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Abstract. Format-Preserving Encryption (FPE) schemes accept plain-
texts from any finite set of values (such as social security numbers or
birth dates) and produce ciphertexts that belong to the same set. They
are extremely useful in practice since they make it possible to encrypt
existing databases or communication packets without changing their for-
mat. Due to industry demand, NIST had standardized in 2016 two such
encryption schemes called FF1 and FF3. They immediately attracted
considerable cryptanalytic attention with decreasing attack complexi-
ties. The best currently known attack on the Feistel construction FF3
has data and memory complexity of O(N11/6) and time complexity of
O(N17/6), where the input belongs to a domain of size N ×N .
In this paper, we present and experimentally verify three improved at-
tacks on FF3. Our best attack achieves the tradeoff curve D = M =
Õ(N2−t), T = Õ(N2+t) for all t ≤ 0.5. In particular, we can reduce the
data and memory complexities to the more practical Õ(N1.5), and at the
same time, reduce the time complexity to Õ(N2.5).
We also identify another attack vector against FPE schemes, the related-
domain attack. We show how one can mount powerful attacks when
the adversary is given access to the encryption under the same key in
different domains, and show how to apply it to efficiently distinguish FF3
and FF3-1 instances.
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1 Introduction

Standard block ciphers such as DES [19] and AES [11] are designed to encrypt
and decrypt fixed length binary strings. However, there are many cases in which
the data we want to encrypt has a different format such as a decimal number
(e.g., a social security number) or a string of English letters (e.g., a name). While
we can try to map such inputs to binary strings, we are usually faced with the
problem that the number of possible inputs is not a perfect power of 2. In these
cases, the size of the encrypted values will be larger than the size of the original
values. This can pose a severe problem when we try to protect existing databases
or communication packets which have a fixed format and whose fields cannot be
expanded even by a single bit, since we will not be able to simply replace each
original value by its encrypted version.

A solution to the problem was proposed 23 years ago by Brightwell and Smith
who introduced the concept of Format-Preserving Encryption (FPE) [10]. More
precisely, FPE is a cipher that encrypts any predefined domain into itself, even
when it is not represented as a fixed length binary string. For example, we want
that the encryption of a credit card number to look like another credit card
number, following the same syntactic restrictions on its format. FPE has been
used and deployed by numerous companies, e.g., Voltage, Veriphone, Ingenico,
Cisco, as well as by major credit-card payment organizations.

In the last 20 years, numerous FPE schemes were proposed. The first cipher to
support the FPE functionality was the AES candidate Hasty Pudding Cipher [22]
which was submitted by Schroeppel and Orman. In 2002, Black and Rogaway [8]
proposed three different methods for offering FPE functionality: Cycle walking,
prefix cipher, and a Feistel-based construction, where in cycle walking schemes
we iteratively encrypt the plaintext under the secret key, until a ciphertext that
resides in the domain is found. In 2008, Spies proposed the Feistel Finite Set
Encryption Mode (FFSEM) [24], which is an AES based balanced Feistel network
that uses the idea of cycle walking. This has become the underlying approach
for many FPE schemes.

In the subsequent years, several groups submitted to the US National Insti-
tute of Standards and Technology (NIST) proposals for FPE schemes: Bellare
et al. proposed FFX [2,3] (called by NIST “FF1”), Vance [25] proposed VAES3
(called by NIST “FF2”) and Brier, Peyrin and Stern [9] proposed BPS (whose
central component was called by NIST “FF3”). All these proposals are block
ciphers, based on types of a Feistel network.

In 2016, NIST published a special publication (SP800-38G [13]) that spec-
ified the aforementioned FF1 and FF3 as two modes of operation for format-
preserving encryption. The domain in these schemes consists of M ×N possible
inputs, but for the sake of simplicity we assume thatM = N in all our complexity
estimates.

The first analysis of FF3 was published shortly afterwards by Bellare et al. [1]
who developed an efficient message recovery attacks for small domains. A year
later, Durak and Vaudenay [12] presented at Crypto’17 a new slide attack [7]
against the FF3 scheme. The attack makes it possible to compute new cipher-
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texts, but without finding the scheme’s 128-bit cryptographic key (note that in
FPE’s the number of possible keys is typically much larger than the number of
possible plaintexts). Its data complexity of O(N11/6) is slightly smaller than the
N2 size of the codebook, and its time complexity is O(N5), regardless of the
schemes’s key size. The attack is based on the fact that the tweak-key schedule
allows for a simple related-tweak attack that reduces the number of rounds we
have to attack from 8 to only 4 rounds.

Following this attack, NIST had revised their recommendation by modifying
the way the tweak is used in the scheme, calling the new scheme FF3-1 (see
SP 800-38G Rev. 1 [14]). Despite this revision, the security of the original FF3
against slide attacks continued to stir a great deal of interest. In particular,
at Eurocrypt 2019, Hoang, Miller and Trieu [17] presented a second generation
slide attack which improved the first generation attack of Durak and Vaudenay
by using better algorithms for detecting slid pairs. The resulting attack has the
same data complexity of O(N11/6) but a greatly reduced time complexity of
O(N17/6).

1.1 Our contributions

In this paper we present three third generation slide attacks on FF3:

1. A symmetric slide attack that follows the general strategy of Hoang et al.’s
attack [17] but simultaneously improves all its complexity measures – from
D = M = N11/6 and T = N17/6 to D = M = Õ(N7/4) and T = Õ(N5/2).
It can be generalized to any point along the time/data tradeoff curve D =
M = Õ(N7/4−t) and T = Õ(N5/2+2t), for any 0 ≤ t ≤ 1/4.

2. A new type of asymmetric slide attack which exploits the asymmetry of the
classical distinguisher on 4-round Feistel schemes to reduce the complexity
even further – to D = M = Õ(N3/2) and T = Õ(N5/2), and more gener-
ally, to the tradeoff curve D = M = Õ(N2−t) and T = Õ(N2+t), for all
0 ≤ t ≤ 1/2 (including the point D = M = T = Õ(N2)). The reduction in
data complexity is especially important, since it pushes the amount of re-
quired data significantly farther from the entire codebook (Õ(N3/2) instead
of O(N11/6), out of N2), while keeping the time complexity at Õ(N5/2) –
lower than the complexity of Hoang et al.’s attack.

3. A slide attack using the cycle structure which matches the second attack at
the lowest overall complexity point – D = M = T = N2. This attack is
particularly interesting since it is the first practical application of the slide
attack using the cycle structure technique [4], which was previously believed
to be purely academic due to its huge data complexity, but can be applied
in the context of FPE schemes due to their small input domains. Its success-
ful application demonstrates the importance of developing new “theoretical”
attack techniques which are often criticized for having hopelessly high com-
plexities, since they may suddenly become practical in a different setting.

Our new attacks also utilize an improved PRF reconstruction phase. Durak
and Vaudenay presented that the actual round functions can be reconstructed
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given Õ(N10/6) input/output pairs in time O(N3) [12]. The time complexity of
the reconstruction attack was improved by Hoang, Miller, and Trieu to O(N5/3).
Both algorithms rely on finding cycles of length 3 in a graph (defined by the
data). We show an improved cycles detection algorithm (based on meet in the
middle approach), that allows finding longer cycles (in our case of length 4 and
5) while reducing the data complexity of this phase to Õ(N3/2) as well as the
time complexity to Õ(N3/2).

A comparison of the complexities of our complete attacks with the complex-
ities of previous attacks is presented in Table 1.

Attack & Complexity

Source Data Time Memory

First Generation [12] O(N11/6) O(N5) O(N11/6)

Second Generation [17] O(N11/6) O(N17/6) O(N11/6)

Symmetric Slide (Sect. 4.1) Õ(N7/4−t) Õ(N5/2+2t) Õ(N7/4−t)

Cycle Detection Slide (Sect. 4.2) N2 Õ(N2) N2

Asymmetric Slide (Sect. 4.3) Õ(N2−t) Õ(N2+t) Õ(N2−t)

Table 1: Comparison of Complete Attacks on FF3

We experimentally verified all of our attacks and their complexity (source
code is available at https://github.com/OhadAm7/FF3-code). Table 2 com-
pares the concrete number of data queries required for our asymmetric slide
attack and the second generation attack. We show that our attack outperforms
the previous state-of-the-art in all parameters.

In the last part of the paper, we introduce a new class of distinguishing
attacks that can only be applied to FPE schemes, which we call related domain
attacks. We first show that if the cipher uses cycle walking during the encryption
process of a block, then one can offer a simple key recovery attack. We then

Asymmetric Slide (Sect. 4.3) Second Generation [17])

N Number of Time Success Number of Time Success

Queries Complexity Rate Queries Complexity Rate

27 13752 218 0.58 16384 220 0.39

28 48302 220 0.69 52012 223 0.5

29 161676 223 0.69 165140 226 0.33

Table 2: A comparison of our Asymmetric Slide attack (with t = 0.5 and L = 3)
and the previous Second Generation attack

https://github.com/OhadAm7/FF3-code
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show that it is possible to apply use this type of an attack to offer efficient
and practical distinguishers on FF3 and FF3-1 using related-domain attacks.
Finally, we identify a very simple design principal which can protect any FPE
scheme from such attacks. This design principal was already used in various FPE
schemes, e.g., FF1 [14].

1.2 Paper Organization

The paper is organized as follows: We describe FF3 in Section 2. The existing
attacks against FF3 are summarized in Section 3. Our new attacks are given in
Section 4. The experimental verification of these attacks is given in Section 5. We
introduce the related-domain attack on cycle walking FPE schemes in Section 6,
and discuss a specific set of distinguishing attacks for the case of FF3 and FF3-1
in Section 7. Finally, Section 8 concludes this paper.

2 FF3

FF3 is a Format Preserving Encryption based on the FFX methodology proposed
by Brier, Peyrin, and Stern [9]. It is a Feistel construction which accepts a
plaintext in a domain of size N ×M and produces a ciphertext in that domain.
The plaintext P is divided into two parts (which we refer to as halves even though
they may have different sizes) L and R, each composed of u and v, respectively,
characters over some alphabet. In each round one half enters a PRP (a full AES
encryption) together with a tweak, the key, and a round constant (which is equal
to the round number). The output is numerically added modulo the respective
size to the other half, their roles are then swapped for the next round.1

Formally, the encryption algorithm takes a 64-bit tweak T = TL||TR, where
TL and TR are 32-bit each. Then, an 8-round Feistel construction is used, as
depicted in Algorithm 1. In each round, half of the data is encoded into 96 bits
(padding it with 0’s if needed) using the naive lexicographic transformation.2

The encoded value is appended to the XOR of the 32-bit tweak and the round
constant. The resulting 128-bit string is then encrypted under AES with the key
K. The AES’ output is then added using modular addition to the other half.

It is important to note that following the previous attacks of [12], a new
version of FF3 called FF3-1 had been proposed in [14]. In FF3-1, the tweaks
TL and TR are chosen such that they always have 0 in the 4 bits which accept
the round counter i. This tweak destroys the related-tweak slide property which
lies in the core of the slide distinguishers, and thus prevents the attack of [12],

1 As the two halves may not be of equal size, following previous works that try to
avoid possible confusion, throughout this paper we avoid the swap after the round
function.

2 FF3 is defined for strings over some alphabet; it uses the transformation
Encode96(X) which computes the location of X in the lexicographic order of all
the possible strings, and encodes this number as a 96-bit binary string.
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Algorithm 1: The Encryption Algorithm of FF3

Input : Message P of domain of size M ×N , Key K, Tweak T = TL||TR

Output: Ciphertext C of domain size M ×N
1 (L,R)← P ;
2 for i← 0 to 7 do
3 if i mod 2 = 0 then
4 L← L�AESK(Encode96(R)||TR ⊕ i) mod M ;
5 else
6 R← R �AESK(Encode96(L)||TL ⊕ i) mod N ;

7 return C ← L||R;

as well as its extensions [17] and our results presented in Section 4. All these
attacks are only applicable to the original FF3 scheme.

On the other hand, our results presented in Section 7 are independent of the
tweak schedule. Hence, the related-domain distinguishing attack applies both to
FF3 and to FF3-1.

2.1 Our Notations

Throughout the paper we use several notations related to FF3: We use the term
plaintexts and ciphertexts to refer to the inputs and outputs of 8-round FF3. As
our attacks are usually mounted on 4-round FF3, we use the term inputs and
outputs to denote those.

In addition, a plaintext is P = (L0, R0), where the values after the ith round
are (Li, Ri), i.e., the ciphertext are (L8, R8). We use LH(·) to denote the left
half of a value, and similarly RH(·) to denote the right half of a value.

The notation
(
n
2

)
is the binomial coefficients for n choose 2, which is the

number of possible pairs in a group of size x.

3 Previous Attacks

We now describe the previously published attacks against FF3. We note that
they exploit the relatively small size of the input domain, and do not attempt to
recover the 128-bit cryptographic key of the AES function. Consequently, their
complexity is stated as a function of the scheme’s domain size (which is N2 when
M = N) rather than as a function of the key size.

3.1 A Message Recovery Attack [1]

The first work analyzing FF3 is by Bellare, Hoang, and Tessaro [1]. The proposed
attack is a message recovery attack for small domain sizes. The attack takes
3 · 24 · (n + 4) · 26n data to attack FF3 with 2n-bit blocks (where each triplet
is encrypted using a single tweak value). It is based on a simple differential
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distinguisher — given an input difference (x, 0) the output difference is also
(x, 0) with a slightly higher probability than the expected probability (which is
1/(22n − 1)).

The differential characteristic is quite straightforward. Given an input dif-
ference (x, 0), the first round maintains the (x, 0) difference with probability 1.
The second round has a non-zero input difference, but with probability 2−n (or
1/M of M if not a power of 2) the round function which is a PRF has an output
difference of 0. This is an iterative differential, which suggests that the plain-
text difference (x, 0) becomes the ciphertext difference (x, 0) with probability
1/(22n − 1) + 2−4n for the 8-round FF3.

The attack is given a plaintext X ′ = (L′, R) and tries to recover the plaintext
X = (L,R) for some unknown L 6= L′. This is done by asking for the encryption
of (X,X ′) under many different tweaks (the adversary in this scenario does not
know X but can still obtain the corresponding ciphertexts). The differential
characteristic suggests that the difference of the left half of the ciphertexts is
equal to the difference in the left half of the plaintexts. As the ciphertexts can
be observed, the adversary can compute the ciphertext difference. Since the
input X ′ is known to the adversary, then the value of the left half of X can be
recovered.

A similar idea can be used to recover the right hand side. The main difference
is that only ciphertexts for which the left halves agree are used in the counting
process (as the differential characteristic in use is based on the left hand side).
The two attacks can be combined to recover an unknown X by probing its
ciphertext together with two related plaintexts X ′ and X∗ under many tweaks.
Using the relation between X and X ′ one can recover its left half, and using the
between X and X∗ one can recover the right half.

3.2 A First Generation Related-Tweak Slide and PRF Recovery [12]

The original idea of the related-tweak slide attack was proposed at Crypto’17
by Durak and Vaudenay [12]. It can reconstruct the full table of AESK(x) for
different inputs and for a given tweak, allowing the encryption/decryption of all
plaintexts/ciphertexts with that tweak (and in some cases even under additional
tweaks which are related to the original tweak).

The attack itself uses O(N11/6) adaptive chosen plaintexts (for domains of
size N × N) which are encrypted under two tweaks: T = TL||TR and T ′ =
TL ⊕ 4||TR ⊕ 4. As seen in Figure 1, for the same key, if one can write the 8-
round encryption under K with the tweak T as g ◦ f (each of 4 rounds), then
the encryption under K with the tweak T ′ is equal to f ◦ g.

As a result, if a plaintext P is partially encrypted under f (the first four
rounds of the encryption under K and T ) into P ′, then its corresponding cipher-
text, C is equal to the evaluation of g on P ′. This property continues (as C ′,
the ciphertext corresponding to P ′ is the result of applying f to C), and allows
constructing long slid chains, as suggested by Furuya [16]. For such a slid chain,
the adversary is left with attacking a 4-round Feistel construction, for which
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Fig. 1: Encryption under related-tweaks

Durak and Vaudenay present a known plaintext attack with O(N10/6) data and
O(N3) time.3

The attack algorithm, given in Algorithm 2 is as follows: First,4 N1/6 possible
chains of 2N10/6 values are generated by picking a random xi0 value, and itera-
tively encrypting it under K,T , i.e., xi1 = FF3K,T (xi0), xi2 = FF3K,T (xi1), . . ..
Similarly, N1/6 chains of 2N10/6 values are generated from random yi0 values,
iteratively encrypted under K,T ′, i.e., yi1 = FF3K,T ′(yi0), yi2 = FF3K,T ′(yi1), . . ..

Then, the attack tries each pair of starting points (xi0, y
j
t ) (for all possible

i, j, and 0 ≤ t ≤ N10/6) as if they constitute the beginning of a slid chains.
If indeed xi0 and yts are slid pairs (which suggests that f(xi0) = yjt ) then so
are the rest of the chain (i.e., f(xis) = yjt+s). Hence, the adversary obtains at
least N pairs of values for the recovery attack. If the recovery attack succeeds,
then the considered chains were indeed slid chains (not that it matters, as the
recovery part succeeded). Similarly, the attack can be applied against g(·) with
the corresponding changes.

3 There are other reconstruction attacks against Feistel ciphers, such as [20] or [6],
but these usually require a chosen plaintext attack scenario, whereas in this case, a
known plaintext attack is needed.

4 We alert the reader that [12, Sect. 5] suggests that
√
N chains of length 2N values

are needed. However, given that the function recovery attack needs N10/6 known
plaintexts, then we report, similarly to [17] the correct values.
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Algorithm 2: The Basic Attack algorithm on FF3 by Durak and Vau-
denay [12]

1 Pick at random N1/6 values xi0. Pick at random N1/6 values yi0. for all

1 ≤ i ≤ N1/6 do

2 for j = 0 to 2N10/6 − 1 do
3 Compute xij+1 = FF3K,T (xij) Compute yij+1 = FF3K,T (yij)

4 for all 1 ≤ i ≤ N1/6 do

5 for all 1 ≤ j ≤ N1/6 do

6 for all 0 ≤ t ≤ N10/6 do

7 Assume that (xi0, y
j
t ) generate slid chains.

8 Call the Function Recovery attack on f with (xi0, y
j
t ).

The function recovery attack is based on trying to recover the input/output
values for 4-round Feistel (each with a different round function). Specifically,
let the input/output of the 4-round FF3 be denoted by (L0, R0) and (L3, R4),
respectively, then this input/output pair defines four input/output pairs to the
corresponding round function. We follow previous work (and the description
of [13]) and do not perform the swap after each Feistel round):

L1 = L0 + F0(R0)

R2 = R0 + F1(L1)

L3 = L1 + F2(R2)

R4 = R2 + F3(L3)

where the Fi represent the keyed and tweaked round function.
The recovery attack starts with N3/2+1/2L, for a parameter L set to 3, in-

put/output pairs ((Li0, R
i
0), (Li3, R

i
4)) with equal L3, i.e., Li3 = Lj3 (for which

there is no difference in the input or output of F3(·)) and with the right hand
difference Ri4−R

j
4 = Ri0−R

j
0. Furthermore, a set of good pairs is defined as pairs

for which Li1 = Lj1. For these pairs

F0(Rj0)− F0(Ri0) = Lj0 − Li0 (1)

holds as well. In other words, for the good pairs, one obtains information about
the outputs of F0(·).5

Now, the attack tries to identify the good pairs using the following idea: Let
the set of vertices be all the pairs for which Li3 = Lj3. A directed edge (i, j) is

added to the graph if Li3 = Lj0 with the label Lj0 − Li0. The graph has cycles in

5 We alert the reader that there are multiple solutions to the problem of recovering
F0, F1, F2, F3. However, by fixing one value for F0 (or any other Fi), the solution
becomes unique.
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it if the sum of labels on the edges is zero (as
∑

(i,j)∈cycle L
j
0 − Li0 = 0). If the

cycle is composed only of good pairs, then we also obtain information about the
outputs of F0 (as the label on the edges that sum to zero is also the output of
the round function F0, following Equation 1).

Hence, the attack tries to find such cycles of length L. Each R0 input that
appears in such cycles can then be part of the reconstruction phase, and thus we
need all of them to be covered (i.e., appear in the graph). Moreover, we need that
any R0 input value will be connected (possibly via different cycles) to any other
R0 input value (as Equation 1 is differential in nature). Once enough inputs
to F0 are present, one can assign one output F0 arbitrarily (which defines all
the other outputs). Once F0 is (partially) recovered, the attack needs to recover
F1, F2, F3, which is a much simpler problem (which is solved either by Patarin’s
attack [21] and/or ideas very similar to the ones for the 4-round recovery attack).
Hence, the adversary takes the largest connected component found in the attack,
and runs the 3-round attack for the values that can be recovered (if the 3-round
attack fails, then at least one of the values is wrong).

Given O(N3/2+1/2L) known plaintexts, we expect O(N3+1/L) pairs, out of
which O(N1+1/L) satisfy the differential conditions (zero difference in the left
half of the ciphertext and the input of the right half of the plaintext equal to that
of the ciphertext). Hence from any of O(N) vertices, we expect about O(N1/L)
edges. In their analysis, Durak and Vaudenay show that a cycle of length L = 3 is
sufficient. To detect these cycles, they just use the Floyd-Warshall algorithm [15]
that takes O(N3) for L = 3.

Finally, Durak and Vaudenay noted that there is a non-trivial tradeoff be-
tween the number of vertices/edges in the graph and the success rate: If there
are too few edges (i.e., too little pairs to begin with), then the chance that F0

is recovered is small (as there are only small connected components). On the
other hand, if there are too many edges, then besides the cycles of good pairs,
we expect to find many cycles of bad pairs as well (which cause the failure of
the recovery attack and waste time).

3.3 A Second Generation Related-Tweak Slide and PRF
Recovery [17]

The attack of Hoang, Miller and Trieu [17] improves the attack of Durak and
Vaudenay using two main ideas: The first idea is to improve the detection of
slid chains. The second idea is an improved (and more suitable) cycles detection
algorithm, which allows for better complexity.

The improved detection of slid pairs is done using the ideas presented in [4]
of identifying the respective offset of a slide using a differential distinguisher
(which were further developed in [5]). They rely on the existence of a bias in the
probability of the differential characteristics (x, 0) → (x, 0), as for the correct
shift between the chains, the number of pairs with input difference (x, 0) having
ciphertext difference (x, 0) is higher than when the shift is wrong.

Hence, the slid chains are identified not by running an attack but rather by
an auxiliary distinguisher. Instead of running the full recovery attack for each
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possible slid chains and possible offsets, the attack is repeated fewer times (about
O(N) for the parameters considered in [17]).

The combination of the slide with the differential is as follows: CollectO(N1/6)
chains of length O(N5/3) each under T and under T ′. For each pair of candidate
slid chains (and respective offset) check whether the differential distinguisher
succeeds, namely, check whether the input difference (x, 0) leads to the output
difference (x, ?) with probability of (2N − 1)/N2 which is about twice as high
as for the random case.

The distinguisher accepts m candidate input/output pairs (the inputs en-
crypted under T and the outputs under T ′). These m input values are then
divided into d bins according to the value of Ri0. In each bin, all the inputs have
the same value in the right hand side, and thus, input difference of 0 in that half.
We note that bins with many such values offer many pairs, and thus can be used
for the next step of the attack. For each bin with many inputs, the distinguisher
checks how many times the difference in the left half of the inputs is equal to
the difference in the left half of the outputs. The threshold was chosen to be
1/5 · 2N−1N2 + 4/5 · N

N2−1 of the number of candidate pairs.
We note that this threshold was chosen so that the probability of right slid

chains to fail is negligible (i.e., O(1/
√
N)) and that chance for a random permu-

tation to pass the distinguisher is also O(1/
√
N). The latter claim is obtained

using Chebyshev’s inequality that suggests that the probability that the counter
is k standard deviations larger than the mean value is at most 1/k2. The standard
deviation is then upper bounded using the Cauchy-Schwartz inequality based on
the sizes of the different bins.

The chains in use are of length O(N5/6) and as in Durak and Vaudenay’s
attack one needs to consider O(N2) possible pairs of chains and corresponding
offsets. Moreover, for each such possible chains and offsets, one can apply the
same distinguisher for the last four rounds of FF3 (i.e., treating the outputs as
inputs to four round FF3). Hence, a wrong chain/offset is expected to pass the
two distinguishers with probability of at most O(1/N). The time complexity of
this part is O(N17/6) and it dominates the running time of the attack.

The second idea is to offer a better PRF reconstruction attack that runs in
time O(N5/3) instead of Durak and Vaudenay’s original O(N3). As it targets
cycles of length 3, the Triangle-Finding algorithm puts the input/output pairs
in a hash table indexed by Li3 ⊕ Li0||Ri0. Any collision in the table offers a pair
of input/output pairs

((Li0, R
i
0), (Li3, R

i
4)), ((Lj0, R

j
0), (Lj3, R

j
4))

Each of them has an edge in the graph.
The attack then starts from an edge in the graph. This edge defines the two

nodes which are connected. In the case of a triangle, the two nodes define the
requirement from the third node (as the sum of the labels is 0). Hence, it is
a simple matter to check whether there is such a third node in the data, i.e.,
whether the edge the attack starts from is indeed part of a good triangle.

As the attack is repeated O(N) times, and takes O(N5/3), this part of the
attack takes O(N8/3) time in total.
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4 Improved Attacks on FF3

Similarly to Hoang et al.’s attack, our attack uses two subroutines: Identifica-
tion of the correct slid chains and a PRF reconstruction phase. We offer three
methods to identify the correct slid chains: The first method follows Hoang et
al.’s approach which we call symmetric slide attack. Our improved version uses
Õ(N7/4) data and Õ(N5/2) time, and is described in Section 4.1. We also extend
this distinguisher with a time-memory tradeoff attack for which Õ(N7/4−t) data
is used with time of Õ(N5/2+2t) for t ∈ [0, 1/4]. The second method, described
in Section 4.2, uses a cyclic structure of slid pairs (as proposed in [4]), resulting
in data and time complexities of O(N2). The third method uses an asymmetric
slide attack, it also offers a time-data tradeoff with Õ(N2−t) data and Õ(N2+t)
running time. Its memory complexity is Õ(N2), and is described in Section 4.3.

The PRF reconstruction, described in Section 4.4, is the same for all slid
chain identification variants. Our PRF reconstruction procedure follows the same
general idea suggested by [12,17], i.e., based on cycles. At the same time, we
introduce a meet in the middle approach to the recovery itself, which significantly
reduces its running time, thus allowing the use of larger cycles (which results in
reducing the data, and hence, the time complexities).

4.1 Symmetric Slide Attack

In this attack, our data is composed of 2 sets of Õ(N1/4) chains, each containing
Õ(N3/2) plaintexts. Similarly to [12,17], the first set of chains are encrypted
under K and T and the second set is encrypted under K and T ′.

We iterate over all Õ(N1/2) pairs of chains created by taking a chain from
each set. For each such pair of chains, we slid the first chain across the second one
for Õ(N3/2) different offsets. For each of the Õ(N2) resulting offsets, we utilize a
distinguishing attack to checking whether the candidate slid chains (with offset)
corresponds to 4 rounds of FF3 or not.

Actually, the distinguisher we use is very similar in nature to that of [17]. We
rely on the fact that the truncated differential characteristic (x, 0) → (x, ?) for
4-round FF3 has probability of about 2/N rather than 1/N for the random case.
Unlike [17] that divided the datasets between bins (according to the x value) and
counted how many of them had “more pairs than expected in the random case”,
we argue that a single counter is sufficient (and more efficient). Namely, given m
pairs with input difference (x, 0) we expect 2m/N pairs with output difference
(x, ?) (compared with m/N for a random permutation).

The number of pairs that follow the truncated differential is distributed ac-
cording to the Poisson distribution. Hence, m = O(N log(N)) = Õ(N) is suf-
ficient to distinguish between the two distributions — one Poisson distribution
with parameter λ = m/N and another with parameter λ = 2m/N .

The above fact can also be explained by the following probabilistic explana-
tion: Each pair with the required input difference has probability of about 2/N
for 4-round FF3 or 1/N for a random permutation to have the required out-
put difference. Hence, we can assign an indicator variable to whether a given
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pair satisfies the differential. As all the indicators are independent (recall that
4-round Feistel is a PRP [18]) we can use the Chernoff bound: For the ran-
dom permutation, the probability that the sum of indicators (which in our case
corresponds to the number of pairs that satisfy the differential) is greater than
(1 + δ)m/N is no more than (eδ/(1 + δ)1+δ)m/N . For m = c ·N logN this bound
is (eδ/(1 + δ))c. Setting δ = 0.5 this upper bound becomes 0.897c·logN . For ex-
ample, taking c > 5 means that less than 1/

√
N of the sums of indicators for

random permutations are greater than 1.5 · 5 · logN . The optimal threshold be-
tween the two distributions can be found either experimentally or by analyzing
the Poisson distribution.

We note that similarly to [17], we can run the distinguisher twice: Once
for the first 4 rounds, and another time for the second 4 rounds. Hence, the
probability of a wrong slid chain to pass the distinguisher is less than 1/N .

In contrast, for a 4-round FF3, the mean value for the sum of indicators
is 2 · c logN . Again, the number of right pairs is expected to be higher than
1.5 · c logN with high probability. This again can be achieved by a Chernoff
analysis or by studying the Poisson distribution. However, as mentioned before,
it is sufficient to set the threshold based on experiments (which confirm the
Poisson distribution).

The attack follows the footsteps of [17], but with a significantly smaller num-
ber of pairs needed for the distinguisher as the statistical significance is larger.
Hence, we start by taking Õ(N1/4) chains of length Õ(N3/2) each.

In each such chain, we insert all values (Li0, R
i
0) into a hash table according

to the value of Ri0. As there are Õ(N3/2) values in the chain, we expect one of
the bins to contain about Õ(N1/2) values, which suggest Õ(N) pairs, all with
input difference (x, 0). In practice, we need to take a constant number of bins.6

We take the actual values of Li0, and use them as the candidate inputs.
Then for each candidate chain (out of Õ(N1/4) of them) and candidate offset

(out of possible Õ(N3/2) offsets) we extract the corresponding Õ(N1/2) values
which may serve as the candidate outputs for the above Õ(N1/2) inputs, denoted
by (L̂i3, R̂

i
3). Then, for each bin, we store in a hash table the values L̂i3 − Li0,

where each collision suggests a pair of inputs with difference (x, 0) (the right-
hand zero difference is guaranteed by the way the inputs were chosen) and the
corresponding outputs have difference x in the left hand side. Hence, we can test
in time Õ(N1/2) whether two chains are slid chains in a given offset.

The resulting algorithm, given in Algorithm 3 takes Õ(N3/2) data and Õ(N2.5)
time.

Offering a Time-Data Tradeoff We can offer a time-data tradeoff for the
improved symmetric slide attack. The distinguisher takes Õ(N7/4−t) data and
has a running time of Õ(N5/2+2t) for t ∈ [0, 1/4].

The attack is based on taking shorter chains as in [17], but more of them.
Given that the chains are shorter (of length Õ(N3/2−2t)) we need to collect
plaintexts from N4t bins to obtain enough pairs for the distinguisher. Then,

6 Taking the 8 largest bins is empirically shown to suffice.
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Algorithm 3: Improved Symmetric Slide Distinguisher for FF3

Input : Õ(N1/4) chains Cr of Õ(N3/2) plaintexts encrypted under K and
T = TL||TR

Input : Õ(N1/4) chains Ĉs of Õ(N3/2) plaintexts encrypted under K and
T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains Ci, Ĉj and their respective offset

1 for all chains Cr do
2 Initialize a hash table H1

3 Insert all the plaintexts (Li
0, R

i
0) ∈ Cr into H1 indexed by Ri

0

4 Take a constant number d of bins (each with O(
√
N) plaintexts)

5 Denote the plaintexts by Xi1 , Xi2 , . . . , Xiv

6 for all chains Ĉs do

7 for all respective offsets u = 0, . . . , N3/2 do

8 Extract (L̂u+i1
0 , R̂u+i1

0 ), (L̂u+i2
0 , R̂u+i2

0 ),. . . , (L̂u+iv
0 , R̂u+iv

0 ) from Ĉs

9 Denote these values as “ciphertexts” Ci1 , Ci2 , . . . , Civ

10 Initialize d hash tables Hj
2

11 for all k=1,. . . ,v do
12 if Xik is from bin j then

13 Store in Hj
2 the value LH(Cik )− LH(Xik )

14 Count the number of collisions in all Hj
2

15 if number of collisions is greater than 1.6
N
·ΣB∈bins

(|B|
2

)
then

16 Call the PRF-recovery procedure with Cr as inputs and Ĉs

shifted by u as the outputs.

when we process the second chain, we only consider a pair of outputs if they
correspond to plaintexts from the same bin.

Repeating the above analysis shows that each step has to deal with shorter
chains, but repeated more times. The result is indeed an attack whose data
complexity is Õ(N7/4−t) data and has a running time of Õ(N5/2+2t) for t ∈
[0, 1/4]. The resulting algorithm is given in Algorithm 4.

The extreme case, with the minimal amount of data Õ(N3/2), uses all the
bins. The resulting attack uses Õ(N1/2) chains of length Õ(N). For each such
chain, we insert all the plaintexts into a hash table indexed by the value of
Ri0, identify the Õ(N) pairs (out of Õ(N2) possible ones) with input difference
(x, 0). Then, for any candidate chain counterpart (and any of the Õ(N) possible
offsets), we take the Õ(N) corresponding values as ciphertexts, and check how
many times the output differences are indeed x in the left half.

In other words, for each pair of candidate slid chains and offset, we just
collect all the Õ(N) pairs of inputs with difference (x, 0) and test whether the
corresponding outputs have difference x with the bias predicted for 4-round FF3.
Identifying the pairs can be done in time Õ(N) using a hash table. Hence, as
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there are Õ(N) pairs of slid chains, each with Õ(N) possible offsets, the total
running time of the distinguisher is Õ(N3).

There are two technical details to note: First, the PRF reconstruction attack
described in Section 4.4 requires Õ(N3/2) input/output pairs for the 4-round
FF3 construction. As a result, in attacks that use shorter chains, we need to
ask for the extension of the identified slid chains. Luckily, in an adaptive chosen
plaintext and ciphertext attack scenario, that merely means we need to ask for
at most two chains of Õ(N3/2).

Second, while previous distinguishing attacks were sufficiently good when
the probability of a wrong chain to pose a slid chain was 1/

√
N , we need a

better filter. This filter is needed as to avoid the increase in the data complexity
explained earlier. Hence, we need to ask that the probability of a wrong candidate
to pass the distinguisher is no more than (1/N1−t). The distinguisher can be
applied twice, and thus out of the N2 wrong slid chains/offsets, we get Õ(N2t)
candidate slid chains. This is sufficient to ensure the complete attack does not
use more than Õ(N7/4−t) data and O(N5/2+2t) time.

Algorithm 4: Time-Data Tradeoff Variant of the Symmetric Slide for
FF3

Input : Õ(N1/4+t) chains Cr of Õ(N3/2−2t) plaintexts encrypted under K
and T = TL||TR

Input : Õ(N1/4+t) chains Ĉs of Õ(N3/2−2t) plaintexts encrypted under K
and T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains Ci, Ĉj and their respective offset

1 for all chains Cr do
2 Initialize a hash table H1

3 Insert all the plaintexts (Li
0, R

i
0) ∈ Cr into H1 indexed by Ri

0

4 Take O(N4t) bins (each with O(N1/2−2t plaintexts)
5 Denote the plaintexts by Xi1 , Xi2 , . . . , Xiv

6 for all chains Ĉs do

7 for all respective offsets u = 0, . . . , N3/2−2t do

8 Extract (L̂u+i1
0 , R̂u+i1

0 ), (L̂u+i2
0 , R̂u+i2

0 ),. . . , (L̂u+iv
0 , R̂u+iv

0 ) from Ĉs

9 Denote these values as “ciphertexts” Ci1 , Ci2 , . . . , Civ

10 Initialize O(N4t) hash tables Hj
2

11 for all k=1,. . . ,v do
12 if Xik is from bin j then

13 Store in Hj
2 the value LH(Cik )− LH(Xik )

14 Count the number of collisions in all Hj
2

15 if number of collisions is greater than 1.6
N
·ΣB∈bins

(|B|
2

)
then

16 Ask for the extension of Cr and Ĉs to Õ(N3/2) values.

17 Call the PRF-recovery procedure with Cr as inputs and Ĉs

shifted by u as the outputs.
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4.2 Cycle Structure Attack

The second attack follows the footsteps of [4] to find candidate slid chains. Con-
sider a related-tweak slid pair (L0, R0) and (L̂0, R̂0), i.e., 4-round FF3 with the
key K and T partially encrypts (L0, R0) into (L̂0, R̂0). If we start a chain of
encryption from (L0, R0), we are assured to reach (L0, R0) again after some
number of encryptions t ≤ N2. Due to the slid property, the same is true also
for (L̂0, R̂0), i.e., after t encryptions under K and T ′, we are assured to reach
(L̂0, R̂0) again. It is easy to see that this value does not repeat before t encryp-
tions (as otherwise, (L0, R0) would also close the chain earlier). Hence, there is
no point to check whether two chains can be slid chains, if their cycle length is
not equal.

The attack thus tries to find chains which are actually cycles, of length
Õ(N3/2) (as this is the amount of data needed for the PRF reconstruction).
We note that following Shepp and Lloyd’s results [23] it is reasonable to assume
that (a) such a cycle exists, and (b) that it is unique. Of course, if by chance the
unlikely event happens, and there are two cycles in the encryption under K and
T of exactly the same length of Õ(N3/2), we can just try all pairs of chains, or
just take the next larger cycle.

Once this pair of cycles is identified, one can run the distinguisher used before
for all possible Õ(N3/2) offsets. As the cost of the distinguisher is Õ(N1/2), the
total time complexity needed to identify the exact offset between the chains
is Õ(N2). When the correct offset is identified, it is possible to run the PRF
reconstruction attack as we have obtained Õ(N3/2) input/output pairs for 4-
round FF3.

Given that the PRF reconstruction takes Õ(N3/2) time, we can call it at most
Õ(
√
N) times. This requires that the filtering is set such that the probability

of a random permutation to pass the threshold be below Õ(1/
√
N) (as the

distinguisher can be applied twice in each offset, this rate is sufficient to discard
all but a fraction of Õ(1/N) of the wrong offsets).

The data complexity of the attack is about O(N2) encryptions: An adaptive
chosen-plaintext attack would be based on picking a random plaintext, gener-
ating a cycle from it, and then, check whether the cycle has the right length.
If not, an unseen plaintext needs to be picked, and the process is repeated. It
is easy to see that the process is expected to finish after exploring almost all
plaintexts (as most of the values lie in the larger cycles, e.g., the largest one of
size about (1− 1/e) ·N2). A simple analysis suggests that about Õ(N3/2) of the
values remain “unseen” once the cycle of length Õ(N3/2) is identified.

Another approach is to collect N2 −
√
N known plaintext pairs. If all the

values in the cycle of length Õ(N3/2) are not in the missing
√
N ones, which

happens with constant probability, then the cycle can be identified and used for
the attack.

Hence, to conclude, this first phase of the attack (for the detection of slid
pairs) takes data O(N2) and time Õ(N2). The resulting attack algorithm is given
in Alg. 5 (we describe the known plaintext variant, but it is very similar to the
adaptive chosen plaintext one).
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Algorithm 5: The Cycle Structure Slide Distinguisher for FF3

Input : N2 −N known plaintexts (P i, Ci) encrypted under K and
T = TL||TR

Input : N2 −N known plaintexts (P̂ i, Ĉi) encrypted under K and
T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains C, Ĉ

1 Initialize a bitmap B of N2 bits to 0.

2 while no cycle C of size Õ(N3/2) was found do
3 Pick the first plaintext whose bit is not set in B — P0.
4 Set B[P0] = 1, Set t = 0
5 repeat
6 Set Pt+1 = Ct(= EK,T (Pt))
7 if Pt+1 is not in the dataset then
8 break (goto 2)

9 Set B[Pt+1] = 1; Set t = t+ 1

10 until Pt = P0;

11 if t = Õ(N3/2) then
12 Set C to be P0, P1, . . . , Pt−1

13 Initialize a bitmap B of N2 bits to 0.

14 while no cycle Ĉ of size t was found do

15 Pick the first plaintext whose bit is not set in B — P̂0.

16 Set B[P̂0] = 1, Set s = 0
17 repeat

18 Set P̂s+1 = Ĉs(= EK,T (P̂s))

19 if P̂s+1 is not in the dataset then
20 break (goto 2)

21 Set B[P̂s+1] = 1; Set s = s+ 1

22 until P̂s = P̂0;

23 Set Ĉ to be P̂0, P̂1, . . . , P̂t−1

24 for all possible offsets do

25 Call the differential distinguisher for any offset between C and Ĉ
26 if the distinguisher succeeds then

27 Call the PRF reconstruction attack with C,Ĉ, and the offset

4.3 Asymmetric Slide Attack

The new attack follows the footsteps of the low data distinguisher presented in
Section 4.1, but offers an improved distinguishing algorithm as well as a tradeoff
curve. The data and memory complexity of the attack is Õ(N2−t) with time
complexity Õ(N2+t) for t ∈ [0, 1/2].

This related-tweak slide differential distinguisher uses the minimal amount
of pairs (O(N logN)) similarly to the one of Section 4.1. The key element in it is
the algorithmic gain, coming from searching the pairs from the plaintext’s side.
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Consider an input chain of Õ(N) values. We preprocess the chain by com-
puting for each of the Õ(N) input pairs with a common right half Pi, Pj the
value LH(Pj)−LH(Pi), j − i and storing it in a hash table. In other words, we
store for each pair the difference in the left half and the location difference. To
prepare this table, we need Õ(N) memory, where each cell contains about Õ(1)
values.7 The table can be calculated in Õ(N) time by using a supporting hash
table keyed according to the right-hand-side of the plaintexts.

From the output side, we take a chain of length Õ(N). We initialize Õ(N)
counters to zero. Then, we can compute for each such pair (Ci′ , Cj′) the value
(LH(Cj′) − LH(Ci′), j

′ − i′), and find the offset it proposes in the table. We

then increment the Õ(1) counters related to the offset.8 For the correct offset
the amount of pairs that “succeed” is expected to be 2m/N out of m pairs,
compared with m/N for wrong offsets (or wrong chains). If the preprocessed
input chains are all keyed into the same hash table, this search can be done
simultaneously against all Õ(N1−t) of them, taking only Õ(N2) time per output
chain.

The attack is thus based on taking Õ(N t) output chains of length Õ(N) and
Õ(N1−t) input chains of length Õ(N). For each input chain we perform Õ(N)
preprocessing. Then we try Õ(N t) chains in time Õ(N2+t), i.e., a time of Õ(N2)
per output chain. This results in time complexity of N2+t and data complexity
which is max{Õ(N1+t), Õ(N2−t)} (which if t ∈ [0, 1/2] suggests Õ(N2−t). The
memory complexity is comprised of Õ(N1−t) preprocessed plaintext tables of
size Õ(N) each, meaning Õ(N2−t) in total (the amount of counters in the in the
sliding part of the attack is also Õ(N2−t)).

The full attack algorithm is given in Algorithm 6.

4.4 The PRF Reconstruction Procedure

Our PRF reconstruction procedure follows the foot steps of Durak and Vaudenay
and of Hoang et al. We use a graph where cycles are searched for. We follow
Hoang et al.’s approach, and call the PRF reconstruction fewer times than there
are candidate slid chains. However, to reduce the data and time complexities of
our attack (which is needed as our slid chain detection is more efficient) we use
cycles of larger size, i.e., we pick L = 4 and L = 5 rather than L = 3.

This means that for finding sufficiently large connected component between
all the values, it is sufficient that from any node in the graph, there will be only
Õ(N1/L) outgoing edges (instead of Õ(N1/3) needed for L = 3).

Hence, we are left with the problem of finding cycles of length L in a graph
of Õ(N) nodes, with an average out degree of Õ(N1/L). Our algorithm just

7 The number of actual values per cell follows a Poisson distribution, i.e., there may
be a few cells with Õ(logN) values.

8 We note that the table is expected to have 1 value on average in each cell. However,
the actual number is distributed according to a Poisson distribution with this mean.
Hence, some cells will be empty, and a few will have several possible offsets. When
there are multiple offsets, we just increment all the counters corresponding to the
offsets.
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Algorithm 6: The Asymmetric Slide Distinguisher for FF3

Input : Õ(N1−t) chains Cr of q = Õ(N) plaintexts encrypted under K and
T = TL||TR

Input : Õ(N t) chains Ĉs of q = Õ(N) plaintexts encrypted under K and
T ′ = TL ⊕ 4||TR ⊕ 4

Output: Slid chains Ci, Ĉj and their respective offset

1 Initialize a hash table H1

2 for all chains Cr
k ∈ Cr do

3 for all i, j where Rj
k = Ri

k do

4 Store in H1 in location (j − i, Lj
k − L

i
k) the value (k, i)

5 for all chains Ĉs
k′ ∈ Ĉs do

6 Initialize Õ(N2−t) counters

7 for all i′ = 0, 1, . . . , Õ(N) do

8 for all j′ = i′ + 1, i′ + 2, . . . , Õ(N) do

9 for all k, i ∈ H1[j′ − i′, Lj′

k′ − Li′

k′ ] do
10 if i′ < i then
11 Increment the counter of chain k and offset i− i′

12 Identify k, v such that counter[k][v] is maximal
13 if counter[k][v] > 1.6 ·

(
q
2

)
· 1
N2 then

14 Ask for the extension of Cr
k and Ĉs

k to Õ(N3/2) values.

15 Call the PRF reconstruction with the chains Cr
k , Ĉ

s
k′ , with offset v

performs a simple meet in the middle procedure: From each node we detect all
possible Õ(N1/L)bL/2c nodes in distance bL/2c, and then detect all the possible
Õ(N1/L)dL/2e nodes in distance minus dL/2e (i.e., when walking on the reversed
edges graph) and find a collision between these sets (which correspond to a cycle
of length L).

Similarly to [12,17], once the cycles are found, all the involved nodes are
assumed to be good nodes, and they can be used to determine values for F0.
Heuristically, we found out that filling in 1/3 · log(N)

√
N values of F0 gives a

high chance of success for the recovery attack on F1, F2, F3 (exactly as proposed
in [17]). If indeed the reconstruction is consistent with the slid chains, then we
continue to reconstruct the missing values in F0 (as we know the full F1, F2, F3),
and apply the recovery attack to the second half (i.e., swapping the order of the
slid chains w.r.t. input/output).

On the other hand, if the results are inconsistent with the slid chain, we
try a different value to start the assignment from (from a different connected
component), or try a different slid chain (when there are other candidates). This
part is similar to that of [17].
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5 Experimental Verification

We implemented all of our attacks and experimentally verified their correctness
and success probability. The code and instructions to reproduce our results is
available at https://github.com/OhadAm7/FF3-code.

5.1 Experimental Verification of the Symmetric Slide Attack

We experimentally verified the full implementation of the symmetric slide attack
(described in Section 4.1) for both t = 0.25 and t = 3

4log(N) (which leads to using

8 bins in the distinguisher). We tested the attacks for various values of N = 2n

(n is half the bit size of the encryption domain) and various cycle sizes L. To
calculate each attack’s overall success probability for each parameter choice, we
repeated the attacks 100 times using different random keys and tweaks. The
results can be seen in Table 3 and Table 4.

“PRF Reconstruction” in the following tables denotes the success rate of
the PRF Reconstruction subroutine over all calls. “Combined Reconstruction”
denotes the rate at which both calls to the PRF Reconstruction subroutine for
a single slide succeed, resulting in the full codebook being recovered.

Note that the PRF reconstruction rate for smaller domain sizes is lower
than expected. This is due to overlap between the different chains that mean
there is a correlation between multiple reconstruction attempts. As we continue
trying different chains after failed reconstruction attempts but stop after the
first successful one, the reconstruction rate is skewed to lower values.

5.2 Experimental Verification of the Cycle Structure Attack

We also tested the cycle structure attack (described in Section 4.2) for various
values of N = 2n and L. These experiments were also repeated 100 times each
using random keys and tweaks. The results are presented in Table 5.

Note that the success rate has a slight drop above N = 29. This is due to
runs that fail to find a cycle of length between q and e2q (where q is some Õ(N

3
2 )

required for the distinguisher). With our parameters, e2q > N2 so there is no
upper bound, and the probability of finding a cycle is very high. For N > 29 the
probability drops to a constant but lower probability.

5.3 Experimental Verification of the Asymmetric Slide Attack

We also performed experimental verification of the Asymmetric Slide Attack
(described in Section 4.3). This was tested both for a constant number of ci-
phertext chains (3) and for t = 0.5. We ran both experiments for 100 times each
on random keys and tweaks. The results are presented in Table 6 and Table 7,
respectively.

https://github.com/OhadAm7/FF3-code
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N L Queries Success PRF Combined Distinguisher Distinguisher
Rate Reconstruction Reconstruction (Cipher) (Rand)

26 3 3679 0.26 0.527 0.286 0.919 1.0

27 3 12631 0.35 0.798 0.614 0.891 1.0

28 3 41578 0.37 0.963 0.925 0.93 1.0

29 3 203414 0.79 1.0 1.0 0.952 1.0

210 3 695431 0.76 1.0 1.0 1.0 1.0

26 4 3679 0.12 0.34 0.128 0.922 1.0

27 4 12631 0.14 0.484 0.226 0.912 1.0

28 4 41546 0.22 0.744 0.564 0.929 1.0

29 4 201246 0.75 0.963 0.926 0.953 1.0

210 4 670125 0.75 1.0 1.0 1.0 1.0

26 5 3679 0.0 0.042 0.0 0.922 1.0

27 5 12631 0.0 0.07 0.0 0.901 1.0

28 5 41546 0.0 0.025 0.0 0.93 1.0

29 5 201246 0.02 0.182 0.015 0.971 1.0

210 5 670125 0.31 0.557 0.32 1.0 1.0

Table 3: Symmetric Slide Attack Experiment Results (num bins = 8.0)

N L Queries Success PRF Combined Distinguisher Distinguisher
Rate Reconstruction Reconstruction (Cipher) (Rand)

26 3 3608 0.24 0.53 0.242 0.915 0.999

27 3 13472 0.49 0.765 0.59 0.896 0.999

28 3 48432 0.66 0.971 0.943 0.928 1.0

29 3 173349 0.69 1.0 1.0 0.921 1.0

210 3 594010 0.73 1.0 1.0 1.0 1.0

26 4 3492 0.11 0.283 0.096 0.909 0.998

27 4 12932 0.26 0.5 0.255 0.892 0.999

28 4 44252 0.5 0.799 0.61 0.924 1.0

29 4 154090 0.67 0.965 0.931 0.921 1.0

210 4 516131 0.74 1.0 1.0 1.0 1.0

26 5 3416 0.0 0.031 0.0 0.908 0.999

27 5 12438 0.0 0.021 0.0 0.895 0.999

28 5 42902 0.0 0.057 0.0 0.929 1.0

29 5 150015 0.04 0.163 0.033 0.949 1.0

210 5 488380 0.31 0.548 0.27 0.984 1.0

Table 4: Symmetric Slide Attack Experiment Results (t = 0.25)
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N L Queries Success PRF Combined Distinguisher Distinguisher
Rate Reconstruction Reconstruction (Cipher) (Rand)

26 3 3851 0.24 0.542 0.289 0.874 1.0

27 3 15386 0.61 0.824 0.67 0.929 1.0

28 3 60686 0.89 0.954 0.908 0.98 1.0

29 3 244674 0.99 1.0 1.0 0.99 1.0

210 3 948308 0.9 1.0 1.0 0.978 1.0

211 3 3825251 0.85 1.0 1.0 0.988 1.0

212 3 16303811 0.86 1.0 1.0 1.0 1.0

26 4 3851 0.05 0.307 0.06 0.874 1.0

27 4 15386 0.18 0.462 0.198 0.929 1.0

28 4 60686 0.7 0.837 0.714 0.98 1.0

29 4 244674 0.91 0.965 0.929 0.99 1.0

210 4 948308 0.78 1.0 1.0 0.975 1.0

211 4 3923124 0.88 1.0 1.0 1.0 1.0

212 4 16366382 0.88 1.0 1.0 0.989 1.0

26 5 3851 0.01 0.072 0.012 0.874 1.0

27 5 15386 0.0 0.027 0.0 0.929 1.0

28 5 60686 0.01 0.102 0.01 0.98 1.0

29 5 244674 0.04 0.187 0.04 0.99 1.0

210 5 948308 0.2 0.538 0.256 0.975 1.0

211 5 3923124 0.62 0.841 0.705 1.0 1.0

212 5 16366382 0.86 0.989 0.977 0.989 1.0

Table 5: Cycle Structure Attack Experiment Results (num bins = 8.0)

6 A New Class of Attacks on Cycle Walking FPE
Schemes

In this section we point out that generic FPE schemes which are based on the
cycle walking idea may be highly vulnerable to a new class of attacks which
we call Related Domain Attacks. These attacks are similar to related key or
related tweak attacks, but can only be applied to FPE schemes in which we can
dynamically change the declared size of the input domain.

To demonstrate the basic form of these attacks, consider an iterated FPE
scheme which consists of an arbitrarily large number k of round functions, each
one of which is a different keyed permutation over the input domain. Further-
more, we assume that the round function itself takes a value from a domain of
size N and processes it using the cycle walking idea. In other words, the round
function may cause the value to be outside the domain, in which case the same
round function is applied again and again until the value resides again in the do-
main. For the sake of discussion, we assume that extracting the secret key from
known or chosen plaintext/ciphertext pairs is infeasible, but that each keyed
round function by itself is sufficiently simple that finding the key from the two-
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N L Queries Success PRF Combined Distinguisher
Rate Reconstruction Reconstruction Success Rate

26 3 3863 0.31 0.5 0.295 0.417

27 3 13883 0.47 0.709 0.527 0.368

28 3 52526 0.63 0.921 0.9 0.326

29 3 193894 0.7 0.959 0.959 0.339

210 3 752222 0.63 0.955 0.955 0.304

211 3 2946123 0.7 1.0 1.0 0.344

26 4 3828 0.12 0.303 0.101 0.436

27 4 13775 0.2 0.451 0.194 0.373

28 4 51264 0.51 0.794 0.637 0.327

29 4 190204 0.68 0.929 0.883 0.347

210 4 733040 0.64 0.97 0.97 0.302

211 4 2874664 0.7 0.986 0.986 0.344

26 5 3824 0.0 0.035 0.0 0.435

27 5 13622 0.0 0.047 0.0 0.39

28 5 51099 0.0 0.078 0.0 0.34

29 5 189543 0.07 0.225 0.069 0.354

210 5 733453 0.28 0.562 0.35 0.297

211 5 2868815 0.53 0.813 0.639 0.355

Table 6: Asymmetric Slide Attack Experiment Results with constant number of
3 ciphertext chains

round version of this scheme is practically doable (this assumption is similar in
nature to that of the slide attack [7]).

Assume further that the permutation P used in each round follows the cycle
walking paradigm: If we declare that the input domain is {1, 2, . . . , N}, then for
any input x which is in this domain, we output the first value y that follows
x along its cycle in P which is in the domain (possibly going all the way until
we reach x again). This guarantees that all the intermediate values encountered
during the encryption are valid values in the domain, and that any such y can
be uniquely decrypted to x.

The related domain attack uses two very similar domains: The first one is
defined as {1, 2, . . . , N} and the second one is defined as {1, 2, . . . , N−1}. When
we use a keyed round permutation on the first domain, we skip over all the
possible values of the permutation which are larger than N . When we use the
same keyed round permutation on the second domain, we skip over all the values
which are larger than N−1. The two permutations are almost identical, and the
only difference between them is related to the single value N which is allowed in
the first permutation but forbidden in the second permutation. More specifically,
given the preimage of N in the first permutation, we compute its output as N
in the first permutation, but as the postimage of N in the second permutation.
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N L Queries Success PRF Combined Distinguisher
Rate Reconstruction Reconstruction Success Rate

26 3 3856 0.34 0.47 0.252 0.408

27 3 13752 0.58 0.766 0.615 0.268

28 3 48302 0.69 0.934 0.908 0.182

29 3 161676 0.69 0.932 0.932 0.142

210 3 543516 0.77 0.891 0.885 0.129

211 3 1769542 0.79 0.975 0.975 0.09

26 4 3828 0.18 0.315 0.116 0.404

27 4 13757 0.26 0.432 0.195 0.292

28 4 46880 0.54 0.787 0.621 0.181

29 4 153589 0.68 0.914 0.895 0.139

210 4 504930 0.8 0.982 0.976 0.128

211 4 1624932 0.81 0.988 0.988 0.092

26 5 3808 0.0 0.04 0.0 0.418

27 5 13702 0.0 0.047 0.0 0.296

28 5 47486 0.01 0.081 0.007 0.194

29 5 153608 0.08 0.25 0.068 0.137

210 5 498716 0.3 0.5 0.254 0.111

211 5 1564668 0.7 0.863 0.737 0.087

Table 7: Asymmetric Slide Attack Experiment Results (t = 0.5)

To apply our new adaptive chosen message attack, we perform the full k -
round encryption of N in the first domain, getting the ciphertext z = E1(N).
With high probability, z is different than N , and thus we can request its de-
cryption w = E−12 (z) as a member of the second domain (using the same un-
known key and known tweak). Consider now the composition of these functions
w = E−12 (E1(N)). With high probability, none of the intermediate values will be
N , and thus we can cancel almost all the 2k rounds in matching pairs. The only
thing left will be the two round version of the problem in which N encrypted
by the first round of E1 and then decrypted by the first round of E2 is equal to
w. By repeating this process several times with shrinking domains, we can get
sufficiently many input/output pairs, which are presumably enough to find the
key used by this first round of the original scheme. If each round permutation
uses a different key, we can easily repeat the process in order to find the keys of
all the subsequent rounds. Note that this kind of attack can also be used against
Feistel structures.

To protect FPE schemes against this new kind of attack, we propose to use
the declared size of the domain as part of the tweak in each round function. This
is a very simple modification which costs almost nothing but will make sure that
any change in the domain size will result in a new and unrelated round function.
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7 A Related Domain Distinguishing Attack on FF3 and
FF3-1

We now present a distinguishing attack on both FF3 and FF3-1. The distinguish-
ing attack is a related-domain attack that highlights the importance of domain
separation between different instances of the encryption algorithm. For example,
FF1 [14] uses the input size parameters as an input to the round function, thus
avoiding this attack.

The distinguishing attack is quite efficient. Given about c · 24 pairs of chosen
plaintexts, we can distinguish whether two FF3 or FF3-1 instances were applied
with related domain sizes (using the same key and tweak) for binary domains.
Note that FF3 supports plaintexts encoded in any base (denoted as radix in the
standard). One can easily expand the distinguishing attack to use c ·radix4 pairs
of chosen plaintext to handle different radix -sizes.

Hence, for the sake of simplicity we will describe an attack on a binary
domain. As mentioned before, one can easily extend it to any radix. Let D1 be a
domain that includes 2n-bit plaintexts, whereas domain D2 includes 2n+ 1-bit
plaintexts. In other words, in D1, the plaintexts have n-bit halves, whereas in
D2 the halves are n-bit and n+ 1-bit, respectively.

The adversary is given access to two encryption oracles O1 (over D1) and O2

(over D2). Similarly to the related cipher scenario [26], either these two oracles
are two independent random permutations (of different sizes), or they are FF3
instantiated with the same key K and tweak T . We note that the attack also
works against FF3-1 without any change, since the only difference between them
is in the way they deal with the tweak.

Consider a plaintext (x, y) encrypted using FF3 (or FF3-1) in the smaller
domain D1 to (z, w). During its encryption, there are 8 invocations of the AES
function using the same key K and tweak T , but with different inputs and
round constants. When we encrypt (0||x, y) in the larger domain D2, we also
get 8 invocations of AES. In the first round, we get the same input (y in both
cases), but this time, n + 1 bits of the AES output are used in the modular
addition (instead of the previous n). Let the n-bit output (for D1) be denoted
by α and for the n + 1-bit output be denoted by b||α. It is easy to see that
if x + α < 210 then (0||x) + (b||α) mod 211 = (b||x + α), otherwise, (0||x) +
(b||α) mod 211 = (b||x + α mod 210). It is easy to see that independent of the
value of b, with probability of 1/2, the addition’s output is (0||x + α mod 210).
When this happens, the actual input to the AES invocation in the second round
is the same for both the smaller domain D1 and the larger domain D2, which
suggests the same output of the second round function. Hence, the input to the
third round is also the same. The third round is similar to the first, and indeed,
with probability 1/2, the MSB of the output of addition is also 0. This also
repeats in rounds 5 and 7. In other words, with probability 1/16, if (0||x, y) is
encrypted to (0||z, w) in the larger domain, when (x||y) is encrypted to (z, w) in
the smaller domain.

It is easy to see that the probability that this holds for two random permu-
tation (over 2n-bit and 2n+ 1-bit values, respectively) is much smaller (namely
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2−2n). This produces a very efficient distinguisher: Pick c · 16 random plaintexts
Pi = (xi, yi) ∈ D1, and ask for their encryptions under O1, resulting in Ci. Then,
ask for the encryptions of the c · 16 plaintexts (0||xi, yi) under O2, resulting in
Ĉi. If for about c/16 of the ciphertexts Ĉi = 0||Ci, conclude that this is FF3;
otherwise, conclude that the two oracles are independent random permutations.
For small values of c, where the probability of obtaining a right pair in the ran-
dom case is negligible, the success rate of the attack is about 1 − e−c. Hence,
setting c = 2 (and using 32 pairs in total) results in a success rate of 86.5%.

The generalization of the above attack to larger radices is trivial. We just
need to assume that the most significant character (rather than bit) is 0, which
happens with probability 1/radix. Hence, one can construct an efficient distin-
guisher with data and time complexity of c · radix4 chosen plaintext pairs.

8 Conclusions

In this paper we studied the FF3 format preserving encryption algorithm. Build-
ing on top of the previous ideas of using related-tweak slide attack against FF3,
we presented three attacks: An improved symmetric slide attack which enjoys
better time, data and memory complexity compared with previous results, a cy-
cle detection slide attack, and a asymmetric slide attack which outperforms the
symmetric one.

We also presented two related-domain attacks. The first, a generic attack
against cycle walking schemes, which reduces the problem of breaking them into
the problem of attacking two rounds of the construction. The second, which is
applicable to FF3 (and FF3-1) offers efficient distinguishing and shows how to
expand the knowledge on the encryption in the smaller domain, to recover the
PRFs used in the bigger one.
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