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Abstract. In this article we look at the question of the security of Data
Encryption Standard (DES) against non-linear polynomial invariant at-
tacks. Is this sort of attack also possible for DES? We present a simple
proof of concept attack on DES where a product of 5 polynomials is
an invariant for 2 rounds of DES. Furthermore we present numerous
additional examples of invariants with higher degrees. We analyse the
success probability when the Boolean functions are chosen at random
and compare to DES S-boxes. For more complex higher degree attacks
the difficulties disappear progressively and up to 100 % of all Boolean
functions in 6 variables are potentially vulnerable. A major limitation
for all our attacks, is that they work only for a fraction of the key space.
However in some cases, this fraction of the key space is very large for the
full 16-round DES.
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1 Introduction

Block ciphers have occupied a dominating position in the applied cryptography
space since the 1970s. Their iterated structure is (specifically) prone to round
invariant attacks, for example in the form of Linear Cryptanalysis (LC) and
Generalised Linear Cryptanalysis (GLC), cf. Eurocrypt’95 [29]. The space for
possible attacks grows double-exponentially and researchers have found, until
recently, extremely few such attacks [21, 34, 19, 4]. In many non-linear polyno-
mial invariant attacks we obtain two polynomials which after substitution of the
equations describing one round of the block cipher will become identical. Some
such invariant attacks seem to happen by some coincidence and very few similar
attacks are known or even expected to exist. Other, better attacks are such that
they depend on events which happen with a larger probability, and they can be
applied in a wide variety of cases or/and many similar attacks can be found. For
example recent research suggests that attacks where we multiply several poly-
nomials are potentially quite powerful [20, 14]. There are some specific reasons
why such attacks work well. When we multiply several Boolean polynomials,
it is possible to see that the attacker only needs to insure a number of bits to
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be identical for a fraction of the input space. Another reason is that the ring
of Boolean functions offers numerous possibilities of eliminating whole complex
multivariate functions just by multiplying them with well-chosen polynomials.

Initially this “product” invariant attack was designed and studied for T-310
[32]. Eventually, though later and with some difficulties, it is claimed that this
attack may also be applied to DES [20]. Previous non-linear attacks on DES used
polynomials of degree 2 [21] and were not very successful. Also, many previous
non-linear attack on other ciphers were of degree 2 or 3, see [34, 16]. With older
results for DES, in the best case we obtained a probabilistic attack which was a
very slight improvement over the best linear attack by Matsui [21]. In general in
all known non-linear attack the invariants are existential over the key, no attack
is known where the fraction of the key space for which such the attack works
would be equal 100 %. This limitation will remain valid in the present article.

In our research we argue that the problem should be turned upside down and
approached from the opposite end: essentially considering that the S-boxes are
variable. Given any fixed polynomial P, under what conditions the value of P is
preserved for 1 or 2 rounds with probability 1, i.e. for every input. We need to
understand what makes such attacks possible. We also need to push the attacks
to their limits: for example, trying to research what is the lowest possible degree
for which a non-linear attack for DES with the original P-box and modified S-
boxes can be constructed. We need simple examples which are intelligible so that
we can understand better what makes non-linear attacks possible (or not) and
what are their limitations in terms of success probability are, when the DES key
is chosen at random. With this approach we are able to produce a first proof of
concept non-linear attack on DES with a polynomial of degree 5 and numerous
further attacks at higher degrees.

1.1 Outline

This article is organised as follows. In Section 2 we look at the questions of
research methodology. In Section 3 we introduce our notations used for DES
and present a very simple invariant attack of degree 2. In Section 4 we introduce
the question of “closed loop” configuration and on this basis in Section 5 we
construct a simple attack of degree 5. In Section 5.3 we show that the same
attack is actually impossible if we assumed that all our Boolean functions need
to be balanced. In Section 6 we present an attack at degree 12 where S-boxes
are more similar to real DES S-boxes. Then in Sections 6.4. to 7.3. we study how
high quality Boolean functions with many zeros inside the Walsh spectrum and
lack of k-normality may prevent our attacks. Nevertheless in Section 8 we will
see that with cubic annihilators the attack becomes hard to avoid. In Section
9 we outline a more general attack in relation to a weaker security notion for
Boolean functions.

2 Methodology, Assumptions and Related Research

In our attacks we allow the attacker to modify the DES S-boxes in arbitrary
ways, which raises interesting questions about backdooring. Moreover we will
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not1 require that the attack works for 100% of the keys. In general, in the
type of attacks we study, we expect that the “power” of the attack improves
substantially2 with the increase of the degree of the polynomial invariant. Given
a specific polynomial attack with a fixed polynomial P of a certain degree, how
do we measure how powerful the attack is? In general this question has two
primary dimensions: when the S-box varies, and when the secret key varies. In
DES the two questions are very closely related. Modifying the key for one S-box
is equivalent to translating its input by a XOR with a 6-bit constant. We get
two questions subject to probabilities. First, what is the probability, which we
will call p1 type result for simplicity, that a Boolean function chosen at random
inside our cipher allows the attack to succeed? The second question is: if we
modify the key at the input of the same S-box such that the attack works, what
is the probability, which we could call p2, that the attack still works? Finally
there is also a global optimization question: designing an attack which involves
several S-boxes, where several probabilities of type p1 or p2 are multiplied.

The examples of attacks in this paper have been chosen for their simplicity
and elegance. Our main goal is to show the feasibility of this type of attacks
and show that simple attacks are possible with degree as low as 5. This could be
seen as taking the quadratic attacks in [21] to a new level. We will show that at
degree 5 however, there extremely few Boolean functions s.t. the attack works,
or in other terms, the p1 type probabilities are very low. Then we will see that as
the degree grows, the number of possible attacks and success probabilities will
improve very substantially.

This paper is a proof of concept. We think it is too early to study how such
attacks can be applied to decrypt communications encrypted with DES. This
question is studied in Section 9 in [20] and in Section 6 in [16].

2.1 Discovery of Advanced Non-Linear Invariant Attacks

In recent research there exist two major types of invariant attacks: linear sub-
space invariants [30, 3, 7], and proper non-linear polynomial invariants [34, 19],
which are somewhat more general. Several authors [3, 7, 19, 4] including inside the
present work study both. Our product attack, is also a linear subspace attack
when all the polynomials in the product are affine polynomials, which is the
case here, and frequently also the case elsewhere e.g. in [15, 14, 20]. However the
product attack is NOT yet the most powerful attack. In general we work in
polynomial rings, where both addition and multiplication are allowed, and the
general form of an invariant attack is a sum of several products.

The existence of some invariant properties does not imply that they can be
found or computed. Finding such properties was so far considered as very hard.
There are two major approaches to our problem: combinatorial and algebraic.
A nice algebraic approach is through solving the so called Fundamental Equa-
tion (FE) cf. [19]. Solving such equation(s), or rather several equations simul-
taneously, guarantees that we obtain a Boolean function and the polynomial

1 This seems inevitable already from the study of older attacks in [21].
2 This phenomenon is sometimes called “phase transition”, cf. [20, 13].



4

invariant P, which propagates for any number of rounds. However this equation
can be very complex and nothing guarantees that the FE has any solutions.

2.2 On the Bootstrapping Problem in Cryptanalysis

Research in block cipher cryptanalysis has suffered from a bootstrapping prob-
lem: we have hardly ever found any invariant attacks, except when the set of
all possible attacks is not too large, e.g. in Linear Cryptanalysis (LC). An ex-
cessively rich space of attacks has been ignored, and we could not find many
interesting attacks, because we failed to see or imagine how new attacks could
look like. New examples of working attacks (to imitate in further attacks) are
crucial. Further discussion of this question can be found in Section 1.8 of [19].

Essential insights about what makes non-linear invariant attacks actually
possible can also be found in [14]. The whole idea that “product attacks’ work
well should makes us reflect on why and when two products of k complex poly-
nomials can actually be equal. Here the lack of unique factorisation inside the
ring of Boolean polynomials plays an important role. There exist also numerous
opportunities where polynomials can be eliminated, for example through anni-
hilation: a polynomial Z is not zero however a product fZ is 0 for every inputs.
In other terms Z disappears after multiplying by another Boolean polynomial.

3 Polynomial Invariant Attacks on Block Ciphers

We call P a polynomial invariant, if the value of P is preserved after one round of
encryption, i.e. if P(Inputs) = P(Outputs). An important point is then, that any
block cipher round translates into relatively simple Boolean polynomials, if we
look at just one round of encryption. In general we can denote this polynomial
mapping by φ(Inputs. If we express round outputs as polynomials written in
their standard Algebraic Normal Form (ANF) we get that

P(Inputs) = P(Output ANF)

which is now a formal equality of two polynomials except that the polyno-
mial on the right hand side is potentially ambiguous or it contains potentially
additional inputs such as key bits. We further call this transformed polynomial
Pφ with:

Pφ def
= P ◦ φ = P(Output ANF) = P(φ(Inputs))

This ambiguity should be as small as possible: we simply want our polynomial
Pφ to depend on only few key bits, and preferably on none at all. The choice of
P is therefore a crucial task. The attacker chooses this polynomial very carefully
in order to avoid having to deal with too many key bits.

This concept can be applied to any block cipher, however finding a suitable
P is notoriously a difficult task cf. [3]. If an attack if found it will propagate for
any number of rounds, this if it is actually independent of the key and other bits
which is frequently obtained for certain weaker ciphers such as T-310, cf. [19].
This is no longer the case in this article. DES turns out to be a substantially
stronger cipher.
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In general in our research we consider that the Boolean functions are un-
known. We denote such functions by a special variables such as Z5 or W1 where
Z5 will be the last output of S-box S5, cf. Fig. 1. Instead of considering that our
cipher has a key, we will rather consider that the key is an operation translating
one S-box into another, and if the attack works in one case, it might also work
for another key.

3.1 Non-Linear Attacks on DES

In this article we show how a product attack can be applied to DES. This re-
sult has some historical significance, as DES is the most widely used cipher
of all times. In Eastern Germany a modified DES was known under the name
LAMBDA1 [23] and was implemented around 1990 inside a portable electronic
cipher machine T-316. Triple DES is still widely used today in financial appli-
cations. In DES the number of inputs of each Boolean function is 6 and we
concentrate our efforts on this case. This makes the analysis of our attacks sim-
ilar as with T-310 block cipher cf. [19, 20]. In T-310 we have 4 identical Boolean
functions in each encryption round and 9 new bits are produced out of 36 for the
full cipher state. In DES we have 32 distinct Boolean functions in each encryp-
tion round and 32 new bits are produced out of 64 for the full cipher state. A
considerable difficulty for the attacker in DES (see the conclusion in [19] and in
[20]) is that DES has a large number of key bits to take into account (48 in each
round). However our invariant attacks use very few bits from the cipher state
and will depend on very few key bits. We consider the usual structure of DES
with duplication of the bits at the boundaries of the S-boxes, cf. Fig. 1 below.

3.2 Notation

We denote by

L01, . . . ,L32; R01, . . . ,R32

the inputs of one rounds of DES. The same notations will be also used for
the outputs and when it is needed to distinguish between different instances of
the same variable we will use exponents, for example L05i will be the 5-th input
in one round and L05o will be the 5-th output bit. Let I1−32 be the input of the
DES round function, and let O1−32 be the output of the DES round function. In
the first round we have I1 = R01 where R01i denotes the first input on the right
side, which will be sometimes denoted simply by R01 if there is no ambiguity.
Similarly the notation R02o denotes the second bit on the right hand side on
the output side of the cipher. If our encryption is performed for 1 round only we
have R02o = O1 + L02o where + will always denote addition modulo 2 (when
used for binary variables). Finally for one round of the DES Feistel scheme we
have L01o = R01i and the same applies for all 32 bits on the right side at the
input.
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Fig. 1. One round of DES.

In what follows we are going to construct several examples of a “product
attack” on DES.

We also introduce the following notation in order to simplify our polynomial
expressions. We are going to denote by OPi(.) the output polynomial which
is connected to output Oi. This polynomial is always one of the 4 outputs
W,X,Y,Z for exactly one of the S-boxes, and has 6 input variables a− f , which
are also 6 consecutive variables of type I1−32 (with wrap-around). Our picture in
Fig. 1 focuses on the pair of bits 4 and 7, showing that they could potentially be
connected to any pair of outputs, depending on the P-box. For example output
4 could be connected to the third output Y1 of the first S-box, which will be
later called also simply Y1. Then output 7 could be connected to the last output
of the second S-box, here denoted by Z2 and sometimes also denoted by Z2.
Later we will write that OP4(R01, . . . ,R32) = Y2(a, b, c, d, e, f) and also that
OP7(R01, . . . ,R32) = Z(a, b, c, d, e, f), ignoring for the time being the key bits
completely or considering that all key bits are zero. This is not quite accurate if
we look at the actual P-box used in DES, see later Fig. 7, where output 4 and
7 are actually equal to Boolean functions W6 and Z7. However, we do not yet
assume that we use the original DES P-box, and at this stage we assume that
the P-box could have been modified by the attacker. For example in order to
obtain a strong yet extremely simple attack, a sort of toy example, cf. Thm. 3.5
below.

We will consider arbitrary S-boxes, i.e. arbitrary sets of 32 Boolean functions
which depend on the secret key of an arbitrary length in an arbitrary way.
We denote inputs of each S-box by letters A, . . . ,F in blue in our figure. The
corresponding inputs before key whitening are denoted by more precise notations
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ak, . . . , fk for S-box k, k = 1− 8, which appear in red in our figure. When there
is no ambiguity the same letters will be denoted simply by letters a− f .

Fig. 2. One round of DES using OPi notation.

3.3 A Basic Product Attack with 2+2 Active Bits

Our final goal will be at the end to obtain two polynomials which become equal,
i.e. P(Input) = P(Output ANF), this if we make a number of assumptions. First
we work on just one pair of bits for one S-box, for example S2, and consider inputs
a, d of S2 which are also simply I4 and I7. We have:

R04i = a2

R07i = d2

Now we define the following 2 polynomials:{
A def

= (R04 + R07) which is right bits 4, 7

B def
= (L04 + L07) which is left bits 4, 7

We then consider how these polynomials compare at both input/output sides
denoted by ‘exponent’ indices i and o. Since that example involves only one S-
box, we omit the exponent on a, d.

Ai = (R04i + R07i) = a+ d

Bi = (L04i + L07i)

Ao = (L04o + L07o) = (L04i + L07i + OP4(.) + OP7(.))

Bo = Pi = a+ d
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From here we have:{
AiBi = (a+ d)(L04i + L07i)

AoBo = (a+ d)(L04i + L07i + OP4(.) + OP7(.))

Could these two polynomials be identical? Yes, if the sum of polynomials
OP4(.) + OP7(.) can be annihilated by (a + d). Interestingly this cancellation
condition absolutely does NOT depend on inputs L04i and L07i and is only a
property of the round function polynomials. Following [19], we can sum up the
requirements for AB to be an invariant with the “Fundamental Equation” (FE)
for our choice of two variables (4, 7):

FE4,7 = AiBi +AoBo = (a+ d)(OP4(.) + OP7(.))

When this equation collapses to a polynomial which is always zero (for any
input), we obtain a working invariant attack.

3.4 How To Make this Attack Work

It is easy to see that if our DES P-box is very weak, an attack becomes possible.
In order for AB to be an invariant polynomial after any number of rounds, we
need to use a Boolean function which is annihilated by a+d which requires that
the two inputs a, d for BOTH OP4(.) and OP7(.) come from the same S-box.
Let

P = L04 ∗ R07

which is a non-zero polynomial of degree 2.

Theorem 3.5 (Simple Bi-Linear Attack for 1R). We assume that our S-
box satisfies the following 2 conditions:{

(a+ b) ∗ Y = 0

(a+ b) ∗ Z = 0

where Y denotes the Boolean function connected to round output 4 in one round
function, i.e. OP4(R01, . . . ,R32) = Y (a, b, c, d, e, f) and also OP7(R01, . . . ,R32) =
Z(a, b, c, d, e, f) where the relevant 6 inputs are renamed a − f , and the P-box
is such that R04,R07 are some of the a− f .
Then P is an invariant for one round of DES.

Proof of Thm. 3.5: The proof is trivial given that

FE4,7 = AiBi +AoBo = (a+ d)(OP4(.) + OP7(.))

is zero for any input.
Clarification. This is a toy example which actually requires that 4 and 7 are

simultaneously inputs and outputs of the same S-box S2, which does not happen
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for the original DES P-box. This example cannot be considered as a valid attack
on DES.

The next question is how to find or construct polynomials P, such that they
could be invariants for, say, 1 or 2 rounds with the original DES P-box but with
modified S-boxes.

4 Closed Loop Configurations or Key Property Which
Makes a Cipher Vulnerable to Non-Linear Invariant
Attacks

Fig. 3. Closed-loop connection between S-boxes S3,S6,S8 in GOST cf. Fig. 4 in [22].

Our experience shows that the primary problem in finding “interesting” non-
linear invariant attacks is to find a configuration, where some set of bits and
S-boxes are primarily connected to each other in closed loops, and the term
“closed-loop invariants” is used in a very recent work [35]. This idea is not new:
for T-310 it was also studied in [19] and for GOST it was already studied in [22],
cf. Fig. 3.

The sets of S-boxes involved in all non-linear attacks on DES are also of
this type: they have been constructed precisely and deliberately from such sets.
Similar properties are expected to exist for other ciphers, for example PP-1 cf.
[24], and to some extent for all block ciphers (unless the diffusion is very strong).

5 A Proof of Concept of the Applicability of Our Product
Attack to DES - An Attack of Degree 5

Below we present a complete example of a polynomial invariant property for
DES with a simple product of linear polynomials and the original P-box. Our
proof of concept is based on a well-chosen invariant polynomial P, which was
found after extensive trial and error based on the idea of closed cycles involving 6
inputs/outputs of the DES round function, as illustrated in Fig. 4. However this
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Fig. 4. Closed-loop connection between S-boxes S2,S3,S7 in DES.

leads in general to arbitrary polynomials of degrees up to 12, as each variable
in Fig. 4 has two versions (left and right). In fact it is NOT obvious if any
invariant properties of degree 5� 12 can be found or constructed3 whatsoever.
Our polynomial is as follows:

P = (1 + L06 + L07) ∗ L12 ∗ R13 ∗ R24 ∗ R28

which is a non-zero polynomial of degree 5.
Related Research. A similar attack for 2 rounds with degree 5 and with fac-

tors which split into two groups relevant in the 1st or in the 2nd round was pub-
lished recently in [26] with a similar polynomial R05 ∗ L07 ∗ (R28 + 1) ∗ (L27 + 1) ∗ L32.
The attack below is extremely similar and was found by our student Hamy Ra-
toanina few months earlier than the attack of [26]. We have also obtained gen-
erated a large number of attacks of this type with increasing degrees, some of
which are listed in Section 7.4 and in Appendix A. The focus of the explorations
have been so far primarily attacks where single variables appear as factors. In
general we could also have factors which are sums of variables and a stronger and
more general attack exists and is outlined in Section 9 following the methodology
described in [26].

We go back to our main result with degree 5.
Notation: When we write

(1 + c+ d) ∗W2 == 0

we mean that the polynomial (1 + c + d) annihilates4 the 1st output W of the
second S-box S2.

3 Moreover it is not obvious either if any invariant properties at all exist, as we do not
have yet the equivalent of [18] for block ciphers, i.e. we are not able to prove that a
polynomial attack always exists (in the worst case).

4 The sign == is used here to denote formal equality of polynomials in 6 variables,
which at other places can also be denoted by ≡ or just = if there is no ambiguity.
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Theorem 5.1 (A Simple Degree 5 Invariant Attack On 2 Rounds of
DES). Let P be as above, and we assume that our three active5 S-boxes (S2,
S3 and S7), which include the key6, and satisfy the following 6 conditions:

(1 + c+ d) ∗W2 == 0

(1 + c+ d) ∗X2 == 0

e ∗W3 == 0

f ∗ Z3 == 0

ae ∗X7 == 0

ae ∗ Z7 == 0

Then P is an invariant for two rounds of DES.

Proof of Thm. 5.1:
We want to prove that for any input of the cipher

P(Inputs) = P(Outputs)

where Outputs denotes the output of the cipher after 2 rounds. This is done
ignoring the secret key bits completely. We either consider that they are all
at zero, or they are considered to be a part of the S-box, and basically the
attack should work for all S-boxes (comprising a possible input translation by
the key bits) which satisfy our assumptions. In order to study this question
we will introduce some auxiliary notations. For each variable such as L03 we
have three instances of it: L03i is the variable on the input side, L03m will
be the middle variable after 1 round of encryption, and finally L03o will be
the variable on the output side. We have 3 times 64 of these state variables.
We will denote Pi = P(Inputs) the value of the original polynomial applied
at the input side, or formally this polynomial instantiated with the input side
variables. Similarly Po = P(Outputs) will be the same polynomial written at the
output side, or formally the same polynomial instantiated with the output side
variables. We assume that for any key one round of DES is a bijection denoted
by φ, temporarily ignoring that in general φ depends on the secret key. Our
reference set of variables will be the 64 variables in the middle, which are:

M = (L01m, . . .L32m; R01m, . . .R32m)

In order to prove that Pi = Po for any input, it is sufficient to prove that
Pi = Po for any middle 64 variables L01m . . .R32m. In order to show that we
are going to express both values of our polynomial on both sides Pi and Po as
polynomials in these 64 middle variables and show that these two polynomials are
simply exactly equal. This becomes a straightforward exercise, which amounts
to substituting 64 native variables at the output inside Po by their polynomial

5 The content of the remaining five S-boxes can be arbitrary.
6 We simply assume that the secret key in DES is implemented inside these S-boxes,

transforming their input by a bitwise XOR.
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ANF expressions in the 64 middle variables which comes from encryption with
φ, i.e.

Po = P(φ(M))

where φ(M) denotes a sequence of 64 polynomial expressions of (L01o, . . . ,R32o)
expressed as polynomials in the 64 middle variables of M. In the same way we
express the 64 native variables of the input inside Pi by their polynomial ANF
expressions in the middle 64 variables in M which come from decryption, i.e.

Pi = P(φ−1(M))

where φ−1(M) denotes a sequence of polynomial expressions of (L01i, . . . ,R32i)
as a function of the 64 middle variables ofM. Half of these transformations are
trivial. For example the variable L01 at the output is always replaced by the
polynomial R01 at the input, and in general DES is a Feistel cipher and all right
bits are preserved and become left bits in the next round. We recall that:

Pi = (1 + L06 + L07) ∗ L12 ∗ R13 ∗ R24 ∗ R28

and we observe that:

Po = (1 + L06o + L07o) ∗ L12o ∗ R13o ∗ R24o ∗ R28o

Now we use the internal structure of DES cf. Fig. 4. This is based on the
more detailed Fig. 7 which appears below, depicting the standard DES P-box.
We can now to write down the exact Boolean functions needed in one round
in order to compute the round outputs we use here. We obtain the following
expression using middle variables only:

Po = (1 + R06m + R07m) ∗ R12m ∗ (L13m + W2) ∗ (L24m + W3) ∗ (L28m + X2)

In Fig. 5 we represent our whole proof graphically where the colour coding
is the same as in Fig. 6.

Fig. 5. A visual representation of our proof with colour coding, cf. Fig. 6.

Now we are going to rewrite our 6 assumptions knowing that inputs abcdef
of S1 are, in order, R32 up to R05. This is for 1 round of DES and assuming
that the key is included as a part of the S-box and therefore we don’t need (yet)
to worry about what happens when the key changes.
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Fig. 6. Assumptions in our attack.

Here we work on 2 rounds, so it is important to remember that W2 in the
second round encryption (studied here) is different than W2 in the first round
of encryption (studied later).

We obtain for the inputs of the second encryption round:

 (1 + c+ d) ∗W2 = 0 becomes (1 + R06 + R07) ∗W2 = 0 in the 2nd round
(1 + c+ d) ∗X2 = 0 becomes (1 + R06 + R07) ∗X2 = 0 in the 2nd round

e ∗W3 = 0 becomes R12 ∗W3 = 0 in the 2nd round

We see that W3 can be simply erased from our last product because R12m is a
factor in the whole product. Therefore the difference is a multiple of R12m ∗W3
which polynomial is zero (for any input). In the same way we can simply erase
Z3. Then we can also just erase W2 and X2, because (1 + R6m + R7m) is a factor
of our product.

We get the following equality:

Po = (1 + R06m + R07m) ∗ R12m ∗ L13m ∗ L24m ∗ L28m

Now we are going to work on the first round of encryption and backwards,
starting from the middle state M. We have

Pi = (1 + L06i + L07i) ∗ L12i ∗ R13i ∗ R24i ∗ R28i

We obtain for the outputs of the first encryption round which is applied in
the backwards direction: f ∗ Z3 = 0 becomes R13 ∗ Z3 = 0 in the 1st round

ae ∗X7 = 0 becomes R24 ∗ R28 ∗X7 = 0 in the 1st round
ae ∗ Z7 = 0 becomes R24 ∗ R28 ∗ Z7 = 0 in the 1st round

which is equal to

(1 + R06m + Z3 + R07m + Z7) ∗ (R12 + X7) ∗ L13m ∗ L24m ∗ L28m

Here we can erase X7 and Z7, because L24m ∗ L28m is a factor of the whole
product, which is equal to R24i ∗ R28i, which are inputs of the first round. We can
also erase Z3, because it is annihilated by R13i, which is present here disguised
as L13m. Thus finally we obtain:

Pi = (1 + R06m + R07m) ∗ R12m ∗ L13m ∗ L24m ∗ L28m

which completes the proof that both polynomials are equal for 2 rounds of
DES (only if the S-boxes with the key satisfy our 6 assumptions in both rounds).
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Fig. 7. Full round function of DES showing connections with S-boxes in the next round.

5.2 Important Remark

It may seem that our proof also proves that P is an invariant for 1 round.
However a quick examination shows that the two sides R and L get swapped7

after 1 round. If we denote by P ′ the symmetric version of P above, then it is
easy to see that P + P ′ is an invariant of degree 5 for 1 round.

5.3 How Powerful is Current Attack?

It may seem that we are able to backdoor DES by modifying certain S-boxes
(and nothing else). Unfortunately the current result is extremely weak. We recall
the following result, which is adapted from Theorem 6.4 in [26].

Theorem 5.4 (Impossibility result for Balancedness). It is not possible
to generate a set of S-boxes are required by Thm. 5.1 in such a way, that these
Boolean functions are simultaneously balanced and non-linear. This impossibility
result holds for any key (there exists no key for which our conditions could be
satisfied).

Proof of Thm. 5.4: This is because at least one of the pre-conditions required
was of the form f(a, b, c, d, e, f) ∗ Z(a, b, c, d, e, f) = 0 where both f and Z are
required to be balanced. For example we had:

7 This is closely related to the question of reflection attacks in GOST, cf. [25].
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(1 + c + d) ∗W2 = 0

with f(a, b, c, d, e, f) = 1+c+d which is balanced and affine. This is not pos-
sible and a simple counting argument shows that if both f and Z are balanced,
then f ∗ Z = 0 implies that f = Z + 1 for any input. To see this we observe
that for some 26−1 inputs we have f = 1 and for all those we must have Z = 0.
Now since Z is balanced, it must be 1 on all the remaining 26−1 inputs and it is
completely determined in this way, and we have f = Z+1 for any input. Finally
since f is affine, Z also must be affine. This contradiction ends our proof. ut

Remark. We see that our attack will not work in general, for all non-linear
balanced S-boxes. Then obviously it will not work either when we transform
their inputs by a secret key. Our methodology is such that attacks are in general
existential over the key, i.e. work for a fraction of the key space. However any
impossibility result such as above will hold for any key.

Next Steps. An interesting open problem is the minimum degree d, such
that a product of polynomials of degree d is an invariant for X rounds of DES
for some S-boxes, which would be both balanced and non-linear. In the next
section we show that this can be achieved with degree being at most 12.

Future Research. This question extends to all known S-box quality mea-
sures, such as non-linearity, algebraic degree, algebraic immunity, correlation
immunity, multiplicative complexity etc, cf. [2] and adding more criteria will
probably further increase the degree d required.
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6 A Non-Linear Attack on DES with Balanced Boolean
Functions

We are now going to show that if we increase the degree from 5 to about8 12,
the Boolean functions can be balanced and non-linear. This example was found
after extensive trial and error based on the idea of closed cycles and starting
from using exactly the same set of 6 bits and 3 S-boxes as before, cf. Fig. 4. Our
polynomial is as follows:

P = L06 ∗ R06 ∗ L07 ∗ R07 ∗ L12 ∗ R12 ∗ L13 ∗ R13 ∗ L24 ∗ R24 ∗ L28 ∗ R28

which is a non-zero polynomial of degree 12.

Theorem 6.1 (A Balanced Degree 12 Invariant Attack On 1 Round of
DES). Let P be as above, and we assume that our three active S-boxes, which
include the key9, satisfy the following 6 conditions:

cd ∗W2 = 0

cd ∗X2 = 0

ef ∗W3 = 0

ef ∗ Z3 = 0

ae ∗X7 = 0

ae ∗ Z7 = 0

Then P is an invariant for 1 round of DES.

Proof of Thm. 6.1: This proof is substantially simpler than the previous proof,
because we have only 1 round. For each variable, such as L03, we have only two
instances of it: L03i is the variable on the input side, and L03o will be the same
variable on the output side. Again we will denote Pi = P(Inputs) our polynomial
instantiated with the input side variables. Similarly Po = P(Outputs) is the
same polynomial written with the output side variables. We assume that for
any key one round of DES is a bijection, and we will denote this bijection by φ,
temporarily ignoring that in general φ depends on the secret key. Our reference
set of variables will be the 64 input variables:

I = (L01i, . . .L32i; R01i, . . .R32i)

In order to prove that Pi = Po for any input, it is sufficient to prove that the
values Pi = Po for any input 64 variables L01i . . .R32i. We are going to express
both values as a polynomial in the input 64 variables and show, that these two
polynomials are formally equal. We will substitute 64 native variables at the

8 Later we show that the same can also be done at degree 10, cf. Section 7.4.
9 We assume that the secret key in DES as implemented inside these S-boxes trans-

forming their input by a bitwise XOR.
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output side Po by their polynomial ANF expressions in the 64 input variables,
which is due to the application of one round of encryption with φ, i.e.

Po = P(φ(I))

where φ(I) denotes a sequence of 64 polynomial expressions of (L01o, . . . ,R32o)
as a function of the 64 inputs-side variables in I which are the L01i, . . . ,R32i.

We observe that:

Po = L06o ∗ R06o ∗ L07o ∗ R07o ∗ L12o ∗ R12o ∗ L13o ∗ R13o

∗ L24o ∗ R24o ∗ L28o ∗ R28o

Again half of our transformations are trivial and for example the variable
L01o is always replaced by the polynomial R01i. We need to follow the connection
of DES of Fig. 4 and we are going to write down which exact Boolean functions
are added in our round. We obtain the following expression using input variables
only and therefore we omit the notation i as no confusion is possible anymore:

Po = R06 ∗ (L06 + Z3) ∗ R07 ∗ (L07 + Z7) ∗ R12 ∗ (L12 + X7) ∗

R13 ∗ (L13 + W2) ∗ R24 ∗ (L24 + W3) ∗ R28 ∗ (L28 + X2)

Now, just like in the previous proof, we are going to re-write our 6 assump-
tions: 

cd ∗W2 = 0 becomes R06 ∗ R07 ∗W2 = 0
cd ∗X2 = 0 becomes R06 ∗ R07 ∗X2 = 0
ef ∗W3 = 0 becomes R12 ∗ R13 ∗W3 = 0
ef ∗ Z3 = 0 becomes R12 ∗ R13 ∗ Z3 = 0
ae ∗X7 = 0 becomes R24 ∗ R28 ∗X7 = 0
ae ∗ Z7 = 0 becomes R24 ∗ R28 ∗ Z7 = 0

We have 6 consecutive double products and we observe and check that:

1. W2 can be erased from our 4th double product because R06 ∗ R07 is a factor
in the whole product.

2. The same holds for X2 in our 6th double product.

3. W3 can be erased from our 5th double product because R12 ∗ R13 is a factor.

4. The same holds for Z3 in our 1st double product.

5. X7 can be erased from our 3rd double product because R24 ∗ R28 is a factor.

6. The same holds for Z7 in our 2nd double product.

After removing these terms we obtain the exact result we wanted to prove:

Po = R06 ∗ L06 ∗ R07 ∗ L07 ∗ R12 ∗ L12 ∗ R13 ∗ L13 ∗ R24 ∗ L24 ∗ R28 ∗ L28 = Pi
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6.2 Can Our Attack Work with Balanced Boolean Functions?

It is easy to see that S-boxes can now be balanced, and in order to show this it is
sufficient to exhibit one working example. This example was constructed using
the fact, that our annihilation conditions only imply that our Boolean functions
must be zero at some 1/4 of the input space. All the other 3/4 coefficients can be
arbitrary and the overall number of 1s can be easily adjusted in order to obtain
balanced Boolean functions.

S2:12,15,9,15,14,5,0,0,7,15,7,15,11,11,0,0,7,6,12,7,9,4,0,0,14,11,14,

15,15,13,0,0,10,2,10,13,15,9,0,0,15,2,5,2,13,2,0,0,11,5,8,14,13,5,0,0,

11,14,15,11,5,7,0,0

S3:12,15,11,15,15,5,7,15,7,12,11,11,7,7,14,15,8,0,5,0,15,0,11,0,12,0,

14,0,15,0,13,0,10,2,10,13,13,11,13,2,5,2,13,2,9,7,8,14,7,0,4,0,11,0,15,

0,15,0,11,0,5,0,6,0

S7:12,15,9,11,14,5,5,15,7,12,11,11,7,7,14,15,8,4,15,11,13,12,13,15,10,

2,10,15,15,9,13,3,11,0,2,0,7,0,2,0,11,0,7,0,13,0,14,0,5,0,4,0,15,0,14,0,

15,0,11,0,5,0,6,0

We also need to show that our Boolean functions are non-linear and dis-
play their Walsh spectrum. We limit our display to the 6 Boolean functions
W2, X2,W3, Z3, X7, Z7 actually used in our attack. It is easy to see that the
remaining 6 outputs are not used in our proof and therefore could be replaced
by arbitrary (strong) Boolean functions. We can also see that all our 6 functions
are of degree 5. The Walsh spectra are displayed in the standard format used by
the popular SAGE software and need no further explanation.

S2: X2 {0: 13, 4: 29, 8: 16, 12: 1, 16: 3, 20: 1, 36: 1}

W2 {0: 15, 4: 23, 8: 15, 12: 8, 16: 1, 24: 1, 28: 1}

S3: Z3 {0: 13, 4: 25, 8: 16, 12: 5, 16: 3, 20: 1, 28: 1}

W3 {0: 14, 4: 24, 8: 15, 12: 6, 16: 2, 20: 2, 24: 1}

S7: Z7 {0: 13, 4: 26, 8: 16, 12: 5, 16: 2, 20: 1, 32: 1}

X7 {0: 14, 4: 23, 8: 16, 12: 7, 16: 2, 20: 1, 28: 1}

6.3 Comparison to DES S-boxes

These spectra do not seem substantially different or of lower quality10 than in
DES itself, where the maximum values are also typically 24 or 28, and sometimes
also as high as 36. In comparison here are the Walsh spectra of S-box S7 in DES:

S7: Z7 {0: 21, 4: 22, 8: 6, 12: 10, 16: 3, 24: 2}

Y7 {0: 16, 4: 29, 8: 12, 12: 1, 16: 4, 20: 1, 36: 1}

X7 {0: 18, 4: 24, 8: 8, 12: 6, 16: 6, 20: 2}

W7 {0: 20, 4: 23, 8: 10, 12: 8, 24: 2, 28: 1}

10 This is explained by the fact that in order to satisfy our annihilator conditions of
type Z ∗f where f is a product of 2 linear factors, we only need to impose that Z = 0
in 1/4 of the cases, all the other values can be arbitrary, so our Boolean functions
are in some sense random for 3/4 of the inputs.
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We have obtained an attack where the actual DES S-boxes do not seem any
stronger than vulnerable S-boxes.

6.4 On Number of Zeros Inside Walsh Spectra

However it seems that there is a substantial difference if we look at the number
of zeros in the Walsh spectra. DES S-boxes have larger numbers on average.

This is related to the widely studied question of correlation immunity11 in
block ciphers. However it is naive to believe that a Boolean function with high
correlation immunity would always be also immune to annihilation by a product
of 2 linear factors. In order to show this we have found a counter-example:

Z(a, b, c, d, e, f) = a(b+ 1) + (c+ d+ e+ f)

is 3-resilient and it has two annihilators being a product of 2 linear factors:

Zb(c+ d+ e+ f + 1) = 0 and Z(a+ 1)(c+ d+ e+ f + 1) = 0.

Instead we need to look at this question from the point of view of probability.

7 DES S-boxes and Normality

In 1990s Dobbertin has proposed the notion of normality of Boolean functions.
This notion was later extended to k-normality by Charpin in [12]. This is maybe
not immediately obvious, but this notion is exactly mathematically equivalent
to what we need to study here and we just need to reformulate it in terms of
annihilators.

Let Bn be the ring of all Boolean functions in n variables and let Z ∈ Bn. In
order to study these notions it is useful to see that we have the following one-to-
one correspondence. Any affine sub-space U of dimension k, which is sometimes
called a flat [12], can be also seen as a set of points, where a certain product
Π =

∏
i Li of k affine and linearly independent polynomials is non-zero and

equal to 1. Then we observe that we have Z ·Π = 0 if and only if Z = 0 when
restricted to our affine space U . Then we have (Z + 1) · Π = 0 if and only if
Z = 1 when restricted to our affine space U . Therefore we have two equivalent
ways to define our notion:

Definition 7.1 (k-normality). A Boolean function E ∈ Bn is said to be k-
normal if either of the following equivalent conditions holds:
i) There exists a k−dimensional flat U where Z is constant.
ii) Either Z or Z+ 1 are annihilated by at least one product Π =

∏
i Li of n−k

linearly independent affine polynomials with either:

Z

k∏
i=1

Li = 0 or (Z + 1)

k∏
i=1

Li = 0

11 Correlation immune Boolean functions cf. [9] have numerous zeros in the Walsh
spectrum.
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7.2 How Many Boolean Functions are Vulnerable?

Theorem 7.3 (Frequency of Annihilation with Two Affine Terms). Given
a Boolean function Z in 6 variables chosen uniformly at random and which is
such, that it has at least 14 zeros in Walsh spectrum, the probability that it is
2-normal i.e. it has an annihilation of type

Z · f · g = 0 or (Z + 1) · f · g = 0

with two arbitrary affine factors f , g is equal to 2−3.42.
Proof. This result is obtained by checking all the 150357 classes of Boolean
functions based on a database of Boolean functions published together with [8,
31]. Important relevant work on this topic is [28, 12].

Table 1. Classes of Boolean Functions with 6 Variables w.r.t. k-normality

total ↓ (any k)

k value →
150357

100%

k-normal Boolean functions

6 ≥ 5 ≥ 4 ≥ 3

1 205 47446 150357

2−17.2 2−9.52 2−1.66 2−0.0

31079 with ≥ 14 Walsh at 0

6 ≥ 5 ≥ 4 ≤ 3

1 100 13969 31079

2−14.9 2−10.55 2−3.42 2−0.0

This probability is not very small, however the attack in Thm. 6.1 requires
as many as six such events for specific single variable linear factors. It appears
that having numerous zeros in the Walsh spectrum in DES S-boxes is a plausible
explanation why our attack with products of 2 linear factors such as Thm. 6.1
does not work with the original S-boxes. We need a better attack.

7.4 Further Attacks with Two Affine Factors

It is possible to see that this can be further improved at the cost of considering
invariants of higher degree. In Table 2 below we explore a larger number of
possible attacks. For example we found that a better result can be achieved with

P = L02 ∗ L05 ∗ L09 ∗ L28 ∗ L31 ∗ R02 ∗ R05 ∗ R09 ∗ R28 ∗ R31

which is of degree 10. Here the active S-boxes are S1,S2,S8 with annihilators
being respectively cf, bf, ad. All attacks we present here are based on the concept
of closed loop invariants. More such attacks exist if we allow 4 active S-boxes.
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Table 2. List of possible attacks with DES P-box and with 3 active S-boxes

L02*L03*L08*L09*L17*L18*R02*R03*R08*R09*R17*R18 1:cd 2:ef 5:bc

L02*L05*L09*L28*L31*R02*R05*R09*R28*R31 1:cf 2:bf 8:ad

L01*L03*L14*L17*L20*R01*R03*R14*R17*R20 1:bd 4:cf 5:be

L01*L05*L15*L17*L31*R01*R05*R15*R17*R31 1:bf 4:df 8:df

L03*L04*L17*L19*L23*L25*R03*R04*R17*R19*R23*R25 1:de 5:bd 6:df

L04*L05*L21*L23*L29*L31*R04*R05*R21*R23*R29*R31 1:ef 6:bd 8:bd

L06*L08*L13*L16*L18*R06*R08*R13*R16*R18 2:ce 3:af 5:ac

L06*L07*L12*L13*L24*L28*R06*R07*R12*R13*R24*R28 2:cd 3:ef 7:ae

L05*L07*L27*L28*L32*R05*R07*R27*R28*R32 2:bd 7:de 8:ae

L08*L10*L14*L16*L20*R08*R10*R14*R16*R20 3:ac 4:ce 5:ae

L10*L12*L16*L24*L26*R10*R12*R16*R24*R26 3:ce 4:ae 7:ac

L08*L11*L16*L19*L24*L25*R08*R11*R16*R19*R24*R25 3:ad 5:ad 6:ef

L11*L12*L22*L24*L29*R11*R12*R22*R24*R29 3:de 6:ce 7:af

L01*L12*L15*L26*L27*L32*R01*R12*R15*R26*R27*R32 4:ad 7:cd 8:ef

L21*L22*L27*L29*L32*R21*R22*R27*R29*R32 6:bc 7:df 8:be

8 Attacks with Three Affine Factors

Furthermore it is possible to construct an attack where every single annihilation
polynomial is of degree 3, so that only 1/8th of the entries in the truth table
for certain Boolean functions inside the whole cipher need to be as required.
This comes at the price of increasing the degree of P from 10 to 20. One ex-
ample of such polynomial we found which we expect to be the best possible
is R01 ∗ R02 ∗ R03 ∗ R06 ∗ R08 ∗ R09 ∗ R13 ∗ R16 ∗ R17 ∗ R20 multiplied by the
same polynomial for the left side variables. This attack works with five S-boxes
1, 2, 3, 4, 5 with annihilations respectively by bcd, cef , abf , bef and abe. A longer
list of attacks with products of three or more factors is given in Appendix A.

8.1 On Boolean Function Vulnerability with 3 Factors

Here the situation improves dramatically w.r.t. Boolean functions: no Boolean
function is such that annihilations with 3 linear factors are impossible. We have:

Theorem 8.2 (All Boolean functions in 6 variables are 3-normal). Given
a Boolean function Z in 6 variables chosen uniformly at random the probability
that it is 3-normal i.e. it has an annihilation of type

Z · f · g · h = 0

with three arbitrary affine factors f , g, h is equal to exactly 100%.

Proof: This is a known result. It can be easily shown by using the complete
classification of Boolean functions in 150,357 classes, see [31, 8]. It is also a special
case of a theorem proven by Dubuc [28] and then studied by Charpin in [12].
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8.3 Attacks with 4 Factors

Then if further increase the degree of P we have constructed invariant attacks,
such that all annihilators are products of ≤ 4 terms and only 1/16 out of 64
entries in the truth table need to be modified. Currently known attacks of this
type are extremely poor: they involve a very large number of bits and P is of
very high degrees such as 40 and are very weak in terms of potential bias which
such invariants for the cipher state. We need to consider another type of attack.

9 More General Attacks Based on Imperfect Cycles

In fact we have not studied the most general attack yet. There exists a more
general attack framework, where Boolean functions can be annihilated in a wider
variety of ways, and where annihilators are not single variables, but arbitrary
products of polynomials (which do not actually have to be linear or affine). One
basic idea is that instead of considering sets of bits as in Section 3.4, we con-
sider some affine polynomials Qi and see if they could depend in some sense
“essentially” on themselves. Then we need to say what exactly we mean by “es-
sentially”. This generalized attack is outlined in Section 12 of [20] and described
in full in Section 4 and Section 7 of [26]. It is based on multiplying the poly-
nomials over several cycles which correspond to conditional transitions between
polynomials denoted by Qi. These cycles are imperfect in the sense that some
additional polynomials Zi may be added on the way. These polynomials Zi are
actually an extension of the concept of the Fundamental Equation (FE) in [19]
to the case of transitions of type Qi → Qi+1, i.e. which are no longer invariants.
The polynomials Zi are then present each time the transitions are not actually
true, and they correspond to the notion of Transition Equation or (TE) in12

Section 5 of [19].
The main interest with this more recent approach for constructing invariant

attacks, is that it allows one to rediscover in an ordered and structured way many
previous attacks, and understand better why such attacks can be made to work,
cf. for example Fig. 4 in Section 5.6. in [20]. In this type of attack we also allow
arbitrary additions of original Boolean functions with affine polynomials with
the same set of inputs of variables, such as for example W2 + R06 + R07. This
corresponds to another well-known notion in the theory of Boolean functions,
one of k-weakly-normal functions also studied in [12].

9.1 Attacks with Sums of Outputs

The next stage is to search for attacks, which is also permitted by our general
attack framework, of Section 12 and Appendix B in [20] and [26]. In such more
general attacks sums of outputs of Boolean functions such as (X8 + W8), or
even better combinations, such as say (X8 + W8 + R25 + R28), are permitted

12 One interpretation of Zi is that it is as a polynomial in the input variables only,
such that the transition Qi+1 → Qi+1 would be true for one round φ for inputs such
that our polynomial Zi is equal to zero.
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and can be annihilated. Here the degree of annihilators which actually exist fort
the real-life DES S-boxes is eventually lower and better. For example in DES
S-box S5 we have:

R17 ∗ (R16 +R20) ∗ (W5 +X5 + Y 5 + Z5) = 0

which is a direct consequence13 of strong biases inside presented by Shamir
as early as 1985, cf. [33]. Similar properties exist for other DES S-boxes, for
example for S4 and S1 and will be studied inside another article. It is too early
to say if these properties can lead to better14 non-linear invariant attacks on
DES than those currently known.

10 Attacks Exploiting the DES Key Schedule

In this section we finally look at questions which is a realistic with respect to
the full 16-round DES as it is standardized and used by billions of users. The
main idea is that DES key schedule is weak, however only a tiny fraction of
properties we study are compatible with DES key schedule. The weakness of
DES key schedule is widely known. An essential reference on key scheduling in
DES Brown and Seberry 1990 paper [6], and many observations were already
published in an earlier paper [5] from 1988. In Section 3.4.2. in page 6 of [5] we
read that

1. ”There is no interaction across the two halves” in DES key scheduling
2. we have ”two distinct 28 to 24-bit selections”.

An obvious consequence of these observations is that half of the key on 28
bits is used at inputs of S-boxes S1-S4, and the other half is used at inputs
of S-boxes S5-S8. In our research we have examined 177 different closed sets
such as in Table 2 and found only three one-side configurations which use only
S-boxes from either S1-S4 or S5-S8 range, but do not mix them. We call these
configurations a14, a58 and b58.

Table 3. List of simple product attacks compatible with DES key schedule

a14: L01*L02*L06*L09*L10*L13*L16*L17*R01*R02*R06*R09*R10*R13*R16*R17 1:bc 2:cf 3:bcf 4:bef

a58: L21*L22*L27*L29*L32*R21*R22*R27*R29*R32 6:bc 7:df 8:be

b58: L19*L21*L22*L25*L27*L29*L32*R19*R21*R22*R25*R27*R29*R32 5:df 6:bcf 7:bdf 8:be

The first property uses 8+8 bits, the two other properties uses 5+5 and 7+7
bits. These are the properties which are most likely, among those studied in this

13 It is easy to see that the more a Boolean function is biased the more annihilators or
absorbers it will have, cf. Thm. C.2. in Appendix C of [20].

14 The contrary could also be imagined: that these particular annihilations will force
all “interesting” attacks to use all the 4 outputs for several S-boxes, which could
overall increase the number of S-boxes which must be active inside the attack.
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article, to be useful in an attack on DES which takes into account the DES key
schedule. We see that there are extremely few such configurations (3 out of 177).

Below we show a complete list of all 177 closed-loop sets we have studied:

0x19323,0x8a011943,0x391a6,0x88801962,0x5155001c,0x68001132,0xc0152a,0x10a00c00,0x38901438,0xb3187,0x49110b,0x48015113,0x78d9d73b,0x147018e,0x70d00518,

0x890301c6,0x48130196,0x18ca680,0x9860014a,0xd4700018,0x5850011a,0xcc000152,0x9a385,0x2800d231,0x2808a00,0xe4800910,0xc98709,0x3098c601,0x82818b01,

0xb0a38c0,0x6001c311,0x1c5858c,0x81818984,0xcf1b79d7,0x60118194,0x92690809,0x889628,0x90e00d08,0xc6014811,0x14d200d,0xae80da71,0x83092805,0xab2a0,

0x40196015,0x50594019,0xa680ca01,0x19a69ce8,0x8c000050,0x9165000c,0xc5110014,0xa809a60,0xb8abae0,0x31948480,0x18694a8,0xfef9df7b,0x281290b0,0x98298e0,

0x8a819b63,0x18a01c68,0x2018e281,0x6019e395,0xac801870,0x10e3088,0x18185019,0x86004801,0x81a7091,0x48000112,0x1a281848,0x79d795be,0xb4b00c00,0x8e005851,

0x192600c8,0x19160098,0x79dff7bf,0x8d1200d0,0x9c300058,0x388aa80,0x12a88e00,0x11a48c80,0xa5908880,0xe5918994,0x132c2800,0x111c6001,0x87186801,0x8801860,

0x96384801,0x95340000,0xbfbefef9,0x9befbfef,0xef9bfbf7,0xfdf79dfe,0x91e58d8c,0xdf7f79df,0x6801d333,0xf7fdef9d,0x1cfb7af,0x8b8bbbe7,0x681bf3b7,0x9ae99f6b,

0xee81db73,0x99e79dee,0xed9399f6,0xfcf01d7a,0x9b6f39cf,0x595f719f,0x681391b6,0xde79595b,0xdd7701de,0x93edaf8d,0x71dde79d,0xa798ea81,0xe799eb95,0xf6f9cf19,

0xf5f58d9c,0xd77d681d,0x1baebee8,0x399ef6b9,0xaf9afaf1,0xbeb8de79,0xbdb69cf8,0x9f3e78d9,0xb7bcee81,0xbb3a7,0xc9972b,0x1c795ae,0x898399e6,0x98e01d6a,

0x78d0153a,0xec801972,0x14f318f,0x8b0b39c7,0x481b7197,0x9a69194b,0x5859511b,0xce015953,0x996701ce,0x5957019e,0x936d280d,0xcd1301d6,0xdc70015a,0x1cda78d,

0x8389ab85,0x92e98f09,0x70d9c719,0xe681cb11,0x71d5859c,0xf4f00d18,0x515d601d,0xc7196815,0xd6794819,0xd575001c,0x18eb6a8,0x281af2b1,0x8a280,0x1aa89e68,

0x3898d639,0x399694b8,0xad9298f0,0xbcb01c78,0x1b2e38c8,0x191e7099,0x8f1a78d1,0x9e385859,0x9d3600d8,0x13acae80,0x319ce681,0xb6b8ce01,0xb5b48c80,0x973c6801,

0x30186,0x92005,0x40014011,0x145000c,0x50500018,0x290a0,0x1848480,0x94300000

11 Affine to Affine Mappings

A central question in cryptanalysis of block ciphers is the question of affine to
affine mappings. By definition affine spaces are cosets of linear spaces (which
some authors also call flats). Sometimes, a non-linear mapping maps an affine
space to an affine space. There are zillions of special cases like this for every
cipher ever made. We can first study this question at the level of individual
S-boxes with 6 inputs and 4 outputs and only for spaces of dimension 2.

Table 4. Number of affine spaces U of dimension 2 which can be mapped to another
affine space W of dimension 2 also, for all 4-bit permutations defined by DES S-boxes
with 2 outer bits a, f fixed

a f

0 0
0 1
1 0
1 1

DES S-box

1 2 3 4 5 6 7 8

14 10 12 13 12 8 14 10
14 12 14 13 12 11 12 16
14 12 12 13 9 13 13 12
12 13 16 13 12 10 16 14

s5DES S-box

1 2 3 4 5 6 7 8

36 28 36 28 24 28 24 24
16 24 24 14 14 24 24 24
26 24 32 20 48 36 24 24
16 20 20 16 18 20 20 24

S∗DES S-box

1 2 3 4 5 6 7 8

12 13 13 12 12 12 10 10
10 11 13 12 12 13 8 13
12 12 13 12 10 13 8 8
8 13 12 12 9 13 8 13

DESL

any

12
12
24
24

It seems that the Korean version of DES, known as s5DES, is substantially
weaker than other versions of DES. Below we show a more detailed picture
of essentially the same events where we classify them by the input difference
vectors U1 and U2 actually used. Again it seems that s5DES is a particularly
weak version of DES.
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Table 5. Counting mappings of affine spaces U of dimension 2 which can be mapped
to an affine space W of dimension 2, classified by input linear spaces ignoring the
offset and when a and f are fixed.

U1 U2

1 2
1 4
1 6
1 8
1 A
1 C
1 E
2 4
2 5
2 8
2 9
2 C
2 D
3 4
3 5
3 8
3 9
3 C
3 D
4 8
4 9
4 A
4 B
5 8
5 9
5 A
5 B
6 8
6 9
6 A
6 B
7 8
7 9
7 A
7 B

total

all

DES S-box

1 2 3 4 5 6 7 8

1 − 2 − 4 1 − −
1 3 − − 1 − 7 −
− 2 1 − − 3 2 2
1 2 5 4 3 5 5 2
3 − − − 2 1 − 1
1 1 − − 2 − 5 3
5 1 1 4 1 1 − −
4 7 3 4 − 4 4 6
− 1 − − 1 1 − −
− 2 3 4 − 1 − −
1 − 2 − 1 − − 3
− − − 4 − 1 − −
3 − − − 2 − 1 3
1 3 2 4 1 1 2 −
− − 4 − 1 2 2 1
1 1 1 4 1 1 1 1
− − 2 − − − 1 2
3 − 2 4 1 2 2 −
− 2 5 4 1 3 1 3
2 − 2 − 2 1 1 −
2 − − − 1 1 3 2
4 3 1 − 2 1 1 1
1 − − − 1 1 1 1
− − 3 − 1 − − 2
− − − 4 3 1 − −
3 2 − − 2 − 2 1
2 4 3 4 2 4 2 4
1 2 3 − 1 − − 2
1 1 2 − 1 2 1 1
2 2 2 − − 1 2 3
3 1 1 4 3 − 1 2
3 1 1 − 1 − − 1
1 2 3 − − − 2 −
1 2 − − 1 1 3 3
3 2 − 4 2 2 3 2

54 44 54 33 45 41 54 50

401

s5DES S-box

1 2 3 4 5 6 7 8

2 4 8 6 2 4 2 2
4 2 4 4 6 6 2 4
2 2 6 − 2 6 − −
5 4 5 3 4 3 6 2
2 − 5 2 1 2 3 2
2 4 1 2 3 2 2 1
1 2 1 1 2 1 1 1
6 4 6 6 8 4 4 4
4 8 8 10 2 10 4 8
5 2 2 1 5 3 2 3
2 − 2 1 3 1 2 2
3 − − − 4 − 1 4
2 6 − 2 2 2 1 1
4 4 6 2 4 4 6 2
2 2 6 2 6 8 2 6
4 3 6 3 3 1 4 4
2 1 2 − 2 − 1 1
2 1 − 1 1 2 3 −
2 1 − − 4 3 2 3
4 4 1 3 5 3 2 3
1 2 2 2 4 2 2 2
− 1 3 1 4 1 − 3
1 1 2 2 3 2 − −
5 3 2 4 3 4 4 6
3 1 3 2 1 2 − 4
2 3 4 5 1 2 3 6
2 1 3 3 3 4 3 4
5 5 − 3 − 3 2 4
2 − 1 − 3 − 4 −
3 2 2 − − − 1 1
2 1 1 1 3 1 5 3
4 7 4 3 4 7 8 2
1 4 5 − 3 4 3 3
− 7 6 3 1 6 2 4
3 4 5 − 2 5 5 1

75 77 88 54 76 84 78 76

780

S∗DES S-box

1 2 3 4 5 6 7 8

− − − − 3 2 1 2
1 3 − 2 − − 1 −
1 1 2 3 2 1 − 2
3 3 3 3 4 4 − 3
1 − 1 2 2 2 − −
1 2 3 − − − 1 −
1 2 1 2 1 − 1 −
6 5 5 3 3 4 8 6
− 1 1 − 1 2 1 3
− − 2 2 − − 1 1
− − 1 − − 1 − −
2 − 2 3 1 2 1 2
− 2 1 − 1 1 − −
1 2 − − 1 2 1 −
1 2 2 1 2 1 − 3
1 3 3 1 − − 2 −
− − − − − 1 − −
2 3 3 3 2 − 1 1
1 2 3 4 2 2 3 1
3 1 − − 3 1 − 2
1 − 1 − − − − 2
3 2 − 1 1 3 − −
1 − 3 4 2 − − 2
1 − − − 1 1 1 2
1 1 1 − − 1 − 2
1 1 1 3 4 3 2 3
1 2 4 4 4 2 3 2
2 1 − 1 − 2 1 1
− 1 − 1 1 1 1 −
2 2 1 2 1 2 1 2
− 1 − 1 − 2 1 −
1 1 − 2 1 2 2 1
− 1 2 − − 1 − −
− 2 1 − − 3 − −
3 2 4 − − 2 − 1

40 47 46 36 41 48 33 37

362

DESL

any

−
−
4
−
−
1
−
8
−
6
−
4
−
−
4
−
2
3
−
2
−
6
−
−
5
2
−
4
4
2
4
−
−
4
7

58

72
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12 Conclusion

Nonlinear polynomial invariant attacks are very popular in the recent years cf.
for example [34, 19]. For DES they typically work only for a fraction of the key
space, which was already the case in early invariant attacks on DES at degree
2 cf. [21]. In this article we show that various non-linear invariant attack with
degrees ranging between 5 and 20 can be constructed for DES. Our attacks are
constructed from “closed loop” configurations [35], cf. for example Fig. 3 page
9. Our methodology is to study the question of the existence of the attacks
independently of any considerations which would involve any secret key bits,
similarly to the suggestion in Sec 4.2. in [4]. We have a pure question of existence
of polynomial invariants P for any specific P-box and arbitrary S-boxes with
the key bits. Then we have two separate questions of how many S-boxes are
vulnerable and if these properties are preserved or not when we translate the
S-boxes by a key on the input side. Our first impossibility result is Thm. 5.4. We
show that balanced non-linear Boolean functions cannot work with our specific
attack of degree 5. The impossibility holds for any key (worst case). Possibly
there is little hope to break DES with invariants of degree 5.

Then we show that substantially more powerful attacks will be obtained when
the degree of the polynomial invariant increases. In Thm. 6.1 we show that with
invariants of degree 12, Boolean functions can be balanced and highly non-linear.
We obtained a first proof of concept of how to backdoor DES by modifying a
small number of entries inside certain S-boxes and nothing else – everything else
is like in the original FIPS Data Encryption Standard.

An important question how to avoid this type of attacks which is closely
related to the question of k-normality for Boolean functions, cf. Section 7.2.
Furthermore in Section 8 we discover that with cubic annihilators the attack
becomes very hard to avoid, cf. Thm. 8.2. In Section 9 we outline a larger family
of attacks based on cycles involving no longer just bits but complex polynomials.
In Section 10 we explain that some of these are highly compatible with the DES
key scheduling, while most are not. Finally in Section 11 we provide a glimpse
of how a larger picture looks like, when we consider full S-boxes instead of
individual Boolean functions.
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2. Joan Boyar, Magnus Find, René Peralta: Four Measures of Nonlinearity, In Algo-
rithms and Complexity, CIAC 2013, LNCS 7878, pp. 61-72, Springer.

3. C. Beierle, A. Canteaut, G. Leander, Y. Rotella: Proving resistance against invari-
ant attacks: how to choose the round constants, in Crypto 2017, Part II. LNCS,
10402, pp. 647–678, Springer 2017.

4. Tim Beyne: Block Cipher Invariants as Eigenvectors of Correlation
Matrices, in Asiacrypt 2018, pp. 3-31. One version is also avail. at
https://eprint.iacr.org/2018/763.pdf



27

5. Lawrence Brown: A Proposed Design for an Extended DES, In IFIP/Sec’88, May
1988.

6. Lawrence Brown, Jennifer Seberry, Key scheduling in DES type cryptosystems In
AUSCRYPT ’90, LNCS 453, pp. 221-228.

7. Marco Calderini: A note on some algebraic trapdoors for block ciphers, last revised
17 May 2018, https://arxiv.org/abs/1705.08151

8. Cagdas Calik and Meltem Sonmez Turan and Rene Peralta: The Multiplicative
Complexity of 6-variable Boolean Functions, https://ia.cr/2018/002.pdf

9. P. Camion, C. Carlet, P. Charpin, and N. Sendrier, On correlation immune func-
tions, In Crypto’91, LNCS 576, pp 86-100.

10. Claude Carlet: On the degree, nonlinearity, algebraic thickness and non-normality
of Boolean functions, with developments on symmetric functions. IEEE Trans. Inf.
Theory 50, 2178–2185 (2004).

11. Claude Carlet, Sihem Mesnager; Four decades of research on bent functions, In
Designs Codes and Cryptography vol. 78, pp: 5–50, 2006.

12. Pascale Charpin: Normal Boolean functions, Journal of Complexity, vol. 20, Issues
2–3, pp 245–265, 2004.

13. Nicolas Courtois: Two Philosophies For Solving Non-
Linear Equations in Algebraic Cryptanalysis, avail. at
http://www.nicolascourtois.com/papers/Igamma-Mycrypt2016.pdf, in
Paradigms in Cryptology, Mycrypt 2016. Malicious and Exploratory Cryp-
tology, pp. 506-520, LNCS 10311, Springer 2017.

14. Nicolas T. Courtois, Aidan Patrick: Lack of Unique Factorization as a Tool in
Block Cipher Cryptanalysis, Preprint, https://arxiv.org/abs/1905.04684 12
May 2019.

15. Nicolas T. Courtois: Invariant Hopping Attacks on Block Ciphers, presented at
WCC’2019, Abbaye de Saint-Jacut de la Mer, France, 31 March - 5 April 2019.
Extended version available at https://arxiv.org/pdf/2002.03212.pdf, 8 Febru-
ary 2020.

16. Nicolas T. Courtois, Marios Georgiou: Variable elimination strategies and con-
struction of nonlinear polynomial invariant attacks on T-310, In Cryptologia, vol.
44, Iss. 1, pp. 20-38. At https://doi.org/10.1080/01611194.2019.1650845

17. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, LNCS 2656, pp. 345–359, Springer. Extended version:
www.nicolascourtois.com/toyolili.pdf.

18. Nicolas Courtois: Algebraic Attacks on Combiners with Memory and Several Out-
puts, ICISC 2004, LNCS 3506, pp. 3–20, Springer 2005. Extended version available
on https://ia.cr/2003/125/.

19. Nicolas T. Courtois: On the Existence of Non-Linear Invariants and Al-
gebraic Polynomial Constructive Approach to Backdoors in Block Ciphers,
https://ia.cr/2018/807, revised 3 Dec 2018.

20. Nicolas T. Courtois: Structural Nonlinear Invariant Attacks on T-310: Attacking
Arbitrary Boolean Functions, https://ia.cr/2018/1242, revised 12 Sep 2019.

21. Nicolas Courtois: Feistel Schemes and Bi-Linear Cryptanalysis, in Crypto 2004,
LNCS 3152, pp. 23–40, Springer, 2004.

22. Nicolas Courtois: An Improved Differential Attack on Full GOST, In Cryptol-
ogy ePrint Archive, Report 2012/138. 15 March 2012, updated December 2015,
https://ia.cr/2012/138.

23. Nicolas Courtois, Jörg Drobick and Klaus Schmeh: Feistel ciphers in East Germany
in the communist era, In Cryptologia, vol. 42, Iss. 6, 2018, pp. 427-444.



28

24. Nicolas Courtois, Micha l Misztal: Aggregated Differentials and Cryptanalysis of
PP-1 and GOST, In CECC 2011, 11th Central European Conference on Cryptol-
ogy. In Periodica Mathematica Hungarica Vol. 65 (2 ), 2012, pp. 11-26, Springer.

25. Nicolas Courtois: Algebraic Complexity Reduction and Cryptanalysis of GOST,
Monograph study on GOST cipher, 2010-2014, 224 pages, available at
https://ia.cr/2011/626.

26. Nicolas T. Courtois, Matteo Abbondati, Hamy Ratoanina, and Marek Grajek:
Systematic Construction of Nonlinear Product Attacks on Block Ciphers, In ICISC
2019, LNCS 11975, pp 20-51, Springer, 2020.

27. Hans Dobbertin: Construction of bent functions and balanced Boolean functions
with high nonlinearity, in: FSE’94, LNCS 1008, Springer, Berlin, pp. 61–74, 1994.

28. S. Dubuc: Etude des propriétés de dégénérescence et de normalité des fonctions
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A Enumeration of Product Attacks with Cubic
Annihilators and Single Variables

We have computed a list of potential non-linear invariant attacks on DES with
modified S-boxes. These configurations were constructed based on random sub-
sets of 32 bits considering that annihilators can be any sets of bits which are
connected primarily to themselves cf. Section 4. Annihilations by a product of
two variables or less are avoided, as too few S-boxes have such properties, cf.
Table 1. This is not the most general polynomial invariant attack on DES, cf.
Section 9 and Section 12 in [20]. However these attack are quite interesting be-
cause many inputs of DES round functions are duplicated, and many terms with
single variables are such that they can used TWICE (annihilating outputs for
two different S-boxes). We obtain a small finite set of attacks where all annihi-
lations are of degree 3 or higher and where the degree of P is ≥ 20. Our list of
attacks is shown in Table 6 below, each polynomial is a product of two identical
polynomials with R variables and L variables. For the sake of compactness we
omit the part with L variables. In addition, due to the lack of space we present
here only results the “stronger” half of such examples we have generated, where
three S-boxes are annihilated by a products of degree 4, which condition is eas-
ier to satisfy. Moreover we do not specify which outputs need to be annihilated,
which will be simply all those actually used inside our set, cf. Fig. 7.

Enumerating all possible attacks with these characteristics is our view quite
useful because we have a sufficient variety of attacks in order to work on questions
such as what is the probability that one attack out of many works with specific
S-boxes and how to optimize it. Or is DES P-box adequate and would a random
P-box lead to a larger set of attacks? Finally when we instantiate the attack
with concrete S-boxes, we obtain a ring of invariants which sometimes contains
elements of substantially lower degree than initially planned15. Therefore we can
use these polynomials as a starting point to discover a substantially larger set of
invariant attacks on DES with the original P-box. We leave these questions for
future research.

15 For example the exact attack of degree 12 in Section 6.1 hides the existence of
another attack of degree 5 in Section 5 operating on exactly the same set of 6+6
bits.
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Table 6. List of attacks with 5 active boxes and two cubic annihilators each.s

R01*R02*R03*R06*R08*R09*R10*R13*R14*R16*R17*R18*R20 1:bcd 2:cef 3:abcf

4:bcef 5:abce

R02*R03*R04*R06*R08*R09*R11*R13*R16*R17*R18*R19*R23*R24*R25 1:cde 2:acef

3:abdf 5:abcd 6:def

R01*R02*R03*R05*R08*R09*R13*R14*R15*R17*R18*R20*R21*R28*R31 1:bcdf 2:bef

4:bcdf 5:bcef 8:adf

R01*R02*R05*R07*R09*R12*R13*R15*R17*R26*R27*R28*R31*R32 1:abcf 2:bdf

4:abdf 7:cde 8:adef

R02*R03*R04*R05*R08*R09*R17*R18*R19*R21*R23*R25*R28*R29*R31 1:cdef 2:abef

5:bcdf 6:bdf 8:abd

R02*R04*R05*R07*R09*R21*R22*R23*R27*R28*R29*R31*R32 1:acef 2:abdf 6:bcd

7:def 8:abde

R01*R03*R04*R08*R09*R10*R11*R14*R16*R17*R19*R20*R23*R24*R25 1:bde 3:abcd

4:cef 5:abde 6:adef

R01*R04*R05*R09*R10*R11*R15*R16*R17*R20*R21*R23*R24*R29*R30*R31 1:bef

3:bcd 4:def 6:abde 8:bcdf

R01*R03*R04*R05*R14*R15*R17*R19*R20*R21*R23*R25*R29*R31 1:bdef 4:cdf

5:bdef 6:abdf 8:bdf

R01*R03*R05*R12*R14*R15*R17*R20*R21*R25*R26*R27*R31*R32 1:abdf 4:acdf

5:bef 7:bcd 8:def

R01*R04*R05*R12*R15*R17*R20*R21*R22*R23*R26*R27*R29*R31*R32 1:abef 4:adf

6:abcd 7:cdf 8:bdef

R06*R07*R08*R10*R12*R13*R14*R16*R18*R20*R24*R25*R26*R28 2:cde 3:acef

4:abce 5:ace 7:abce

R04*R05*R06*R07*R11*R12*R13*R21*R22*R24*R27*R28*R29*R30*R32 2:abcd 3:def

6:bce 7:adef 8:abce

R08*R10*R11*R12*R14*R16*R19*R20*R22*R24*R25*R26*R29 3:acde 4:ace 5:ade

6:acef 7:abcf

R01*R10*R11*R12*R15*R16*R20*R21*R22*R24*R26*R27*R29*R30*R32 3:cde 4:ade

6:abce 7:acdf 8:bcef


