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Identity-certifying Authority-aided Identity-based
Searchable Encryption Framework in Cloud Systems

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Yu-Chi Chen, and Masahiro Mambo

Abstract—In the era of cloud computing, massive quantities of
data are encrypted and uploaded to the cloud to realize a variety
of applications and services while protecting user confidentiality.
Accordingly, the formulation of methods for efficiently searching
encrypted data has become a critical problem. Public-key encryp-
tion with keyword search is an efficient solution that allows the
data owner to generate encrypted keywords for a given document
while also allowing the data user to generate the corresponding
trapdoor for searching. Huang and Li proposed a public-key
authenticated encryption with keyword search (PAEKS) scheme
to resist keyword guessing attacks, where the data owner not only
encrypts keywords but also authenticates them. However, existing
PAEKS-related schemes carry a trade-off between efficiency,
storage cost, and security. In this paper, we introduce a novel
framework, called identity-certifying authority-aided identity-
based searchable encryption, which has the advantage of reducing
storage space while remaining the efficiency and security. We for-
mally define the system model and desired security requirements
to represent attacks in a real scenario. In addition, we propose a
provably secure scheme based on the gap bilinear Diffie–Hellman
assumption and experimentally evaluate our scheme in terms of
its performance and theoretical features against its state-of-the-
art counterparts.

Index Terms—cloud systems, identity-based searchable encryp-
tion, identity-certifying authority, keyword search.

I. INTRODUCTION

W ITH the maturation of cloud computing technology,
enterprises have increasingly uploaded massive quanti-

ties of data to the cloud to reduce their storage and computing
burden. For example, convenience store chains upload data
from each branch to the cloud for analysis, and hospitals
upload patient data to the cloud for management. In addition,
since the introduction of the concept of Industry 4.0 by
Lasi et al. [1], firms have begun integrating cloud systems
into their data collection and production processes. However,
privacy concerns remain on shipments, patient records, and
even factory inventory are highly sensitive, and companies
may be reluctant to directly upload them to cloud systems
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that they cannot fully trust. Consequently, data are often
encrypted before being uploaded to cloud systems in order
to avoid information leakage, but such encrypted data pose a
computational challenge for cloud systems.

Symmetric searchable encryption (SSE), introduced by
Song et al. [2], is one solution to the aforementioned problem.
In SSE, a data owner (DO) can generate encrypted keywords
for each encrypted file by using a symmetric key that is
shared with the data user (DU) before their data are uploaded
to the cloud systems. Subsequently, the DU can generate a
trapdoor for specified keywords and submit them to the cloud
systems to search for encrypted files that are related to these
keywords. Because of these properties, SSE is well suited
to cloud computing, and various SSE approaches have been
proposed [3], [4], [5], [6], [7]. However, SSE is restricted to the
key sharing problem of symmetric cryptosystems. Specifically,
the DO and DU must agree on a shared key before encrypting
keywords and generating trapdoors, respectively.

To further increase the range of application and reduce the
communication overhead of negotiating keys, Boneh et al.
[8] introduced a searchable encryption method in a public-
key setting, called public key encryption with keyword search
(PEKS). Instead of using a shared key as done in SSE, in
PEKS, the DO encrypts keywords by using the DU’s public
key, and the DU generates corresponding trapdoors by using
his or her secret key. After the pioneering work by Boneh et
al., PEKS immediately caught the attention of researchers, and
many studies have applied PEKS to various applications [9],
[10], [11], [12], [13], [14], [15], [16]. However, in 2006, Byun
et al. [17] observed that because the entropy of keywords is
low, any malicious party, through a so-called keyword guessing
attack, can randomly select keywords to generate the ciphertext
and test whether the ciphertext is passable; thus, the malicious
party can obtain the information associated with the keywords
in the trapdoor. In particular, to resolve the keyword guessing
attack launched by a malicious cloud server (CS) as part of a
so-called insider keyword guessing attack (IKGA), Chen et al.
[18], [19], [20] have first proposed solutions for dual-server
setting, and their methods were improved upon by Tso et al.
[21].

Huang and Li [22] recently introduced the concept of
public-key authenticated encryption with keyword search
(PAEKS) under a single-server setting, where the trapdoor
works only for ciphertext that is authenticated by the DO
using his or her secret key; therefore, a malicious CS can-
not randomly generate ciphertext and further perform IKGA.
Inspired by Huang and Li’s work [22], scholars have proposed
several PAEKS schemes [23], [24], [25], [26], [27], [28],
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[29]. However, because PAEKS schemes are based on public
key settings and do not provide implicit authentication, they
require a trusted public key infrastructure to bind public keys
with the respective identities of entities through issuing cer-
tificates; nevertheless, this process incurs additional overhead.
Several approaches are available for intuitively solving this
problem in PAEKS:

1) Identity-based authenticated encryption with keyword
search (IBAEKS) [30]: In IBAEKS schemes, the user
can apply to a trusted key generation center (KGC) for
the secret key of a specific identity; they can then use
the identity as their public key. Thus, in IBAEKS, no
additional steps are required to prove the validity of the
public key.

2) Certificate-based authenticated encryption with keyword
search (CBAEKS) [31], [32]: In CBAEKS schemes, the
user can apply to a trusted certification authority for
the certificate of a pair comprising a specific identity
and public key. Unlike the certificates used in PAEKS
schemes, the certificate in CBAEKS not only implicitly
authenticates the validity of the identity and public key
but also acts as a partial secret key.

3) Certificateless authenticated encryption with keyword
search (CLAEKS) [33], [34], [35], [36]: The solution
of CLAEKS is similar to that of IBAEKS, except that
the user generates a pair comprising public and secret
values, in addition to obtaining the secret key of their
identity from the KGC. The user finally uses the identity
and public value as the full public key and uses the secret
key and secret value as the full secret key.

Although the three aforementioned approaches solve the
problem in PAEKS, each approach has its disadvantages in
safety, storage, or efficiency. Specifically, in IBAEKS [30],
because the KGC can gain access to any user’s secret key,
key escrow problems occur when the KGC is malicious. By
contrast, although CBAEKS [31], [32] and CLAEKS [33],
[34], [35], [36] solve the key escrow problem, the users in
these schemes require an additional generated certificate or
a public–secret value pair to encrypt keywords or generate
trapdoors. Consequently, users require more storage space to
store certificates and keys. It becomes less convenient for the
users in CBAEKS and CLAEKS schemes than in IBAEKS
schemes, because the users have to use additional information
instead of merely using their identities to encrypt keywords
and generate trapdoors. Accordingly, to ameliorate this trade-
off, we present a novel identity-certifying authority (ICA)-
aided identity-based searchable encryption (IBSE) framework
(hereafter referred to as ICA-IBSE).

Our contributions are summarized as follows:

• To master the trade-off between efficiency and security,
on the basis of Chow et al. [37] and Emura et al. [38],
who have used an ICA in identity-based encryption,
we propose our ICA-IBSE scheme, which inherits the
advantages of IBAEKS in terms of convenience and
storage requirements and eliminates the disadvantage of
IBAEKS regarding the key escrow problem.

• We define the system model and security requirements of

the ICA-IBSE framework before applying it to a practical
case. Moreover, we provide the security proofs to show
that under the defined security models, our scheme is
secure if the gap bilinear Diffie–Hellman (GBDH) as-
sumption holds.

• We further provide a theoretical comparison and perfor-
mance evaluation of our scheme against state-of-the-art
schemes [24], [25], [30], [31], [32], [33], [35]. The results
indicate that our scheme is more efficient and that it
performs better at reducing the storage requirement for
the public key, ciphertext, and trapdoor.

II. PRELIMINARIES

In this section, we introduce the requisite background, in-
cluding notations, digital signature, symmetric bilinear groups,
and gap bilinear Diffie–Hellman assumption.

A. Notations

For simplicity and readability, TABLE I describes the no-
tations used throughout the paper.

TABLE I
NOTATIONS AND DESCRIPTIONS

Notations Descriptions

λ Security parameter
pp Public parameter
ID,W,M Identity space, Keyword space, Message space
q A big prime number
[a, b] Set {a, a+ 1, · · · , b} (omit a if a = 1)
Z∗q Integers in [1, q − 1] which are relatively prime to q
G1,GT Bilinear groups with order q
Gec Elliptic curve group with order q
g A generator of G1

ê Bilinear pairing
H,h1, h2 Cryptographic hash functions
IKGA Insider keyword guessing attacks
MCKA Multichosen keyword guessing attacks
ICA, KGC Identity-certifying authority, Key generation center
CS, DO, DU Cloud server, Data owner, Data user
ID , DO , DU The identity of ID, DO, and DU, respectively
pkICA, skICA The public key and secret key of ICA
pkKGC , skKGC The public key and secret key of KGC
skID The secret key of identity ID
certID , tfID The certificate and trapdoor of identity ID
w A keyword
ctw A ciphertext associated with keyword w
tdw A trapdoor associated with keyword w
⊥ A null symbol
A,B The polynomial time adversary and challenger
AO(·)(x) A with input x can access the black-box oracle O
y ← F (x) Storing the output of an algorithm F with input x to

the variable y

s
$←− S Sampling an element s from set S uniformly at

random
|K| Bit length of elements of K
negl(λ) An arbitrary function f is negligible in λ, where

f(λ) = o(λ−c) for every fixed constant c
Sig Digital signature scheme
vkSig, skSig Verification key and Signing key of Sig
m, σSig Message, Signature
Qkey The amount of instances obtained by querying

Issue Key KGC Oracle
IDList Storing the corresponding identity of the secret key

that is returned by Issue Key KGC Oracle
(∗) Any element in a tuple
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B. Digital Signature

A digital signature scheme Sig with the message space M
comprises three algorithms:

Sig.KeyGen(1λ): The security parameter λ is taken as the
input, and a verification key vkSig and signing key skSig
are the outputs.

Sig.Sign(skSig,m): The signing key skSig and a message m ∈
M are take as the inputs, and a signature σSig is the
output.

Sig.Verify(vkSig,m, σSig): The verification key vkSig, a mes-
sage m ∈M, and a signature σSig are taken as the inputs,
and 1 is the output if the signature is valid; otherwise, ⊥
is the output.

A Sig is considered to be correct if for all λ, all
messages m ∈ M, all (vkSig, skSig) ← Sig.KeyGen(1λ),
and all σSig ← Sig.Sign(skSig,m), the equation
Pr[Sig.Verify(vkSig,m, σSig) = 1] = 1 holds. In addition, we
consider that Sig is secure against an existential unforgeability
under an adaptive chosen message attack (EU-CMA) if, for
any A, the advantage of A wins the EU-CMA game
AdvEU-CMA

Sig,A (λ) := Pr[Sig.Verify(vkSig,m
∗, σ∗Sig) = 1] is

negligible. Here, the adversary A is allowed to query the
signing oracle Osign(·) on any message m 6= m∗ ∈ M and
allowed to obtain the corresponding signature σSig.

EU-CMA Game

(vkSig, skSig)← Sig.KeyGen(1λ);
(m∗, σ∗Sig)← AOsign(·)(vkSig);

C. Symmetric Bilinear Groups

Let q be a λ-bit prime, and let G1 and GT be two cyclic
groups of the same prime order q, where g ∈ G1 is a
generator. In addition, let ê : G1 × G1 → GT be a bilinear
pairing (a map). We consider that the tuple (q, g,G1,GT , ê)
is a symmetric bilinear group if the following properties are
satisfied:
• Bilinearlity: for all g1, g2 ∈ G1 and a, b ∈ Z∗q ,
ê(ga1 , g

b
2) = ê(g1, g2)ab;

• Nondegeneracy: gT := ê(g, g) is a generator of GT (i.e.,
gT 6= 1 holds);

• Computability: ê is efficiently computable.

D. Gap Bilinear Diffie–Hellman Assumption [39], [40]

Given a symmetric bilinear group tuple Φ =
(q, g,G1,GT , ê), we consider that the GBDH assumption
holds if, for any probabilistic polynomial-time algorithm
(PPT) adversary A, the advantage (defined as follows) is
negligible:

AdvGBDH
Φ,A (qDBDH) :=

Pr[T = ê(g, g)abc | a, b, c ∈ Z∗q ;T ← AODBDH(Φ, ga, gb, gc)],

where qDBDH denotes the maximum number of queries by A
to ODBDH, and ODBDH denotes a decision bilinear Diffie–
Hellman oracle that takes (ga, gb, gc, T ) as its input and
outputs 1 if ê(g, g)abc = T and 0 if otherwise.

Fig. 1. The proposed ICA-IBSE framework

III. DESCRIPTION OF ENTITIES IN ICA-IBSE

The ICA-IBSE comprises five entities, namely the Identity-
certifying Authority (ICA), Key Generation Center (KGC),
Cloud Server (CS), Data Owner (DO), and Data User (DU),
which are displayed in Fig. 1.
• ICA: This authority is responsible for validating the DO’s

and DU’s identities and issuing trapdoor information and
an identity certificate to them.

• KGC: By validating the correctness of the identity cer-
tificate, the KGC generates the DO’s and DU’s partial
secret keys without knowing any information about their
identity.

• CS: The CS has sufficient storage and computing capacity
and is mainly responsible for storing encrypted data along
with the corresponding encrypted keywords and searching
for data.

• DO: The DO first requests his/her certificate from the
ICA and further generates his/her partial secret key
by interacting with the KGC. Finally, the DO obtains
his/her secret key by using trapdoor information. The DO
can generate massive quantities of encrypted data along
with the corresponding encrypted keywords, which are
uploaded to the CS to reduce the storage requirement.

• DU: The DU generates his/her secret key as the DO does.
Subsequently, the DU can issue trapdoors, generated
by using his/her secret key, to the CS to retrieve the
encrypted data associated with the specified keyword.

In the following analysis, we consider adversary threats
from different perspectives.
• The DO and DU are fully trusted, as all of the case in

PAEKS schemes, because DO and DU know the secret
information (i.e., keywords). Therefore, the DO and DU
is also unable to collude with other parties to reveal
their secret keys, or the keyword privacy can be directly
compromised by other parties.

• The ICA and KGC cannot collude with each other,
because it is impossible for KGC to issue any secret
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key to a user whose identity cannot be directly or in-
directly identified. Therefore, to enable KGC to generate
secret keys, there must be some party (e.g., ICA) that
can privately authenticate the user’s identity. Then, the
user can indirectly validate his/her identity to the KGC.
However, if ICA and KGC are collude with each other,
they can adaptively generate any user’s secret keys.
Therefore, we need to assume that ICA and KGC cannot
collude. Although this restriction has to be added, it is
still in accordance with the real scenarios. For example,
supposing ICA is a government-issued certificate party
that sends a certificate showing the user is authenticated,
with this certificate, the service provider (e.g., KGC) can
provide the secret key to the user only by verifying
the certificate without further knowing the user’s true
identity, so the service provider is unable to generate the
secret key itself. In general, there are usually government
regulators to ensure that the government is not colluding
with service providers.

• The KGC and CS are honest but curious, which means
that they will attempt to retrieve the sensitive information
of the keywords from encrypted keywords and trapdoors.

• The ICA is malicious. In addition to attempting to obtain
keyword information as the KGC and CS do, the ICA
can generate a potentially malicious ICA key pair.

• The communication channels between the DO and DU
and the cloud server are insecure, which means that all
transmitted information is eavesdropped upon by any
one party (e.g., ICA, KGC, and a malicious outsider).
However, the communication channels between the DO
and DU and the ICA and KGC are secure. In other
words, we assume that the communication channels are
encrypted and authenticated (e.g., by using TLS 1.3 [41]).

IV. DEFINITION AND SECURITY MODELS OF ICA-IBSE

A. Definition

A typical ICA-IBSE scheme comprises seven algorithms
and a protocol, which are described as follows:

Setup(1λ): The security parameter λ is taken as the input,
and the system parameter pp is the output. Here, we
assume that the keyword space W and the identity space
ID of ICA-IBSE are defined by the system parameter
pp.

ICA-Setup(pp): This algorithm is executed by ICA that takes
the system parameter pp as input, and outputs the public–
secret key pair (pkICA, skICA) of the ICA.

KGC-Setup(pp): This algorithm is executed by KGC that
takes the system parameter pp as input, and outputs the
public–secret key pair (pkKGC , skKGC ) of the KGC.

ICA-Cert(pp, pkICA, skICA, ID): This algorithm is executed
by ICA that takes the system parameter pp, ICA’s public
key pkICA, ICA’s secret key skICA, and a user’s identity
ID ∈ ID as inputs, and outputs a certificate certID and
a piece of trapdoor information tfID , which are sent to
the ID through a secure channel.

〈User-Obtain-Key(pp, pkKGC , ID , certID , tfID),
KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)〉: This

is an interactive key-issuing protocol between
a user and the KGC that comprises two
algorithms: User-Obtain-Key and KGC-Issue-Key.
The user first generates the first-round message
M1 ← User-Obtain-Key(pp, pkKGC , ID , certID , tfID)
and submits it to the KGC. Subsequently,
the KGC returns a second-round message
M2 ← KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)
to the user. At the end of the protocol, the user can
locally output a secret key skID or ⊥.

Encrypt(pp, skDO ,DU , w): This algorithm is executed by
DO that takes the system parameter pp, DO’s secret key
skDO , DU’s identity DU , and a keyword w ∈ W as
inputs, and outputs a searchable ciphertext ctw associated
with keyword w is the output.

Trapdoor(pp,DO , skDU , w): This algorithm is executed by
DU that takes the system parameter pp, DO’s identity
DO , DU’s secret key skDU , and a keyword w ∈ W
as inputs, and outputs a trapdoor tdw associated with
keyword w.

Test(pp, ctw, tdw): This algorithm is executed by CS that
takes the system parameter pp, a searchable ciphertext
ctw, and a trapdoor tdw are taken as the inputs, and 1
is the output if ctw is matched with tdw; otherwise, 0 is
the output.

Definition 1 (Correctness and Consistency of ICA-IBSE).
For all security parameters λ ∈ N, all DOs DO ∈ ID,
all DUs DU ∈ ID, and all keywords w,w′ ∈ W ,
ICA-IBSE is defined to be correct if, when w = w′,
we have Pr[Test(pp, ctw, tdw′) = 1] = 1 and ICA-
IBSE is defined to be consistent if, when w 6= w′, we
have Pr[Test(pp, ctw, tdw′) = 0] = 1 − negl(λ), where
pp ← Setup(1λ); (pkICA, skICA) ← ICA-Setup(pp);
(pkKGC , skKGC ) ← KGC-Setup(pp); (certi, tdi) ←
ICA-Cert(pp, pkICA, skICA, i); and ski ←
〈User-Obtain-Key(pp, pkKGC , i, certi, tdi),
KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)〉, for
i = {DO , DU}, ctw = Encrypt(pp, skDO ,DU , w), and
tdw′ ← Trapdoor(pp,DO , skDU , w

′).

B. Security Models

To model the different aspects of the attacks described in
Section III, we revise the security model in [25] and [42]
to account for multichosen keyword attacks (MCKAs) and
IKGAs in the ICA-IBSE framework. Here, MCKAs, recently
introduced by Qin et al. [25], ensure that no adversary can
obtain any information on keywords from two tuples of
encrypted keywords; IKGAs ensure that no insider adversary
(e.g., the CS) can obtain any information on keywords from
the trapdoor, even when an insider can conduct tests.

In ICA-IBSE framework, the CS can directly obtain the
entirety of ciphertext and all the trapdoors from DO and DU;
hence, intuitively, the CS has greater attack capability relative
to eavesdroppers on the channel. In addition, ICA and KGC
are not fully trusted party in this framework. Therefore, we not
only define the attack from CS (i.e., MCKA-CS and IKGA-
CS), but further define additionally security games to model
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the attack from ICA and KGA (i.e., MCKA-ICA, IKGA-ICA,
MCKA-KGC, and IKGA-KGC) for the real scenarios.

Informally, in these security models, the prefix (MCKA
or IKGA) means that the models are related to the MCKA
security or IKGA security, while the suffix (ICA, CS, and
KGC) means that which malicious party is being modeled. In
more detail, for malicious ICA, since ICA cannot collude to
KGA in ICA-IBSE framework, the malicious ICA in MCKA-
ICA and IKGA-ICA models is unable to obtain any identities’
secret key by querying oracles. As for malicious CS, it is
allowed to query user’s partial secret key (i.e., M2) in MCKA-
CS and IKGA-CS models. As for malicious KGC, to model
the ability of KGC that can generate any user’s partial secret
key, malicious KGC is given the KGC’s secret key in MCKA-
KGC and IKGA-KGC models. In addition, the malicious KGC
is allowed to query user’s certificate (i.e., M1) and further
generates any user’s secret key. However, since KGC cannot
obtain the identity information of the user in ICA-IBSE, the
malicious KGC also cannot obtain the identity information
corresponding to the certificate when querying the oracles.

Before presenting the formal security models, we first define
the following oracles that are simulated by the challenger B
for the adversary A:

Certificate Oracle Ocert: For any identity ID ∈ ID, B out-
puts (certID , tfID) ← ICA-Cert(pp, pkICA, skICA, ID)
to A.

Secret Key Oracle Osk: For any first-round message M1, B
runs M2 ← KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)
and returns M2 to A.

Ciphertext Oracle Oct: For any keyword w ∈ W , B outputs
ctw ← Encrypt(pp, skDO ,DU , w) to A.

Trapdoor Oracle Otd: For any keyword w ∈ W , B outputs
tdw ← Trapdoor(pp,DO , skDU , w) to A.

Issue Key KGC Oracle Oik-KGC: When A
makes this query, B randomly chooses
ID

$←− ID and computes (certID , tfID) ←
ICA-Cert(pp, pkICA, skICA, ID). In addition, B runs
M1 ← User-Obtain-Key(pp, pkKGC , ID , certID , tfID),
and returns M1 to A. Furthermore, B stores ID to
IDList , and updates Qkey ← Qkey + 1. Here, Qkey is
the amount of instances obtained by querying Oik-KGC,
and IDList is a list of identities whose corresponding
M1 values have been obtained by the adversary through
querying Oik-KGC.

Ciphertext KGC Oracle Oct-KGC: For any keyword w ∈ W ,
DO index doi, and DU index dui, B first checks whether
doi ∈ [Qkey ] and dui ∈ [Qkey ]. If not, B forces A to
output a random bit b′ ∈ {0, 1}. Otherwise, B retrieves
the doi-th identity’s secret key skIDList[doi] and dui-th
identity IDList [dui] in IDList and subsequently outputs
ctw ← Encrypt(pp, skIDList[doi], IDList [dui], w) to A.

Trapdoor KGC Oracle Otd-KGC: For any keyword w ∈ W ,
DO index doi, and DU index dui, B first checks whether
doi ∈ [Qkey ] and dui ∈ [Qkey ]. If not, B forces
A to output a random bit b′ ∈ {0, 1}. Otherwise, B
retrieves the doi-th identity IDList [doi] and dui-th iden-
tity’s secret key skIDList[dui] and subsequently outputs

tdw ← Trapdoor(pp, IDList [doi], skIDList[dui], w) to A.
The following we give a formal description of these security

models. In particular, MCKA and IKGA games are represented
using blue solid and red dotted lines, respectively.

First, in the MCKA-CS and IKGA-CS games, the adver-
sary is unable to issue queries to Ocert on some challenged
identities DO ,DU ∈ ID. Furthermore, the adversary cannot
issue queries to oracles Oct on the challenged keywords
wb,i ∈ W and cannot issue queries to oracles Otd on the
challenged keywords wb ∈ W for the challenged identities
DO ,DU ∈ ID, where b ∈ {0, 1} and i ∈ {1, · · · , n}. We
consider that ICA-IBSE is MCKA-CS secure if the advantage

AdvMCKA-CS
ICA-IBSE ,A(λ) := |Pr[b = b′]− 1/2|

is negligible for any A, and we consider that ICA-IBSE is
IKGA-CS secure if the advantage

AdvIKGA-CS
ICA-IBSE ,A(λ) := |Pr[b = b′]− 1/2|

is negligible for any A.

MCKA-CS / IKGA-CS Game

pp← Setup(1λ); b
$←− {0, 1};

(pkICA, skICA)← ICA-Setup(pp); (pkKGC , skKGC )← KGC-Setup(pp);
(w̃0 = (w0,1, · · · , w0,n), w̃1 = (w1,1, · · · , w1,n),DO , DU)←

AOcert(·),Osk(·),Oct(·),Otd(·)(pp, pkICA, pkKGC );
˜ct∗ = (ct∗1, · · · , ct∗n), where ct∗i ← Encrypt(pp, skDO ,DU , wb,i),

for i = 1, · · · , n;
b′ ← AOcert(·),Osk(·),Oct(·),Otd(·)(pp, pkICA, pkKGC , ˜ct∗);

(w0, w1,DO ,DU )← AOcert(·),Osk(·),Oct(·),Otd(·)(pp, pkICA, pkKGC );
td∗ ← Trapdoor(pp,DO , skDU , wb);

b′ ← AOcert(·),Osk(·),Oct(·),Otd(·)(pp, pkICA, pkKGC , td
∗);

In MCKA-ICA and IKGA-ICA games, we model a ma-
licious ICA that can generate a potentially malicious ICA
key pair (pkICA, skICA). However, to model the state of
affairs where the ICA cannot interact with the KGC, the
adversary cannot access to Osk. In addition, the adversary
is also unable to issue queries to oracles Oct on challenged
keywords wb,i ∈ W and oracles Otd on challenged keywords
wb ∈ W for some challenged identities DO ,DU ∈ ID, where
b ∈ {0, 1} and i ∈ {1, · · · , n}. We consider that ICA-IBSE is
MCKA-ICA secure if the advantage

AdvMCKA-ICA
ICA-IBSE ,A(λ) := |Pr[b = b′]− 1/2|

is negligible for any A, and we consider that ICA-IBSE is
IKGA-ICA secure if the advantage

AdvIKGA-ICA
ICA-IBSE ,A(λ) := |Pr[b = b′]− 1/2|

is negligible for any A.

MCKA-ICA / IKGA-ICA Game

pp← Setup(1λ); b
$←− {0, 1};

(pkICA, skICA)← ICA-Setup(pp); (pkKGC , skKGC )← KGC-Setup(pp);
(w̃0 = (w0,1, · · ·w0,n), w̃1 = (w1,1, · · · , w1,n),DO ,DU )←

AOct(·),Otd(·)(pp, pkKGC );
˜ct∗ = (ct∗1, · · · , ct∗n), where ct∗i ← Encrypt(pp, skDO ,DU , wb,i),

for i = 1, · · · , n;
b′ ← AOct(·),Otd(·)(pp, pkKGC , ˜ct∗);

(w0, w1,DO ,DU )← AOct(·),Otd(·)(pp, pkKGC );
td∗ ← Trapdoor(pp,DO , skDU , wb);
b′ ← AOct(·),Otd(·)(pp, pkKGC , td

∗);
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Finally, the MCKA-KGC and IKGA-KGC games differ
from the preceding games in terms of their setups. Specifically,
the adversary is given KGC’s secret key. Moreover, we use
Qkey to count the amount of instances obtained by querying
Issue Key KGC Oracle Oik-KGC, and we use IDList to store
the corresponding identity of the secret key that is returned by
this oracle. To simulate the state of affairs where the adversary
does not know the identity of the user, after the adversary
completes the first query phase, the adversary outputs two
arbitrary indices α, β ∈ [Qkey ] instead of two identities
DO ,DU ∈ ID. Subsequently, by using the indices, the chal-
lenger chooses IDList [α] and IDList [β] from IDList as the
DO and DU, respectively. Furthermore, the adversary cannot
issue queries to Oct-KGC on challenged keywords wb,i ∈ W
and to issuing queries to Otd-KGC on challenged keywords
wb ∈ W for the challenged indices (α, β), where b ∈ {0, 1}
and i ∈ {1, · · · , n}. We consider that ICA-IBSE is MCKA-
KGC secure if the advantage

AdvMCKA-KGC
ICA-IBSE ,A(λ) := |Pr[b = b′]− 1/2|

is negligible for any A, and we consider that ICA-IBSE is
IKGA-KGC secure if the advantage

AdvIKGA-KGC
ICA-IBSE ,A(λ) := |Pr[b = b′]− 1/2|

is negligible for any A.

MCKA-KGC / IKGA-KGC Game

pp← Setup(1λ); IDList = ∅;Qkey := 1; b
$←− {0, 1};

(pkICA, skICA)← ICA-Setup(pp); (pkKGC , skKGC )← KGC-Setup(pp);
(w̃0 = (w0,1, · · · , w0,n), w̃1 = (w1,1, · · · , w1,n), α, β)←
AOik-KGC(·),Oct-KGC(·),Otd-KGC(·)(pp, pkICA, pkKGC , skKGC );

˜ct∗ = (ct∗1, · · · , ct∗n),
where ct∗i ← Encrypt(pp, skIDList[α], IDList [β], wb,i),

b′ ← AOik-KGC(·),Oct-KGC(·),Otd-KGC(·)(pp, pkICA, pkKGC , skKGC , ˜ct∗);
for i = 1, · · · , n;

(w0, w1, α, β)← AOik-KGC(·),Oct-KGC(·),Otd-KGC(·)(pp, pkICA, pkKGC , skKGC )
td∗ ← Trapdoor(pp, IDList [α], skIDList[β], wb);

b′ ← AOik-KGC(·),Oct-KGC(·),Otd-KGC(·)(pp, pkICA, pkKGC , skKGC , td
∗);

V. IDENTITY-CERTIFYING AUTHORITY-AIDED
IDENTITY-BASED SEARCHABLE ENCRYPTION

FRAMEWORK

In this section, we first propose a concrete scheme and
then analyze the correctness and consistency of the proposed
scheme.

A. Our Construction

Let ID = Z∗q and W = {0, 1}n for some n be the
identity space and keyword space of the ICA-IBSE scheme,
respectively. Let DO ∈ Z∗q and DU ∈ Z∗q be the identi-
ties of the DO and DU, respectively. In addition, let Sig :
(Sig.KeyGen,Sig.KeyGen,Sig.Verify) be an EU-CMA-secure
digital signature with message space M = {0, 1}m for some
m.

Setup(1λ): This algorithm chooses two cyclic groups
G1,GT with a large prime order q; a generator
g ∈ G1; a pairing ê : G1 × G1 → GT ; and

three cryptographic hash functions H : Z∗q → G1,
h1 : Z∗q × Z∗q × GT × {0, 1}n → Z∗q , and h2 :
Z∗q ×G1 → Z∗q . It sets the system parameter to be

pp := {1λ,G1,GT , ê, q, g,H, h1, h2}.
ICA-Setup(pp): The ICA runs (vkSig, skSig) ←

Sig.KeyGen(1λ). It then outputs
pkICA := vkSig; skICA := skSig.

KGC-Setup(pp): The KGC picks x $←− Z∗q and computes
Y = gx. It then outputs

pkKGC := Y ; skKGC := x.
ICA-Cert(pp, pkICA, skICA, ID): The ICA computes

uID = H(ID), picks yID,1
$←− Z∗q , and com-

putes uID,1 = gyID,1 . In addition, it computes
uID,2 ∈ G1 as uID,2 = uID · uID,1 and σSig ←
Sig.Sign(skSig, uID,2). Finally, it outputs

certID := (uID,2, σSig); tfID := yID,1.
〈User-Obtain-Key(pp, pkKGC , ID , certID , tfID),

KGC-Issue-Key(pp, pkKGC , skKGC , pkICA)〉: The
user and the KGC run the following steps:

1) The user sets M1 := certID = (uID,2, σSig) and
sends M1 to the KGC.

2) After receiving M1, the KGC verifies the correct-
ness of σSig. If Sig.Verify(vk.Sig, uID,2, σSig) =
⊥, the KGC sets M2 := ⊥. Otherwise, it com-
putes M2 := yID,2 = uxID,2. Finally, it returns
M2 to the user.

3) If M2 = ⊥, the user outputs ⊥. Otherwise, it
computes eID = yID,2 · Y −yID,1 and outputs

skID := eID .
Encrypt(pp, skDO ,DU , w): The DO randomly

selects r
$←− Z∗q , and computes c1 =

gr, c2 = grh2(h1(DO,DU ,k,w),c1), where
k = ê(skDO , H(DU )). Subsequently, it outputs

ctw := (c1, c2).
Trapdoor(pp,DO , skDU , w): The DU outputs

tdw := h1(DO ,DU , k, w),
where k = ê(H(DO), skDU ).

Test(pp, ctw, tdw): The CS checks whether

c2 = c
h2(tdw,c1)
1 .

It returns 1 if the equation is satisfied and returns 0
if otherwise.

B. Correctness and Consistency of ICA-IBSE

The following we analyze the correctness and consistency
of the proposed ICA-IBSE scheme:

1) For i = {DO ,DU }, we have

ski = yi,2 · Y −yi,1

= uxi,2 · Y −yi,1

= uxi · uxi,1 · Y −yi,1

= H(i)x · Y yi,1 · Y −yi,1

= H(i)x.
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2) Considering the Test algorithm for a ciphertext ctw =
(c1, c2) and a trapdoor tdw′ , we have

grh2(h1(DO,DU ,k,w),c1) = c2 = c
h2(tdw′ ,c1)
1

= grh2(tdw′ ,c1)

= grh2(h1(DO,DU ,k′,w′),c1)

3) In addition, we have

k = ê(skDO , H(DU )) = ê(H(DO)x, H(DU ))

= ê(H(DO), H(DU )x) = ê(H(DO), skDU )

= k′.

Because k = k′, when w = w′, we have
h1(DO ,DU , k, w) = h1(DO ,DU , k′, w′) and
c2 = c

h2(tdw′ ,c1)
1 ; therefore, correctness is satisfied.

Conversely, when w 6= w′, because the probability that
h1(DO ,DU , k, w) = h1(DO ,DU , k′, w′) is negligibly low,
we have c2 6= c

h2(tdw′ ,c1)
1 ; therefore, consistency is also

satisfied.

VI. SECURITY ANALYSIS OF ICA-IBSE

In this section, we demonstrate that our scheme is secure
against various forms of attacks.

Theorem 1. The proposed construction is MCKA-CS secure if
the underlying signature scheme Sig is EU-CMA secure under
the hard GBDH assumption.

Proof. Suppose that some PPT algorithm A can break the
MCKA-CS security of the proposed scheme. If so, then the
following proof demonstrates that some other algorithm B can
use A to solve the GBDH assumption.

Before the beginning of the game, B is given a GBDH
instance (g, ga, gb, gc), where a, b, c ∈ Z∗q are random choices.
Initialization. B first generates the system parameter pp =
{1λ,G1,GT , ê, q, g,H, h1, h2} according to the scheme. Sub-
sequently, B chooses `1, `2 ≤ qH randomly as the indices
of the challenged identities for the DO and DU, respectively.
Here, qH is the maximum number of queries that could
query to the H-oracle for different identities. B also runs
(pkICA, skICA) ← ICA-Setup(pp) and sets pkKGC = ga.
Furthermore, B initials on four lists (cert-list, H-list, h1-list,
and h2-list) and randomly chooses a bit b $←− {0, 1}. Finally,
B returns (pp, pkICA, pkKGC ) to A.
Phase 1. In this phase, A is allowed to query the following
oracles adaptively at polynomially many instances.
• H-oracle: On the ith nonrepeated query ID i ∈ ID, B

first searches the H-list for the entry (i, ID i, µIDi
, uIDi

).
If no such entry exists, then B executes the following
under the following conditions:

– If i /∈ {`1, `2}: B randomly chooses µIDi

$←− Z∗q ,
computes uIDi

= gµIDi , adds (i, ID i, µIDi
, uIDi

) to
H-list, and returns uIDi to A.

– if i = `1: B sets uIDi
= gb, adds (i, ID i,⊥, uIDi

) to
H-list, and returns uIDi to A.

– if i = `2: B sets uIDi
= gc, adds (i, ID i,⊥, uIDi

) to
H-list, and returns uIDi to A.

• h1-oracle: On the query (ID i, IDj , k, w), B searches h1-
list for the entry ((ID i, IDj , k, w), h) and returns h. Note
that we assume that ((ID i, IDj , k, w), h) is identical to
((IDj , ID i, k, w), h) for h1-list. If no such entry exists,
B runs the following steps:
– retrieve uIDi

and uIDj
by calling H(ID i) and

H(IDj), respectively.
– check if ODBDH(pkKGC , uIDi , uIDj , k) = 1.
– if {i, j} = {`1, `2} and the DBDH oracle returns 1,

return k as the answer to the GBDH problem and abort.
– randomly choose h $←− Z∗q , add (ID i, IDj , k, w), h) to
h1-list, and return h to A.

• h2-oracle: On the query (h, c1), B searches h2-list for the
entry ((h, c1), h̃) and returns h̃. If no such entry exists,
B randomly chooses h̃ $←− Z∗q , adds ((h, c1), h̃) to h2-list,
and returns h̃ to A.

• Ocert(·): when A queries for a certificate correspond-
ing to ID , B first goes through H-list for a tuple
(∗, ID , ∗, ∗). If no such tuple is found, B calls H(ID) first
and obtains (i, ID , µID , uID). Subsequently, B samples
yID,1

$←− Z∗q and computes uID,1 = gyID,1 , uID,2 =
uID · uID,1, and σSig ← Sig.Sign(skICA, uID,2). B also
sets certID = (uID,2, σSig) and tfID = yID,1 and
adds (certID , tfID , ID) to cert-list. Finally, B returns
(certID , tfID) to A.

• Osk(·): when A queries for a secret key with a first-round
message M1, B parses M1 = (uID,2, σSig). B returns ⊥
if Sig.Verify(pkICA, uID,2, σSig) = ⊥. Otherwise, B ex-
tracts tfID = yID,1 from (certID = (uID,2, σSig), tfID =
yID,1, ID) ∈ cert-list. Here, we note that because Sig is
EU-CMA secure, if the verification passes, it necessarily
exists in cert-list. Subsequently, B goes through H-list
for the tuple (i, ID , µID , ∗).
– if i /∈ {`1, `2}: B computes yID,2 = pk

yID,1+µID

KGC .
Subsequently, B sets M2 = yID,2 and returns it to A.

– if i ∈ {`1, `2}: B aborts the game and outputs a random
element in GT .

• Oct(·): when A queries for a ciphertext with
(ID i, IDj , w), B executes the following steps:
– retrieve (i, ID i, µIDi , uIDi) and (j, IDj , µIDj , uIDj )

from H-list for ID i and IDj , respectively.
– randomly select r $←− Z∗q .
– if {i, j} = {`1, `2}: search h1-list for the tuple

((ID i, IDj ,⊥, w), h); if no such tuple exists, randomly
choose h $←− Z∗q and add ((ID i, IDj ,⊥, w), h) to h1-
list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}): either
compute k = ê(pk

µIDi

KGC , uIDj ) if i /∈ {`1, `2} or
compute k = ê(uIDi

, pk
µIDj

KGC ) if j /∈ {`1, `2}. Note
that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can randomly
set k = ê(pk

µIDi

KGC , uIDj
) or k = ê(uIDi

, pk
µIDj

KGC ).
– search h1-list for the tuple ((ID i, IDj , k, w), h). If no

such tuple exists, randomly choose h $←− Z∗q and add
((ID i, IDj , k, w), h) to h1-list.

– compute c1 = gr and c2 = grh̃, where h̃ is retrieved
from h2-list (i.e., h̃ = h2(h, c1)).
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– return ctw = (c1, c2).
• Otd(·): whenA queries for a trapdoor with (ID i, IDj , w),
B executes the following steps:
– retrieve (i, ID i, µIDi , uIDi) and (j, IDj , µIDj , uIDj )

from H-list for ID i and IDj , respectively.
– randomly select r $←− Z∗q .
– if {i, j} = {`1, `2}: search h1-list for the tuple

((ID i, IDj ,⊥, w), h). If no such tuple exists, randomly
choose h $←− Z∗q and add ((ID i, IDj ,⊥, w), h) to h1-
list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}), either
compute k = ê(pk

µIDi

KGC , uIDj
) if i /∈ {`1, `2} or

compute k = ê(uIDi
, pk

µIDj

KGC ) if j /∈ {`1, `2}. Note
that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can randomly
set k = ê(pk

µIDi

KGC , uIDj
) or k = ê(uIDi

, pk
µIDj

KGC ).
– search h1-list for the tuple ((ID i, IDj , k, w), h). If no

such tuple exists, randomly choose h $←− Z∗q and add
((ID i, IDj , k, w), h) to h1-list.

– return tdw = h.
Challenge. At the end of Phase 1, A outputs the
challenged tuple (w̃0 = {w0,1, · · · , w0,n}, w̃1 =
{w1,1, · · · , w1,n},DO ,DU ) and B executes the following
steps:
• obtain (i,DO ,⊥, uDO) and (j,DU ,⊥, uDU ) by calling
H(DO) and H(DU ), respectively. If {i, j} 6= {`1, `2},
abort the game.

• for i = 1, · · · , n, execute the following steps. First,
randomly choose ri

$←− Z∗q . Second, search h1-list
for the tuple ((DO ,DU ,⊥, wb,i), hi); if no such en-
try is found, randomly choose hi

$←− Z∗q and add
((DO ,DU ,⊥, wb,i), hi) to h1-list. Third, compute ct∗i =

(c∗1,i, c
∗
2,i), where c∗1,i = gri , c∗2,i = grih̃i , where h̃i is

retrieved from h2-list (i.e., h̃i = h2(hi, c
∗
1,i)).

• return challenged ciphertext ˜ct∗ = (ct∗1, · · · , ct∗n).
Phase 2. In this phase, A can keep the query oracles identical
to those in Phase 1.
Guess. Finally, A outputs b′ ∈ {0, 1} as its guess. B searches
h1-list for k∗ such that ODBDH(ga, gb, gc, k∗) = 1 and returns
k∗ as answer.
Analysis. Because B follows the proposed scheme, with the
exception that the hash functions are modeled by random ora-
cles, its simulation is identical to that of the real scheme. Be-
cause `1 and `2 are independent of A’s perspective, the prob-
ability that B does not abort the game (i.e., {i, j} /∈ {`1, `2}
in querying h1-oracle and {DO ,DU } = {ID`1 , ID`2} in
Challenge) is 2

qH
, where qh1

is the maximum number of
queries that could be made to the h1 oracle for different inputs.
Furthermore, because h1 is modeled as a random oracle,
A’s advantage is negligible unless ((DO ,DU , k∗, wb,i), h)
appears on h1-list such that k∗ = ê(g, g)abc. If this tuple
appears on h1-list, then B is necessarily able to solve the
GBDH problem. Therefore, if there exists some A that can
break the MCKA-CS-secure scheme with a nonnegligible
advantage ε, then there exists some B that can break the GBDH
problem with a nonnegligible advantage ε′ ≥ ε · 2

qH
.

Theorem 2. The proposed scheme is IKGA-CS secure if the
underlying signature scheme Sig is EU-CMA secure under the
hard GBDH assumption.

Proof. The proof is similar to the proof of Theorem 1, except
for the Challenge phase. Thus, we describe only the proof for
the Challenge phase.
Challenge. At the end of Phase 1, A outputs a challenged
tuple (w0, w1,DO ,DU ), and B executes the following steps:
• obtain (i,DO ,⊥, uDO) and (j,DU ,⊥, uDU ) by calling
H(DO) and H(DU ), respectively. If {i, j} 6= {`1, `2},
abort the game.

• search h1-list for the tuple ((DO ,DU ,⊥, wb), h). If no
such tuple is found, randomly choose h $←− Z∗q and add
((DO ,DU ,⊥, wb), h) to h1-list.

• return challenged trapdoor td∗ = h.

Theorem 3. The proposed scheme is MCKA-ICA and IKGA-
ICA secure if it is MCKA-CS and IKGA-CS secure, respec-
tively.

Proof. This proof is intuitive. Since malicious ICA cannot col-
lude with the KGA, it cannot obtain any secret key information
about the user, even if it has the ability to generate a potentially
malicious ICA key pair. However, malicious CS has the ability
to obtain the secret key information of any user except for the
secret key information of the challenged identities by querying
the secret key oracles. Therefore, malicious ICA can be viewed
as a weaker variant of malicious CS. Consequently, Theorem
1 and Theorem 2 entail Theorem 3. Note that because B need
not reply to the certificate query for A, the signature scheme
Sig need not be EU-CMA secure.

VII. THEORETICAL COMPARISON AND PERFORMANCE
EVALUATION

Theorem 4. The proposed scheme is MCKA-KGC secure
under the hard GBDH assumption.

Proof. Suppose that some PPT algorithm A can break the
MCKA-KGC security of the proposed scheme. If so, then the
following proof demonstrates that some other algorithm B can
use A to solve the GBDH problem.

Before the beginning of the game, B is given a GBDH
instance (g, ga, gb, gc), where a, b, c ∈ Z∗q are random choices.
Initialization. B first generates the system parameter pp =
{1λ,G1,GT , ê, q, g,H, h1, h2} according to the scheme. Sub-
sequently, it sets Qkey := 1 to count the number of A
queries to Oik-KGC and initials of an empty list IDList to
store the corresponding identity of the secret key returned by
this oracle. B also runs (pkICA, skICA) ← ICA-Setup(pp)
and (pkKGC , skKGC ) ← KGC-Setup(pp) and chooses two
arbitrary indices `1, `2 ≤ MaxQkey

, where MaxQkey
is the

maximum number of queries that can query to the Oik-KGC
oracle. In addition, B sets the initials for three additional
lists (H-list, h1-list, and h2-list) and randomly chooses a bit
b

$←− {0, 1}. Finally, B returns (pp, pkICA, pkKGC , skKGC ) to
A.
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TABLE II
FEATURES OF COMPARED SCHEMES

Schemes Type Certificateless Implicit Authentication No Key Escrow No Key Distribution No Secure Channel1

HMZKL18 [35] CLAEKS Yes Yes Yes No No
LHSYS19 [30] IBAEKS Yes Yes No No No
CWZH19 [24] PAEKS No No Yes No Yes
LLZ19 [32] CBAEKS No Yes Yes Yes Yes
PSE20 [33] CLAEKS Yes Yes Yes No No
QCH20 [25] PAEKS No No Yes No Yes
LLW21 [31] CBAEKS No Yes Yes Yes Yes

Ours ICA-IBSE No2 Yes Yes No No
1channel between KGC and DO/DU.
2certificates in ICA-IBSE are used to generate partial secret keys only once; by contrast, certificates in PAEKS are continually used for authentication,
and those in CBAEKS are continually used for encrypting keywords and generating trapdoors.

TABLE III
COMPUTATIONAL COST OF COMPARED SCHEMES

Schemes KeywordEnc TrapdoorGen Test

HMZKL18 [35] 5Tem + Thtp + 2Th + 3Tpm Tbp + 3Tem + Thtp + 2Th + 2Tpm 2Tbp + 2Tem + Th + 2Tpm
LHSYS19 [30] 2Tbp + 3Tem + 2Thtp Tbp + 2Tem + 2Thtp 2Tbp + 2Tem + Tpm
CWZH19 [24] 5Tsm + 2Tpa + Th 5Tsm + 2Tpa + Th 4Tsm + 5Tpa
LLZ19 [32] 2Tbp + 3Tem + Thtp + 4Th + Tpm Tbp + 3Tem + 2Thtp + 3Th + Tpm Tbp + Th
PSE20 [33] Tbp + 3Tem + Thtp Tbp + Tem + Thtp + Th Tem + Th
QCHLZ20 [25] Tbp + 3Tem + Thtp + Th 2Tem + Thtp Tbp + Th
LLW21 [31] 5Tsm + 4Th 2Tsm + 2Tpa + 2Th 2Tsm + 2Th

Ours Tbp + 2Tem + Thtp + 2Th Tbp + Thtp + Th Tem + Th
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Fig. 2. Comparison of the efficiency of our scheme with LHSYS19, QCHLZ20, and LLW21 schemes.

TABLE IV
COMMUNICATION COST OF COMPARED SCHEMES

Schemes Public Key Secret Key Ciphertext Trapdoor

HMZKL18 [35] 2|G1|+ |ID | 2|Z∗q | 2|G1| |GT |
LHSYS19 [30] |ID | |G1| 2|G1|+ |GT | 2|G1|
CWZH19 [24] |Gec| |Z∗q | 3|Gec| 2|Gec|
LLZ19 [32] 2|G1| |Z∗q | 3|G1|+ |h| |G1|
PSE20 [33] |G1|+ |ID | |G1|+ |Z∗q | 2|G1| |h|
QCHLZ20 [25] |G1| |Z∗q | |G1|+ |h| |G1|
LLW21 [31] 3|Gec| 2|Z∗q | |Gec|+ 2|Z∗q |+ |h| |Gec|+ |Z∗q |

Ours |ID | |G1| 2|G1| |h|

Phase 1. In this phase, A is allowed to query the following
oracles adaptively at polynomially many instances.

• H-oracle: On the ith nonrepeated query ID i, B first
searches H-list for the entry (i, ID i, µIDi

, uIDi
). If no

such entry exists, then B randomly chooses µIDi

$←− Z∗q ,
computes uIDi

= gµIDi , adds (i, ID i, µIDi
, uIDi

) to H-

TABLE V
EXPERIMENTAL PLATFORM

Description Data

CPU AMD Ryzen 5-2600 3.4GHz
CPU processor number 6
Operation system Ubuntu 18.04
Linux kernel version 5.3.0-59-generic
Random access memory 16.3GB
Solid state disk 232.9GB

list, and returns uIDi to A.
• h1-oracle: On the query (ID i, IDj , k, w), B first searches
h1-list for the entry ((ID i, IDj , k, w), h) and returns h.
Notably, we assume that ((ID i, IDj , k, w), h) is identical
to ((IDj , ID i, k, w), h) for h1-list. If no such entry exists,
B executes the following steps:
– retrieve uIDi

and uIDj
by calling H(ID i) and
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TABLE VI
BIT LENGTH OF ELEMENTS AND RUNNING TIME OF OPERATIONS (80-BIT SECURITY)

Bit-length (bit) Running time (ms)

|Z∗q | |G1| |GT | |Gec| |h| Thtp Th Tbp Tem Tpm Tmi Tpa Tsm

160 512 1024 320 256 1.929 0.009 0.654 0.854 0.002 0.001 0.002 0.281

H(IDj), respectively.
– check if ODBDH(pkKGC , uIDi

, uIDj
, k) = 1.

– if {i, j} = {`1, `2} and the DBDH oracle returns 1,
return k as the answer to the GBDH problem and abort.

– randomly choose h $←− Z∗q , add (ID i, IDj , k, w), h) to
h1-list, and return h to A.

• h2-oracle: On the query (h, c1), B searches h2-list for the
entry ((h, c1), h̃) and returns h̃. If no such entry exists,
then B randomly chooses h̃ $←− Z∗q , adds ((h, c1), h̃) to
h2-list, and returns h̃ to A.

• Oik-KGC(·): When A issues a issue key query, B first
samples ID

$←− ID such that ID does not exist in H-
list. Subsequently, B executes the following steps under
the following conditions:

– if Qkey /∈ {`1, `2}: B obtains uID by querying H(ID).
– if Qkey = `1: B sets uID = gab and adds (ID ,⊥, uID)

to H-list.
– if Qkey = `2: B sets uID = gc and adds (ID ,⊥, uID)

to H-list.
In addition, B randomly chooses yID,1

$←− Z∗q , computes
uID,1 = gyID,1 , and computes uID,2 ∈ G as uID,2 =
uID · uID,1 and σSig ← Sig.Sign(skICA, uID,2). Finally,
B returns M1 = (uID,2, σSig) to A, sets IDList [Qkey ] =
ID , and updates Qkey = Qkey + 1.

• Oct(·): when A queries for a ciphertext with (i, j, w),
where i, j ∈ [Qkey ], B executes the following steps:

– retrieve (IDList [i], µIDList[i], uIDList[i]) and
(IDList [j], µIDList[j], uIDList[j]) from H-list for
IDList [i] and IDList [i], respectively.

– randomly choose r $←− Z∗q .
– if {i, j} = {`1, `2}: search h1-list for the tu-

ple ((IDList [i], IDList [j],⊥, w), h). If no such tu-
ple exists, randomly choose h

$←− Z∗q and add
((IDList [i], IDList [j],⊥, w), h) to h1-list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}), either
compute k = ê(pk

µIDList[i]

KGC , uIDList[j]) if i /∈ {`1, `2} or
compute k = ê(uIDList[i], pk

µIDList[j]

KGC ) if j /∈ {`1, `2}.
Note that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can
randomly set k = ê(pk

µIDList[i]

KGC , uIDList[j]) or k =

ê(uIDList[i], pk
µIDList[j]

KGC ).
– search h1-list for the tuple

((IDList [i], IDList [j], k, w), h). If no such tuple
exists, randomly choose h

$←− Z∗q and add
((IDList [i], IDList [j], k, w), h) to h1-list.

– compute c1 = gr and c2 = grh̃, where h̃ is retrieved
from h2-list (i.e., h2(h, c1)).

– return ctw = (c1, c2).

• Otd(·): when A queries for a trapdoor with (i, j, w),
where i, j ∈ [Qkey ], B executes the following steps:
– retrieve (IDList [i], µIDList[i], uIDList[i]) and

(IDList [j], µIDList[j], uIDList[j]) from H-list for
IDList [i] and IDList [i], respectively.

– if {i, j} = {`1, `2}: search h1-list for the tu-
ple ((IDList [i], IDList [j],⊥, w), h). If no such tu-
ple exists, randomly choose h

$←− Z∗q and add
((IDList [i], IDList [j],⊥, w), h) to h1-list.

– if otherwise (i.e., i /∈ {`1, `2} or j /∈ {`1, `2}), either
compute k = ê(pk

µIDList[i]

KGC , uIDList[j]) if i /∈ {`1, `2} or
compute k = ê(uIDList[i], pk

µIDList[j]

KGC ) if j /∈ {`1, `2}.
Note that if i /∈ {`1, `2} and j /∈ {`1, `2}, B can
randomly set k = ê(pk

µIDList[i]

KGC , uIDList[j]) or k =

ê(uIDList[i], pk
µIDList[j]

KGC ).
– search h1-list for the tuple

((IDList [i], IDList [j], k, w), h). If no such tuple
exists, randomly choose h

$←− Z∗q and add
((IDList [i], IDList [j], k, w), h) to h1-list.

– return tdw = h.
Challenge. At the end of Phase 1, A outputs the challenged
tuple (w̃0 = {w0,1, · · · , w0,n}, w̃1 = {w1,1, · · · , w1,n}, α, β),
and B executes the following steps:
• obtain (IDList [α],⊥, uIDList[α]) and

(IDList [β],⊥, uIDList[β]) by calling H(IDList [α])
and H(IDList [β]), respectively. If {α, β} 6= {`1, `2},
abort the game.

• for i = 1, · · · , n, perform the following steps. First,
randomly choose ri

$←− Z∗q . Second, search h1-list for
the tuple ((IDList [α], IDList [β],⊥, wb,i), hi). If no such
tuple is found, randomly choose hi

$←− Z∗q and add
((IDList [α], IDList [β],⊥, wb,i), hi) to h1-list. Third,
compute ct∗i = (c∗1,i, c

∗
2,i), where c∗1,i = gri , c∗2,i = grih̃i

where h̃i is retrieved from h2-list (i.e., h̃i = h2(hi, c
∗
1,i)).

• return the challenged ciphertext ˜ct∗ = (ct∗1, · · · , ct∗n).
Phase 2. In this phase, A can keep the query oracles identical
to those in Phase 1.
Guess. Finally, A outputs b′ ∈ {0, 1} as its guess. B searches
h1-list for k∗ such that ODBDH(ga, gb, gc, (k∗)x

−1

) = 1 and
returns (k∗)x

−1

as the answer.
Analysis. Because B follows the proposed scheme, except
that the hash functions are modeled by random oracles, its
simulation is identical to that of the real scheme. Because `1
and `2 are independent of A’s perspective, the probability that
B does not abort the game ({α, β} = {IDList [`1], IDList [`2]}
in Challenge) is 2

MaxQkey
. Furthermore, because h1 is modeled

as a random oracle, the adversary’s advantage is negligible,
unless (IDList [α], IDList [β], k∗, wb,i, h) appears in h1-list
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such that (k∗)x
−1

= ê(g, g)abcx(x−1) = ê(g, g)abc. If this
tuple appears in h1-list, then B is necessarily able to solve the
GBDH problem. Therefore, if there exists such an A that can
break the MCKA-KGC-secure scheme with a nonnegligible
advantage ε, then there exists some B that can break the GBDH
problem with a nonnegligible advantage ε′ ≥ ε · 2

MaxQkey
.

Theorem 5. The proposed scheme is IKGA-KGC secure under
the hard GBDH assumption.

Proof. The proof is similar to the proof of Theorem 4, except
for the Challenge phase. Therefore, only the proof for the
Challenge phase is presented.
Challenge. At the end of Phase 1, A outputs the challenged
tuple (w0, w1, α, β) and B executes the following steps:
• obtain (IDList [α],⊥, uIDList[α]) and

(IDList [β],⊥, uIDList[β]) by calling H(IDList [α])
and H(IDList [β]), respectively. If {α, β} 6= {`1, `2}, B
aborts the game.

• search h1-list for the tuple
((IDList [α], IDList [β],⊥, wb), h). If no such tuple
is found, randomly choose h

$←− Z∗q and add
((IDList [α], IDList[β],⊥, wb), h) to h1-list.

• return the challenged trapdoor td∗ = h.

In this section, we detail the theoretical comparison of
our scheme with other state-of-the-art schemes, specifically
the PAEKS schemes CWZH19 [24] and QCHLZ20 [25],
the IBAEKS scheme LHSYS19 [30], the CBAEKS schemes
LLZ19 [32] and LLW21 [31], and the CLAEKS schemes
HMZKL19 [35] and PSE20 [33]. The features of these
schemes are listed in TABLE II. We also evaluate the perfor-
mance of our proposed scheme against that of the LHSYS19
[30], QCHLZ20 [25], and LLW21 [31] schemes.

A. Theoretical Comparison

We compare the schemes with respect to their communi-
cation cost and computational cost. The comparison results
are presented in TABLE III and IV. For communication cost,
we use |Z∗q |, |G1|, |GT |, and |Gec| to denote the bit lengths
of element of the Z∗q , bilinear group G1, bilinear target group
GT , and elliptic curve group Gec, respectively. In addition, we
use |ID | and |h| to denote the bit lengths of a user’s identity
and output of the hash function, respectively. Note that in the
CBAEKS schemes [31], [32], the size of the public key is
the sum of the sizes of the public key and certificate. For
computational cost, we use the symbols “KeywordEnc” and
“TrapdoorGen” to denote the cost of encryption and trapdoor
generation per keyword, respectively. We also use the symbol
“Test” to denote the cost of performing a test of whether
a ciphertext is matched with a trapdoor. In this theoretical
comparison, we consider nine time-consuming operations that
are primarily used in these schemes, namely hash-to-point
function (Thtp), hash (Th), bilinear pairing (Tbp), modular
exponential over bilinear group G1 (Tem), point multiplication
over the bilinear group G1 (Tpm), modular inverse over Z∗q
(Tmi), point addition over the elliptic curve group Gec (Tpa),

and scalar multiplication over the elliptic curve group Gec
(Tsm).

B. Performance Evaluation

In order to make a more specific comparison, we first exper-
iment to compare the time cost of each operation and the space
required by each element, where the time cost of each opera-
tion is obtained by the average of 1000 times. Furthermore, to
evaluate the performance of our scheme, we fully implement
our proposed scheme, LHSYS19 [30], QCHLZ20 [25], and
LLW21 [31] schemes. The source codes of comparison and
implementations are available at https://github.com/
zyliu-crypto/ICA-IBSE. We conduct the experiment
in the environment described in TABLE V. Specifically, we
use the SHA3-256 library3 for the general cryptographic hash
function, and we use the PBC library4 and MIRACL library5

for operations over bilinear groups (Thtp, Tbp, Tem, and Tpm)
and elliptic curve group (Tmi, Tpa, and Tsm), respectively. For
achieving the same security level (i.e., 80-bit), we adopt Type-
A pairing with a 160-bit group order, 512-bit group element
for G1, and 1024-bit group element for GT for bilinear pairing,
and adopt the security parameter secp160r1 recommended by
Standards for Efficient Cryptography Group [43] for elliptic
curve group Gec.

The result of the cost of each operation and space re-
quired by each element is listed in Table. VI. In addition,
the evaluation results of the concrete implementations are
presented in Fig. 2 which shows that while our scheme is
slower than QCHLZ20 scheme [25] in performing test, overall
comparisons, our scheme can effectively encrypt keywords,
generate trapdoors and perform tests. In addition, although
LLW21 scheme [31] is a pairing-free scheme and is faster
than our scheme in theoretical comparison, it needs to use a
lot of hash functions, resulting in the need to constantly switch
epoint type and big type in MIRACL library and char
type in C language back and forth in practice, thus increasing
execution time.

VIII. CONCLUSION

In this paper, we present a novel ICA-IBSE scheme that
masters the trade-off between efficiency (in terms of low stor-
age requirement) and convenience (which IBAEKS achieves
by avoiding the key escrow problem). A concrete framework is
presented, and security proofs are provided, which demonstrate
that the ICA-IBSE scheme can resist MCKAs and IKGAs
under random oracles. Moreover, we experimentally verify that
our scheme not only reduces storage requirements but is also
practicable relative to its state-of-the-art counterparts.
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