G.

• Pairings. As in the discrete logarithm setting, C = Fq, and any non-zero challenge difference is invertible.
Hence, C is a strong sampling set for R = Fq, ML = G1, MR = G2 and MT = GT .

• Lattices. In our security proofs in the lattice setting, we rely on the lemma below, which states that the
difference of any two elements in the challenge space has a short “pseudoinverse”.

Lemma 5.3 ([BCKLN14, Lemma 3.1]). Let d be a power of 2 and let 0 ≤ i < j ≤ 2d− 1. Over the ring
Z[X]/(Xd + 1), the element 2(Xi −Xj)−1 has coefficients in {−1, 0, 1}.

This implies that C is a strong sampling set for MR = MT =
(
Zq[X]/〈Xd + 1〉

)r.
• GUO. In this setting, the challenge space C = Z(p−12 ) is a sampling set for MT = G computationally,

according to the following definition.

Definition 5.4. Let G be an algorithm that on input 1λ and n ∈ N outputs an argument-friendly bilinear
moduleM. We say that G provides computational sampling sets for MT if for every polynomial-size
adversary A

Pr


c1, c2 ∈ C
m ∈MT

c1 6= c2
m 6= 0

(c1 − c2)m = 0

M = (R,ML,MR,MT , e, C, BC, Bmax)← G(1λ, n)

(c1, c2,m)← A(M, ~G)

 = negl(λ) .

In other words, multiplication of elements in G by (c1−c2) may fail to be injective, but it is computationally
difficult to find witnesses to this failure. Definition 5.4 is satisfied for groups of unknown order because if
(c1 − c2)m = 0, then m is an element of known order, and we can break the adaptive root assumption for
the group G (see [BFS20, Appendix A]). This computational property will suffice wherever the sampling
set property is used in later security arguments.

Inversion constant. We define theK-th inversion constantDK , which is related to the norm of the elements
of the adjugate of a Vandermode matrix constructed from elements from a sampling set.

Definition 5.5. Let R be a ring with norm ‖·‖R and C ⊆ R be a sampling set. Let Vc1,...,cK be the
Vandermonde matrix with respect to distinct c1, . . . , cK ∈ C:

1 1 · · · 1
c1 c2 · · · cK
...

...
. . .

...
cK−11 cK−12 · · · cK−1K

 .

The K-th Vandermonde norm with respect to the sampling set C is

uK := max
c1,...,cK∈C

‖detVc1,...,cK‖R .
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Let Ac1,...,cK be the adjugate of Vc1,...,cK (i.e., Ac1,...,cK · Vc1,...,cK = det(Vc1,...,cK ) · IK). The K-th
inversion constant with respect to the sampling set C is

DK := K · max
c1,...,cK∈C

max
i,j∈[K]

‖Ac1,...,cK [i, j]‖R .

5.2 Generalised Pedersen commitments

The Pedersen commitment scheme is an example of an invertible bilinear commitment scheme.

Definition 5.6. Let (G,K) algorithms as in the Bilinear Relation Assumption. The generalised Pedersen
commitment scheme is defined via the following algorithms.

• Ped.Setup(1λ, n): Sample an argument-friendly bilinear moduleM = (R,ML,MR,MT , e, C, BC, Bmax)←
G(1λ, n + 1) and a number rPed; set K := MR, K0 := M rPed

R , M := ML(Bmax), R := ML(Bmax)rPed ,
and C := MT ; output pp := (M,K0 ×Kn,Mn,R,C).

• Ped.KeyGen(pp): Sample ck← K(M), where ck ∈Mn+rPed
R = K0 ×Kn.

• Ped.Commit(ck;m; ρ): Parse ck as (ck0, ckL, ckR) ∈ M rPed
R × M

n/2
R × M

n/2
R , m as (mL,mR) ∈

ML(BC)n/2 ×ML(BC)n/2, ρ ∈ML(BC)rPed and output cm := 〈mR, ckL〉+ 〈ρ, ck0〉 ∈MT = C.
• Ped.Open(ck,m, ρ, cm, c): Outputs 1 if c · cm = 〈mR, ckL〉 + 〈ρ, ck0〉, where ck = (ck0, ckL, ckR) ∈
M rPed
R ×Mn/2

R ×Mn/2
R , m = (0,mR) ∈ML(Bmax)n/2 ×ML(Bmax)n/2, ρ ∈ML(Bmax)rPed .

Remark 5.7. The length parameter rPed produced by CM.Setup controls the size of the randomness space,
to ensure that commitment randomness is sampled with sufficient entropy to produce hiding commitments
in each setting. In the discrete logarithm and pairing settings, rPed = 1. In the lattice setting, where
MR =

(
Zq[X]/〈Xd + 1〉

)r, one can show that rPed = 2r log q gives statistically hiding commitments
according to the leftover hash lemma [HILL99] (as used in e.g. the lattice-based arguments of [BBCPGL18]).
Similarly, in the GUO setting rPed = log 2λ|G|

Bmax
suffices, where |G| is an upper bound on the size of the group

[BDFG20].

We assume that Ped.ExtendCK(ck) is the identity function and that Ped.BilinearCommit is equal to
Ped.Commit. In certain settings it is possible to consider different functions. For instance, in the GUO setting
we can set the keyspace K∗ = G and define Ped.ExtendCK(G) as (G,GBmax , . . . ,GB

n
max).

Note that as well as being bilinear, the generalised Pedersen commitment scheme is also R-homomorphic,
which is not implied by bilinearity in general.

Definition 5.8. For a ring R, CM is R-homomorphic if M,R,C are R-modules and for all λ ∈ N and all
n ∈ N, the commitment function CM.Commit : K∗ ×Mn × R → C is an R-module homomorphism with
respect to M× R, i.e., for all ck ∈ K∗, all m,m′ ∈Mn, all ρ, ρ′ ∈ R, and all r ∈ R,

CM.Commit
(
ck;m + m′; ρ+ ρ′

)
= CM.Commit (ck;m; ρ) + CM.Commit

(
ck;m′; ρ′

)
r · CM.Commit (ck;m; ρ) = CM.Commit (ck; r ·m; r · ρ)

Lemma 5.9. The generalised Pedersen commitment scheme is a bilinear commitment scheme, assuming the
Bilinear Relation Assumption. Moreover, in all settings from Section 5.1 (discrete logarithm, pairing, GUO,
lattice) such that the relation S checks that n · (γRm(C)D)` ·BC < Bmax, it is (3, Bmax, C,D)-invertible
for the challenge space C, where C and D are constants that depend on the setting (see proof).
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Proof. It is straightforward to verify that the generalised Pedersen commitment scheme satisfies the correct-
ness, binding and hiding properties of a commitment scheme, based on the Bilinear Relation Assumption.
The commitment scheme is also bilinear. Considering the left input arguments ckL and mL, we have

Ped.BilinearCommit(ck0, ckL + ckL′, ckR;mL + mL′,mR; ρ+ ρ′)

= 〈mR, ckL + ckL′〉+ 〈ρ+ ρ′, ck0〉
= (〈mR, ckL〉+ 〈ρ, ck0〉) + (〈mR, ckL′〉+ 〈ρ′, ck0〉)
= Ped.BilinearCommit(ck0, ckL, ckR;mL,mR; ρ) + Ped.BilinearCommit(ck0, ckL

′, ckR;mL′,mR; ρ′) ,

r · Ped.BilinearCommit(ck0, ckL, ckR;mL,mR; ρ)

= r(〈mR, ckL〉+ 〈ρ, ck0〉)
= 〈r ·mR, ckL〉+ 〈r · ρ, ck0〉
= Ped.BilinearCommit(ck0, ckL, r · ckR;mL, r ·mR; r · ρ)

= 〈mR, r · ckL〉+ 〈r · ρ, ck0〉
= Ped.BilinearCommit(ck0, r · ckL, ckR; r ·mL,mR; r · ρ) .

The commitment scheme does not use the right input key ckR and and is trivially linear in ckR and mR.
The rest of the proof is to establish the invertibility of the commitment scheme in the various settings.
Let (ckL, ckL′, ckR, ckR′, ck0) ∈ KL × KL × KL × KL × K0 be the commitment keys as in the

invertibility definition. Also, fix an output of A: messages (mL(1),mR(1)), . . . , (mL(3),mR(3)), pairwise-
distinct challenges r1, . . . , r3 ∈ C, polynomial q(X) = q0 + q1X + q2X

2 in C[X], and slackness c ∈ Z.
The experiment outputs 1 if there exists an i ∈ {1, 2, 3} such that

Ped.Open((ck0, ckL + ri · ckL′, ckR + ri · ckR′), (mL(i),mR(i)), 0, q(ri), c) 6= 1.

Otherwise, we have that

c · q(ri) = c · (q0 + q1ri + q2r
2
i ) = 〈mR(i), ckL + ri · ckL′〉 . (8)

Letting V :=
(
r2i ri 1

)
i∈{1,2,3}, we can find representations of a multiple of q0, q1, q2 in terms of ckL and

ckL′ by computing det(V )c · q0
det(V )c · q1
det(V )c · q2

 := adj(V ) ·

〈mR(1), ckL + r1 · ckL′〉
〈mR(2), ckL + r2 · ckL′〉
〈mR(3), ckL + r3 · ckL′〉


In each setting, we can find representations of C · c · q0, C · c · q1, and C · c · q2 in terms of ckL and ckL′,
where C is a constant chosen according to the setting. The parameter D is an upper bound on the norm of
these representations and is also chosen differently in each setting.

Discrete logarithm setting. Since det(V ) ∈ Fq, we can multiply with det(V )−1. In these settings, C = 1
and D = 1.

Bilinear pairing setting. Same as above.

Lattice setting. We multiply with 8 det(V )−1 to recover the coefficients with C = 8. We have det(V ) =
(r1 − r2)(r2 − r3)(r3 − r1), and so 8 det(V )−1 = 2

r1−r2
2

r2−r3
2

r3−r1 . From Lemma 5.3, we know that each
factor has infinity norm 1, so 8 det(V )−1 has infinity norm at most γ2R = d2, and the coefficients of ckL and
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ckL′ have norm at most d2 D3 ·max(‖mR(i)‖). In this setting, D = 2d2D3, where D3 is the 3-rd inversion
constant as in Definition 5.5.

GUO setting. In this setting, the keys ckL, ckL′ are vectors of powers of a group element G ∈ G, hence
det(V ) · qi = ci G for i = 0, 1, 2. It must be the case that we can compute ci

det(V ) G, since otherwise we
would find a fractional root of G. Additionally, ci

det(V ) G must be equal to qi, otherwise we would have found
an element of known order. Finding a fractional root of G breaks the strong RSA assumption and finding
an element of known order breaks the adaptive root assumption (see [BFS20, Appendix A]). Note that the
coefficients of ckL and ckL′ have norm at most D3 ·max(‖mR(i)‖). In this setting, C = 1 and D = 2D3.
Note that in this setting C = Z(p−12 ) and D is a function of p.

Finally, in all settings we can write

C · cq(X) = 〈π0(X), ckL〉+ 〈π1(X), ckL′〉 , (9)

where π0(X) = a0 + b0X + c0X
2 and π1(X) = a1 + b1X + c1X

2. So, it holds that

C · c(q(1) + q(−1)) = 2 〈MR, ckL + rj · ckL′〉

with MR = (a0 + c0, a1 + c1). Notice that in all settings ‖MR‖ ≤ D ·max(‖mR(i)‖). Since generalised
Pedersen commitments are homomorphic, we have

Ped.Open((ck0, ckL‖ckL′, ckR‖ckR′), (0,MR), 0, 1/2 · (q(1) + q(−1)), Cc) = 1 .

Thus, since the message MR is efficiently computable, the invertibility experiment outputs 1.

5.3 Scalar-product commitments

We define a commitment scheme which includes the scalar-product of two committed messages. For this
commitment scheme, we assume that ML of the argument-friendly bilinear module is a ring, so that the
scalar-product of two messages in Mn

L is well-defined (which is not the case over a general module).

Definition 5.10. Let (G,K) algorithms as in the Bilinear Relation Assumption. The scalar-product com-
mitment scheme is defined via the following algorithms.

• SP.Setup(1λ, n): Sample an argument-friendly bilinear module (R,ML,MR,MT , e, C, BC, Bmax) ←
G(1λ, n + 1); set K := MR, K0 := M3rPed+1

R , M := ML(Bmax), R := ML(Bmax)3rPed , and C := MT ;
output pp := (M,Kn ×K0,Mn,R,C).

• SP.KeyGen(pp): Sample ck← K(M) where ck ∈Mn+1
R = Kn ×K0.

• SP.Commit(ck;m; ρ): Parse ck as (ck0, ckrand, ckLrand, ckRrand, ckL, ckR) ∈ MR ×M rPed
R ×M rPed

R ×
M rPed
R ×Mn/2

R ×Mn/2
R , m as (mL,mR) ∈ ML(BC)n/2 ×ML(BC)n/2, ρ as (ρ0, ρL, ρR) ∈ M rPed

R ×
M rPed
R ×M rPed

R , and output cm := (〈mR, ckL〉+ 〈ρR, ckLrand〉, 〈mL, ckR〉+ 〈ρL, ckRrand〉, 〈mL,mR〉ck0 +
〈ρ0, ckrand〉).

• SP.Open(ck,m, ρ, cm, c): Outputs 1 if it holds that c2cm = (c〈mR, ckL〉+ c〈ρR, ckLrand〉, c〈mL, ckR〉+
c〈ρL, ckRrand〉, 〈mL,mR〉ck0+〈ρ0, ckrand〉), where ck = (ck0, ckrand, ckLrand, ckRrand, ckL, ckR) ∈MR×
M rPed
R × M rPed

R × M rPed
R × M

n/2
R × M

n/2
R , m = (mL,mR) ∈ ML(Bmax)n/2 × ML(Bmax)n/2, ρ =

(ρ0, ρL, ρR) ∈M rPed
R ×M rPed

R ×M rPed
R .
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Remark 5.11. The assumption that ML is a ring excludes the pairing setting, where ML is a group. However,
we capture this case by modifying the commitment scheme as follows. First, we use different message
and key space for each half the message and key respectively. In particular, if (ckL, ckR) ∈Mn/2

R ×Mn/2
L

and (mL,mR) ∈ Mn/2
L ×Mn/2

R , then both the Pedersen commitments 〈mR, ckL〉 and 〈mL, ckR〉, and the
scalar-product 〈mL,mR〉 are well-defined.

In order to make the commitment scheme hiding, we modify the third component corresponding to the
commitment of 〈mL,mR〉 by using an ElGamal encryption (〈mL,mR〉+ ρ0 · ckrand, ρ0 · GT ), where GT is
the generator of the target group GT , ckrand = c · GT ∈MT is public and c is part of the key, and ρ0 ← Fq.
The commitment scheme is binding and hiding assuming that DDH is hard for the group GT and the bilinear
module assumption holds for (ML,MR) = (G1,G2) and for (ML,MR) = (G2,G1).

As in Pedersen commitments, the definition can be generalised to include different CM.ExtendCK(ck)
functions.

Lemma 5.12. The scalar-product commitment scheme is a bilinear commitment scheme, assuming the
Bilinear Relation Assumption. Moreover, in all settings from Section 5.1 (discrete logarithm, pairing, GUO,
lattice) such that S checks that nγML

(n · (γRm(C)D)` ·BC)2 ≤ Bmax
12 it is (4, Bmax, C,D)-invertible for

the challenge space C, where C and D are constants that depend on the setting (see proof).

Proof. It is straightforward to verify that the scalar-product commitment scheme satisfies the correctness,
hiding, and binding properties of a commitment scheme, based on the Bilinear Relation Assumption. The
commitment scheme is also bilinear.

The rest of the proof is to establish the invertibility of the commitment scheme in the various settings.
Let (ckL, ckL′, ckR, ckR′, ck0) ∈ KL × KL × KL × KL × K0 be the commitment keys as in the

invertibility definition. Also, let messages (mL(1),mR(1)),. . . , (mL(4),mR(4)), pairwise-distinct challenges
r1, . . . , r4 ∈ C, polynomial q(X) = q0+q1X+q2X

2 in C[X] and c ∈ Z be the output ofA. The experiment
outputs 1 if there exists an i ∈ {1, 2, 3, 4} such that

SP.Open((ck0, ckL + ri · ckL′, ckR + ri · ckR′), (mL(i),mR(i)), 0, q(ri), c) 6= 1.

Otherwise, we have that

c2(q0 + q1ri + q2r
2
i ) = (c〈mR(i), ckL + ri · ckL′〉, c〈mL(i), ckR + ri · ckR′〉, 〈mR(i),mL(i)〉ck0). (10)

As in the proof of Lemma 5.9, we can find representations of C2 · c2q0, C2 · c2q1, and C2 · c2q2 in terms of
ckL, ckL′, ckR, and ckR′. The constants D and C in each setting are as follows.
Discrete logarithm setting. C = 1 and D = 1.
Pairing setting. As above.
Lattice setting. C = 8 and D = 3d2D3. The constant D is used to upper bound the norm of messages
appearing later in the proof.
GUO setting. C = 1 and D = 3p2D3. The constant D is used to upper bound the norm of messages
appearing later in the proof.

As in the proof of Lemma 5.9, for all settings we can write

C2·c2q(X) = (C·c(〈πL,0(X), ckL〉+〈πL,1(X), ckL′〉), C·c(〈πR,0(X), ckR〉+〈πR,1(X), ckR′〉), π(X)ck0) ,

12The S guarantees that the bilinear relation assumption must be hard for messages up to the norm of 〈mL,mR〉 to imply
invertibility.
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where πL,0,πL,1,πR,0,πR,1,π are of the form a + bX + cX2. By comparing the coefficients of ckL and
ckL′ in Equation (10), we conclude that πL,0(rj)ri = πL,1(ri) for each i, since otherwise for m1 =
(πL,0(ri)||πL,1(ri)) and m2 = (CmR(i)||Cri ·mR(i)) it holds that

SP.BilinearCommit(ck0, ckL||ckL′, ckR||ckR′; 0,m1; 0) = SP.BilinearCommit(ck0, ckL||ckL′, ckR||ckR′; 0,m2; 0) ,

which would break the binding property of the commitment scheme. Note that ‖m1‖, ‖m2‖ ≤ Dmax(‖mR(i)‖).
A similar argument applies to ckR and ckR′.

Due to the degree bounds on the polynomials πL,0 and πL,1, the fact that this expression holds for the 4
different values of ri implies that πL,0(X) is of the form a+ bX . Further, for each of the four values of ri,
we have that CmR(i) = πL,0(ri), otherwise for the two distinct messages m1 = (πL,0(ri)||ri · πL,0(ri)) and
m2 = (CmR(i)||Cri ·mR(i)) it holds that

SP.BilinearCommit(ck0, ckL||ckL′, ckR||ckR′; 0,m1; 0) = SP.BilinearCommit(ck0, ckL||ckL′, ckR||ckR′; 0,m2; 0) ,

which breaks the binding property of the commitment scheme. A similar argument applies to πR,0 and
πR,1. For the polynomial π, due to the degree bound and the fact that π(ri) = C2〈mR(i),mL(i)〉 =
〈πL,0(ri), πR,0(ri)〉 for the 4 different values of ri, it holds that π(X) = 〈πL,0(X), πR,0(X)〉.

Finally,C2·c2q(X) = (C·c πL,0(X)(ckL+X·ckL′), C·c πR,0(X)(ckR+X·ckR′), 〈πL,0(X), πR,0(X)〉ck0)
and

C2 · c2(q(1) + q(−1)) = 2(〈C · c MR, ckL + rj · ckL′〉, 〈C · c ML, ckR + rj · ckR′〉, 〈ML,MR〉ck0)

with MR = (aL||bL) and ML = (aR||bR), where πL,0(X) = aL + bLX and πR,0(X) = aR + bRX . Notice
that in all settings ‖MR‖ ≤ Dmax(‖mR(i)‖) and ‖ML‖ ≤ Dmax(‖mL(i)‖). Hence, it holds that

SP.Open((ck0, ckL||ckL′, ckR||ckR′), (0,MR), 0, 1/2 · (q(1) + q(−1)), Cc) = 1 ,

Since the message ML,MR are efficiently computable, the invertibility experiment outputs 1.

5.4 Compressed scalar-product commitments

In some settings, it is possible to compress the three distinct parts of scalar-product commitments into one.
Then, the scalar-product protocol is similar to a Pedersen commitment, where the last coordinate corresponds
to the scalar-product of the “first” and “second” half of the message. As in the scalar-product commitments,
we restrict ML to be a ring.

Definition 5.13 (compressed scalar-product commitments). Let (G,K) algorithms as in the Bilinear Relation
Assumption. The compressed scalar-product commitment scheme is defined via the following algorithms.

• CSP.Setup(1λ, n): Sample an argument-friendly bilinear module (R,ML,MR,MT , e, C, BC, Bmax)←
G(1λ, n+ 2) and a number rPed; set K := MR, K0 := M rPed+1

R , M := ML(Bmax), R := ML(Bmax)rPed ,
and C = MT ; output pp := (M,Kn ×K0,Mn,R,C).

• CSP.KeyGen(pp): Sample ck← K(M) where ck ∈Mn
R = K0 ×Kn.

• CSP.Commit(ck;m; ρ): Parse ck as (ck0, ckrand, ckL, ckR) ∈ MR × M rPed
R × M

n/2
R × M

n/2
R , m as

(mL,mR) ∈ ML(BC)n/2 ×ML(BC)n/2, ρ ∈ ML(BC)rPed , and output cm := 〈mR, ckL〉 + 〈mL, ckR〉 +
〈mL,mR〉 · ck0 + 〈ρ, ckrand〉.
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• CSP.Open(ck,m, ρ, cm, c): Output 1 if c2 ·cm = c〈mR, ckL〉+c〈mL, ckR〉+〈mL,mR〉·ck0+c〈ρ, ckrand〉,
where ck = (ck0, ckrand, ckL, ckR) ∈MR ×M rPed

R ×Mn/2
R ×Mn/2

R , m = (mL,mR) ∈ML(Bmax)n/2 ×
ML(Bmax)n/2, ρ ∈ML(Bmax)rPed .

The parameter rPed depends on the setting as in Section 5.2.
In the pairing instantiation, ML is not a ring and using the slight modification of Section 5.3 does not

result in a Pedersen-like commitment, so we do not consider the pairing setting in this section.

Lemma 5.14. The compressed scalar-product commitment scheme is a bilinear commitment scheme, as-
suming the Bilinear Relation Assumption. Moreover, in the discrete logarithm, GUO, lattice settings from
Section 5.1 such that S checks that nγML

(n · (γRm(C)D)` ·BC)2 ≤ Bmax , it is (4, Bmax, C,D)-invertible
for challenge space C, where C and D are constants that depend on the setting (see proof).

The proof is similar to Lemma 5.12, so we provide only a proof sketch that highlights the main differences.

Proof sketch. The proof follows the same steps as in the proof of Lemma 5.12. We sketch the differences
between the two proofs.

First, when comparing the coefficients of ckL, ckL′, ckL, ckL′, and ck0 in contrast to the corresponding
proof of Lemma 5.12 we define the messages (m1,L,m1,R,m1,ck0) = (πR,0(rj)||πR,1(rj), πL,0(rj)||πL,1(rj), π(rj))
and (m2,L,m2,R,m2,ck0) = (C ·mL(j)||C · rj ·mL(j), C ·mR(j)||C · rj ·mR(j), 〈CmL(j), CmR(j)〉). If the
messages (m1,L,m1,R,m1,ck0) and (m2,L,m2,R,m2,ck0) are distinct, then we get a break of the binding
property of the generalised Pedersen commitment.

Similarly, we argue that CmR(j) = πL,0(rj), CmL(j) = πR,0(rj), and π(rj) = 〈πR,0(rj), πL,0(rj)〉.
We have to define the constant D appropriately in all settings so that the norms of the messages are less than
Bmax.

Finally,C2·c2q(X) = C·cπL,0(X)(ckL+X·ckL′)+C·cπR,0(X)(ckR+X·ckR′)+〈πL,0(X), πR,0(X)〉ck0
and

C2 · c2(q(1) + q(−1)) = 2(〈C · c ·MR, ckL + rj · ckL′〉+ 〈C · c ·ML, ckR + rj · ckR′〉+ 〈ML,MR〉ck0

with MR = (aL||bL) and ML = (aR||bR), where πL,0(X) = aL + bLX and πR,0(X) = aR + bRX . Notice
that in all settings ‖MR‖ ≤ Dmax(‖mR(i)‖) and ‖ML‖ ≤ Dmax(‖mL(i)‖). Hence, it holds that

CSP.Open((ck0, ckrand, ckL||ckL′, ckR||ckR′), (0,MR), 0, 1/2 · (q(1) + q(−1)), Cc) = 1 ,

Since the messages ML,MR are efficiently computable, the invertibility experiment outputs 1.
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6 Succinct argument for scalar products over rings

In this section, we give scalar-product protocols for rings defined over suitable argument-friendly bilinear
modules. We will cover instances of scalar-products such as 〈~a,~b〉 = t mod I over ML where ML is itself a
ring, and I is a suitable ideal of ML. We start by discussing a simple rejection sampling algorithms used to
sample random masks in our protocols.

6.1 Rejection sampling

Recall that to hide a message with norm at most B, the randomness for the generalised Pedersen commitment
is sampled uniformly at random from R(B).

We state a lemma about sampling random masks over the integers.

Lemma 6.1. Let B, κ ∈ Z, and x ∈ [−B,B]. Consider the procedure that samples y ← [−κB, κB], sets
z = x+ y and outputs z if z ∈ [−(κ− 1)B, (κ− 1)B], and outputs ⊥ otherwise.

The procedure outputs ⊥ with probability at most 1/κ. Conditioned on not outputting ⊥, the distribution
of x+ y is uniform in [−(κ− 1)B, (κ− 1)B].

Proof. We have x + y ∈ [x − κB, x + κB]. The symmetric difference between [x − κB, x + κB] and
[−(κ− 1)B, (κ− 1)B] has 2B elements. Thus, the probability of outputting ⊥ is at most 2B

2κB+1 ≤
B
κB =

1
κ .

The procedure in Lemma 6.1 allows us to hide secrets by adding randomly-sampled masks in our GUO
and lattice instantiations, which use Z-modules equipped with the infinity norm. For our discrete logarithm
and pairing instantiations, which use cyclic modules with trivial norms, it is clear that the uniform distribution
already perfectly hides secret values. Notice that if the procedure in Lemma 6.1 is applied to each element of
a vector ~x ∈ ZN , then the probability of outputting ⊥ is at most N/κ. In the GUO setting, we set κ = 2λ

for negligible completeness error. In the lattice setting, since the value of κ will feature in the norm bounds
of extracted solutions, we cannot choose κ to be exponentially large, as the SIS problem is easy in such
parameter regimes. In this setting, the scalar product argument reasons about vectors of length n defined over
the ring Z[X]/〈Xd + 1〉. Therefore, we set κ = O(dn), which has size polynomial in the security parameter,
for a constant probability of aborting.

One can reduce the completeness error in protocols by modifying the procedure in Lemma 6.1 so that it
samples several random masks ~y1, . . . , ~yr for each ~x, and avoids outputting ⊥ by using any possible ~yi, so
that the probability of outputting ⊥ is at most (N/κ)r.

6.2 Construction

Definition 6.2. The committed scalar product relationRcomSP(c,BC) is the set of tuples

(x,w) =
(

(M, rPed, I, ~G, ~G0, ~H, ~H0,U, ~U0,C0,C1,Ct), (~a,~b, ~ρ0, ~ρ1, ~ρt)
)
, where

• M = (R,ML,MR,MT , e, C, BC, Bmax) is an argument-friendly bilinear module and I ⊆ ML is an
ideal;

• c ∈ R;

• ~a,~b ∈Mn
L(BC);

47



• ~G, ~H ∈Mn
R;

• ~ρ0, ~ρ1, ~ρt ∈M rPed
L (BC);

• U ∈MR, ~G0, ~H0, ~U0 ∈M rPed
R , and C0,C1,Ct ∈MT

satisfying Ped.Open((~G0, ~G),~a, ~ρ0,C0, c) = 1, Ped.Open((~H0, ~H),~b, ~ρ1,C1, c) = 1 and Ped.Open((~U0,U), 〈~a,~b〉 mod
I, ~ρt,Ct, c

2) = 1.

Theorem 6.3. Suppose that we have the following ingredients:

• an argument-friendly bilinear module (R,ML,MR,MT , e, C, BC, Bmax) satisfying the bilinear relation
assumption, and such that ML is a ring, and C is a sampling-set for MT ;

• an ideal I such that C is a strong sampling set for R∗ = ML/I .

Then there is an honest-verifier zero-knowledge argument of knowledge for RcomSP over R∗, supporting
instances with n = 2`, with communication complexity O(log nrow) elements of MT , round complexity
O(log n), prover and verifier complexity O(n) bilinear product operations and O(n) operations in ML.

Remark 6.4. The choice of ideal I used depends on the cryptographic instantiation of Theorem 6.3. In the
lattice setting and GUO setting, we use I = pZ for some prime p. In each case, the prime p must be large
enough to ensure that the challenge space C is a sampling set modulo p. In the discrete logarithm setting, we
use I = {0}. In our analysis, we will set m(R∗) to be a bound on the norms of representatives of R∗ in ML.
This makes sense, because in each case, R∗ is a finite ring. We will set BC = m(R∗).

We state various bounds which will be used in our construction.

m1 := γRm(C)m(R∗)

m2 := γRm(C)(m3 +m(R∗)) m3 := γRnm(R∗)
2

m4 := 2κγRnm(R∗)m1 m5 := γ2Rm(C)2m3 + γRm(C)m4

Construction 6.5. We construct an interactive argument for the relationRcomSP(1, BC). The prover P takes
as input an instance x = (M, rPed, I, ~G, ~G0, ~H, ~H0,U, ~U0,C0,C1,Ct), and witness w = (~a,~b), while the
verifier V takes as input the instance x.

• The prover samples random masks ~ya, ~yb ← ML(κm1)
n. The prover computes v2 := 〈~a,~b〉, v1 :=

〈~a, ~yb〉+ 〈~ya,~b〉 and v0 := 〈~ya, ~yb〉. The prover samples random mask h←ML(κm2).

The prover samples commitment randomness and computes commitments as follows.

~σ0 ← R(κm1) , C2 := Ped.Commit(~G0, ~G, ~ya;~σ0) ,

~σ1 ← R(κm1) , C3 := Ped.Commit(~H0, ~H, ~yb;~σ1) ,

~σ5 ← R(κm2) , C7 := Ped.Commit(~U0,U, h;~σ5) ,

~σ4 ← R(κm3) , C6 := Ped.Commit(~U0,U, v2;~σ4) ,

~σ2 ← R(κm4) , C4 := Ped.Commit(~U0,U, v1;~σ2) ,

~σ3 ← R(κm5) , C5 := Ped.Commit(~U0,U, v0;~σ3) . (11)

The prover sends C7,C2,C3,C6,C4,C5 ∈MT , and h′ := h mod I to the verifier.
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• The verifier V sends random challenges γ ← C to the prover.

• The prover computes

~za := γ~a+ ~ya , ~zb := γ~b+ ~yb ,

~ρ′0 := γ~ρ0 + ~σ0 , ~ρ′1 := γ~ρ1 + ~σ1 ,

~ρ′t := γ2~σ4 + γ~σ2 + ~σ3 , v̄ := γ(〈~a,~b〉 − (〈~a,~b〉 mod I)) + h ,

~σ′ := γ(~σ4 − ~ρt) + ~σ5 .

The prover aborts if any of the following conditions are not satisfied:

‖~za‖ML
≤ (κ− 1)m1 , ‖~zb‖ML

≤ (κ− 1)m1 ,∥∥~ρ′0∥∥R ≤ (κ− 1)m1 ,
∥∥~ρ′1∥∥R ≤ (κ− 1)m1 ,∥∥~ρ′t∥∥R ≤ (κ− 1)m5 , ‖v̄‖ML

≤ (κ− 1)m2 ,∥∥~σ′∥∥R ≤ (κ− 1)m2 . (12)

The prover sends ~ρ′0, ~ρ′1, ~ρ′t, v̄, and ~σ′ to the verifier.

• The verifier checks that∥∥~ρ′0∥∥R ≤ (κ− 1)m1 ,
∥∥~ρ′1∥∥R ≤ (κ− 1)m1 ,∥∥~ρ′t∥∥R ≤ (κ− 1)m5 , ‖v̄‖ML

≤ (κ− 1)m2 ,∥∥~σ′∥∥R ≤ (κ− 1)m2 . (13)

The verifier computes T′ :=
(
γC0 + C2, γC1 + C3, γ

2Ct + γC4 + C5

)
.

This allows the verifier to compute

T := T′ −
(
〈~ρ′0, ~G0〉, 〈~ρ′1, ~H0〉, 〈~ρ′t, ~U0〉

)
= SP.Commit((~G, ~G0, ~H, ~H0,U, ~U0), (~za, ~zb), 0)

from T′ by removing the contributions of bases ~G0, ~H0 and ~U0 from T′.

The prover and the verifier run the opening protocol of Construction 4.7 for RSC(1, (κ − 1)m1) with
instance x = (SP, ppSP, ~G, ~G0, ~H, ~H0,U, ~U0,T) and witness w = (~za, ~zb) to show that

SP.Open((~G, ~H,U, ~U0), (~a,~b, t), 0,T, 1) = 1.

The verifier checks that Ped.Open((U, ~U0), v̄, ~σ
′, γ(C6 − Ct) + C7, 1) = 1 and v̄ mod I = h′.

6.3 Proof of Theorem 6.3

The prover and verifier efficiency of Construction 6.5 are directly inherited from Construction 4.7.

Lemma 6.6. The prover in Construction 6.5 performs the following operations: O(n) bilinear operations
between ML and MR; O(n) operations in ML; and O(n) additions in MT .
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Lemma 6.7. The verifier in Construction 6.5 performs the following operations: O(n) bilinear operations
between ML and MR; O(n) operations in ML; and O(n) additions in MT .

Lemma 6.8. Construction 6.5 is complete forRcomSP(1, BC) with completeness error O(n/κ).

Proof. Suppose that ((M, rPed, I, ~G, ~G0, ~H, ~H0,U, ~U0,C0,C1,Ct), (~a,~b, ~ρ0, ~ρ1, ~ρt)) ∈ RcomSP(1, BC).
First, we argue the prover aborts with probability at most O(n/κ). Using the discussion after Lemma 6.1,

the probability that any of the inequalities of Equation (12) are satisfied is at most O(1/κ) for each inequality.
In this case, the verifier checks of Equation (13) are all satisfied, and we have ‖~za‖ML

, ‖~zb‖ML
≤ (κ−1)m1.

Next, we argue that (x′,w′) =
(

(M, ~G, ~G0, ~H, ~H0,U, ~U0,T), (~za, ~zb)
)
∈ RSC(1,m1). By construction,

we have 〈~za, ~zb〉 = γ2v2 + γv1 + v0. Thus,

T = T′ −
(
〈~ρ′0, ~G0〉, 〈~ρ′1, ~H0〉, 〈~ρ′t, ~U0〉

)
=
(
γC0 + C2 − 〈~ρ′0, ~G0〉, γC1 + C3 − 〈~ρ′1, ~H0〉, γ2Ct + γC4 + C5 − 〈~ρ′t, ~U0〉

)
=
(
〈~za, ~G〉, 〈~zb, ~H〉, 〈~za, ~zb〉 · U

)
= SP.Commit((~G, ~G0, ~H, ~H0,U, ~U0), (~za, ~zb), 0) .

By completeness of the generalised Pedersen commitment scheme, (~za, ~zb) is a valid opening of T with
respect to the appropriate bases, and will give a witness toRSC(1,m1). Construction 4.7 is complete and so
the verifier of this subprotocol will accept.

It remains to show that the verifier checks that Ped.Open((U, ~U0), v̄, ~σ
′, γ(C6 − Ct) + C7, 1) = 1 and

v̄ mod I = h is accepted. Since

C6 = Ped.Commit(~U0,U, 〈~a,~b〉, ~σ4) ,

Ct = Ped.Commit(~U0,U, 〈~a,~b〉 mod I, ~ρt) ,

C7 = Ped.Commit(~U0,U, h;~σ5) ,

v̄ = γ(〈~a,~b〉 − (〈~a,~b〉 mod I)) + h ,

~σ′ = γ(~σ4 − ~ρt) + ~σ5 ,

and by the homomorphic property of the Pedersen commitment scheme, it follows that γ(C6 − Ct) + C7 =
Ped.Commit(~U0,U; v̄, ~σ′). Therefore, the verifier’s checks are accepting by the completeness property of the
generalised Pedersen commitment scheme, and by reducing v̄ modulo I .

Lemma 6.9. Assuming the bilinear-relation assumption, there exists an efficient algorithm that given
an instance (M, rPed, I, ~G, ~G0, ~H, ~H0,U, ~U0,C0,C1,Ct), and a (3, 4`)-tree of accepting transcripts either
extracts a witness (~a,~b) toRcomSP(cSP, BSP) with cSP and BSP derived in the proof. For soundness we must
have γRnB2

SP be at most Bmax.

Proof. Recall that Lemma 5.14 shows that compressed scalar-product commitments can be inverted with 4
openings. By Lemma 4.16, there is an efficient algorithm which takes the 4`-subtree of accepting transcripts
for Construction 4.7 applied to RSC(1, (κ − 1)m1) and produces either a non-trivial bilinear relation, or
produces a witness (~za, ~zb) to RSC(c,B′), for c ∈ R which is not a zero-divisor for MT or R∗, and
B′ := n · (γRm(C)D)` · (κ− 1)m1 satisfying

c2 · T =
(
c〈~za, ~G〉, c〈~zb, ~H〉, 〈~za, ~zb〉 · U

)
.
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This is done for each value of γ in the (3, 4`)-tree of accepting transcripts.
By definition of T and T′, we have

c2
(
γC0 + C2, γC1 + C3, γ

2C6 + γC4 + C5

)
(14)

=
(
c · Ped.Commit(~G0, ~G, ~za, c~ρ

′
0), c · Ped.Commit(~H0, ~H, ~zb, c~ρ

′
1), Ped.Commit(~U0,U, 〈~za, ~zb〉, c2~ρ′t)

)
.

For each γ, we know that a copy of Equation (14) holds. Examining each component of Equation (14) gives

c(γC1 + C3) =Ped.Commit(~H0, ~H, ~zb, c~ρ
′
1) , (15)

c(γC0 + C2) =Ped.Commit(~G0, ~G, ~za, c~ρ
′
0) , (16)

and c2(γ2C6 + γC4 + C5) =Ped.Commit(~U0,U, 〈~za, ~zb〉, c2~ρ′t) . (17)

Now, considering Equation (15) and Equation (16) for two distinct challenge values γ and γ′, taking the
linear combinations (1,−1) and (γ,−γ′), and setting c∗ := γ − γ′, we obtain openings ~a,~b, ~ya, ~yb, ~ρ0, ~ρ1,
~σ0, ~σ1 with norms at most γRD2B

′ satisfying

c∗cC0 = 〈~a, ~G〉+ c〈~ρ0, ~G0〉

c∗cC2 = 〈~ya, ~G〉+ c〈~σ0, ~G0〉

c∗cC1 = 〈~b, ~H〉+ c〈~ρ1, ~H0〉

c∗cC3 = 〈~yb, ~H〉+ c〈~σ1, ~H0〉 .

We either have that c∗~za = γ~a+ ~ya, c∗~zb = γ~b+ ~yb, c∗~ρ′0 = γ~ρ0 + ~σ0 and c∗~ρ′1 = γ~ρ1 + ~σ1 or we can
use Equation (15) or Equation (16) to find a non-trivial bilinear relation and break the binding property of the
Pedersen commitment scheme. Multiplying Equation (17) by c2∗ and substituting in these values gives

(c∗c)
2(γ2C6 + γC4 + C5) = γ2〈~a,~b〉 · U + γ(〈~a, ~yb〉+ 〈~ya,~b〉) · U + 〈~ya, ~yb〉 · U + (c∗c)

2〈~ρ′t, ~U0〉 (18)

Let A :=

γ21 γ1 1
γ22 γ2 1
γ23 γ3 1

 and let c′′ := det(A). Taking Equation (18) with respect to three distinct values

of γ, taking the three values of ~ρ′t, and multiplying the linear system by the adjugate of A (to solve for the
coefficient of γ2) and then multiplying by c′′ yields ~σ4 such that

(c∗cc
′′)2C6 = 〈c′′~a, c′′~b〉 · U + (c∗cc

′′)2〈~σ4, ~U0〉 (19)

which means that the message 〈c′′~a, c′′~b〉 and randomness (c∗cc
′′)2~σ4 give a relaxed opening to C6 with

relaxation factor cSP := (c∗cc
′′)2. The norm of ~σ4 is at most (κ− 1)γRD3m5.

Finally, we show that Ct has a relaxed opening which is related to the opening of C6 in ML, considered
modulo I . The verifier’s check that Ped.Open((U, ~U0), v̄, ~σ

′, γ(C6 − Ct) + C7, 1) = 1 implies that

γ(C6 − Ct) + C7 = Ped.Commit(U, ~U0; v̄, ~σ
′) . (20)

We also have that v̄ mod I = h′. Considering Equation (20) for challenges γ and γ′, (with opening v̄′ and
~σ′′ for γ′) and subtracting one from the other, we find openings O and h, and randomness φ and ~σ5 such that

c∗(C6 − Ct) = Ped.Commit(~U0,U;O;φ) , (21)
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c∗C7 = Ped.Commit(~U0,U;h;~σ5) , (22)

where the norms of O, h, φ and ~σ5 are at most γRD2m2. Furthermore, multiplying Equation (20) with
c∗ and substituting the openings of Equation (21) and Equation (22), we have that either c∗v̄ = γO + h,
c∗~σ
′ = γφ + ~σ5, c∗v̄′ = γ′O + h and c∗~σ′′ = γ′φ + ~σ5, or we can use Equation (20) to find a non-trivial

bilinear relation. Since v̄ = v̄′ = h′ mod I , we have γO+ h = γ′O+ h mod I . Taking linear combinations
of these two equations shows that c∗O = 0 mod I and c∗h = c∗h

′ mod I . Since C is a sampling set for
ML/I , we have O = 0 mod I and h = h′ mod I .

Rearranging Equation (21) and multiplying by c∗(cc′′)2 shows that

(c∗cc
′′)2Ct = (c∗cc

′′)2C6 − Ped.Commit(~U0,U; c∗(cc
′′)2O; c∗(cc

′′)2φ)

= Ped.Commit(U, ~U0; 〈c′′~a, c′′~b〉, (c∗cc′′)2~σ4)− Ped.Commit(~U0,U; c∗(cc
′′)2O; c∗(cc

′′)2φ)

This means that message 〈c′′~a, c′′~b〉 − c∗(cc′′)2O and randomness (c∗cc
′′)2~σ4 − c∗(cc′′)2φ give a relaxed

opening to t, and since O = 0 mod I , Ct has a relaxed opening which is equal to the opening (modulo I) of
C6.

The norms of 〈c′′~a, c′′~b〉 − c∗(cc′′)2O and (c∗cc
′′)2~σ4 − c∗(cc′′)2φ are at most BSP = nγ5Ru

2
3D

2
2B
′2 +

γ5Ru2u
2
3D2 ‖c‖2Rm2 + γ7Ru2u3 ‖c‖

2
R (κ− 1)D3m5. This gives a witness toRcomSP(cSP, BSP), with cSP =

(c∗cc
′′)2.

Lemma 6.10. Construction 6.5 has semi-honest verifier zero-knowledge.

Proof. We give a simulator for Construction 6.5.

1. Start simulating V.

2. Sample openings ~za, ~zb ←ML((κ− 1)m1)
n and v̄ ←ML((κ− 1)m2)

n. Set h′ = v̄ mod I .

3. Sample opening randomness ~ρ′0, ~ρ
′
1 ← R((κ− 1)m1), ~σ′ ← R((κ− 1)m2) and ~ρ′t ← R((κ− 1)m5).

4. Compute T =
(
〈~za, ~G〉, 〈~zb, ~H〉, 〈~za, ~zb〉 · U

)
. Compute T′ = T−

(
〈~ρ′0, ~G0〉, 〈~ρ′1, ~H0〉, 〈~ρ′t, ~U0〉

)
.

5. Compute commitments C2,C3,C6,C4 as follows:

~σ0 ← R((κ− 1)m1) , C2 := Ped.Commit(~G0, ~G,~0;~σ0) ,

~σ1 ← R((κ− 1)m1) , C3 := Ped.Commit(~H0, ~H,~0;~σ1) ,

~σ4 ← R((κ− 1)m3) , C6 := Ped.Commit(~U0,U,~0;~σ4) ,

~σ2 ← R((κ− 1)m4) , C4 := Ped.Commit(~U0,U,~0;~σ2) .

6. Compute C5 = T′ −
(
γC0 + C2, γC1 + C3, γ

2Ct − γC4

)
.

Compute C7 = Ped.Commit(U, ~U0; v̄, ~σ
′)− γ(C6 − Ct).

7. Run the sumcheck protocol of Construction 4.7 for commitment SP.Commit() with instance x =
(M, ~G, ~G0, ~H, ~H0,U, ~U0,T) and witness w = (~za, ~zb).

8. Abort with probability equal to that of the honest prover, outputting only the commitments and h′ in
that case.
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Now we argue that the simulated transcript is statistically indistinguishable from a transcript generated by
an honest prover. Firstly, note that the simulator aborts with the same probability as the honest prover.

Based on Lemma 6.1, we have that openings ~za, ~zb ∈ML((κ− 1)m1)
n, and v̄ ∈ML((κ− 1)m2)

n, and
opening randomness ~ρ′0, ~ρ

′
1 ← R((κ− 1)m1), ~σ′ ← R((κ− 1)m2) and ~ρ′t ← R((κ− 1)m5), are uniformly

distributed in a real protocol execution where the prover does not abort. This implies that the simulator
produces distributions of these values which are statistically indistinguishable from those in a real protocol
execution.

By the hiding property of the generalised Pedersen commitment scheme, C2,C3,C6,C4 are statistically
indistinguishable from honestly generated commitments.

In both a real or simulated execution, all other simulated values are now fully determined: C7 and C5 by
linear relations used in the protocol, h′ by reducing v̄ modulo I , and the rest of the transcript by executing
Construction 4.7. The result follows.
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7 Succinct argument for R1CS over rings

We construct zero-knowledge arguments for Rank 1 Constraint Satisfiability (R1CS) over rings. First,
we define the R1CS relation. Then, we give the formal statement of Theorem 2 and the description of
the interactive argument. In Lemma 7.4, Lemma 7.5, Lemma 7.6 we show that the protocol is complete,
knowledge sound, and zero-knowledge. In Lemma 7.7, we give bounds on the number of operations
performed by the verifier and prover.

Definition 7.1 (R1CS). The indexed relationRR1CS is the set of all triples

(i,x,w) =
(
(A,B,C), (R∗, A,B,C,M, nrow, ncol, nin, x), ~w

)
where R∗ is a finite ring, A,B,C are matrices in Rnrow×ncol

∗ , each having at most M non-zero entries,
x ∈ Rnin

∗ and ~w are vectors over R∗, and ~z := (x, ~w) ∈ Rncol
∗ is a vector such that A~z ◦B~z = C~z. (Here

“◦” denotes the entry-wise product between two vectors.)

In this section, we give R1CS arguments for rings R∗ defined over suitable argument-friendly bilinear
modules. We will cover instances where ML is itself a ring, I is a suitable ideal of ML, and R∗ = ML/I .
For notational simplicity, we handle the case where nrow = ncol.

Theorem 7.2. Suppose that we have the following ingredients:

• an argument-friendly bilinear module (R,ML,MR,MT , e, C, BC, Bmax) satisfying the bilinear relation
assumption, and with ML a ring, and C is a sampling-set for MT ;

• an ideal I such that C is a strong sampling set for R∗ = ML/I;

• a zero-knowledge argument forRcomSP (see Definition 6.2) over ML and suitable ideal I , with constant c
in the knowledge extractor (see Lemma 6.9).

Then there is a zero-knowledge argument of knowledge forRR1CS over R∗, supporting instances with nrow =
ncol = 2`, with communication complexity O(log nrow) elements of MT , round complexity O(log nrow),
prover and verifier complexity O(nrow) bilinear product operations and O(nrow +M) operations in ML.

Construction 7.3. We construct an interactive argument for the relationRR1CS. The prover P takes as input
an instance x = (R∗, A,B,C,M, nrow, ncol, nin, x), and witness w = ~w, while the verifier V takes as input
the instance x.

• The prover P constructs a fully satisfying assignment of the R1CS instance ~z := (x, ~w) ∈ Mncol
L , and

computes the vectors ~zA := A~z mod I , ~zB := B~z mod I , ~zC := C~z mod I in Mnrow
L .

The prover computes commitments to messages ~z, ~zA and ~zB as follows. Recall that elements of R∗ have
representatives with norms at most m(R∗) in ML.

~ρ← R(m(R∗)) C~z ← Ped.Commit(~G0, ~G, ~z, ~ρ) ,

~ρA ← R(m(R∗)) C~zA ← Ped.Commit(~G0, ~G, ~zA, ~ρA) ,

~ρB ← R(m(R∗)) C~zB ← Ped.Commit(~G0, ~G, ~zB, ~ρB) .

The prover sends (C~z,C~zA ,C~zB ) ∈M3
T to the verifier.
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• The verifier V sends uniformly random challenge vectors (r1, . . . , rlognrow) ∈ Clognrow and (y1, . . . , ylognrow) ∈
Clognrow to the prover.

• The prover P and verifier V compute the vectors ~r :=
⊗lognrow

i=1 (1, ri), ~y :=
⊗lognrow

i=1 (1, yi),

~rA := ~rᵀA mod I , ~rB := ~rᵀB mod I , ~rC := ~rᵀC mod I ∈Mncol
L .

The prover P computes the elements and commitments

α := 〈~r, ~zA〉 mod I, ~ρα ← R(m(R∗)) Cα ← Ped.Commit(~U0,U, α, ~ρα),

α′′ := 〈~r ◦ ~y, ~zA〉 mod I, ~ρ′′α ← R(m(R∗)) C′′α ← Ped.Commit(~U0,U, α
′′, ~ρ′′α),

β := 〈~r, ~zB〉 mod I, ~ρβ ← R(m(R∗)) Cβ ← Ped.Commit(~U0,U, β, ~ρβ),

γ := 〈~r, ~zC〉 mod I, ~ργ ← R(m(R∗)) Cγ ← Ped.Commit(~U0,U, γ, ~ργ),

~z′A = ~r ◦ ~zA mod I ~ρ′A ← R(m(R∗)) C′~zA ← Ped.Commit(~H0, ~H, ~z
′
A, ~ρ

′
A).

and sends the message (Cα,C
′′
α,Cβ,Cγ ,C

′
~zA

) ∈M5
T .

• The verifier samples a uniformly random challenge vector ~s ∈ Cnin , and pads with zeroes to get ~s′ ∈ Cncol .
The verifier sends ~s to the prover. The verifier computes σ := 〈x,~s〉 mod I .

• The prover P and verifier V engage in several scalar-product sub-protocols, in parallel. Each scalar-product
sub-protocol has instance x of the form (M, ~G, ~G0, ~H, ~H0,U, ~U0, X, Y, Z). The witnesses, values of X,Y
and Z, and the purpose of each sub-protocol, are specified in the following table. For each protocol, the
witnesses are reduced modulo I and have norm at most m(R∗).

Note that ~r, ~y, ~rA, ~rB , ~rC , ~s′, and σ are known to V, who will compute commitments to these values for
themself, with respect to bases ~G, ~H or U as required. This is signified in the table using a “#” symbol.

Also, note that challenge vectors such as ~r have elements in R rather than ML, but are easy to map into ML

simply by multiplying each element by 1ML
. We do not do this explicitly in order to keep notation simple.

Witness Instance commitments X,Y, Z Checks Purpose
(~zB, ~z

′
A, ~ρB, ~ρ

′
A, ~ργ) C~zB ,C

′
~zA
,Cγ 〈~zB, ~z′A〉 = γ mod I Hadamard check

(~y, ~z′A, 0, ~ρ
′
A, ~ρ

′′
α) #,C′~zA ,C

′′
α 〈~y, ~z′A〉 = α′′ mod I Hadamard check

(~zA, ~r ◦ ~y, ~ρA, 0, ~ρ′′α) C~zA ,#,C
′′
α 〈~zA, ~r ◦ ~y〉 = α′′ mod I Hadamard check

(~z, ~rA, ~ρ, 0, ~ρα) C~z,#,Cα 〈~z, ~rA〉 = α mod I Lincheck for A
(~zA, ~r, ~ρA, 0, ~ρα) C~zA ,#,Cα 〈~zA, ~r〉 = α mod I Lincheck for A
(~z, ~rB, ~ρ, 0, ~ρβ) C~z,#,Cβ 〈~z, ~rB〉 = β mod I Lincheck for B

(~zB, ~r, ~ρB, 0, ~ρβ) C~zB ,#,Cβ 〈~zB, ~r〉 = β mod I Lincheck for B
(~z, ~rC , ~ρ, 0, ~ργ) C~z,#,Cγ 〈~z, ~rC〉 = γ mod I Lincheck for C
(~z,~s′, ~ρ, 0, 0) C~z,#,# 〈~z,~s′〉 = σ mod I Partial assignment

Lemma 7.4 (completeness). Construction 7.3 is complete with completeness error O(n/κ), where κ is the
parameter used for masking in Section 6.
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Proof. Recall that the scalar-product sub-protocol of Construction 6.5 is complete (see Lemma 6.8). Let
(x,w) =

(
(R∗, A,B,C,M, nrow, ncol, nin, x), ~w

)
∈ RR1CS. Then ~z := (x, ~w) satisfiesA~z◦B~z = C~z mod

I . The prover P computes ~zA = A~z mod I and similarly for B and C. Therefore ~zA ◦ ~zB = ~zC mod I .
The prover also computes ~z′A = ~r ◦ ~zA mod I and γ = 〈~r, ~zC〉 mod I . For any choice of ~r, we have

〈~zB, ~z′A〉 = 〈~r, ~zA ◦ ~zB〉
= 〈~r, ~zC〉 = γ mod I .

Thus, ~zB , ~z′A and γ and their commitments give a member of the scalar-product relationRcomSP for suitable
BR1CS, so the first scalar-product protocol succeeds, except with probability O(n/κ). Further, for every
choice of ~y, we have 〈~y, ~z′A〉 = 〈~y, ~r ◦ ~zA〉 = α′′ mod I . Therefore, the second and third scalar-product
protocols succeed, except with probability O(n/κ).

For every choice of ~r it holds that 〈~r, ~zA〉 = 〈~r,A~z〉 = 〈~rᵀA,~z〉 = 〈~rA, ~z〉 mod I , and therefore, the
fourth and fifth scalar-product protocols succeed (the Lincheck for A), except with probability O(n/κ).
Similar reasoning applies to the Linchecks for B and C.

Finally we discuss the consistency check between the full assignment ~z = (x, ~w) and the partial
assignment x. For every choice of ~s, it holds that 〈~s′, ~z〉 = 〈~s, x〉 = σ mod I , which is the equation checked
by the verifier. This means that ~z, ~s′, σ and their commitments are in the relationRcomSP, so the final scalar
product sub-protocol succeeds.

Lemma 7.5 (knowledge soundness). There exists a PPT algorithm such that given an instance x =
(R∗, A,B,C,M, nrow, ncol, nin, x), and a (2`, 2`, 3, 4`)-tree of accepting transcripts, either extracts a valid
witness w = ~w for the relationRR1CS or a non-trivial bilinear relation, whenever γRnB2

SP < Bmax. Here
BSP is the norm bound derived in Lemma 6.9.

Proof. Fix values of ~r, ~y and ~s (this corresponds to following some path from the root down to the (2` +
log nin)-th level of the tree of transcripts). By Lemma 6.9 there exists a probabilistic polynomial time
algorithm which takes as input the (3, 2, 2, 4`)-subtree of accepting transcripts (the full tree restricted to each
scalar-product subprotocol) and outputs a witness toRcomSP(c,BSP) (see Definition 6.2) for some c which is
invertible modulo I by the properties of C and I , and B′ = 6D3γ

2
Rm(C)m(R∗).

Consider the first scalar-product subprotocol, run on commitments C~zB , C′~zA and Cγ . We can extract

vectors ~zB, ~z′A ∈ ML(B)ncol and a scalar γ such that c · C~zB = 〈~zB, ~G〉 + 〈~ρB, ~G0〉, c · C′~zA = 〈~z′A, ~H〉 +

〈~ρ′A, ~H0〉, and c2 · Cγ = γ · U + 〈~ργ , ~U0〉, with 〈~zB, ~z′A〉 = γ mod I .
For the second scalar-product protocol, run on honestly-made commitments to ~y and α′′, and commitment

C′~zA , by applying the knowledge extractor and the binding property of the generalised Pedersen commitment
scheme, we can deduce that 〈c · ~y, ~z′A〉 = c2 · α′′ mod I , since the norm bounds on c · ~y and ~z′A are both less
than Bmax.

Similarly, by applying the knowledge extractor for each scalar-product protocol and using the binding
property to show that relaxed openings for commitments made by the verifier are multiples of the honestly
committed values, we can extract ~z, ~zA and ~zB with norms at most BR1CS, and α, α′′, β, and γ with norms at
most γRnB2

R1CS satisfying the following equations:

〈~zA, c · ~r ◦ ~y〉 = c2 · α′′ mod I

〈~z, c · ~rA〉 = c2 · α mod I

〈~zA, c · ~r〉 = c2 · α mod I

〈~z, c · ~rB〉 = c2 · β mod I
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〈~zB, c · ~r〉 = c2 · β mod I

〈~z, c · ~rC〉 = c2 · γ mod I

〈~zC , c · ~r〉 = c2 · γ mod I

〈~z, c · ~s′〉 = c2 · σ mod I

We also know that 〈c · ~s, c · x〉 = c2 · σ mod I .
Equating the left-hand sides of the equations above which have related right-hand sides, and dividing by

c2 (c has an inverse because the set C is a strong sampling set for ML/I), we can write

〈~y, c−1 · ~z′A〉 = 〈c−1 · ~zA, ~r ◦ ~y〉 = 〈c−1 · ~zA ◦ ~r, ~y〉 mod I , (23)

〈c−1 · ~zB, c−1 · ~z′A〉 = 〈c−1 · ~z, ~rC〉 mod I , (24)

〈c−1 · ~z, ~rA〉 = 〈c−1 · ~zA, ~r〉 mod I , (25)

〈c−1 · ~z, ~rB〉 = 〈c−1 · ~zB, ~r〉 mod I , (26)

〈c−1 · ~z,~s′〉 = 〈~s, x〉 mod I . (27)

Now, we show that c−1 · ~z is a witness to the R1CS instance modulo I .
Consider Equation (23) for each accepting transcript at the (2`+ log nin)-th level. Since Equation (23)

holds for a 22 lognrow-tree of values of (y1, . . . , y`), (r1, . . . , r`) and the entries of ~s, we can solve for the
coefficients of yi in 〈~y, c−1 · ~z′A〉 and deduce that c−1 · ~z′A = c−1 · ~r ◦ ~zA mod I . This is always possible
because e.g. 〈~y, c−1 · ~z′A〉 is a multilinear polynomial in (~y1, . . . , ~ylognrow), and solving for the coefficients
amounts to solving linear equations in ~ylognrow , then ~ylognrow−1, and so on, recursively. Since C remains a
strong sampling set modulo I , each linear equation is solvable modulo I .

Substituting c−1 · ~z′A = c−1 · ~r ◦ ~zA into Equation (24) and applying the same technique shows that
c−1~zA ◦ c−1~zB = C · c−1~z mod I . Applying the same technique to Equation (25), Equation (26) and
Equation (27) implies that c−1~zA = A · c−1~z mod I , c−1~zB = B · c−1~z mod I , and c−1~z = (x, ~w) for
some vector ~w, and thus c−1~z is a witness to the R1CS relation modulo I .

Lemma 7.6 (zero-knowledge). Construction 7.3 has semi-honest verifier zero-knowledge.

Proof. The simulator runs as follows:

• The simulator computes random commitments C~zA ,C
′
~zA
,C~zB ,C~z , Cα, C′′α, Cβ , Cγ to zero messages, using

randomness sampled uniformly from R(m(R∗)).

• The simulator invokes the simulator of the scalar-product protocol for each subprotocol (given by
Lemma 6.10).

Zero-knowledge follows from the hiding property of the generalised Pedersen commitment scheme, and the
zero-knowledge property of the scalar-product protocol.

Lemma 7.7. The prover and verifier in Construction 7.3 performs the following operations: O(nrow) bilinear
operations between ML and MR; O(nrow +M) operations in ML; and O(nrow) additions in MT .

Proof. The costs of Construction 7.3 are inherited from the costs of Construction 6.5, analysed in Lemma 6.6
and Lemma 6.7.
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8 Polynomial commitments over rings

We show how to use the scalar-product protocol over rings to get a polynomial commitment over rings. In
particular, the polynomial commitment scheme enables a sender to commit to a polynomial p over a ring R
and then later prove the correct evaluation of the polynomial at a desired point modI for an ideal I ⊆ R as
in Section 2.2.1. We first provide the definition of polynomial commitments, and then show the construction
through the scalar-product sumcheck argument.

8.1 Definition

A polynomial commitment scheme consists of a binding commitment scheme for a message space R[X] of
polynomials over some ring R, and an interactive public-coin protocol between a PPT prover P and verifier
V. In the interactive protocol, both P and V have as input a commitment C, points v, z ∈ R, and a degree d.
The prover additionally knows the opening of C to a secret polynomial p(X) ∈ R[X] with deg(p(X)) ≤ d.
The protocol convinces the verifier that p(z) = v mod I for some ideal I ⊆ R. In a multivariate extension of
polynomial commitments, the input m > 1 indicates the number of variables in the committed polynomial
and z ∈ Rm.

Definition 8.1. A polynomial commitment scheme is a tuple of algorithms (G,Trim,Commit) and an
interactive protocol z = (P,V) where

• G(1λ, D,m, {uni,multi}, {Lagrange,monomials}) → ppR,I . On input a security parameter λ (in
unary), a maximum degree bound D ∈ N, the number of variables m, whether we consider univariate
or multivariate polynomials and whether the polynomials are given in Lagrange or monomial basis, G
samples public parameters ppR,I . The public parameters contain the ring R, and ideal I such that I ⊆ R.
The committed polynomial belongs to R[ ~X], but the evaluation is done modI .

• Trim(ppR,I , d) → (ck, rk). On input public parameters ppR,I , and degree bound d ≤ D, Trim
deterministically computes a key pair (ck, rk) that is specialized to d.

• Commit(ck, p; r)→ C. On input ck, a polynomial p over the ring R, Commit outputs a commitment
C to the polynomial p. The randomness r is used if the commitment C is hiding.

• Eval = (P(ck, p,C, z, v; rP),V(rk,C, z, v; rV)). The prover, with input ck, a polynomial p, a commit-
ment C, an evaluation point z, a target point v, and randomness rP, and the verifier with input rk, a
commitment C, an evaluation point z, a target point v, and randomness rV, engage in an interactive public
coin protocol. At the end of the protocol, V outputs 1 if P attests that the polynomial p committed in C has
degree at most d and evaluates modI to v at z.

A polynomial commitment scheme must satisfy the following properties.

Completeness. For every maximum degree D = poly(λ) ∈ N and every adversary A

Pr

 V(rk,C, z, v) = 1

ppR,I ← G(1λ, D,m, {uni,multi}, {Lagrange,monomials})
(p, d, z, r)← A(ppR,I)
(ck, rk)← Trim(ppR,I , d)

C← Commit(ck, p; r)
v = p(z) mod I
Eval = (P(ck, p,C, z, v; r),V(rk,C, z, v))

 = 1.
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Extractability. There exists an efficient extractor χ and a function t such that for every maximum degree
bound D = poly(λ) ∈ N and polynomial-size adversary A the following holds.

Pr


T is an accepting t(d)-tree for Eval
⇓
p(z) = v mod I
C← Commit(ck, p; r)

ppR,I ← G(1λ, D,m, {uni,multi}, {Lagrange,monomials})
(C, d, z, v, T )← A(ppR,I)
(p, r)← χ(ppR,I ,C, d, z, v, T )

(ck, rk)← Trim(ppR,I , d)

 = 1.

Hiding. There exists a stateful polynomial-time simulator Sim such that, for every maximum degree bound
D = poly(λ) ∈ N and stateful polynomial-size adversary A, the output distributions of the following games
are statistically close.

Real(1λ, D,A)

1. ppR,I ← G(1λ, D,m, {uni,multi}, {Lagrange,monomials})

2. (p, d)← A(ppR,I)

3. (ck, rk)← Trim(ppR,I , d)

4. Sample commitment randomness r

5. C← Commit(ck, p; r)

6. z ← A(C)

7. Sample opening randomness rP and rV

8. tr = 〈P(ck, p,C, z, p(z); rP),V(rk,C, z, p(z); rV)〉

9. Output (ppR,I , p, d,C, z, tr)

Ideal(1λ, D,A)

1. (ppR,I , trap)← Sim.G(1λ, D,m, {uni,multi}, {Lagrange,monomials})

2. (p, d)← A(ppR,I)

3. C← Sim.Commit(trap, d)

4. z ← A(C)

5. tr← Sim.Open(C, z, p(z))

6. Output (ppR,I , p, d,C, z, tr)
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8.2 Polynomial commitment from scalar-product protocol

We construct a polynomial commitment for univariate and multilinear multivariate polynomials based on the
scalar product protocol of Section 6. The polynomials can be given in either Lagrange or monomial basis.
First, we show that the polynomial evaluation can be computed as a scalar product.

• A univariate polynomial in monomial basis of degree d, p(X) =
∑d

i=0 aiX
i, is represented with the vector

~a = (a0, . . . , ad). If~b = (1, z, z2, . . . , zd), then 〈~a,~b〉 = p(z).

• A multivariate multilinear polynomial in monomial basis is represented with a vector ~a = (a0, . . . , a2m−1)

where ai with i = (i1, . . . , im) is the coefficient of the monomial
∏m
j=1X

ij
j . If~b is such that~bi =

∏m
j=1 z

ij
j

with i = (i1, . . . , im), then 〈~a,~b〉 = p(z1, . . . , zm).

• A univariate polynomial in Lagrange basis of degree d, p(X) =
∑

ω∈H p(ω)`ω(X) with |H| = d + 1,
where `ω(X) =

∏
ω′ 6=ω,ω′∈H

X−ω′
ω−ω′ , is represented with the vector ~a = (p(ω1), . . . , p(ωd+1)) where

H = {ωi}i∈[d+1]. If~b = (`ω1(z), . . . , `ωd+1
(z)), then 〈~a,~b〉 = p(z).

• A multivariate multilinear polynomial in Lagrange basis is written as p( ~X) =
∑

~ω∈H p(~ω)`H,~ω(X1, . . . , Xm)

with |H| = 2m + 1 and H = H(1) × · · · × Hm where `H,~ω(X1, . . . , Xm) =
∏m
i=1 `H(i),ωi

(Xi) and
`H(i),ωi

(Xi) =
∏
ω∈H(i),ω 6=ωi

Xi−ω
ωi−ω . The polynomial p is represented with the vector~a = (p(~ω1), . . . , p(~ω2m))

whereH = {~ωi}i∈[2m]. If~b = (`H,~ω1
(z1, . . . , zm), . . . , `H,~ω2m

(z1, . . . , zm)), then 〈~a,~b〉 = p(z1, . . . , zm).

We focus on the construction of polynomial commitment for univariate polynomials in monomial basis
and the other cases follow similarly. The underlying binding commitment is the Pedersen commitment over
an argument-friendly bilinear module. Then, the interactive protocol Eval is basically the scalar-product
protocol of Section 6, where the part of the witness corresponding to the vector~b is public and ~ρ1 = 0.

Construction 8.2. A polynomial commitment scheme for univariate polynomials in monomial basis is a
tuple of algorithms (G,Trim,Commit) and an interactive protocol Eval = (P,V) as follows.

• G(1λ, D, 1, uni,monomials) outputs ppR,I = (M, I, ~G′, ~G0, ~H
′, ~H0,U, ~U0), where the elements of

ppR,I are sampled as in Construction 6.5.

• Trim(ppR,I , d) outputs (ck, rk) such that ck = rk = (~G, ~G0, ~H, ~H0,U, ~U0) where ~G and ~H are the first d
elements of ~G′ and ~H′ respectively.

• Commit(ck, p; ~ρ0) outputs a hiding Pedersen commitment for the polynomial p, represented as a vector
~a ∈ML. In particular, the hiding commitment of p is of the form 〈~a, ~G〉+ ~ρ0 · ~G0 ∈MT . We ignore the
randomness ~ρ0 if we do not require a hiding polynomial commitment.

• Eval = (P(ck, p,C0, z, v; rP),V(rk,C0, z, v; rV)) follows the protocol for committed scalar product
of Section 6. Let ~b = (1, z, z2, . . . , zd) and x = (M, rPed, I, ~G, ~G0, ~H, ~H0,U, ~U0,C0,C1,Ct) with C1 =
〈~b, ~H〉, and Ct = 〈~a,~b〉 · U + ~ρt · ~U0, the prover runs PcomSP(x, (~a,~b, ~ρ0, 0, ~ρt)), and the verifier runs
VcomSP(x).

Theorem 8.3. Construction 8.2 is a polynomial commitment for univariate polynomials in monomial basis.
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sketch. We show that Construction 8.2 satisfies the completeness, extractability and hiding properties by
directly applying the corresponding lemmas of Section 6. Completeness follows directly from Lemma 6.8.

For the extractability property, we run the extractor of Lemma 6.9 for x = (M, rPed, I, ~G, ~G0, ~H, ~H0,U, ~U0,C0,C1,Ct)
to recover ~a′ and ~b′ such that cSPC0 = 〈~a′, ~G〉 + 〈~ρ0, ~G0〉, cSPC1 = 〈~b′, ~H〉 + 〈~ρ1, ~H0〉, and c2SPCt =

(〈~a′,~b′〉 mod I) · U + ~ρt · ~U0. Because of the binding property, it must be that~b′ = cSP~b and ~ρ1 = 0. Finally,
the polynomial p is equal to c−1SP~a

′ mod I , which is well-defined since cSP mod I is invertible in R∗.
For the hiding property, we use the simulator of Lemma 6.10 without the hiding factors for~b.
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A Review of the sumcheck protocol

We state the sumcheck protocol [LFKN92] and describe the soundness guarantee that it offers.

Protocol 6: sumcheck protocol (ΠSC)

The prover and verifier receive a polynomial p ∈ F[X1, . . . , X`], subset H ⊆ F, and claimed sum
τ ∈ F. The prover wishes to convince the verifier that

∑
ω1,...,ω`∈H p(ω1, . . . , ω`) = τ , and the verifier

will only have to query p at a single (random) point.
If ` = 0, then for p ∈ F, the verifier checks that p = τ . If ` > 0 then the interactive reduction works

as follows.

1. The prover P sends the polynomial q(X) ∈ F[X] to the verifier, computed as follows:

q(X) :=
∑

ω2,...,ω`∈H
p(X,ω2, . . . , ω`) .

2. The verifier V samples r ← F and sends r to the prover.
3. The verifier checks that τ =

∑
ω∈H q(ω). (If not, it rejects.)

4. The verifier outputs the new claimed sum τ ′ := q(r) ∈ F for the new polynomial p′(X2, . . . , X`) :=
p(r,X2, . . . , X`) ∈ F[X2, . . . , X`].

Lemma A.1. For any polynomial p ∈ F[X1, . . . , X`] of individual degree at most d, any H ⊆ F and any
τ ∈ F, if

∑
ω1,...,ω`∈H p(ω1, . . . , ω`) 6= τ , then the verifier of Protocol 6 accepts with probability at most

d`/|F|.
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